1
|
Wu L, Liu X, Lei J, Zhang N, Zhao H, Zhang J, Deng H, Li Y. Fibrinogen-like protein 2 promotes tumor immune suppression by regulating cholesterol metabolism in myeloid-derived suppressor cells. J Immunother Cancer 2023; 11:e008081. [PMID: 38056898 PMCID: PMC10711877 DOI: 10.1136/jitc-2023-008081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are crucial mediators of tumor-associated immune suppression. Targeting the accumulation and activation of MDSCs has been recognized as a promising approach to enhance the effectiveness of immunotherapies for different types of cancer. METHODS The MC38 and B16 tumor-bearing mouse models were established to investigate the role of Fgl2 during tumor progression. Fgl2 and FcγRIIB-deficient mice, adoptive cell transfer, RNA-sequencing and flow cytometry analysis were used to assess the role of Fgl2 on immunosuppressive activity and differentiation of MDSCs. RESULTS Here, we show that fibrinogen-like protein 2 (Fgl2) regulates the differentiation and immunosuppressive functions of MDSCs. The absence of Fgl2 leads to an increase in antitumor CD8+ T-cell responses and a decrease in granulocytic MDSC accumulation. The regulation mechanism involves Fgl2 modulating cholesterol metabolism, which promotes the accumulation of MDSCs and immunosuppression through the production of reactive oxygen species and activation of XBP1 signaling. Inhibition of Fgl2 or cholesterol metabolism in MDSCs reduces their immunosuppressive activity and enhances differentiation. Targeting Fgl2 could potentially enhance the therapeutic efficacy of anti-PD-1 antibody in immunotherapy. CONCLUSION These results suggest that Fgl2 plays a role in promoting immune suppression by modulating cholesterol metabolism and targeting Fgl2 combined with PD-1 checkpoint blockade provides a promising therapeutic strategy for antitumor therapy.
Collapse
Affiliation(s)
- Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Xudong Liu
- School of Medicine, Chongqing University, Chongqing, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Nan Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huan Deng
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Lossio CF, Osterne VJS, Pinto-Junior VR, Chen S, Oliveira MV, Verduijn J, Verbeke I, Serna S, Reichardt NC, Skirtach A, Cavada BS, Van Damme EJM, Nascimento KS. Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. Int J Mol Sci 2023; 24:15966. [PMID: 37958949 PMCID: PMC10649158 DOI: 10.3390/ijms242115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.
Collapse
Affiliation(s)
- Claudia F. Lossio
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Vinicius J. S. Osterne
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Vanir R. Pinto-Junior
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
- Department of Physics, Federal University of Ceara, Fortaleza 60440-970, Brazil
| | - Simin Chen
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Messias V. Oliveira
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Joost Verduijn
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Sonia Serna
- Glycotechnology Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Niels C. Reichardt
- Glycotechnology Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red (CIBER-BBN), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Andre Skirtach
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Benildo S. Cavada
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Kyria S. Nascimento
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| |
Collapse
|
3
|
Almansa-Gómez S, Prieto-Ruiz F, Cansado J, Madrid M. Autophagy Modulation as a Potential Therapeutic Strategy in Osteosarcoma: Current Insights and Future Perspectives. Int J Mol Sci 2023; 24:13827. [PMID: 37762129 PMCID: PMC10531374 DOI: 10.3390/ijms241813827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy, the process that enables the recycling and degradation of cellular components, is essential for homeostasis, which occurs in response to various types of stress. Autophagy plays an important role in the genesis and evolution of osteosarcoma (OS). The conventional treatment of OS has limitations and is not always effective at controlling the disease. Therefore, numerous researchers have analyzed how controlling autophagy could be used as a treatment or strategy to reverse resistance to therapy in OS. They highlight how the inhibition of autophagy improves the efficacy of chemotherapeutic treatments and how the promotion of autophagy could prove positive in OS therapy. The modulation of autophagy can also be directed against OS stem cells, improving treatment efficacy and preventing cancer recurrence. Despite promising findings, future studies are needed to elucidate the molecular mechanisms of autophagy and its relationship to OS, as well as the mechanisms underlying the functioning of autophagic modulators. Careful evaluation is required as autophagy modulation may have adverse effects on normal cells, and the optimization of autophagic modulators for use as drugs in OS is imperative.
Collapse
Affiliation(s)
| | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| |
Collapse
|
4
|
Zhao P, Sun L, Zhao C, Malik S. PD1 is transcriptionally regulated by LEF1 in mature T cells. Immunobiology 2023; 228:152708. [PMID: 37523793 DOI: 10.1016/j.imbio.2023.152708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
The role of programmed cell death 1 (PD1) in cancer immune evasion is of considerable importance, prompting the development of monoclonal antibodies that specifically target PD-1 to enhance the immune system for cancer therapy. Nevertheless, the efficacy of PD1/programmed cell death-Ligand 1 (PD-L1) blocking antibodies is limited to certain patients or tumor types. Although researchers have demonstrated the influence of PD-1 on the positive selection of T cells, its effect on the T-cell repertoire remains uncertain. Lymphoid enhancer binding factor 1 (LEF1) has been known to play a critical role as a transcription factor in the development and maturation of T cells. Despite the greater focus on the study of its homologous protein, T cell factor 1 (TCF1), we discovered that LEF1 had a positive regulatory effect on the transcription of PD1 in mature T cells, including CD4+ T cells, CD8+ T cells, and Treg cells. This finding was observed in LEF1 knockout and LEF1-stimulated mice models. Additionally, we confirmed the direct regulation of PD1 by LEF1 in tumor-infiltrating lymphocytes through tumor-implantation experiments. The direct regulation of PD1 by LEF1 was further validated in the LEF1 knockout cell line. The results of our study provide novel perspectives on the regulation of PD1 in immune responses and investigate potential approaches for clinical anti-PD1 therapy.
Collapse
Affiliation(s)
- Pin Zhao
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China.
| | - Lanming Sun
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, China
| | - Cong Zhao
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, China
| | - Samiullah Malik
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen 518055, China
| |
Collapse
|
5
|
EGFR and p38MAPK Contribute to the Apoptotic Effect of the Recombinant Lectin from Tepary Bean (Phaseolus acutifolius) in Colon Cancer Cells. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Previous works showed that a Tepary bean lectin fraction (TBLF) induced apoptosis on colon cancer cells and inhibited early colonic tumorigenesis. One Tepary bean (TB) lectin was expressed in Pichia pastoris (rTBL-1), exhibiting similarities to one native lectin, where its molecular structure and in silico recognition of cancer-type N-glycoconjugates were confirmed. This work aimed to determine whether rTBL-1 retained its bioactive properties and if its apoptotic effect was related to EGFR pathways by studying its cytotoxic effect on colon cancer cells. Similar apoptotic effects of rTBL-1 with respect to TBLF were observed for cleaved PARP-1 and caspase 3, and cell cycle G0/G1 arrest and decreased S phase were observed for both treatments. Apoptosis induction on SW-480 cells was confirmed by testing HA2X, p53 phosphorylation, nuclear fragmentation, and apoptotic bodies. rTBL-1 increased EGFR phosphorylation but also its degradation by the lysosomal route. Phospho-p38 increased in a concentration- and time-dependent manner, matching apoptotic markers, and STAT1 showed activation after rTBL-1 treatment. The results show that part of the rTBL-1 mechanism of action is related to p38 MAPK signaling. Future work will focus further on the target molecules of this recombinant lectin against colon cancer.
Collapse
|
6
|
Zhao X, Fu C, Sun L, Feng H, Xie P, Wu M, Tan X, Chen G. New Insight into the Concanavalin A-Induced Apoptosis in Hepatocyte of an Animal Model: Possible Involvement of Caspase-Independent Pathway. Molecules 2023; 28:molecules28031312. [PMID: 36770978 PMCID: PMC9919242 DOI: 10.3390/molecules28031312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
Concanavalin A (Con A) is known to be a T-cell mitogen and has been shown to induce hepatitis in mice through the triggering of conventional T cells and NKT cells. However, it remains unknown whether Con A itself can directly induce rapid hepatocyte death in the absence of a functional immune system. Here, by using an immunodeficient mouse model, we found Con A rapidly induced liver injury in vivo despite a lack of immunocyte involvement. We further observed in vitro that hepatocytes underwent a dose-dependent but caspase-independent apoptosis in response to Con A stimulation in vitro. Moreover, transcriptome RNA-sequencing analysis revealed that apoptosis pathways were activated in both our in vivo and in vitro models. We conclude that Con A can directly induce rapid but non-classical apoptosis in hepatocytes without the participation of immunocytes. These findings provide new insights into the mechanism of Con A-induced hepatitis.
Collapse
Affiliation(s)
- Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Cheng Fu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Peiling Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
- Correspondence: (X.T.); (G.C.)
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
- Correspondence: (X.T.); (G.C.)
| |
Collapse
|
7
|
Huldani H, Rashid AI, Turaev KN, Opulencia MJC, Abdelbasset WK, Bokov DO, Mustafa YF, Al-Gazally ME, Hammid AT, Kadhim MM, Ahmadi SH. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Commun Signal 2022; 20:167. [PMID: 36289525 PMCID: PMC9597983 DOI: 10.1186/s12964-022-00972-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Concanavalin A (ConA), the most studied plant lectin, has been known as a potent anti-neoplastic agent for a long time. Since initial reports on its capacity to kill cancer cells, much attention has been devoted to unveiling the lectin's exact molecular mechanism. It has been revealed that ConA can bind to several receptors on cancerous and normal cells and modulate the related signaling cascades. The most studied host receptor for ConA is MT1-MMP, responsible for most of the lectin's modulations, ranging from activating immune cells to killing tumor cells. In this study, in addition to studying the effect of ConA on signaling and immune cell function, we will focus on the most up-to-date advancements that unraveled the molecular mechanisms by which ConA can induce autophagy and apoptosis in various cancer cell types, where it has been found that P73 and JAK/STAT3 are the leading players. Moreover, we further discuss the main signaling molecules causing liver injury as the most significant side effect of the lectin injection. Altogether, these findings may shed light on the complex signaling pathways controlling the diverse responses created via ConA treatment, thereby modulating these complex networks to create more potent lectin-based cancer therapy. Video Abstract
Collapse
Affiliation(s)
- Huldani Huldani
- grid.443126.60000 0001 2193 0299Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan Indonesia
| | - Ahmed Ibraheem Rashid
- grid.427646.50000 0004 0417 7786Department of Pharmacology, Collage of Medicine, University of Babylon, Hilla, Iraq
| | - Khikmatulla Negmatovich Turaev
- grid.444694.f0000 0004 0403 0119Department of Clinical Pharmacology, Samarkand State Medical Institute, Samarkand, Uzbekistan ,grid.513581.b0000 0004 6356 9173Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan 100047
| | | | - Walid Kamal Abdelbasset
- grid.449553.a0000 0004 0441 5588Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia ,grid.7776.10000 0004 0639 9286Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- grid.448878.f0000 0001 2288 8774Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation ,grid.466474.3Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240 Russian Federation
| | - Yasser Fakri Mustafa
- grid.411848.00000 0000 8794 8152Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq ,grid.444971.b0000 0004 6023 831XCollege of Technical Engineering, The Islamic University, Najaf, Iraq ,Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Seyed Hossein Ahmadi
- grid.411705.60000 0001 0166 0922Research Center for Cell and Molecular Sciences, School of Medicine, Tehran University of Medical Sciences, PO Box 1417613151, Tehran, Iran
| |
Collapse
|
8
|
de Oliveira dos Santos AM, Duarte AE, Costa AR, da Silva AA, Rohde C, Silva DG, de Amorim ÉM, da Cruz Santos MH, Pereira MG, Deprá M, de Santana SL, da Silva Valente VL, Teixeira CS. Canavalia ensiformis lectin induced oxidative stress mediate both toxicity and genotoxicity in Drosophila melanogaster. Int J Biol Macromol 2022; 222:2823-2832. [DOI: 10.1016/j.ijbiomac.2022.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
9
|
Cheng L, Wei Z, Yang Z, Lu R, Yang M, Yu M, Yang N, Li S, Gao M, Zhao X, Lin X. Carma3 Protects from Liver Injury by Preserving Mitochondrial Integrity in Liver Sinusoidal Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:456-464. [DOI: 10.4049/jimmunol.2101195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Carma3 is an intracellular scaffolding protein that can form complex with Bcl10 and Malt1 to mediate G protein–coupled receptor– or growth factor receptor–induced NF-κB activation. However, the in vivo function of Carma3 has remained elusive. Here, by establishing a Con A–induced autoimmune hepatitis model, we show that liver injury is exacerbated in Carma3−/− mice. Surprisingly, we find that the Carma3 expression level is higher in liver sinusoidal endothelial cells (LSECs) than in hepatocytes in the liver. In Carma3−/− mice, Con A treatment induces more LSEC damage, accompanied by severer coagulation. In vitro we find that Carma3 localizes at mitochondria and Con A treatment can trigger more mitochondrial damage and cell death in Carma3-deficient LSECs. Taken together, our data uncover an unrecognized role of Carma3 in maintaining LSEC integrity, and these results may extend novel strategies to prevent liver injury from toxic insults.
Collapse
Affiliation(s)
- Liqing Cheng
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhanqi Wei
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Zaopeng Yang
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Renlin Lu
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ming Yang
- ‡Tsinghua Changgung Hospital, Beijing, China; and
| | - Muchun Yu
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Naixue Yang
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Shulin Li
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
- §Tsinghua University School of Life Sciences, Beijing, China
| | - Mingyi Gao
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
- §Tsinghua University School of Life Sciences, Beijing, China
| | - Xueqiang Zhao
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Xin Lin
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
10
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
11
|
Fan Z, Li Y, Chen S, Xu L, Tian Y, Cao Y, Pan Z, Zhang X, Chen Y, Ren F. Magnesium Isoglycyrrhizinate Ameliorates Concanavalin A-Induced Liver Injury by Inhibiting Autophagy. Front Pharmacol 2022; 12:794319. [PMID: 35058778 PMCID: PMC8763799 DOI: 10.3389/fphar.2021.794319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: Acute liver failure (ALF) is a type of liver injury that is caused by multiple factors and leads to severe liver dysfunction; however, current treatments for ALF are insufficient. Magnesium isoglycyrrhizinate (MgIG), a novel glycyrrhizin extracted from the traditional Chinese medicine licorice, has a significant protective effect against concanavalin A (ConA)-induced liver injury, but its underlying therapeutic mechanism is unclear. Hence, this study aims to explore the potential therapeutic mechanism of MgIG against ConA-induced immune liver injury. Methods: ConA (20 mg/kg, i. v.) was administered for 12 h to construct an immune liver injury model, and the treatment group was given MgIG (30 mg/kg, i. p.) injection 1 h in advance. Lethality, liver injury, cytokine levels, and hepatocyte death were evaluated. The level of autophagy was evaluated by electron microscopy, RT-PCR and western blotting, and hepatocyte death was assessed in vitro by flow cytometry. Results: MgIG significantly increased the survival rate of mice and ameliorated severe liver injury mediated by ConA. The decrease in the number of autophagosomes, downregulation of LC3b expression and upregulation of p62 expression indicated that MgIG significantly inhibited ConA-induced autophagy in the liver. Reactivation of autophagy by rapamycin (RAPA) reversed the protective effect of MgIG against ConA-induced liver injury. Compared with MgIG treatment, activation of autophagy by RAPA also promoted the expression of liver inflammation markers (IL-1β, IL-6, TNF-α, CXCL-1, CXCL-2, CXCL-10, etc.) and hepatocyte death. In vitro experiments also showed that MgIG reduced ConA-induced hepatocyte death but did not decrease hepatocyte apoptosis by inhibiting autophagy. Conclusion: MgIG significantly ameliorated ConA-induced immune liver injury in mice by inhibiting autophagy. This study provides theoretical support for the ability of MgIG to protect against liver injury in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Du C, Si Y, Pang N, Li Y, Guo Y, Liu C, Fan H. Prokaryotic expression, purification, physicochemical properties and antifungal activity analysis of phloem protein PP2-A1 from cucumber. Int J Biol Macromol 2022; 194:395-401. [PMID: 34822821 DOI: 10.1016/j.ijbiomac.2021.11.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022]
Abstract
Phloem protein 2 (PP2) is a protein having lectin properties that can be isolated from the phloem sap. Based on our previous proteomic study of phloem sap of Cucumis sativus, it was found that the expression of PP2 A1-like was significantly up-regulated under salt stress, which may be a molecular mechanism of plant adaptation to stress. This paper carried out the expression and purification of the CsPP2-A1 gene in E. coli for further characteristic analysis. The results demonstrated that the CsPP2-A1 in shake flask cultures was mainly expressed in the soluble form at 15 °C or in inclusion bodies at 37 °C. Secondly, Ni-IDA affinity chromatography and SDS-PAGE were employed to yield highly purified CsPP2-A1 protein. The purified CsPP2-A1 was then subjected to Western blot and MALDI-TOF-MS analysis for protein identification. The biological activity analysis results showed that CsPP2-A1 had hemagglutinating activities to rabbit erythrocytes, and Chitotetraose may be the specific inhibitory sugar of CsPP2-A1. The optimal hemagglutination activity of CsPP2-A1 protein was achieved between pH 5-9, and between 20 and 60 °C. Moreover, CsPP2-A1 had significant inhibitory effects on Botrytis cinerea and Phytophthora infestans, and the inhibitory effect on B. cinerea was better than that on P. infestans.
Collapse
Affiliation(s)
- Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yuyang Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Ningning Pang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yapeng Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yuting Guo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Chen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
13
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
14
|
Ni J, Feng H, Xu X, Liu T, Ye T, Chen K, Li G. Oncolytic Vaccinia Virus Harboring Aphrocallistes vastus Lectin Inhibits the Growth of Cervical Cancer Cells Hela S3. Mar Drugs 2021; 19:md19100532. [PMID: 34677432 PMCID: PMC8537278 DOI: 10.3390/md19100532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Aphrocallistes vastus lectin (AVL) is a C-type marine lectin produced by sponges. Our previous study demonstrated that genes encoding AVL enhanced the cytotoxic effect of oncolytic vaccinia virus (oncoVV) in a variety of cancer cells. In this study, the inhibitory effect of oncoVV-AVL on Hela S3 cervical cancer cells, a cell line with spheroidizing ability, was explored. The results showed that oncoVV-AVL could inhibit Hela S3 cells growth both in vivo and in vitro. Further investigation revealed that AVL increased the virus replication, promote the expression of OASL protein and stimulated the activation of Raf in Hela S3 cells. This study may provide insight into a novel way for the utilization of lection AVL.
Collapse
|
15
|
Jagadeesh N, Belur S, Campbell BJ, Inamdar SR. The fucose-specific lectin ANL from Aspergillus niger possesses anti-cancer activity by inducing the intrinsic apoptosis pathway in hepatocellular and colon cancer cells. Cell Biochem Funct 2021; 39:401-412. [PMID: 33527486 DOI: 10.1002/cbf.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022]
Abstract
The L-fucose-specific lectin from Aspergillus niger (ANL), isolated from the corneal smears of a keratitis patient was reported earlier. Here, we examined the interaction of ANL with human hepatocellular and colon cancer cells, evaluated its anti-cancer activity and diagnostic potential to detect aberrantly glycosylated tumour-associated serum glycoproteins such as alpha-fetoprotein (AFP). We observed that ANL strongly bound to both HepG2 and HT-29 cell-lines and this interaction was effectively blocked with L-fucose and mucin in a dose and time-dependent manner with an IC50 of 1.25 and 5 μg/mL for HepG2 and HT-29 cells respectively at 48 hours. ANL treatment increased hypodiploidy and decreased the number of HepG2 cell in G0 -G1 phase at both 24 and 48 hours. Furthermore, ANL increased the level of apoptosis in both HepG2 and HT-29 cells in a time-dependent manner via enhanced production of reactive oxygen species and altered mitochondrial membrane potential, indicative of intrinsic apoptotis pathway activation. Immunoblot analysis confirmed the time-dependent elevation of levels of cytochrome c, initiator caspase-9 and activation of caspase-3. ANL immunohistochemistry on colon cancer tissue and quantification of AFP in HCC patient serum samples by developing an ANL-anti-AFP antibody sandwich enzyme-linked immunosorbent assay confirmed the diagnostic potential of ANL. Here, interaction of ANL with AFP could be effectively blocked in the presence of competing fucose-bearing glycans. We found ANL to be more sensitive than Lens culinaris lectin, a well-known fucose-specific lectin and currently used diagnostic agent. ANL can be further explored as a diagnostic and anti-cancer agent.
Collapse
Affiliation(s)
| | - Shivakumar Belur
- Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka, India
| | - Barry J Campbell
- Department of Infection & Microbiomes, University of Liverpool, Liverpool, UK
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
16
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
17
|
Bloise N, Okkeh M, Restivo E, Della Pina C, Visai L. Targeting the "Sweet Side" of Tumor with Glycan-Binding Molecules Conjugated-Nanoparticles: Implications in Cancer Therapy and Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:289. [PMID: 33499388 PMCID: PMC7911724 DOI: 10.3390/nano11020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology is in the spotlight of therapeutic innovation, with numerous advantages for tumor visualization and eradication. The end goal of the therapeutic use of nanoparticles, however, remains distant due to the limitations of nanoparticles to target cancer tissue. The functionalization of nanosystem surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to tumor cells. Cancer formation and metastasis are accompanied by profound alterations in protein glycosylation. Hence, the detection and targeting of aberrant glycans are of great value in cancer diagnosis and therapy. In this review, we provide a brief update on recent progress targeting aberrant glycosylation by functionalizing nanoparticles with glycan-binding molecules (with a special focus on lectins and anti-glycan antibodies) to improve the efficacy of nanoparticles in cancer targeting, diagnosis, and therapy and outline the challenges and limitations in implementing this approach. We envision that the combination of nanotechnological strategies and cancer-associated glycan targeting could remodel the field of cancer diagnosis and therapy, including immunotherapy.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Mohammad Okkeh
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Elisa Restivo
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Cristina Della Pina
- Dipartimento di Chimica, Università Degli Studi di Milano e CNR-ISTM, Via C. Golgi, 19, 20133 Milan, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| |
Collapse
|
18
|
Functional Component Isolated from Phaseolus vulgaris Lectin Exerts In Vitro and In Vivo Anti-Tumor Activity Through Potentiation of Apoptosis and Immunomodulation. Molecules 2021; 26:molecules26020498. [PMID: 33477737 PMCID: PMC7832403 DOI: 10.3390/molecules26020498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/25/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
Phytohemagglutinin (PHA), the lectin purified from red kidney bean (Phaseolus vulgaris), is a well-known mitogen for human lymphocyte. Because it has obvious anti-proliferative and anti-tumor activity, PHA may serve as a potential antineoplastic drug in future cancer therapeutics. However, the literature is also replete with data on detrimental effects of PHA including oral toxicity, hemagglutinating activity, and immunogenicity. There is a critical need to evaluate the functional as well as the toxic components of PHAs to assist the rational designs of treatment with it. In this report, we performed SDS-PAGE to identify components of PHA-L, the tetrameric isomer of PHA with four identical L-type subunits, and then characterized biological function or toxicity of the major protein bands through in vitro experiments. It was found that the protein appearing as a 130 kD band in SDS-PAGE gel run under the condition of removal of β-mercaptoethanol from the sample buffer together with omission of a heating step could inhibit tumor cell growth and stimulate lymphocyte proliferation, while most of the 35 kD proteins are likely non-functional impurity proteins and 15 kD protein may be related to hemolytic effect. Importantly, the 130 kD functional protein exhibits promising in vivo anti-tumor activity in B16-F10 melanoma C57 BL/6 mouse models, which may be achieved through potentiation of apoptosis and immunomodulation. Altogether, our results suggest that PHA-L prepared from crude extracts of red kidney bean by standard strategies is a mixture of many ingredients, and a 130 kD protein of PHA-L was purified and identified as the major functional component. Our study may pave the way for PHA-L as a potential anticancer drug.
Collapse
|
19
|
Elamine Y, Torres-Salas V, Messai A, Girón-Calle J, Alaiz M, Vioque J. Purification, Characterization, and Antiproliferative Activity of a Single-Chain Lectin from Vicia palaestina (Fabaceae) Seeds. Chem Biodivers 2021; 18:e2000827. [PMID: 33410600 DOI: 10.1002/cbdv.202000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 11/06/2022]
Abstract
Vicia palaestina Boiss. is an annual herb that grows in dry areas of eastern Mediterranean countries. It belongs to section Cracca subgenus Vicilla, which is characterized by having a high content in the non-protein amino acid canavanine. The seeds from some of these vetches are also rich in lectins. The purification and characterization of a single-chain lectin from the seeds of V. palaestina is described here. This lectin was the most abundant protein in albumin extracts. It has affinity for the glycoconjugate N-acetylgalactosamine and inhibits proliferation of the cancerous Caco-2 and THP-1 cell lines. In addition to their high nutritional value, the seeds from V. palaestina represent a source of lectins with health promoting and pharmacological potential because of their antiproliferative activity.
Collapse
Affiliation(s)
- Youssef Elamine
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| | - Verenice Torres-Salas
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, 56230, Chapingo, Estado de México, Mexico
| | - Alima Messai
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| | - Julio Girón-Calle
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| | - Manuel Alaiz
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| | - Javier Vioque
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| |
Collapse
|
20
|
Wolin IAV, Heinrich IA, Nascimento APM, Welter PG, Sosa LDV, De Paul AL, Zanotto-Filho A, Nedel CB, Lima LD, Osterne VJS, Pinto-Junior VR, Nascimento KS, Cavada BS, Leal RB. ConBr lectin modulates MAPKs and Akt pathways and triggers autophagic glioma cell death by a mechanism dependent upon caspase-8 activation. Biochimie 2020; 180:186-204. [PMID: 33171216 DOI: 10.1016/j.biochi.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
Glioblastoma multiforme is the most aggressive type of glioma, with limited treatment and poor prognosis. Despite some advances over the last decade, validation of novel and selective antiglioma agents remains a challenge in clinical pharmacology. Prior studies have shown that leguminous lectins may exert various biological effects, including antitumor properties. Accordingly, this study aimed to evaluate the mechanisms underlying the antiglioma activity of ConBr, a lectin extracted from the Canavalia brasiliensis seeds. ConBr at lower concentrations inhibited C6 glioma cell migration while higher levels promoted cell death dependent upon carbohydrate recognition domain (CRD) structure. ConBr increased p38MAPK and JNK and decreased ERK1/2 and Akt phosphorylation. Moreover, ConBr inhibited mTORC1 phosphorylation associated with accumulation of autophagic markers, such as acidic vacuoles and LC3 cleavage. Inhibition of early steps of autophagy with 3-methyl-adenine (3-MA) partially protected whereas the later autophagy inhibitor Chloroquine (CQ) had no protective effect upon ConBr cytotoxicity. ConBr also augmented caspase-3 activation without affecting mitochondrial function. Noteworthy, the caspase-8 inhibitor IETF-fmk attenuated ConBr induced autophagy and C6 glioma cell death. Finally, ConBr did not show cytotoxicity against primary astrocytes, suggesting a selective antiglioma activity. In summary, our results indicate that ConBr requires functional CRD lectin domain to exert antiglioma activity, and its cytotoxicity is associated with MAPKs and Akt pathways modulation and autophagy- and caspase-8- dependent cell death.
Collapse
Affiliation(s)
- Ingrid A V Wolin
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Isabella A Heinrich
- Departamento de Bioquímica e Programa de Pós-graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Ana Paula M Nascimento
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Priscilla G Welter
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Liliana Del V Sosa
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Ciudad Universitaria, 5000, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina
| | - Ana Lucia De Paul
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Ciudad Universitaria, 5000, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Beatriz Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Laboratório de Biologia Celular de Gliomas, Programa de Pós-graduação Em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Lara Dias Lima
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | | | - Kyria S Nascimento
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Benildo S Cavada
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Rodrigo B Leal
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil; Departamento de Bioquímica e Programa de Pós-graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
21
|
Wang EM, Hu TH, Huang CC, Chang YC, Yang SM, Huang ST, Wu JC, Ma YL, Chan HH, Liu LF, Lu WB, Kung ML, Wen ZH, Wang JC, Ko CY, Tsai WL, Chu TH, Tai MH. Hepatoma-derived growth factor participates in concanavalin A-induced hepatitis. FASEB J 2020; 34:16163-16178. [PMID: 33063394 DOI: 10.1096/fj.202000511rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis is an important health problem worldwide. Novel molecular targets are in demand for detection and management of hepatitis. Hepatoma-derived growth factor (HDGF) has been delineated to participate in hepatic fibrosis and liver carcinogenesis. However, the relationship between hepatitis and HDGF remains unclear. This study aimed to elucidate the role of HDGF during hepatitis using concanavalin A (ConA)-induced hepatitis model. In cultured hepatocytes, ConA treatment-elicited HDGF upregulation at transcriptional level and promoted HDGF secretion while reducing intracellular HDGF protein level and cellular viability. Similarly, mice receiving ConA administration exhibited reduced hepatic HDGF expression and elevated circulating HDGF level, which was positively correlated with serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. By using HDGF knockout (KO) mice, it was found the ConA-evoked cell death was prominently alleviated in KO compared with control. Besides, it was delineated HDGF ablation conferred protection by suppressing the ConA-induced neutrophils recruitment in livers. Above all, the ConA-mediated activation of tumor necrosis factor-α (TNF-α)/interleukin-1β (IL-1β)/interleukin-6 (IL-6)/cyclooxygenase-2 (COX-2) inflammatory signaling was significantly abrogated in KO mice. Treatment with recombinant HDGF (rHDGF) dose-dependently stimulated the expression of TNF-α/IL-1β/IL-6/COX-2 in hepatocytes, further supporting the pro-inflammatory function of HDGF. Finally, application of HDGF antibody not only attenuated the ConA-mediated inflammatory cascade in hepatocytes, but also ameliorated the ConA-induced hepatic necrosis and AST elevation in mice. In summary, HDGF participates in ConA-induced hepatitis via neutrophils recruitment and may constitute a therapeutic target for acute hepatitis.
Collapse
Affiliation(s)
- E-Ming Wang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan.,LabTurbo Biotech Corporation, Taipei, Taiwan
| | - Jian-Ching Wu
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Ma
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hoi-Hung Chan
- Division of Gastroenterology, Department of Medicine, Conde S. Januário Hospital, Macau, China
| | - Li-Feng Liu
- Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Bin Lu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jui-Chu Wang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chou-Yuan Ko
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Wei-Lun Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Hepatocellular carcinoma-derived high mobility group box 1 triggers M2 macrophage polarization via a TLR2/NOX2/autophagy axis. Sci Rep 2020; 10:13582. [PMID: 32788720 PMCID: PMC7423894 DOI: 10.1038/s41598-020-70137-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
In many human cancers, including hepatocellular carcinoma (HCC), high density of infiltrating tumor-associated macrophages (TAM) is associated with poor prognosis. Most TAMs express a M2 phenotype subsequently supporting tumor growth. How tumor cells polarize these TAMs to a pro-tumor M2 phenotype is still poorly understood. Our previous studies have revealed that a Toll-like receptor 2 (TLR2)-dependent autophagy triggered by hepatoma-derived factors down-regulates NF-κB p65 and drives M2 macrophage differentiation. However, the underlying mechanisms and potential hepatoma-derived TLR2 ligands are not clear. Here, we provide evidence to reveal that NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) generation is crucial for HCC-induced autophagy, NF-κB p65 down-regulation and M2 phenotype polarization in primary macrophages. This NOX2-generated ROS production in abolished in TLR2-deficient macrophages. HCC-derived or recombinant high-mobility group box 1 (HMGB1) is able to trigger this TLR2-mediated M2 macrophage polarization. Blockage of HMGB1 and ROS by inhibitors, ethyl pyruvate and N-acetylcysteine amide, respectively, significantly reduces both M2 macrophage accumulation and liver nodule formation in HCC-bearing mice. Our findings uncover a HMGB1/TLR2/NOX2/autophagy axis to trigger M2 macrophage polarization in HCC that can be considered as a novel therapeutic target for treating HCC.
Collapse
|
23
|
Patra S, Mishra SR, Behera BP, Mahapatra KK, Panigrahi DP, Bhol CS, Praharaj PP, Sethi G, Patra SK, Bhutia SK. Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives. Semin Cancer Biol 2020; 80:205-217. [PMID: 32450139 DOI: 10.1016/j.semcancer.2020.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is an intracellular catabolic self-cannibalism that eliminates dysfunctional cytoplasmic cargos by the fusion of cargo-containing autophagosomes with lysosomes to maintain cyto-homeostasis. Autophagy sustains a dynamic interlink between cytoprotective and cytostatic function during malignant transformation in a context-dependent manner. The antioxidant and immunomodulatory phyto-products govern autophagy and autophagy-associated signaling pathways to combat cellular incompetence during malignant transformation. Moreover, in a close cellular signaling circuit, autophagy regulates aberrant epigenetic modulation and inflammation, which limits tumor metastasis. Thus, manipulating autophagy for induction of cell death and associated regulatory phenomena will embark on a new strategy for tumor suppression with wide therapeutic implications. Despite the prodigious availability of lead pharmacophores in nature, the central autophagy regulating entities, their explicit target, as well as pre-clinical and clinical assessment remains a major question to be answered. In addition to this, the stage-specific regulation of autophagy and mode of action with natural products in regulating the key autophagic molecules, control of tumor-specific pathways in relation to modulation of autophagic network specify therapeutic target in caner. Moreover, the molecular pathway specificity and enhanced efficacy of the pre-existing chemotherapeutic agents in co-treatment with these phytochemicals hold high prevalence for target specific cancer therapeutics. Hence, the multi-specific role of phytochemicals in a cellular and tumor context dependent manner raises immense curiosity for investigating of novel therapeutic avenues. In this perspective, this review discusses about diverse implicit mechanisms deployed by the bioactive compounds in diagnosis and therapeutics approach during cancer progression with special insight into autophagic regulation.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Soumya R Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Bishnu P Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal K Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Debasna P Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Chandra S Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash P Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
24
|
Plant-Derived Lectins as Potential Cancer Therapeutics and Diagnostic Tools. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1631394. [PMID: 32509848 PMCID: PMC7245692 DOI: 10.1155/2020/1631394] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
Cancer remains a global health challenge, with high morbidity and mortality, despite the recent advances in diagnosis and treatment. Multiple compounds assessed as novel potential anticancer drugs derive from natural sources, including microorganisms, plants, and animals. Lectins, a group of highly diverse proteins of nonimmune origin with carbohydrate-binding abilities, have been detected in virtually all kingdoms of life. These proteins can interact with free and/or cell surface oligosaccharides and might differentially bind cancer cells, since malignant transformation is tightly associated with altered cell surface glycans. Therefore, lectins could represent a valuable tool for cancer diagnosis and be developed as anticancer therapeutics. Indeed, several plant lectins exert cytotoxic effects mainly by inducing apoptotic and autophagic pathways in malignant cells. This review summarizes the current knowledge regarding the basis for the use of lectins in cancer diagnosis and therapy, providing a few examples of plant-derived carbohydrate-binding proteins with demonstrated antitumor effects.
Collapse
|
25
|
Ke PY. Mitophagy in the Pathogenesis of Liver Diseases. Cells 2020; 9:cells9040831. [PMID: 32235615 PMCID: PMC7226805 DOI: 10.3390/cells9040831] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic process involving vacuolar sequestration of intracellular components and their targeting to lysosomes for degradation, thus supporting nutrient recycling and energy regeneration. Accumulating evidence indicates that in addition to being a bulk, nonselective degradation mechanism, autophagy may selectively eliminate damaged mitochondria to promote mitochondrial turnover, a process termed “mitophagy”. Mitophagy sequesters dysfunctional mitochondria via ubiquitination and cargo receptor recognition and has emerged as an important event in the regulation of liver physiology. Recent studies have shown that mitophagy may participate in the pathogenesis of various liver diseases, such as liver injury, liver steatosis/fatty liver disease, hepatocellular carcinoma, viral hepatitis, and hepatic fibrosis. This review summarizes the current knowledge on the molecular regulations and functions of mitophagy in liver physiology and the roles of mitophagy in the development of liver-related diseases. Furthermore, the therapeutic implications of targeting hepatic mitophagy to design a new strategy to cure liver diseases are discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
26
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
27
|
Zhang P, Yin Y, Wang T, Li W, Li C, Zeng X, Yang W, Zhang R, Tang Y, Shi L, Li R, Tao K. Maresin 1 mitigates concanavalin A-induced acute liver injury in mice by inhibiting ROS-mediated activation of NF-κB signaling. Free Radic Biol Med 2020; 147:23-36. [PMID: 31785331 DOI: 10.1016/j.freeradbiomed.2019.11.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
The liver is the most important metabolic and detoxifying organ in the human body, and liver damage can seriously affect bodily function and potentially be life threatening. Accumulating evidence suggests that maresin 1 (MaR1) exhibits protective and anti-inflammatory effects in some diseases, such as pneumonia and colitis; however, its role in acute hepatitis remains unclear. Here, we established a concanavalin A (ConA)-induced acute liver-injury mouse model to determine whether MaR1 administration can attenuate liver damage. Our results indicate that MaR1 confers protective effects against ConA-induced acute liver injury, improves liver function and survival, and reduces histopathological damage. Additionally, MaR1 attenuated the inflammatory response and reduced hepatocyte apoptosis while increasing mouse macrophage apoptosis and markedly decreasing levels of reactive oxygen species (ROS) in macrophages. We also found that MaR1 significantly inhibited ConA-induced activation of the nuclear factor-kappaB (NF-κB) pathway. This work will contribute to a better understanding of acute liver injury (ALI) and advancement towards its treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruizhi Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Tang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
28
|
Xu SW, Law BYK, Qu SLQ, Hamdoun S, Chen J, Zhang W, Guo JR, Wu AG, Mok SWF, Zhang DW, Xia C, Sugimoto Y, Efferth T, Liu L, Wong VKW. SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells. Pharmacol Res 2020; 153:104660. [PMID: 31982489 DOI: 10.1016/j.phrs.2020.104660] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) represents an obstacle in anti-cancer therapy. MDR is caused by multiple mechanisms, involving ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), which reduces intracellular drug levels to sub-therapeutic concentrations. Therefore, sensitizing agents retaining effectiveness against apoptosis- or drug-resistant cancers are desired for the treatment of MDR cancers. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump is an emerging target to overcome MDR, because of its continuous expression and because the calcium transport function is crucial to the survival of tumor cells. Previous studies showed that SERCA inhibitors exhibit anti-cancer effects in Bax-Bak-deficient, apoptosis-resistant and MDR cancers, whereas specific P-gp inhibitors reverse the MDR phenotype of cancer cells by blocking efflux of chemotherapeutic agents. Here, we unraveled SERCA and P-gp as double targets of the triterpenoid, celastrol to reverse MDR. Celastrol inhibited both SERCA and P-gp to stimulate calcium-mediated autophagy and ATP depletion, thereby induced collateral sensitivity in MDR cancer cells. In vivo studies further confirmed that celastrol suppressed tumor growth and metastasis by SERCA-mediated calcium mobilization. To the best of our knowledge, our findings demonstrate collateral sensitivity in MDR cancer cells by simultaneous inhibition of SERCA and P-gp for the first time.
Collapse
Affiliation(s)
- Su-Wei Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau; Department of Basic Medicine of Zhuhai Health School, Zhuhai, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Steven Li Qun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Sami Hamdoun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau; Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128, Mainz, Germany
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - An-Guo Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - David Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Chenglai Xia
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, 528000, China
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128, Mainz, Germany.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
29
|
Vaneckova T, Bezdekova J, Han G, Adam V, Vaculovicova M. Application of molecularly imprinted polymers as artificial receptors for imaging. Acta Biomater 2020; 101:444-458. [PMID: 31706042 DOI: 10.1016/j.actbio.2019.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
Medical diagnostics aims at specific localization of molecular targets as well as detection of abnormalities associated with numerous diseases. Molecularly imprinted polymers (MIPs) represent an approach of creating a synthetic material exhibiting selective recognition properties toward the desired template. The fabricated target-specific MIPs are usually well reproducible, economically efficient, and stable under critical conditions as compared to routinely used biorecognition elements such as fluorescent proteins, antibodies, enzymes, or aptamers and can even be created to those targets for which no antibodies are available. In this review, we summarize the methods of polymer fabrication. Further, we provide key for selection of the core material with imaging function depending on the imaging modality used. Finally, MIP-based imaging applications are highlighted and presented in a comprehensive form from different aspects. STATEMENT OF SIGNIFICANCE: In this review, we summarize the methods of polymer fabrication. Key applications of Molecularly imprinted polymers (MIPs) in imaging are highlighted and discussed with regard to the selection of the core material for imaging as well as commonly used imaging targets. MIPs represent an approach of creating a synthetic material exhibiting selective recognition properties toward the desired template. The fabricated target-specific MIPs are usually well reproducible, economically efficient, and stable under critical conditions as compared to routinely used biorecognition elements, e.g., antibodies, fluorescent proteins, enzymes, or aptamers, and can even be created to those targets for which no antibodies are available.
Collapse
|
30
|
Wiersma VR. Lectins as modulators of autophagy in cancer immunotherapy. AUTOPHAGY IN IMMUNE RESPONSE: IMPACT ON CANCER IMMUNOTHERAPY 2020:53-74. [DOI: 10.1016/b978-0-12-819609-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca 2+-dependent mechanism. Sci Rep 2019; 9:20034. [PMID: 31882989 PMCID: PMC6934498 DOI: 10.1038/s41598-019-56675-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Resistance of cancer cells to chemotherapy is a significant clinical concern and mechanisms regulating cell death in cancer therapy, including apoptosis, autophagy or necrosis, have been extensively investigated over the last decade. Accordingly, the identification of medicinal compounds against chemoresistant cancer cells via new mechanism of action is highly desired. Autophagy is important in inducing cell death or survival in cancer therapy. Recently, novel autophagy activators isolated from natural products were shown to induce autophagic cell death in apoptosis-resistant cancer cells in a calcium-dependent manner. Therefore, enhancement of autophagy may serve as additional therapeutic strategy against these resistant cancers. By computational docking analysis, biochemical assays, and advanced live-cell imaging, we identified that neferine, a natural alkaloid from Nelumbo nucifera, induces autophagy by activating the ryanodine receptor and calcium release. With well-known apoptotic agents, such as staurosporine, taxol, doxorubicin, cisplatin and etoposide, utilized as controls, neferine was shown to induce autophagic cell death in a panel of cancer cells, including apoptosis-defective and -resistant cancer cells or isogenic cancer cells, via calcium mobilization through the activation of ryanodine receptor and Ulk-1-PERK and AMPK-mTOR signaling cascades. Taken together, this study provides insights into the cytotoxic mechanism of neferine-induced autophagy through ryanodine receptor activation in resistant cancers.
Collapse
|
32
|
Nascimento APM, Wolin IA, Welter PG, Heinrich IA, Zanotto-Filho A, Osterne VJ, Lossio CF, Silva MT, Nascimento KS, Cavada BS, Leal RB. Lectin from Dioclea violacea induces autophagy in U87 glioma cells. Int J Biol Macromol 2019; 134:660-672. [DOI: 10.1016/j.ijbiomac.2019.04.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
|
33
|
Wang K, Wang X, Hou Y, Zhou H, Mai K, He G. Apoptosis of cancer cells is triggered by selective crosslinking and inhibition of receptor tyrosine kinases. Commun Biol 2019; 2:231. [PMID: 31263775 PMCID: PMC6588694 DOI: 10.1038/s42003-019-0484-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases (RTK) have been the most prevalent therapeutic targets in anti-cancer drug development. However, the emergence of drug resistance toward single target RTK inhibitors remains a major challenge to achieve long-term remissions. Development of alternative RTK inhibitory strategies that bypass drug resistance is much wanted. In the present study, we found that selected cell surface RTKs were inhibited and crosslinked into detergent resistant complexes by oligomeric but not monomeric concanavalin A (ConA). The inhibition of RTKs by ConA led to suppression of pro-survival pathways and induction of apoptosis in multiple cancer cell lines, while overexpression of constitutively activated protein kinase B (AKT) reversed the apoptotic effect. However, major cell stress sensing checkpoints were not influenced by ConA. To our knowledge, selective crosslinking and inhibition of cell surface receptors by ConA-like molecules might represent a previously unidentified mechanism that could be potentially exploited for therapeutic development.
Collapse
Affiliation(s)
- Kaidi Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Yiying Hou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| |
Collapse
|
34
|
Wu T, Xiang Y, Liu T, Wang X, Ren X, Ye T, Li G. Oncolytic Vaccinia Virus Expressing Aphrocallistes vastus Lectin as a Cancer Therapeutic Agent. Mar Drugs 2019; 17:md17060363. [PMID: 31248066 PMCID: PMC6628141 DOI: 10.3390/md17060363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Lectins display a variety of biological functions including insecticidal, antimicrobial, as well as antitumor activities. In this report, a gene encoding Aphrocallistes vastus lectin (AVL), a C-type lectin, was inserted into an oncolytic vaccinia virus vector (oncoVV) to form a recombinant virus oncoVV-AVL, which showed significant in vitro antiproliferative activity in a variety of cancer cell lines. Further investigations revealed that oncoVV-AVL replicated faster than oncoVV significantly in cancer cells. Intracellular signaling elements including NF-κB2, NIK, as well as ERK were determined to be altered by oncoVV-AVL. Virus replication upregulated by AVL was completely dependent on ERK activity. Furthermore, in vivo studies showed that oncoVV-AVL elicited significant antitumor effect in colorectal cancer and liver cancer mouse models. Our study might provide insights into a novel way of the utilization of marine lectin AVL in oncolytic viral therapies.
Collapse
Affiliation(s)
- Tao Wu
- Zhejiang Sci-Tech University Hangzhou Gongchu Joint Institute of Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yulin Xiang
- Zhejiang Sci-Tech University Hangzhou Gongchu Joint Institute of Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Tingting Liu
- Zhejiang Sci-Tech University Hangzhou Gongchu Joint Institute of Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xue Wang
- Zhejiang Sci-Tech University Hangzhou Gongchu Joint Institute of Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaoyuan Ren
- Zhejiang Sci-Tech University Hangzhou Gongchu Joint Institute of Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Ting Ye
- Zhejiang Sci-Tech University Hangzhou Gongchu Joint Institute of Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Gongchu Li
- Zhejiang Sci-Tech University Hangzhou Gongchu Joint Institute of Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
35
|
Cavada BS, Osterne VJS, Pinto-Junior VR, Nascimento KS. ConBr, the Lectin from Canavalia brasiliensis Mart. Seeds: Forty Years of Research. Curr Protein Pept Sci 2019; 20:600-613. [DOI: 10.2174/1389203720666190104123210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/30/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022]
Abstract
Lectins are defined as proteins or glycoproteins capable of specific and reversible binding to
carbohydrates. Inside this group of proteins, the most well-studied lectins belong to the Leguminosae
family, and inside this family, the Diocleinae subtribe includes the most characterized lectin Concanavalin
A (ConA), as well as ConBr, the lectin from Canavalia brasiliensis, the subject of this review.
Since 1979, several studies have been published in the literature regarding this lectin, from its isolation
and characterization to its several biological activities. This year, 2019, will mark 40 years since researchers
have begun to study ConBr and 100 years since the discovery of ConA, making 2019 a momentous
year for lectinology. Owing to the abundance of studies involving ConBr, this review will
focus on ConBr’s purification, physicochemical properties, functional and structural analyses, biological
activities and biotechnological applications. This will give researchers a broad glimpse into the
potential of this lectin, as well as it characteristics, as we look ahead to its expanding applications in
glycomics and biotechnology.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| | | | - Vanir Reis Pinto-Junior
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| | - Kyria Santiago Nascimento
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| |
Collapse
|
36
|
da Silva Pinto L, Cardoso G, Kremer FS, dos Santos Woloski RD, Dellagostin OA, Campos VF. Heterologous expression and characterization of a new galactose-binding lectin from Bauhinia forficata with antiproliferative activity. Int J Biol Macromol 2019; 128:877-884. [DOI: 10.1016/j.ijbiomac.2019.01.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
|
37
|
Bhutia SK, Panda PK, Sinha N, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Saha S, Patra S, Mishra SR, Behera BP, Patil S, Maiti TK. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol Res 2019; 144:8-18. [PMID: 30951812 DOI: 10.1016/j.phrs.2019.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Plant lectins are non-immunoglobin in nature and bind to the carbohydrate moiety of the glycoconjugates without altering any of the recognized glycosyl ligands. Plant lectins have found applications as cancer biomarkers for recognizing the malignant tumor cells for the diagnosis and prognosis of cancer. Interestingly, plant lectins contribute to inducing cell death through autophagy and apoptosis, indicating their potential implication in cancer inhibitory mechanism. In the present review, anticancer activities of major plant lectins have been documented, with a detailed focus on the signaling circuit for the possible molecular targeted cancer therapy. In this context, several lectins have exhibited preclinical and clinical significance, driving toward therapeutic potential in cancer treatment. Moreover, several plant lectins induce immunomodulatory activities, and therefore, novel strategies have been established from preclinical and clinical investigations for the development of combinatorial treatment consisting of immunotherapy along with other anticancer therapies. Although the application of plant lectins in cancer is still in very preliminary stage, advanced high-throughput technology could pave the way for the development of lectin-based complimentary medicine for cancer treatment.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| | - Prashanta K Panda
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Soumya R Mishra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Bishnu P Behera
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
38
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
39
|
Shen FW, Zhou KC, Cai H, Zhang YN, Zheng YL, Quan J. One-pot synthesis of thermosensitive glycopolymers grafted gold nanoparticles and their lectin recognition. Colloids Surf B Biointerfaces 2019; 173:504-511. [DOI: 10.1016/j.colsurfb.2018.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
40
|
Anti-glioma properties of DVL, a lectin purified from Dioclea violacea. Int J Biol Macromol 2018; 120:566-577. [DOI: 10.1016/j.ijbiomac.2018.08.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
|
41
|
Wu TW, Liu CC, Hung CL, Yen CH, Wu YJ, Wang LY, Yeh HI. Genetic profiling of young and aged endothelial progenitor cells in hypoxia. PLoS One 2018; 13:e0196572. [PMID: 29708992 PMCID: PMC5927426 DOI: 10.1371/journal.pone.0196572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Age is a major risk factor for diseases caused by ischemic hypoxia, such as stroke and coronary artery disease. Endothelial progenitor cells (EPCs) are the major cells respond to ischemic hypoxia through angiogenesis and vascular remodeling. However, the effect of aging on EPCs and their responses to hypoxia are not well understood. CD34+ EPCs were isolated from healthy volunteers and aged by replicative senescence, which was to passage cells until their doubling time was twice as long as the original cells. Young and aged CD34+ EPCs were exposed to a hypoxic environment (1% oxygen for 48hrs) and their gene expression profiles were evaluated using gene expression array. Gene array results were confirmed using quantitative polymerase chain reaction, Western blotting, and BALB/c female athymic nude mice hindlimb ischemia model. We identified 115 differentially expressed genes in young CD34+ EPCs, 54 differentially expressed genes in aged CD34+ EPCs, and 25 common genes between normoxia and hypoxia groups. Among them, the expression of solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) increased the most by hypoxia in young cells. Gene set enrichment analysis indicated the pathways affected by aging and hypoxia most, including genes “response to oxygen levels” in young EPCs and genes involved “chondroitin sulfate metabolic process” in aged cells. Our study results indicate the key factors that contribute to the effects of aging on response to hypoxia in CD34+ EPCs. With the potential applications of EPCs in cardiovascular and other diseases, our study also provides insight on the impact of ex vivo expansion might have on EPCs.
Collapse
Affiliation(s)
- Tzu-Wei Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- * E-mail:
| | - Chun-Chieh Liu
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chung-Lieh Hung
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chih-Hsien Yen
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| |
Collapse
|
42
|
Li G, Mei S, Cheng J, Wu T, Luo J. Haliotis discus discus Sialic Acid-Binding Lectin Reduces the Oncolytic Vaccinia Virus Induced Toxicity in a Glioblastoma Mouse Model. Mar Drugs 2018; 16:md16050141. [PMID: 29701680 PMCID: PMC5983273 DOI: 10.3390/md16050141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Although oncolytic viruses provide attractive vehicles for cancer treatment, their adverse effects are largely ignored. In this work, rat C6 glioblastoma cells were subcutaneously xenografted into mice, and a thymidine kinase-deficient oncolytic vaccinia virus (oncoVV) induced severe toxicity in this model. However, oncoVV-HddSBL, in which a gene encoding Haliotis discus discus sialic acid-binding lectin (HddSBL) was inserted into oncoVV, significantly prolonged the survival of mice as compared to the control virus. HddSBL reduced the tumor secreted serum rat IL-2 level upregulated by oncoVV, promoted viral replication, as well as inhibited the expression of antiviral factors in C6 glioblastoma cell line. Furthermore, HddSBL downregulated the expression levels of histone H3 and H4, and upregulated histone H3R8 and H4R3 asymmetric dimethylation, confirming the effect of HddSBL on chromatin structure suggested by the transcriptome data. Our results might provide insights into the utilization of HddSBL in counteracting the adverse effects of oncolytic vaccinia virus.
Collapse
Affiliation(s)
- Gongchu Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shengsheng Mei
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jianhong Cheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Tao Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jingjing Luo
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
43
|
Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater 2018; 65:393-404. [PMID: 29127069 DOI: 10.1016/j.actbio.2017.11.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/07/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023]
Abstract
A novel multifunctional nanodevice based in doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs) as nanoplatforms for the assembly of different building blocks has been developed for bone cancer treatment. These building blocks consists of: i) a polyacrylic acid (PAA) capping layer grafted to MSNs via an acid-cleavable acetal linker, to minimize premature cargo release and provide the nanosystem of pH-responsive drug delivery ability; and ii) a targeting ligand, the plant lectin concanavalin A (ConA), able to selectively recognize, bind and internalize owing to certain cell-surface glycans, such as sialic acids (SA), overexpressed in given tumor cells. This multifunctional nanosystem exhibits a noticeable higher internalization degree into human osteosarcoma cells (HOS), overexpressing SA, compared to healthy preosteoblast cells (MC3T3-E1). Moreover, the results indicate that small DOX loading (2.5 µg mL-1) leads to almost 100% of osteosarcoma cell death in comparison with healthy bone cells, which significantly preserve their viability. Besides, this nanodevice has a cytotoxicity on tumor cells 8-fold higher than that caused by the free drug. These findings demonstrate that the synergistic combination of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards normal cells. This line of attack opens up new insights in targeted bone cancer therapy. STATEMENT OF SIGNIFICANCE The development of highly selective and efficient tumor-targeted smart drug delivery nanodevices remains a great challenge in nanomedicine. This work reports the design and optimization of a multifunctional nanosystem based on mesoporous silica nanoparticles (MSNs) featuring selectivity towards human osteosarcoma cells and pH-responsive antitumor drug delivery capability. The novelty and originality of this manuscript relies on proving that the synergistic assembly of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards healthy cells, which constitutes a new paradigm in targeted bone cancer therapy.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Daniel Lozano
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Montserrat Colilla
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
44
|
Ribeiro AC, Ferreira R, Freitas R. Plant Lectins: Bioactivities and Bioapplications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
45
|
Chang CJ, Yang YH, Chiu CJ, Lu LC, Liao CC, Liang CW, Hsu CH, Cheng AL. Targeting tumor-infiltrating Ly6G + myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int J Cancer 2017; 142:1878-1889. [PMID: 29266245 DOI: 10.1002/ijc.31216] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022]
Abstract
Sorafenib, a multikinase inhibitor with antiangiogenic activity, is an approved therapy for hepatocellular carcinoma (HCC). It is unclear whether the proinflammatory and immunosuppressive mechanisms may limit the therapeutic efficacy of sorafenib in HCC. We used a syngeneic mouse liver cancer cell line to establish orthotopic liver or subcutaneous tumors to study how proinflammatory and immunosuppressive mechanisms impact on the efficacy of sorafenib. We found sorafenib exhibited a potent therapeutic effect in subcutaneous tumors, but a less potent effect in orthotopic liver tumors. The protein levels of interleukin-6 (IL-6) and vascular endothelial growth factor A (VEGF-A) were persistently elevated in orthotopic liver tumors, but not in subcutaneous tumors, treated with sorafenib. Likewise, the tumor-infiltrating Ly6G+ myeloid-derived suppressor cells (MDSCs) and immune suppressors were increased in orthotopic liver tumors, not in subcutaneous tumors, treated with sorafenib. The tumor-infiltrating Ly6G+ MDSCs of sorafenib-treated orthotopic liver tumors significantly induced IL-10 and TGF-β expressing CD4+ T cells, and downregulated the cytotoxic activity of CD8+ T cells. IL-6, but not VEGF-A, protected Ly6G+ MDSCs from sorafenib-induced cell death in vitro. The combination of anti-Ly6G antibody or anti-IL-6 antibody with sorafenib significantly reduced the cell proportion of Ly6G+ MDSCs in orthotopic liver tumors, enhanced the T cells proliferation and improved the therapeutic effect of sorafenib synergistically. Modulating tumor microenvironment through targeting tumor-infiltrating Ly6G+ MDSCs represents a potential strategy to improve the anti-HCC efficacy of sorafenib.
Collapse
Affiliation(s)
- Chun-Jung Chang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Chun Lu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chia Liao
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cher-Wei Liang
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Pathology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Chih-Hung Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ann-Lii Cheng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
46
|
Nascimento KS, Santiago MQ, Pinto-Junior VR, Osterne VJS, Martins FWV, Nascimento APM, Wolin IAV, Heinrich IA, Martins MGQ, Silva MTL, Lossio CF, Rocha CRC, Leal RB, Cavada BS. Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int J Biochem Cell Biol 2017; 92:79-89. [DOI: 10.1016/j.biocel.2017.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
|
47
|
Araripe DA, Pinto-Junior VR, Neco AHB, Santiago MQ, Osterne VJS, Pires AF, Lossio CF, Martins MGQ, Correia JLA, Benevides RG, Leal RB, Assreuy AMS, Nascimento KS, Cavada BS. Partial characterization and immobilization in CNBr-activated Sepharose of a native lectin from Platypodium elegans seeds (PELa) and comparative study of edematogenic effect with the recombinant form. Int J Biol Macromol 2017; 102:323-330. [DOI: 10.1016/j.ijbiomac.2017.03.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022]
|
48
|
Li G, Zhao Z, Wu B, Su Q, Wu L, Yang X, Chen J. Ulva pertusa lectin 1 delivery through adenovirus vector affects multiple signaling pathways in cancer cells. Glycoconj J 2017; 34:489-498. [PMID: 28349379 DOI: 10.1007/s10719-017-9767-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/26/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
Ulva pertusa lectin 1 (UPL1) is a N-acetyl-D-glucosamine (GlcNAc) binding lectin in marine green alga Ulva pertusa. Exogenous UPL1 colocalized with protein arginine methyltransferase 5 (PRMT5), methylosome protein 50 (MEP50), β-actin and β-tubulin, indicating the interaction of UPL1 with the methylosome and cytoskeleton. UPL1 delivery through adenovirus vector (Ad-UPL1) dramatically induced extracellularly regulated protein kinases 1/2 (ERK1/2) phosphorylation in liver cancer cell lines BEL-7404 and Huh7. Signaling pathways including p38 mitogen-activated protein kinase (MAPK), and Akt were also affected by Ad-UPL1 in a cell type dependent manner. MEK1/2 inhibitor U0126, as well as to a lesser extent p38 MAPK inhibitor SB203580 and phosphoinositide 3-kinase (PI3K) inhibitor LY294002, completely eliminated a higher molecular weight isoform of β-tubulin induced by Ad-UPL1, and significantly enhanced the cytotoxicity of Ad-UPL1 in Huh7 cells, suggesting that the inhibition of MEK1/2, p38 MAPK, and PI3K enhanced antiproliferative effect of Ad-UPL1 possibly through regulating the modification of β-tubulin. Ad-UPL1 completely inhibited the expression of autophagy-related factor Beclin1, but induced LC3-II expression in Huh7 cells. In addition, Ad-UPL1 significantly enhanced starvation induced survival suppression in Huh7 cells. Our data elucidated intracellular signaling pathways affected by exogenous UPL1, and may provide insights into a novel way of UPL1 delivery through adenovirus vectors combined with survival signaling inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Gongchu Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| | - Zhenzhen Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Bingbing Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qunshu Su
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Liqin Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xinyan Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Shi Z, Li WW, Tang Y, Cheng LJ. A Novel Molecular Model of Plant Lectin-Induced Programmed Cell Death in Cancer. Biol Pharm Bull 2017; 40:1625-1629. [PMID: 28768938 DOI: 10.1248/bpb.b17-00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant lectin, a class of highly diverse non-immune origin and carbohydrate-binding proteins, has been reported to specially induce cancer cell through programmed cell death (PCD) pathways (apoptosis and/or autophagy), shedding lights on screening promising anti-cancer candidate agent for further therapeutic trials. However, the complicated molecular mechanisms by which plant lectins induced the programmed death of tumor cells, have not yet been fully clarified. Here, we summarized a novel model, based on vast amount of research, by which plant lectins eliminate various types of cancer cells via three major pathways, including a) direct ribosome inactivating, b) endocytosis-dependent mitochondrial dysfunction and c) sugar-containing receptors binding. A better understanding of the role of plant lectins played and further elucidation of the strategies targeting PCD would provide a new clue for the applications and modifications of plant lectin as a potential anti-cancer agent from bench to clinic.
Collapse
Affiliation(s)
- Zheng Shi
- School of Medicine, Chengdu University
| | | | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine
| | | |
Collapse
|
50
|
Gondim ACS, Romero-Canelón I, Sousa EHS, Blindauer CA, Butler JS, Romero MJ, Sanchez-Cano C, Sousa BL, Chaves RP, Nagano CS, Cavada BS, Sadler PJ. The potent anti-cancer activity of Dioclea lasiocarpa lectin. J Inorg Biochem 2017; 175:179-189. [PMID: 28756174 DOI: 10.1016/j.jinorgbio.2017.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
The lectin DLasiL was isolated from seeds of the Dioclea lasiocarpa collected from the northeast coast of Brazil and characterized for the first time by mass spectrometry, DNA sequencing, inductively coupled plasma-mass spectrometry, electron paramagnetic resonance, and fluorescence spectroscopy. The structure of DLasiL lectin obtained by homology modelling suggested strong conservation of the dinuclear Ca/Mn and sugar-binding sites, and dependence of the solvent accessibility of tryptophan-88 on the oligomerisation state of the protein. DLasiL showed highly potent (low nanomolar) antiproliferative activity against several human carcinoma cell lines including A2780 (ovarian), A549 (lung), MCF-7 (breast) and PC3 (prostate), and was as, or more, potent than the lectins ConBr (Canavalia brasiliensis), ConM (Canavalia maritima) and DSclerL (Dioclea sclerocarpa) against A2780 and PC3 cells. Interestingly, DLasiL lectin caused a G2/M arrest in A2780 cells after 24h exposure, activating caspase 9 and delaying the on-set of apoptosis. Confocal microscopy showed that fluorescently-labelled DLasiL localized around the nuclei of A2780 cells at lectin doses of 0.5-2× IC50 and gave rise to enlarged nuclei and spreading of the cells at high doses. These data reveal the interesting antiproliferative activity of DLasiL lectin, and suggest that further investigations to explore the potential of DLasiL as a new anticancer agent are warranted.
Collapse
Affiliation(s)
- Ana C S Gondim
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60455-760 Fortaleza, Ceará, Brazil; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; Department of Organic and Inorganic Chemistry, Federal University of Ceará, 60455-900 Fortaleza, Ceará, Brazil
| | | | - Eduardo H S Sousa
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; Department of Organic and Inorganic Chemistry, Federal University of Ceará, 60455-900 Fortaleza, Ceará, Brazil
| | | | - Jennifer S Butler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - María J Romero
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Bruno L Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60455-760 Fortaleza, Ceará, Brazil
| | - Renata P Chaves
- Department of Fishing and Engineering, Federal University of Ceará, 60455-900 Fortaleza, Ceará, Brazil
| | - Celso S Nagano
- Department of Fishing and Engineering, Federal University of Ceará, 60455-900 Fortaleza, Ceará, Brazil
| | - Benildo S Cavada
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60455-760 Fortaleza, Ceará, Brazil.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|