1
|
Xue X, Zhou H, Gao J, Li X, Wang J, Bai W, Bai Y, Fan L, Chang H, Shi S. The impact of traditional Chinese medicine and dietary compounds on modulating gut microbiota in hepatic fibrosis: A review. Heliyon 2024; 10:e38339. [PMID: 39391468 PMCID: PMC11466535 DOI: 10.1016/j.heliyon.2024.e38339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Traditional Chinese medicine (TCM) and dietary compounds have a profound influence on the regulation of gut microbiota (GM) in hepatic fibrosis (HF). Certain substances found in both food and herbs that are edible and medicinal, such as dietary fiber, polyphenols, and polysaccharides, can generate beneficial metabolites like short-chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (Trp). These compounds contribute to regulate the GM, reduce levels of endotoxins in the liver, and alleviate fibrosis and inflammation in the liver. Furthermore, they enhance the composition and functionality of GM, promoting the growth of beneficial bacteria while inhibiting the proliferation of harmful bacteria. These mechanisms mitigate the inflammatory response in the intestines and maintain the integrity of the intestinal barrier. The purpose of this review is to analyze how the GM regulates the pathogenesis of HF, evaluate the regulatory effect of TCM and dietary compounds on the intestinal microflora, with a particular emphasis on modulating flora structure, enhancing gut barrier function, and addressing associated pathogenic factors, thereby provide new insights for the treatment of HF.
Collapse
Affiliation(s)
- Xingting Xue
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Jiaxing Gao
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Xinghua Li
- Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Yingchun Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Liya Fan
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| |
Collapse
|
2
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Luo M, Xu Y, Li J, Luo D, Zhu L, Wu Y, Liu X, Wu P. Vitamin D protects intestines from liver cirrhosis-induced inflammation and oxidative stress by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Open Med (Wars) 2023; 18:20230714. [PMID: 37273916 PMCID: PMC10238812 DOI: 10.1515/med-2023-0714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/14/2023] [Accepted: 04/15/2023] [Indexed: 06/06/2023] Open
Abstract
Liver cirrhosis affects the structures and physiological functions of the intestine. Our previous study revealed that liver injury inhibited 25-hydroxylation of vitamin D (25(OH)-VD). The aim of this study was to investigate the roles and mechanisms of vitamin D in liver cirrhosis-induced intestinal injury. The rat liver cirrhosis model was established through the administration of carbon tetrachloride (CCl4) for 8 weeks. Hematoxylin-eosin staining was performed to unveil the intestinal injury induced by liver cirrhosis. Enzyme-linked immunosorbent and reverse transcription PCR (RT-PCR) analysis were used to determine the levels of 25(OH)-VD, vitamin D receptor, Cytochrome P450 24A1 (CYP24A1), and α-defensin 5 (DEFA5) in rat and human serum of liver cirrhosis. Furthermore, liver cirrhosis rats were treated with low-dose (500 IU/kg) and high-dose (2,000 IU/kg) vitamin D intraperitoneally. The expression levels of TLR4/MyD88/NF-κB signaling pathway were evaluated by RT-PCR and Western blot. In conclusion, we determined the deficiency of vitamin D and down-regulation of DEFA5 and intestinal damage induced by liver cirrhosis. Moreover, vitamin D effectively inhibited liver cirrhosis-induced intestinal inflammation and oxidative stress through the TLR4/MyD88/NF-κB pathway. Vitamin D might be a promising therapeutic strategy for future treatment of liver-induced intestinal injury.
Collapse
Affiliation(s)
- Mei Luo
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Yuanhong Xu
- Clinical Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Jike Li
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Dongxia Luo
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Li Zhu
- Hepatology Clinic, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Yanxi Wu
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Xiaodong Liu
- Clinical Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Pengfei Wu
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| |
Collapse
|
4
|
Muñoz L, Caparrós E, Albillos A, Francés R. The shaping of gut immunity in cirrhosis. Front Immunol 2023; 14:1139554. [PMID: 37122743 PMCID: PMC10141304 DOI: 10.3389/fimmu.2023.1139554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Cirrhosis is the common end-stage of chronic liver diseases of different etiology. The altered bile acids metabolism in the cirrhotic liver and the increase in the blood-brain barrier permeability, along with the progressive dysbiosis of intestinal microbiota, contribute to gut immunity changes, from compromised antimicrobial host defense to pro-inflammatory adaptive responses. In turn, these changes elicit a disruption in the epithelial and gut vascular barriers, promoting the increased access of potential pathogenic microbial antigens to portal circulation, further aggravating liver disease. After summarizing the key aspects of gut immunity during homeostasis, this review is intended to update the contribution of liver and brain metabolites in shaping the intestinal immune status and, in turn, to understand how the loss of homeostasis in the gut-associated lymphoid tissue, as present in cirrhosis, cooperates in the advanced chronic liver disease progression. Finally, several therapeutic approaches targeting the intestinal homeostasis in cirrhosis are discussed.
Collapse
Affiliation(s)
- Leticia Muñoz
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Caparrós
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Agustín Albillos
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| | - Rubén Francés
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnologiía Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| |
Collapse
|
5
|
Rusticeanu M, Zimmer V, Lammert F. Visualising and quantifying intestinal permeability -where do we stand. Ann Hepatol 2022; 23:100266. [PMID: 33045414 DOI: 10.1016/j.aohep.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 02/04/2023]
Abstract
Intestinal permeability is getting more and more attention in gastrointestinal research. Although well recognized, its exact role in health and disease is yet to be defined. There are many methods of quantifying intestinal permeability, but most of them fail to deliver tangible information about the morphological integrity of the intestinal barrier. In this review we aim to describe imaging options for the assessment of intestinal barrier integrity and their potential relevance for clinical practice. Our focus is on confocal laser endomicroscopy, which is at this time the only method for visualizing not only functional but also morphological aspects of the gut barrier in vivo.
Collapse
Affiliation(s)
- Monica Rusticeanu
- Department of Medicine, Krankenhaus Vilshofen, Krankenhausstrasse 32, 94474 Vislhofen an der Donau, Germany.
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Klinikweg 1-5, 66539 Neunkirchen, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| |
Collapse
|
6
|
Deng L, Shi Y, Liu P, Wu S, Lv Y, Xu H, Chen X. GeGen QinLian decoction alleviate influenza virus infectious pneumonia through intestinal flora. Biomed Pharmacother 2021; 141:111896. [PMID: 34246956 DOI: 10.1016/j.biopha.2021.111896] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Influenza in humans is often accompanied by gastroenteritis-like symptoms. GeGen QinLian decoction (GQD), a Chinese herb formula, has been widely used to treat infectious diarrhea for centuries and has the effect of restoring intestinal flora. Studies have also reported that GQD were used to treat patients with influenza. However, whether regulating the intestinal flora is one of the ways GQD treats influenza has not been confirmed. In present research, we conducted a systemic pharmacological study, and the results showed that GQD may acts through multiple targets and pathways. In influenza-infected mice, GQD treatment reduced mortality and lung inflammation. Most importantly, the mortality and lung inflammation were also reduced in influenza-infected mice that have undergone fecal microbiota transplantation (FMT) from GQD (FMT-GQD) treated mice. GQD treatment or FMT-GQD treatment restores the intestinal flora, resulting in an increase in Akkermansia_muciniphila, Desulfovibrio_C21_c20 and Lactobacillus_salivarius, and a decrease in Escherichia_coli. FMT-GQD treatment inhibited the NOD/RIP2/NF-κB signaling pathway in the intestine and affected the expression of downstream related inflammatory cytokines in mesenteric lymph nodes (mLNs) and serum. In addition, FMT-GQD treatment showed systemic protection by restraining the inflammatory differentiation of CD4+ T cells. In conclusion, our study shows that GQD can affect systemic immunity, at least in part, through the intestinal flora, thereby protect the mice against influenza virus infectious pneumonia.
Collapse
Affiliation(s)
- Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Pegoraro CMR, Nai GA, Garcia LA, Serra FDM, Alves JA, Chagas PHN, Oliveira DGD, Zocoler MA. Protective effects of Bidens pilosa on hepatoxicity and nephrotoxicity induced by carbon tetrachloride in rats. Drug Chem Toxicol 2021; 44:64-74. [PMID: 30394117 DOI: 10.1080/01480545.2018.1526182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
Abstract
The aim of this study was to assess the protective effects of oral and topical treatment with Bidens pilosa (BP) against carbon tetrachloride (CCl4)- induced toxicity. Fifty-six rats were divided into seven groups: A: CCl4 only; B: CCl4+oral BP; C: CCl4 and topical BP; D: CCl4+oral and topical BP; E: oral BP only; F: negative control; and G: positive control (cyclophosphamide). The animals were treated for 10 weeks. Blood samples were collected for tests of hepatic and renal function, and fragments of the liver, spleen, pancreas, kidney, and intestine were collected for histopathological analyses. Cells from the femoral bone marrow were used for a micronucleus test and 'comet assay'. Statistically significant differences were observed in the levels of gamma-glutamyl transpeptidase (GGT), albumin, urea and creatinine, hepatic inflammation, renal tubular lesion, and inflammation of the intestinal mucosa between the BP-treated groups and untreated group. The median number of micronuclei in group A was 4.00, in group G was 9.00 and in the other groups was 0.00. Group A had the lowest number of cells with a score of 0 and the greatest number with scores of 3 and 4, similar to the results obtained from group G using the 'comet assay'. Thus, BP effectively protected against the toxic effects of CCl4 on the liver, kidney, and intestine and exerted an antimutagenic effect on rats exposed to CCl4.
Collapse
Affiliation(s)
| | - Gisele Alborghetti Nai
- Department of Pathology, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Leonardo Alves Garcia
- Faculty of Medicine of Presidente Prudente (FAMEPP), University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Fernanda de Maria Serra
- Faculty of Biomedicine, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Juliana Apolônio Alves
- Faculty of Medicine of Presidente Prudente (FAMEPP), University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Pedro Henrique Nahas Chagas
- Faculty of Medicine of Presidente Prudente (FAMEPP), University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Décio Gomes de Oliveira
- Faculty of Pharmacy, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Marcos Alberto Zocoler
- Faculty of Pharmacy, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| |
Collapse
|
8
|
Zhang W, Gan D, Jian J, Huang C, Luo F, Wan S, Jiang M, Wan Y, Wang A, Li B, Zhu X. Protective Effect of Ursolic Acid on the Intestinal Mucosal Barrier in a Rat Model of Liver Fibrosis. Front Physiol 2019; 10:956. [PMID: 31417419 PMCID: PMC6682626 DOI: 10.3389/fphys.2019.00956] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) plays an important role in intestinal mucosal barrier damage in various disease states. Recent evidence suggests that intestinal mucosal barrier damage and intestinal dysbiosis occur in mice with hepatic fibrosis induced by CCl4 or bile duct ligation. Another study showed that ursolic acid (UA) attenuates experimental colitis via its anti-inflammatory and antioxidant activities. The goal of this study was to investigate the effects of UA on the intestinal mucosal barrier in CCl4-induced hepatic fibrosis in rats and identify its associated mechanisms. Male Sprague-Dawley rats were randomly divided into the following 3 groups (n = 10/group): the control, CCl4 model and UA treatment groups. Rats were sacrificed at 72 h after the hepatic fibrosis model was established and assessed for liver fibrosis, intestinal injury, enterocyte apoptosis, bacterial translocation, system inflammation, intestinal oxidative stress, and tight junction protein and NOX protein expression. The results demonstrated that UA attenuated the following: (i) liver and intestinal pathological injury; (ii) cleaved caspase-3 expression in the ileal epithelial cells; (iii) serum lipopolysaccharide and procalcitonin levels; (iv) intestinal malondialdehyde levels; and (v) the expression of the NOX protein components NOX2 and P67phox in ileal tissues. Furthermore, our results suggested that UA improved intestinal dysbiosis and the expression of the tight junction proteins Claudin 1 and Occludin in the ileum of rats. These results indicate that UA has protective effects on the intestinal mucosal barrier in rats with CCl4-induced liver fibrosis by inhibiting intestinal NOX-mediated oxidative stress. Our findings may provide a basis for further clinical studies of UA as a novel and adjuvant treatment to cure liver fibrosis.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dakai Gan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Liver Disease, The Ninth Hospital of Nanchang, Nanchang, China
| | - Jie Jian
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenkai Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fangyun Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sizhe Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meichun Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yipeng Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anjiang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bimin Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Lai C, Feng T, Wei L, Zhang T, Zhou G, Yang Q, Lan T, Xiang G, Yao Y, Zhou L, Huang X. Development and validation of a primate model for liver fibrosis. J Pharmacol Toxicol Methods 2019; 100:106600. [PMID: 31247307 DOI: 10.1016/j.vascn.2019.106600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Many liver diseases involve liver fibrosis. Most preclinical studies of liver fibrosis are carried out in small animals such as rodents, and thus lack direct potential for extrapolation to human diseases. The aim of the current study was to develop a primate model for liver fibrosis with greater relevance to translational research. METHODS Liver fibrosis was induced in adult male healthy rhesus monkeys using repeated CCl4 treatment (40% in olive oil, 1.5 ml/kg once every 3 days via peritoneal injection, subcutaneous injection or gastric gavage). Liver biopsy was conducted at various time points for histologic examination. Blood samples were taken for standard liver function test. RESULTS Gastric gavage was the optimal approach for establishing stably liver fibrosis without animal loss due to toxicity. The progression of fibrosis appeared to involve epithelial to mesenchymal transition and hepatic ductular reaction. CONCLUSION Repeated CCl4 gavage in rhesus monkeys results in stable liver fibrosis. Such a model may be an effective platform for future studies of human liver fibrosis.
Collapse
Affiliation(s)
- Chunyou Lai
- Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Tianhang Feng
- Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lingling Wei
- Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Tianying Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Guo Zhou
- Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Qinyan Yang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Tao Lan
- Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Guangming Xiang
- Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yutong Yao
- Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China
| | - Xiaolun Huang
- Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China.
| |
Collapse
|
10
|
Beneficial Effects of the Peroxisome Proliferator-Activated Receptor α/γ Agonist Aleglitazar on Progressive Hepatic and Splanchnic Abnormalities in Cirrhotic Rats with Portal Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1608-1624. [DOI: 10.1016/j.ajpath.2018.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
|
11
|
Aitbaev KA, Murkamilov IT, Fomin VV. [Liver diseases: The pathogenetic role of the gut microbiome and the potential of treatment for its modulation]. TERAPEVT ARKH 2017; 89:120-128. [PMID: 28914862 DOI: 10.17116/terarkh2017898120-128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The paper gives an update on the role of the gut microbiome (GM) in the development of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver cirrhosis (LC), and its complications, such as hepatic encephalopathy (HE) and hepatocellular carcinoma (HCC), and discusses the possibilities of its correction with prebiotics, probiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). The pathophysiology of the liver diseases in question demonstrates some common features that are characterized by pathogenic changes in the composition of the gastrointestinal tract microflora, by intestinal barrier impairments, by development of endotoxemia, by increased liver expression of proinflammatory factors, and by development of liver inflammation. In progressive liver disease, the above changes are more pronounced, which contributes to the development of LC, HE, and HCC. GM modulation using prebiotics, probiotics, synbiotics, antibiotics, and FMT diminishes dysbacteriosis, strengthens the intestinal mucosal barrier, reduces endotoxemia and liver damage, and positively affects the clinical manifestations of HE. Further investigations are needed, especially in humans, firstly, to assess a relationship of GM to the development of liver diseases in more detail and, secondly, to obtain evidence indicating the therapeutic efficacy of GM-modulating agents in large-scale, well-designed, randomized, controlled, multicenter studies.
Collapse
Affiliation(s)
- K A Aitbaev
- Research Institute of Molecular Biology and Medicine, National Center of Cardiology and Therapy, Ministry of Health of the Kyrgyz Republic, Bishkek, Kyrgyz Republic
| | - I T Murkamilov
- I.K. Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyz Republic
| | - V V Fomin
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
12
|
Amirtharaj GJ, Natarajan SK, Pulimood A, Balasubramanian KA, Venkatraman A, Ramachandran A. Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide. Cardiovasc Toxicol 2017; 17:175-184. [PMID: 27131982 DOI: 10.1007/s12012-016-9371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thioacetamide (TAA) administration is widely used for induction of liver cirrhosis in rats, where reactive oxygen radicals (ROS) and nitric oxide (NO) participate in development of liver damage. Cardiac dysfunction is an important complication of liver cirrhosis, but the role of ROS or NO in cardiac abnormalities during liver cirrhosis is not well understood. This was investigated in animals after TAA-induced liver cirrhosis and temporal changes in oxidative stress, NO and mitochondrial function in the heart evaluated. TAA induced elevation in cardiac levels of nitrate before development of frank liver cirrhosis, without gross histological alterations. This was accompanied by an early induction of P38 MAP kinase, which is influenced by ROS and plays an important signaling role for induction of iNOS. Increased nitrotyrosine, protein oxidation and lipid peroxidation in the heart and cardiac mitochondria, suggestive of oxidative stress, also preceded frank liver cirrhosis. However, compromised cardiac mitochondrial function with a decrease in respiratory control ratio and increased mitochondrial swelling was seen later, when cirrhosis was evident. In conclusion, TAA induces elevations in ROS and NO in the heart in parallel to early liver damage. This leads to later development of functional deficits in cardiac mitochondria after development of liver cirrhosis.
Collapse
Affiliation(s)
- G Jayakumar Amirtharaj
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - Sathish Kumar Natarajan
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - Anna Pulimood
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - K A Balasubramanian
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - Aparna Venkatraman
- Center for Stem Cell Research, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - Anup Ramachandran
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India.
| |
Collapse
|
13
|
Pijls KE, Jonkers DMAE, Elizalde M, Drittij-Reijnders MJ, Haenen GR, Bast A, Masclee AAM, Koek GH. Is intestinal oxidative stress involved in patients with compensated liver cirrhosis? Ann Hepatol 2017; 15:402-9. [PMID: 27049494 DOI: 10.5604/16652681.1198816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Liver cirrhosis is associated with intestinal epithelial barrier dysfunction, which may be affected by oxidative stress. Studies in cirrhotic rats provided evidence for intestinal oxidative stress, but studies in cirrhotic patients are scarce. We have shown intestinal barrier dysfunction in patients with compensated cirrhosis. AIM The present study aimed to investigate whether oxidative stress occurs in the intestinal mucosa of compensated cirrhotic patients and may contribute to barrier dysfunction. MATERIAL AND METHODS Oxidative stress was studied in duodenal and sigmoid biopsies from 15 cirrhotic patients and 22 controls by analyzing transcription of genes involved in glutathione and uric acid metabolism using quantitative real-time polymerase chain reaction. Protein levels of glutathione and glutathione disulphide were measured and the glutathione/glutathione disulphide ratio was calculated as marker of oxidative stress. In addition, intestinal myeloperoxidase and fecal calprotectin were determined. RESULTS Gene transcription of glutathione synthetase and glutathione reductase were significantly different in duodenal and sigmoid biopsies of cirrhotic patients vs. controls, but no alterations were found for other genes nor for glutathione, glutathione disulphide, glutathione/glutathione disulphide ratio and intestinal myeloperoxidase and fecal calprotectin concentrations. CONCLUSION This study did not find indications for oxidative stress and low-grade inflammation in the small and large intestine of stable compensated cirrhotic patients. Although these preliminary findings need further validation, we found intestinal oxidative stress not to be a major mechanism contributing to epithelial barrier dysfunction in patients with compensated cirrhosis.
Collapse
Affiliation(s)
- Kirsten E Pijls
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | - Daisy M A E Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | - Montserrat Elizalde
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | - Marie-Jose Drittij-Reijnders
- Department of Toxicology, Maastricht University Medical Center, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | - Guido R Haenen
- Department of Toxicology, Maastricht University Medical Center, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | - Aalt Bast
- Department of Toxicology, Maastricht University Medical Center, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | - Ad A M Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | - Ger H Koek
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| |
Collapse
|
14
|
Plasma Citrulline, Glycans, and Hydrogen Sulfide in Patients With Acute Pancreatitis: Possible Markers of Intestinal Damage. Pancreas 2016; 45:e27-9. [PMID: 27295536 DOI: 10.1097/mpa.0000000000000593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
15
|
Gómez-Hurtado I, Such J, Francés R. Microbiome and bacterial translocation in cirrhosis. GASTROENTEROLOGIA Y HEPATOLOGIA 2016; 39:687-696. [PMID: 26775042 DOI: 10.1016/j.gastrohep.2015.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
Qualitative and quantitative changes in gut microbiota play a very important role in cirrhosis. Humans harbour around 100 quintillion gut bacteria, thus representing around 10 times more microbial cells than eukaryotic ones. The gastrointestinal tract is the largest surface area in the body and it is subject to constant exposure to these living microorganisms. The existing symbiosis, proven by the lack of proinflammatory response against commensal bacteria, implies the presence of clearly defined communication lines that contribute to the maintenance of homeostasis of the host. Therefore, alterations of gut flora seem to play a role in the pathogenesis and progress of multiple liver and gastrointestinal diseases. This has made its selective modification into an area of high therapeutic interest. Bacterial translocation is defined as the migration of bacteria or bacterial products from the intestines to the mesenteric lymph nodes. It follows that alteration in gut microbiota have shown importance, at least to some extent, in the pathogenesis of several complications arising from terminal liver disease, such as hepatic encephalopathy, portal hypertension and spontaneous bacterial peritonitis. This review sums up, firstly, how liver disease can alter the common composition of gut microbiota, and secondly, how this alteration contributes to the development of complications in cirrhosis.
Collapse
Affiliation(s)
- Isabel Gómez-Hurtado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, España
| | - José Such
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, España; Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dabi, Emiratos Árabes Unidos
| | - Rubén Francés
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, España; Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Alicante, España.
| |
Collapse
|
16
|
Natarajan SK, Pachunka JM, Mott JL. Role of microRNAs in Alcohol-Induced Multi-Organ Injury. Biomolecules 2015; 5:3309-38. [PMID: 26610589 PMCID: PMC4693280 DOI: 10.3390/biom5043309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Joseph M Pachunka
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
17
|
Bertinat R, Nualart F, Li X, Yáñez AJ, Gomis R. Preclinical and Clinical Studies for Sodium Tungstate: Application in Humans. ACTA ACUST UNITED AC 2015; 6. [PMID: 25995968 PMCID: PMC4435618 DOI: 10.4172/2155-9899.1000285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes is a complex metabolic disorder triggered by the deficient secretion of insulin by the pancreatic β-cell or the resistance of peripheral tissues to the action of the hormone. Chronic hyperglycemia is the major consequence of this failure, and also the main cause of diabetic problems. Indeed, several clinical trials have agreed in that tight glycemic control is the best way to stop progression of the disease. Many anti-diabetic drugs for treatment of type 2 diabetes are commercially available, but no ideal normoglycemic agent has been developed yet. Moreover, weight gain is the most common side effect of many oral anti-diabetic agents and insulin, and increased weight has been shown to worsen glycemic control and increase the risk of diabetes progression. In this sense, the inorganic salt sodium tungstate (NaW) has been studied in different animal models of metabolic syndrome and diabetes, proving to have a potent effect on normalizing blood glucose levels and reducing body weight, without any hypoglycemic action. Although the liver has been studied as the main site of NaW action, positive effects have been also addressed in muscle, pancreas, brain, adipose tissue and intestine, explaining the effective anti-diabetic action of this salt. Here, we review NaW research to date in these different target organs. We believe that NaW deserves more attention, since all available anti-diabetic treatments remain suboptimal and new therapeutics are urgently needed.
Collapse
Affiliation(s)
- Romina Bertinat
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile ; Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Xuhang Li
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Alejandro J Yáñez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile ; Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Ramón Gomis
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain ; Diabetes and Obesity Research Laboratory, IDIBAPS, Barcelona, Spain ; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain ; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Yang YY, Hsieh SL, Lee PC, Yeh YC, Lee KC, Hsieh YC, Wang YW, Lee TY, Huang YH, Chan CC, Lin HC. Long-term cannabinoid type 2 receptor agonist therapy decreases bacterial translocation in rats with cirrhosis and ascites. J Hepatol 2014; 61:1004-13. [PMID: 24953022 DOI: 10.1016/j.jhep.2014.05.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Intestinal hyperpermeability, impaired peritoneal macrophages (PMs) phagocytosis, and bacterial translocation (BT), resulting in increased systemic and local infection/inflammation such as spontaneous bacterial peritonitis (SBP) together with increased tumor necrosis factor-α (TNFα) levels, are all implicated in the pathogenesis of cirrhosis-related complications. Manipulation of the cannabinoid receptors (CB1R and CB2R), which are expressed on the gut mucosa and PMs, has been reported to modulate intestinal inflammation and systemic inflammatory cytokine release. Our study aims to explore the effects of chronic CB1R/CB2R agonist/antagonist treatments on relevant abnormalities in cirrhotic ascitic rats. METHODS Vehicle, archidonyl-2-chloroethylamide (ACEA, CB1R agonist), JWH133 (CB2R agonist), and AM630 (CB2R antagonist) were given to thioacetamide (TAA) and common bile duct ligation (BDL) cirrhotic rats with ascites for two weeks and various measurement were performed. RESULTS Compared to sham rats, CB2Rs were downregulated in cirrhotic rat intestines and PMs. The two-week JWH133 treatment significantly decreased systemic/intestinal oxidative stress, TNFα and inflammatory mediators, infection, intestinal mucosal damage and hyperpermeability; the JWH133 treatment also decreased bacterial overgrowth/adhesion, BT and SBP, upregulated intestinal tight junctions and downregulated the PM TNFα receptor/NFκBp65 protein expression in cirrhotic rats. Acute and chronic JWH133 treatment corrected the TNFα-induced suppression of phagocytosis of cirrhotic rat PMs, which then could be reversed by concomitant AM630 treatment. CONCLUSIONS Our study suggests that CB2R agonists have the potential to treat BT and various relevant abnormalities through inhibition of systemic/intestinal oxidative stress, inflammatory cytokines and TNFα release in cirrhosis. Overall, the chronic CB2R agonist treatment affects multiple approach mechanisms, and its direct effect on the hyperdynamic circulation is only minor.
Collapse
Affiliation(s)
- Ying-Ying Yang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Clinical Skill Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Institute of Infection and Immunology Center & Institute of Microbiology and Immunology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Chang Lee
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuei-Chuan Lee
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ying-Wen Wang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Che-Chang Chan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
19
|
Potential probiotic Escherichia coli 16 harboring the Vitreoscilla hemoglobin gene improves gastrointestinal tract colonization and ameliorates carbon tetrachloride induced hepatotoxicity in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:213574. [PMID: 25050329 PMCID: PMC4090500 DOI: 10.1155/2014/213574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/02/2014] [Indexed: 01/24/2023]
Abstract
The present study describes the beneficial effects of potential probiotic E. coli 16 (pUC8:16gfp) expressing Vitreoscilla hemoglobin (vgb) gene, associated with bacterial respiration under microaerobic condition, on gastrointestinal (GI) colonization and its antioxidant activity on carbon tetrachloride (CCl4) induced toxicity in Charles Foster rats. In vitro, catalase activity in E. coli 16 (pUC8:16gfp) was 1.8 times higher compared to E. coli 16 (pUC-gfp) control. In vivo, E. coli 16 (pUC8:16gfp) not only was recovered in the fecal matter after 70 days of oral administration but also retained antibacterial activities, whereas E. coli 16 (pUC-gfp) was not detected. Oral administration of 200 and 500 μL/kg body weight of CCl4 to rats at weekly interval resulted in elevated serum glutamyl pyruvate transaminase (SGPT) and serum glutamyl oxalacetate transaminase (SGOT) levels compared to controls. Rats prefed with E. coli 16 (pUC8:16gfp) demonstrated near to normal levels for SGPT and SGOT, whereas the liver homogenate catalase activity was significantly increased compared to CCl4 treated rats. Thus, pUC8:16gfp plasmid encoding vgb improved the growth and GI tract colonization of E. coli 16. In addition, it also enhanced catalase activity in rats harboring E. coli 16 (pUC8:16gfp), thereby preventing the absorption of CCl4 to GI tract.
Collapse
|
20
|
Abstract
Microbes are present in large numbers in each human being, in particularly in the gastrointestinal (GI) tract, and have long been believed to have some beneficial effects for their hosts. Till recently, however, we lacked tools for studying these organisms. Rapid technological advances in recent years have markedly improved our understanding of their role both in health and disease. Recent literature suggests that organisms in the GI tract, referred to collectively as gut microbiota, play an indispensable role in the maintenance of host's homeostasis. Alterations in the gut microbiota, that is in the nature and relative density of various constituent bacterial species, appear to have a role in pathogenesis and progression of several GI and hepatic diseases. This has also opened the vista for tinkering with gut flora in an attempt to treat or prevent such diseases. In this review, we have tried to summarize information on normal gut microbiota, laboratory techniques and animal models used to study it, and the role of its perturbations in some of the common hepatic disorders, such as non-alcoholic fatty liver disease (including obesity), non-alcoholic steatohepatitis, alcoholic liver disease, and liver cirrhosis and its complications.
Collapse
Affiliation(s)
- Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | |
Collapse
|
21
|
Christudoss P, Selvakumar R, Pulimood AB, Fleming JJ, Mathew G. Protective role of aspirin, vitamin C, and zinc and their effects on zinc status in the DMH-induced colon carcinoma model. Asian Pac J Cancer Prev 2014; 14:4627-34. [PMID: 24083715 DOI: 10.7314/apjcp.2013.14.8.4627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chemoprotection refers to the use of specific natural or synthetic chemical agents to suppress or prevent the progression to cancer. The purpose of this study is to assess the protective effect of aspirin, vitamin C or zinc in a dimethyl hydrazine (DMH) colon carcinoma model in rats and to investigate the effect of these supplements on changes associated with colonic zinc status. Rats were randomly divided into three groups, group 1 (aspirin), group 2 (vitamin C) and group 3 (zinc), each being subdivided into two groups and given subcutaneous injection of DMH (30 mg/kg body wt) twice a week for 3 months and sacrificed at 4 months (A-precancer model) and 6 months (B-cancer model). Groups 1, 2, 3 were simultaneously given aspirin, vitamin C, or zinc supplement respectively from the beginning till the end of the study. It was observed that 87.5% of rats co-treated with aspirin or vitamin C showed normal colonic histology, along with a significant decrease in colonic tissue zinc at both time points. Rats co-treated with zinc showed 100% reduction in tumor incidence with no significant change in colonic tissue zinc. Plasma zinc, colonic CuZnSOD (copper-zinc superoxide dismutase) and alkaline phosphatase activity showed no significant changes in all 3 cotreated groups. These results suggest that aspirin, vitamin C or zinc given separately, exert a chemoprotective effect against chemically induced DMH colonic preneoplastic progression and colonic carcinogenesis in rats. The inhibitory effects are associated with maintaining the colonic tissue zinc levels and zinc enzymes at near normal without significant changes.
Collapse
Affiliation(s)
- Pamela Christudoss
- Department of Clinical Biochemistry, Christian Medical College, Tamil Nadu, India E-mail :
| | | | | | | | | |
Collapse
|
22
|
Pijls KE, Jonkers DMAE, Elamin EE, Masclee AAM, Koek GH. Intestinal epithelial barrier function in liver cirrhosis: an extensive review of the literature. Liver Int 2013; 33:1457-69. [PMID: 23879434 DOI: 10.1111/liv.12271] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/23/2013] [Indexed: 12/12/2022]
Abstract
Recent evidence suggests that translocation of bacteria and bacterial products, such as endotoxin from the intestinal lumen into the systemic circulation is a contributing factor in the pathogenesis of chronic liver diseases and the development of complications in cirrhosis. In addition to alterations in the intestinal microbiota and immune system, dysfunction of the intestinal epithelial barrier may be an important factor facilitating bacterial translocation. This review aims to provide an overview of the current evidence of intestinal epithelial barrier dysfunction in human chronic liver diseases and cirrhosis, and to discuss possible contributing factors and mechanisms. Data suggest the presence of intestinal epithelial barrier dysfunction in patients with chronic liver diseases, but are more convincing in patients with cirrhosis, especially in those with complications. The barrier dysfunction can result from both direct and indirect effects of aetiological factors, such as alcohol and obesity, which can cause chronic liver diseases and ultimately cirrhosis. On the other hand characteristics of cirrhosis itself, including portal hypertension, alterations in the intestinal microbiota, inflammation and oxidative stress can affect barrier function of both small and large intestine and may contribute to the development of complications. In conclusion, there are indications for intestinal epithelial barrier dysfunction in patients with chronic liver diseases and especially in patients with cirrhosis, which can be caused by various factors affecting both the small and large intestine.
Collapse
Affiliation(s)
- Kirsten E Pijls
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
23
|
D'Argenio G, Cariello R, Tuccillo C, Mazzone G, Federico A, Funaro A, De Magistris L, Grossi E, Callegari ML, Chirico M, Caporaso N, Romano M, Morelli L, Loguercio C. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage? Liver Int 2013; 33:687-697. [PMID: 23448378 DOI: 10.1111/liv.12117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/06/2013] [Indexed: 02/05/2023]
Abstract
AIM Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. RESULTS CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P < 0.001 in all cases). Circulating levels of pro-inflammatory cytokine TNF-α were significantly increased in rats with liver fibrosis as compared with normal rats, while symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. CONCLUSIONS Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis.
Collapse
|
24
|
Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI, Karatza E, Zisimopoulos D, Maroulis I, Kontogeorgou E, Georgiou CD, Scopa CD, Thomopoulos KC. Intestinal mucosal proliferation, apoptosis and oxidative stress in patients with liver cirrhosis. Ann Hepatol 2013; 12:301-307. [PMID: 23396742 DOI: 10.1016/s1665-2681(19)31369-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
BACKGROUND Intestinal mucosal barrier dysfunction in liver cirrhosis and its implicated mechanisms is of great clinical importance because it is associated with the development of serious complications from diverse organs through promotion of systemic endotoxemia. AIM The present study was designed to investigate whether enterocytes' proliferation, apoptosis and intestinal oxidative stress are altered in the intestinal mucosa of patients with compensated and decompensated liver cirrhosis. MATERIAL AND METHODS Twelve healthy controls (group A) and twenty four cirrhotic patients at a compensated (n = 12, group B) or decompensated condition (n = 12, group C) were subjected to duodenal biopsy. In intestinal specimens mucosal apoptotic and mitotic activity and their ratio were recorded by means of morphological assessment and mucosal lipid hydroperoxides were measured. Plasma endotoxin concentration, an index of gut barrier function, was also determined. RESULTS Cirrhotic patients presented significantly higher serum endotoxin concentrations as compared to healthy controls (P < 0.001), whilst endotoxemia was higher in decompensated disease (P < 0.05 vs. compensated cirrhosis). Intestinal mucosal mitotic count was significantly lower in patients with compensated and decompensated cirrhosis compared to controls (P < 0.01, respectively), whilst a trend towards increased apoptosis was recorded. The mitotic/apoptotic ratio was significantly reduced in groups B (P < 0.05) and C (P < 0.01) as compared to controls. Intestinal lipid peroxidation was significantly increased in decompensated cirrhotics (P < 0.001 vs. groups A and B). CONCLUSIONS The present study demonstrates for the first time that human liver cirrhosis is associated with decreased intestinal mucosal proliferation and proliferation/apoptosis ratio even at early stages of cirrhosis and increased intestinal oxidative stress in advanced liver disease.
Collapse
|
25
|
Natarajan SK, Zhu W, Liang X, Zhang L, Demers AJ, Zimmerman MC, Simpson MA, Becker DF. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic Biol Med 2012; 53:1181-91. [PMID: 22796327 PMCID: PMC3432146 DOI: 10.1016/j.freeradbiomed.2012.07.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/22/2012] [Accepted: 07/06/2012] [Indexed: 12/27/2022]
Abstract
Proline metabolism has an underlying role in apoptotic signaling that influences tumorigenesis. Proline is oxidized to glutamate in the mitochondria, with the rate-limiting step catalyzed by proline dehydrogenase (PRODH). PRODH expression is inducible by p53, leading to increased proline oxidation, reactive oxygen species formation, and induction of apoptosis. Paradoxical to its role in apoptosis, proline also protects cells against oxidative stress. Here we explore the mechanism of proline protection against hydrogen peroxide stress in melanoma WM35 cells. Treatment of WM35 cells with proline significantly increased cell viability, diminished oxidative damage of cellular lipids and proteins, and maintained ATP and NADPH levels after exposure to hydrogen peroxide. Inhibition or siRNA-mediated knockdown of PRODH abolished proline protection against oxidative stress, whereas knockdown of Δ(1)-pyrroline-5-carboxylate reductase, a key enzyme in proline biosynthesis, had no impact on proline protection. Potential linkages between proline metabolism and signaling pathways were explored. The combined inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 eliminated proline protection. A significant increase in Akt activation was observed in proline-treated cells after hydrogen peroxide stress along with a corresponding increase in the phosphorylation of the forkhead transcription factor class O3a (FoxO3a). The role of PRODH in proline-mediated protection was validated in the prostate carcinoma cell line PC3. Knockdown of PRODH in PC3 cells attenuated phosphorylated levels of Akt and FoxO3a and decreased cell survival during hydrogen peroxide stress. The results provide evidence that PRODH is essential in proline protection against hydrogen peroxide-mediated cell death and that proline/PRODH helps activate Akt in cancer cells.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Weidong Zhu
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xinwen Liang
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lu Zhang
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Andrew J. Demers
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology and Redox Biology Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Melanie A. Simpson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Donald F. Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Address correspondence to: Donald F. Becker, Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, N258 Beadle Center, Lincoln, NE 68588, Tel. 402-472-9652; Fax. 402-472-7842;
| |
Collapse
|
26
|
Ilan Y. Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis. World J Gastroenterol 2012; 18:2609-18. [PMID: 22690069 PMCID: PMC3369997 DOI: 10.3748/wjg.v18.i21.2609] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 01/31/2012] [Accepted: 04/21/2012] [Indexed: 02/06/2023] Open
Abstract
Gut flora and bacterial translocation (BT) play important roles in the pathogenesis of chronic liver disease, including cirrhosis and its complications. Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen predispose patients to bacterial infections, major complications and also play a role in the pathogenesis of chronic liver disorders. Levels of bacterial lipopolysaccharide, a component of gram-negative bacteria, are increased in the portal and/or systemic circulation in several types of chronic liver disease. Impaired gut epithelial integrity due to alterations in tight junction proteins may be the pathological mechanism underlying bacterial translocation. Preclinical and clinical studies over the last decade have suggested a role for BT in the pathogenesis of nonalcoholic steatohepatitis (NASH). Bacterial overgrowth, immune dysfunction, alteration of the luminal factors, and altered intestinal permeability are all involved in the pathogenesis of NASH and its complications. A better understanding of the cell-specific recognition and intracellular signaling events involved in sensing gut-derived microbes will help in the development of means to achieve an optimal balance in the gut-liver axis and ameliorate liver diseases. These may suggest new targets for potential therapeutic interventions for the treatment of NASH. Here, we review some of the mechanisms connecting BT and NASH and potential therapeutic developments.
Collapse
|
27
|
Teltschik Z, Wiest R, Beisner J, Nuding S, Hofmann C, Schoelmerich J, Bevins CL, Stange EF, Wehkamp J. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology 2012; 55:1154-63. [PMID: 22095436 DOI: 10.1002/hep.24789] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/17/2011] [Indexed: 12/12/2022]
Abstract
UNLABELLED Liver cirrhosis is associated with bacterial translocation (BT) and endotoxemia. Most translocating bacteria belong to the common intestinal microbiota, suggesting a breakdown of intestinal barrier function. We hypothesized that diminished mucosal antimicrobial host defense could predispose to BT. Two rodent models of portal hypertension with increased BT were used, CCl(4)-induced ascitic cirrhosis and 2-day portal vein-ligated (PVL) animals. BT was assessed by standard microbiological techniques on mesenteric lymph nodes. Total RNA was isolated systematically throughout the intestinal tract, and expression of Paneth cell α-cryptdins and β-defensins was determined by real-time quantitative polymerase chain reaction (qPCR). To determine functional consequences, mucosal antimicrobial activity was assessed with a fluorescence-activated cell sorting assay. BT was detectable in 40% of rats with cirrhosis. Compared with the group without BT, these animals exhibited diminished intestinal Paneth cell α-cryptdin 5 and 7 expression. In contrast, PVL was associated with BT in all animals but did not affect antimicrobial peptides. The decrease in Paneth cell antimicrobials was most pronounced in the ileum and the coecum. Other antimicrobials showed no changes or even an induction in the case of BT at different sites. Antimicrobial activity toward different commensal strains was reduced, especially in the distal ileum and the cecum in experimental cirrhosis with BT (excluding PVL). CONCLUSION Compromised Paneth cell antimicrobial host defense seems to predispose to BT in experimental cirrhosis. Understanding this liver-gut axis including the underlying mechanisms could help us to find new treatment avenues.
Collapse
Affiliation(s)
- Zora Teltschik
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI, Karatza E, Triantos C, Vagianos CE, Spiliopoulou I, Kaltezioti V, Charonis A, Nikolopoulou VN, Scopa CD, Thomopoulos KC. Altered intestinal tight junctions' expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Invest 2012; 42:439-446. [PMID: 22023490 DOI: 10.1111/j.1365-2362.2011.02609.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Increased intestinal permeability in cirrhosis exerts a pivotal role in the pathogenesis of spontaneous bacterial peritonitis and other complications of cirrhosis through promotion of systemic endotoxemia. This study was designed to investigate whether the expression of tight junction (TJ) proteins, which regulate gut paracellular permeability, is altered in the intestinal mucosa of patients with liver cirrhosis and study its potential association with the stage of liver disease and the development of systemic endotoxemia. DESIGN Twenty-four patients with cirrhosis at a decompensated (n = 12, group A) or compensated condition (n = 12, group B) and 12 healthy controls (group C) were subjected to duodenal biopsy. The expression of the TJ proteins occludin and claudin-1 in the intestinal epithelium was evaluated by immunohistochemistry. Plasma endotoxin concentrations were also determined. RESULTS Patients with cirrhosis presented significantly higher serum endotoxin concentrations as compared to healthy controls (P < 0·001), whilst endotoxemia was higher in decompensated disease (P < 0·05 vs. compensated cirrhosis). Patients with decompensated and compensated cirrhosis presented significantly reduced expression of occludin and claudin-1 as compared to controls (P < 0·01, respectively). These alterations were significantly more pronounced in decompensated patients as compared to compensated (P < 0·05). Regarding occludin, in patients with cirrhosis, a specific pattern of expression in the intestinal epithelium was observed, with a gradually increasing loss of expression from crypt to tip of the villi. Occludin and claudin-1 expression were inversely correlated with Child-Pugh score (P < 0·001), the grade of oesophageal varices (P < 0·01) and endotoxin concentrations (P < 0·001). CONCLUSIONS This study demonstrates for the first time that human liver cirrhosis induces significant alterations in enterocytes' TJs. These changes might represent an important cellular mechanism for intestinal barrier dysfunction and hyperpermeability in patients with liver cirrhosis.
Collapse
|
29
|
Assimakopoulos SF, Gogos C, Labropoulou-Karatza C. Could antioxidants be the “magic pill” for cirrhosis-related complications? A pathophysiological appraisal. Med Hypotheses 2011; 77:419-23. [DOI: 10.1016/j.mehy.2011.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/29/2011] [Indexed: 12/12/2022]
|
30
|
Ramos ARL, Matte U, Goldani HAS, Oliveira OLM, Vieira SMG, Silveira TRD. Intestinal permeability assessed by 51Cr-EDTA in rats with CCl4 - induced cirrhosis. ARQUIVOS DE GASTROENTEROLOGIA 2010; 47:188-92. [PMID: 20721466 DOI: 10.1590/s0004-28032010000200014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/08/2009] [Indexed: 12/13/2022]
Abstract
CONTEXT The straight relationship between cirrhosis and impaired intestinal barrier has not been elucidated yet. OBJECTIVES To verify (51)Cr-EDTA-intestinal permeability in rats with CCl(4)-induced cirrhosis and controls. METHOD Fifty male Wistar rats weighing 150-180 g were separated in three groups: 25 animals received CCl(4) 0.25 mL/kg with olive oil by gavage with 12 g/rat/day food restriction for 10 weeks (CCl(4)-induced cirrhosis); 12 received the same food restriction for 10 weeks (CCl(4)-non exposed). Other 13 rats received indomethacin 15 mg/kg by gavage as positive control of intestinal inflammation. RESULTS The median (25-75 interquartile range) (51)Cr-EDTA-IP values of cirrhotic and CCl(4)-non exposed rats were 0.90% (0.63-1.79) and 0.90% (0.60-1.52) respectively, without significant difference (P = 0.65). Animals from indomethacin group showed (51)Cr-EDTA-IP, median 7.3% (5.1-14.7), significantly higher than cirrhotic and CCl(4)-non exposed rats (P<0.001). CONCLUSION This study showed the lack of difference between (51)Cr-EDTA-intestinal permeability in rats with and without cirrhosis. Further studies are necessary to better clarify the relationship between intestinal permeability and cirrhosis.
Collapse
Affiliation(s)
- Ana Regina L Ramos
- Experimental Laboratory of Gastroenterology and Hepatology, Hospital de Clínicas de Porto Alegre, Porto Alegre-RS, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
Natarajan SK, Amirtharaj GJ, Ramachandran A, Pulimood AB, Balasubramanian KA. Retinoid metabolism in the small intestine during development of liver cirrhosis. J Gastroenterol Hepatol 2009; 24:821-9. [PMID: 19226378 DOI: 10.1111/j.1440-1746.2008.05771.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Retinoids are important mediators of cellular differentiation and proliferation in various epithelia of the body including the small intestine. Though alterations in intestinal epithelial cell proliferation have been noted in liver cirrhosis, mechanisms involved in the process are not well understood. This study examined the levels of various retinoids and retinoid-metabolizing enzymes in the small intestine during development of liver cirrhosis. METHODS Four groups of animals were used (control, phenobarbitone control, thioacetamide and carbon tetrachloride treatment). Twice-weekly intragastric or i.p. administration of carbon tetrachloride or thioacetamide, respectively, produced liver cirrhosis after 3 months, which was confirmed through histology and serum markers. Retinoid levels were measured by high-performance liquid chromatography. RESULTS A decrease in the levels of retinal, retinoic acid and retinol was evident in the intestine by 3 months, when cirrhosis was evident histologically, and these remained low until 6 months. A decrease in the activities of retinaldehyde oxidase, retinaldehyde reductase and retinol dehydrogenase was also seen in intestine from cirrhotic rats. CONCLUSION These results suggest that altered retinoid metabolism in the intestine of cirrhotic rats might have an influence on changes in intestinal epithelial cell differentiation, seen in liver cirrhosis.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | | | | | | |
Collapse
|
32
|
Effect of α-tocopherol on carbon tetrachloride intoxication in the rat liver. Arch Toxicol 2008; 83:477-83. [DOI: 10.1007/s00204-008-0394-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 11/19/2008] [Indexed: 11/26/2022]
|
33
|
Abstract
PURPOSE OF REVIEW Portal hypertension is responsible for most of the complications associated with cirrhosis, specifically variceal hemorrhage, ascites and hepatic encephalopathy. Progress in understanding the pathophysiology of portal hypertension and improvements in the diagnosis and management of its complications that have occurred over the last year are discussed. RECENT FINDINGS Endothelial dysfunction contributes to the pathogenesis of portal hypertension and may represent a novel therapeutic target. Hepatic venous pressure gradient measurements, when properly performed, are useful in the management of patients with cirrhosis. Hyponatremia in cirrhosis has prognostic value and novel aquaretic and other agents may provide alternative approaches to the management of chronic liver disease. The mechanisms for bacterial translocation in cirrhosis that predisposes patients to infectious complications, such as spontaneous bacterial peritionitis, are being explored. Adrenal insufficiency is common in septic patients with advanced cirrhosis and corticosteroids may provide a survival benefit. Pulmonary disease complicates the management of patients with advanced liver disease. SUMMARY Significant advances continue to be made in the diagnosis and management of the complications of portal hypertension in the face of an increasing burden of chronic liver disease.
Collapse
Affiliation(s)
- Andres T Blei
- Division of Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|