1
|
Chadha P, Aghara H, Johnson D, Sharma D, Odedara M, Patel M, Kumar H, Thiruvenkatam V, Mandal P. Gardenin A alleviates alcohol-induced oxidative stress and inflammation in HepG2 and Caco2 cells via AMPK/Nrf2 pathway. Bioorg Chem 2025; 161:108543. [PMID: 40318507 DOI: 10.1016/j.bioorg.2025.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Chronic alcohol consumption triggers immune responses that lead to cell damage, contributing to alcohol-associated liver disease (ALD). Despite its prevalence, no FDA-approved treatment for ALD currently exists. This study explores the cytoprotective effects of Gardenin A (GarA), a polymethoxylated flavone, for protection against alcohol-induced oxidative stress and inflammation in HepG2 and Caco2 cell lines. GarA was isolated, characterized and, tested in-vitro, showing maximum cell viability at 10 μg/ml using MTT assays. Further, lipid accumulation assay, reactive oxygen species (ROS) estimation and nuclear morphology visualization was carried out using different staining techniques. RT-qPCR was employed to examine the expression of various pro- and anti-inflammatory cytokines, along with Cytochrome P4502E1 (CYP2E1) and Sterol regulatory element binding protein-2 (SREBP2) and tight junction genes crucial for gut barrier integrity. Moreover, ELISA was carried out for key protein targets such as AMPK (phosphorylated and total), TNFα, C5aR1, HO-1 and Nrf2. GarA caused a marked decrease in lipid droplets, ROS levels, and expression of pro-inflammatory cytokines. It showed anti-inflammatory and anti-oxidant activity and helped maintain the gut barrier and nuclear integrity. In-silico studies showed the conserved amino acid interaction and affinity of GarA with C5aR1, and TNFα, compared to the interactions with known inhibitors/activators, further corroborating the results. This study is the first to explore the effects of GarA on ALD, underscoring its potential as an anti-inflammatory and anti-oxidant agent targeting the AMPK/Nrf2 signaling pathway, suggesting its future as a promising therapeutic candidate for mitigating alcohol-induced liver and gut damage.
Collapse
Affiliation(s)
- Prashsti Chadha
- Department of Biological Sciences, P D Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Hiral Aghara
- Department of Biological Sciences, P D Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Delna Johnson
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Dhrubjyoti Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Mitalben Odedara
- Department of Medical Laboratory Technology, Bapubhai Desaibhai Patel Institute of Paramedical Sciences (BDIPS), Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Manali Patel
- Department of Biological Sciences, P D Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Hemant Kumar
- Department of Medical Laboratory Technology, Bapubhai Desaibhai Patel Institute of Paramedical Sciences (BDIPS), Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Vijay Thiruvenkatam
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P D Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India.
| |
Collapse
|
2
|
Tang XH, Pesola G, Chen Q, Miller D, Nagy LE, McMullen MR, Schwartz RE, Tsoy S, Lim C, Chikara S, Gross SS, Trasino SE, Gudas LJ, Melis M. Ethanol causes rapid decreases in the hepatic retinoid levels shaping the early steps of alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:754-770. [PMID: 40016864 PMCID: PMC12014373 DOI: 10.1111/acer.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Chronic alcohol drinking causes hepatic vitamin A (retinoids and derivatives) decreases, which correlate with the progression and severity of alcohol-associated liver disease (ALD). However, the effects of short-term ethanol (EtOH) intake on liver retinoids and ALD are still undefined. METHODS Using high-performance liquid chromatography and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC, HPLC-MS/MS), and molecular biology techniques in mice and cultured human hepatocytes, we investigated the temporal EtOH effects on retinoids and ALD. RESULTS In female and male mice, acute EtOH intake caused hepatic retinol (ROL) and retinyl palmitate (RP) decreases within hours, whereas it did not significantly change the retinoic acid (RA) levels, and those of the RA catabolism metabolite, 4-oxo-RA. After EtOH withdrawal, the liver recovered the ROL and RP levels within 48 h, whereas RA and 4-oxo-RA levels remained almost undetectable by this time point. Compared with control diet-fed mice, hepatic ROL and RP levels remained decreased in the 10-day and 3-week-long EtOH treatments, while retinyl oleate and linoleate increased. Interestingly, some of the RA signaling receptors, Rarβ, along with Cyp26a1, revealed dramatic transcript increases during the 10-day-long experiments that attenuated over time (up to 8 weeks), reflecting impaired RA signaling. Our work also showed that primary human hepatocytes serve as a model to better define the role of EtOH in retinoid biology. CONCLUSIONS This work reveals that acute and short-term exposures to EtOH disrupt retinoid homeostasis, identifying key events in the early pathogenesis of ALD.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Glen Pesola
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Laura E. Nagy
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R. McMullen
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Sergey Tsoy
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Shireen Chikara
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Steven E. Trasino
- Department of Nutrition and Public Health, Hunter College, City University of New York, New York, NY, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Marta Melis
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Prado LG, Nagy LE. Role of Complement in Liver Diseases. Semin Liver Dis 2024; 44:510-522. [PMID: 39608405 DOI: 10.1055/s-0044-1795143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
This review aims to summarize recent research using animal models, cell models, and human data regarding the role of complement in liver disease. Complement is part of the innate immune system and was initially characterized for its role in control of pathogens. However, evidence now indicates that complement also plays an important role in the response to cellular injury that is independent of pathogens. The liver is the main organ responsible for producing circulating complement. In response to liver injury, complement is activated and likely plays a dual role, both contributing to and protecting from injury. In uncontrolled complement activation, cell injury and liver inflammation occur, contributing to progression of liver disease. Complement activation is implicated in the pathogenesis of multiple liver diseases, including alcohol-associated liver disease, metabolic dysfunction-associated steatotic liver disease, fibrosis and cirrhosis, hepatocellular carcinoma, and autoimmune hepatitis. However, the mechanisms by which complement is overactivated in liver diseases are still being unraveled.
Collapse
Affiliation(s)
- Luan G Prado
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
4
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Kotulkar M, Robarts DR, Lin-Rahardja K, McQuillan T, Surgnier J, Tague SE, Czerwinski M, Dennis KL, Pritchard MT. Hyaluronan synthesis inhibition normalizes ethanol-enhanced hepatic stellate cell activation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1544-1559. [PMID: 37332093 DOI: 10.1111/acer.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Chronic ethanol overconsumption promotes alcohol-associated liver disease (ALD), characterized by hepatocyte injury, inflammation, hepatic stellate cell (HSC) activation, and fibrosis. Hyaluronan (HA) concentration is greater in livers and blood from advanced ALD patients than patients with advanced non-ALD. In the liver, HSCs are the major HA producers. The relationship between ethanol, HA, and HSC activation is incompletely understood. Thus, here, we tested the hypothesis that ethanol enhances HSC activation in a HA-dependent manner. METHODS Liver tissue microarrays (TMAs) containing steatotic livers from donors with or without a history of alcohol consumption were used to measure HA and collagen content. Mice were fed a moderate (2%, v/v) ethanol-containing diet or pair-fed control diet for 2 days, after which they were given a single carbon tetrachloride (CCl4 ) injection. To inhibit HA synthesis, we provided 4-methylumbelliferone (4MU) daily. We used LX2 cells, a human HSC cell line, to determine the impact ethanol had on LPS responses, with or without concurrent 4MU exposure. RESULTS CCl4 induced liver injury, but it did not differ between ethanol or control diet fed mice with or without 4MU treatment. Ethanol feeding enhanced CCl4 -induced hepatic HA content, which was paralleled by HA synthase (Has)2 transcript abundance; 4MU treatment normalized both. Consistently, HSC activation, assessed by measuring αSMA mRNA and protein, was induced by CCl4 exposure, enhanced by ethanol feeding, and normalized by 4MU. Hepatic transcripts, but not protein, for Ccl2 were enhanced by ethanol feeding and normalized by 4MU exposure. Finally, ethanol-exposed LX2 cells made more LPS-stimulated CCL2 mRNA and protein than cells not exposed to ethanol; 4MU prevented this. CONCLUSION These data show that ethanol augments HSC activation through HA synthesis and enhances hepatic profibrogenic features. Therefore, targeting HSC HA production could potentially attenuate liver disease in ALD patients.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kristi Lin-Rahardja
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tara McQuillan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jordan Surgnier
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sarah E Tague
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Katie L Dennis
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- The Liver Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Mackowiak B, Xu M, Lin Y, Guan Y, Seo W, Ren R, Feng D, Jones JW, Wang H, Gao B. Hepatic CYP2B10 is highly induced by binge ethanol and contributes to acute-on-chronic alcohol-induced liver injury. Alcohol Clin Exp Res 2022; 46:2163-2176. [PMID: 36224745 PMCID: PMC9771974 DOI: 10.1111/acer.14954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/10/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The chronic-plus-binge model of ethanol consumption, where chronically (8-week) ethanol-fed mice are gavaged a single dose of ethanol (E8G1), is known to induce steatohepatitis in mice. However, how chronically ethanol-fed mice respond to multiple binges of ethanol remains unknown. METHODS We extended the E8G1 model to three gavages of ethanol (E8G3) spaced 24 h apart, sacrificed each group 9 h after the final gavage, analyzed liver injury, and examined gene expression changes using microarray analyses in each group to identify mechanisms contributing to liver responses to binge ethanol. RESULTS Surprisingly, E8G3 treatment induced lower levels of liver injury, steatosis, inflammation, and fibrosis as compared to mice after E8G1 treatment. Microarray analyses identified several pathways that may contribute to the reduced liver injury after E8G3 treatment compared to E8G1 treatment. The gene encoding cytochrome P450 2B10 (Cyp2b10) was one of the top upregulated genes in the E8G1 group and was further upregulated in the E8G3 group, but only moderately induced after chronic ethanol consumption, as confirmed by RT-qPCR and western blot analyses. Genetic disruption of Cyp2b10 worsened liver injury in E8G1 and E8G3 mice with higher blood ethanol levels compared to wild-type control mice, while in vitro experiments revealed that CYP2b10 did not directly promote ethanol metabolism. Metabolomic analyses revealed significant differences in hepatic metabolites from E8G1-treated Cyp2b10 knockout and WT mice, and these metabolic alterations may contribute to the reduced liver injury in Cyp2b10 knockout mice. CONCLUSION Hepatic Cyp2b10 expression is highly induced after ethanol binge, and such upregulation reduces acute-on-chronic ethanol-induced liver injury via the indirect modification of ethanol metabolism.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Fang Y, Guo Y, Gao T, Han X, Jiang Y, Li M, Xue W, Yang B, Cui Y, Sun S, Zhao G. A Dual Role of Complement Activation in the Development of Fulminant Hepatic Failure Induced by Murine-Beta-Coronavirus Infection. Front Cell Infect Microbiol 2022; 12:880915. [PMID: 35573780 PMCID: PMC9099255 DOI: 10.3389/fcimb.2022.880915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 01/18/2023] Open
Abstract
With the epidemic of betacoronavirus increasing frequently, it poses a great threat to human public health. Therefore, the research on the pathogenic mechanism of betacoronavirus is becoming greatly important. Murine hepatitis virus strain-3 (MHV-3) is a strain of betacoronavirus which cause tissue damage especially fulminant hepatic failure (FHF) in mice, and is commonly used to establish models of acute liver injury. Recently, MHV-3-infected mice have also been introduced to a mouse model of COVID-19 that does not require a Biosafety Level 3 (BSL-3) facility. FHF induced by MHV-3 is a type of severe liver damage imbalanced by regenerative hepatocellular activity, which is related to numerous factors. The complement system plays an important role in host defense and inflammation and is involved in first-line immunity and/or pathogenesis of severe organ disorders. In this study, we investigated the role of aberrant complement activation in MHV-3 infection-induced FHF by strategies that use C3-deficient mice and intervene in the complement system. Our results showed that mice deficient in C3 had more severe liver damage, a higher viral load in the liver and higher serum concentrations of inflammatory cytokines than wild-type controls. Treatment of C57BL/6 mice with C3aR antagonist or anti-C5aR antibody reduced liver damage, viral load, and serum IFN-γ concentration compared with the control group. These findings indicated that complement system acts as a double-edged sword during acute MHV-3 infection. However, its dysregulated activation leads to sustained inflammatory responses and induces extensive liver damage. Collectively, by investigating the role of complement activation in MHV-3 infection, we can further understand the pathogenic mechanism of betacoronavirus, and appropriate regulation of immune responses by fine-tuning complement activation may be an intervention for the treatment of diseases induced by betacoronavirus infection.
Collapse
Affiliation(s)
- Yingying Fang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Tongtong Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuting Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wei Xue
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Binhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guangyu Zhao, ; Shihui Sun, ; Yujun Cui,
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- *Correspondence: Guangyu Zhao, ; Shihui Sun, ; Yujun Cui,
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guangyu Zhao, ; Shihui Sun, ; Yujun Cui,
| |
Collapse
|
9
|
Zhang H, Zhou L, Zhou Y, Wang L, Jiang W, Liu L, Yue S, Zheng P, Liu H. Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway. Life Sci 2021; 285:119963. [PMID: 34536498 DOI: 10.1016/j.lfs.2021.119963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023]
Abstract
AIMS Hepatocyte necroptosis is a critical event in the progression of non-alcoholic fatty liver disease (NAFLD). Obstructive sleep apnea hypopnea syndrome (OSAHS) and chronic intermittent hypoxia (CIH) may be linked with the pathogenesis and the severity of NAFLD. However, the potential role of necroptosis in OSAHS-associated NAFLD has not been evaluated. The present study investigated whether IH could affect NAFLD progression through promoting receptor-interacting protein kinase-3 (RIPK3)-dependent necroptosis, oxidative stress, and inflammatory response, and further elucidated the underlying molecular mechanisms. MAIN METHODS LO2 cells were treated with palmitic acid (PA) and subjected to IH, and necroptosis, oxidative stress, and inflammation were assessed. The high-fat choline-deficient (HFCD)-fed mouse model was also used to assess the effects of CIH in experimental NAFLD in vivo. KEY FINDINGS In this study, we found that RIPK3-mediated necroptosis was activated both in the PA plus IH-treated LO2 cells and liver of HFCD/CIH mice, and which could trigger oxidative stress and inflammatory response by decreasing Nrf2 and increasing p-P65. RIPK3 downregulation significantly reduced hepatocyte necroptosis, and ameliorated oxidative stress and inflammation through modulating Nrf2/NFκB pathway in vitro and vivo. Similarly, pretreatment with TBHQ, an activator of Nrf2, effectively blocked the generation of oxidative productions and inflammatory cytokines. In addition, RIPK3 inhibitor GSK-872 or TBHQ administration obviously alleviated hepatic injury, including histology, transaminase activities, and triglyceride contents in vivo. SIGNIFICANCE IH aggravates NAFLD via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway, and which should be considered as a potential therapeutic strategy for the treatment of NAFLD with OSASH.
Collapse
Affiliation(s)
- Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yuhao Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weiling Jiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shuang Yue
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.
| |
Collapse
|
10
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Santiesteban-Lores LE, Carneiro MC, Isaac L, Bavia L. Complement System in Alcohol-Associated Liver Disease. Immunol Lett 2021; 236:37-50. [PMID: 34111475 DOI: 10.1016/j.imlet.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Innate immunity contributes effectively to the development of Alcohol-Associated liver disease (ALD). Particularly, human studies and murine models of ALD have shown that Complement activation plays an important role during the initial and later stages of ALD. The Complement System may contribute to the pathogenesis of this disease since it has been shown that ethanol-derived metabolic products activate the Complement cascade on liver membranes, leading to hepatocellular damage. However, studies evaluating the plasma levels of Complement proteins in ALD patients present contradictory results in some cases, and do not establish a well-marked role for each Complement component. The impairment of leukocyte chemoattractant activity observed in these patients may contribute to the susceptibility to bacterial infections in the latter stages of the disease. On the other hand, murine models of ALD have provided more detailed insights into the mechanisms that link the Complement System to the pathogenesis of the disease. It has been observed that Classical pathway can be activated via C1q binding to apoptotic cells in the liver and contributes to the development of hepatic inflammation. C3 contributes to the accumulation of triglycerides in the liver and in adipose tissue, while C5 seems to be involved with inflammation and liver injury after chronic ethanol consumption. In this review, we present a compendium of studies evaluating the role of Complement in human and murine models of ALD. We also discuss potential therapies to human ALD, highlighting the use of Complement inhibitors.
Collapse
Affiliation(s)
| | | | - Lourdes Isaac
- Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Lorena Bavia
- Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
12
|
Le Daré B, Ferron PJ, Gicquel T. The Purinergic P2X7 Receptor-NLRP3 Inflammasome Pathway: A New Target in Alcoholic Liver Disease? Int J Mol Sci 2021; 22:2139. [PMID: 33670021 PMCID: PMC7926651 DOI: 10.3390/ijms22042139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization has estimated that approximately 3 million deaths are attributable to alcohol consumption each year. Alcohol consumption is notably associated with the development and/or progression of many non-communicable inflammatory diseases-particularly in the liver. Although these alcoholic liver diseases were initially thought to be caused by the toxicity of ethanol on hepatocytes, the latest research indicates Kupffer cells (the liver macrophages) are at the heart of this "inflammatory shift". Purinergic signaling (notably through P2X7 receptors and the NLRP3 inflammasome) by Kupffer cells appears to be a decisive factor in the pathophysiology of alcoholic liver disease. Hence, the modulation of purinergic signaling might represent a new means of treating alcoholic liver disease. Here, we review current knowledge on the pathophysiology of alcoholic liver diseases and therapeutic perspectives for targeting these inflammatory pathways.
Collapse
Affiliation(s)
- Brendan Le Daré
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| | - Pierre-Jean Ferron
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| |
Collapse
|
13
|
Zhou Y, Yuan G, Zhong F, He S. Roles of the complement system in alcohol-induced liver disease. Clin Mol Hepatol 2020; 26:677-685. [PMID: 33053939 PMCID: PMC7641541 DOI: 10.3350/cmh.2020.0094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Alcohol-induced liver disease (ALD) is a complex disorder, with a disease spectrum ranging from steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Although the pathogenesis of ALD is incompletely understood and currently no effective drugs are available for ALD, several lines of evidence suggest that complement activation and oxidative stress play crucial roles in the pathogenesis of ALD. Complement activation can regulate the production of ROS and influence oxidative stress in ALD. Precise regulation of the complement system in ALD may be a rational and novel avenue to postpone and even reverse the progression of disease and simultaneously promote the repair of liver injury. In this mini-review, we briefly summarize the recent research progress, especially focusing on the role of complement and oxidative stress-induced transfer RNA-derived fragments, which might help us to better understand the pathogenesis of ALD and provide aid in the development of novel therapeutic strategies for ALD.
Collapse
Affiliation(s)
- Yi Zhou
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fudi Zhong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Westman J, Grinstein S, Marques PE. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Front Immunol 2020; 10:3030. [PMID: 31998312 PMCID: PMC6962235 DOI: 10.3389/fimmu.2019.03030] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clearance of cellular debris is required to maintain the homeostasis of multicellular organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration and resolution of injury and inflammation. Most of the removal of effete and damaged cells is performed by macrophages and neutrophils through phagocytosis, a complex phenomenon involving ingestion and degradation of the disposable particles. The study of the clearance of cellular debris has been strongly biased toward the removal of apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells have remained relatively unexplored. Here, we will review the incipient but growing knowledge of the phagocytosis of necrotic debris, from their recognition and engagement to their internalization and disposal. Critical insights into these events were gained recently through the development of new in vitro and in vivo models, along with advances in live-cell and intravital microscopy. This review addresses the classes of "find-me" and "eat-me" signals presented by necrotic cells and their cognate receptors in phagocytes, which in most cases differ from the extensively characterized counterparts in apoptotic cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid mediators, and complement components in recruiting and activating phagocytes are reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized, highlighting the key role of impaired debris clearance in autoimmunity.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Fulham MA, Ratna A, Gerstein RM, Kurt-Jones EA, Mandrekar P. Alcohol-induced adipose tissue macrophage phenotypic switching is independent of myeloid Toll-like receptor 4 expression. Am J Physiol Cell Physiol 2019; 317:C687-C700. [PMID: 31268779 DOI: 10.1152/ajpcell.00276.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alcoholic liver disease results from a combination of immune and metabolic pathogenic events. In addition to liver injury, chronic alcohol consumption also causes adipose tissue inflammation. The specific immune mechanisms that drive this process are unknown. Here, we sought to determine the role of the innate immune receptor Toll-like receptor 4 (TLR4) in alcohol-induced adipose tissue inflammation. Using a model of chronic, multiple-binge alcohol exposure, we showed that alcohol-mediated accumulation of proinflammatory adipose tissue macrophages was absent in global TLR4 knockout mice. Proinflammatory macrophage accumulation did not depend on macrophage TLR4 expression; LysMCre-driven deletion of Tlr4 from myeloid cells did not affect circulating endotoxin or the accumulation of M1 macrophages in adipose tissue following alcohol exposure. Proinflammatory cytokine/chemokine production in the adipose stromal vascular fraction also occurred independently of TLR4. Finally, the levels of other adipose immune cells, such as dendritic cells, neutrophils, B cells, and T cells, were modulated by chronic, multiple-binge alcohol and the presence of TLR4. Together, these data indicate that TLR4 expression on cells, other than myeloid cells, is important for the alcohol-induced increase in proinflammatory adipose tissue macrophages.
Collapse
Affiliation(s)
- Melissa A Fulham
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anuradha Ratna
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rachel M Gerstein
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Evelyn A Kurt-Jones
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Pranoti Mandrekar
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.,Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
16
|
Zhong F, Hu Z, Jiang K, Lei B, Wu Z, Yuan G, Luo H, Dong C, Tang B, Zheng C, Yang S, Zeng Y, Guo Z, Yu S, Su H, Zhang G, Qiu X, Tomlinson S, He S. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis. Cell Res 2019; 29:548-561. [PMID: 31076642 PMCID: PMC6796853 DOI: 10.1038/s41422-019-0175-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
Complement is known to play a role in alcoholic fatty liver disease (AFLD), but the underlying mechanisms are poorly understood, thereby constraining the development of a rational approach for therapeutic intervention in the complement system. C3 deficiency has been shown to impart protective effects against ethanol-induced hepatic steatosis and inflammation. Here we demonstrate a protection effect in wild-type mice by treatment with CR2-Crry, a specific inhibitor of C3 activation. The expression of glycine transfer (t) RNA-derived fragments (Gly-tRFs) is upregulated in ethanol-fed mice and inhibition of Gly-tRFs in vivo decreases chronic ethanol feeding-induced hepatosteatosis without affecting inflammation. The expression of Gly-tRF was downregulated in C3-deficient or CR2-Crry-treated mice, but not in C5-deficient mice; Gly-tRF expression was restored by the C3 activation products C3a or Asp (C3a-des-Arg) via the regulation of CYP2E1. Transcriptome profiling of hepatic tissues showed that Gly-tRF inhibitors upregulate the expression of sirtuin1 (Sirt1) and subsequently affect downstream lipogenesis and β-oxidation pathways. Mechanistically, Gly-tRF interacts with AGO3 to downregulate Sirt1 expression via sequence complementarity in the 3' UTR. Notably, the expression levels of C3d, CYP2E1 and Gly-tRF are upregulated, whereas Sirt1 is decreased in AFLD patients compared to healthy controls. Collectively, our findings suggest that C3 activation products contribute to hepatosteatosis by regulating the expression of Gly-tRF. Complement inhibition at the C3 activation step and treatment with Gly-tRF inhibitors may be potential and precise therapeutic approaches for AFLD.
Collapse
Affiliation(s)
- Fudi Zhong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhigao Hu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Keqing Jiang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Biao Lei
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongliang Luo
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunqiang Dong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bo Tang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaowen Zheng
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Shuai Yang
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhenya Guo
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shuiping Yu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huizhao Su
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guo Zhang
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiaoqiang Qiu
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China.
| |
Collapse
|
17
|
Suzuki M, Kon K, Ikejima K, Arai K, Uchiyama A, Aoyama T, Yamashina S, Ueno T, Watanabe S. The Chemical Chaperone 4-Phenylbutyric Acid Prevents Alcohol-Induced Liver Injury in Obese KK-A y Mice. Alcohol Clin Exp Res 2019; 43:617-627. [PMID: 30748014 DOI: 10.1111/acer.13982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Co-occurrence of metabolic syndrome and chronic alcohol consumption is increasing worldwide. The present study investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA)-which has been shown to alleviate dietary steatohepatitis caused by endoplasmic reticulum (ER) stress-on chronic-plus-binge ethanol (EtOH)-induced liver injury in a mouse model of obesity. METHODS Male KK-Ay mice (8 weeks old) were fed a Lieber-DeCarli diet (5% EtOH) for 10 days. Some mice were given PBA intraperitoneally (120 mg/kg body weight, daily) during the experimental period. On day 11, mice were gavaged with a single dose of EtOH (4 g/kg body weight). Control mice were given a dextrin gavage after being pair-fed a control diet. All mice were then serially euthanized before or at 9 hours after gavage. RESULTS Chronic-plus-binge EtOH intake induced massive hepatic steatosis along with hepatocyte apoptosis and inflammation, which was reversed by PBA treatment. Administration of PBA also suppressed chronic-plus-binge EtOH-induced up-regulation of ER stress-related genes including binding immunoglobulin protein (Bip), unspliced and spliced forms of X-box-binding protein-1 (uXBP1 and sXBP1, respectively), inositol trisphosphate receptor (IP3R), and C/EBP homologous protein (CHOP). Further, it blocked chronic-plus-binge EtOH-induced expression of the oxidative stress marker heme oxygenase-1 (HO-1) and 4-hydroxynonenal. Chronic EtOH alone (without binge) increased Bip and uXBP1, but it did not affect those of sXBP1, IP3R, CHOP, or HO-1. PBA reversed the prebinge expression of these genes to control levels, but it did not affect chronic EtOH-induced hepatic activity of cytochrome P450 2E1. CONCLUSIONS Binge EtOH intake after chronic consumption induces massive ER stress-related oxidative stress and liver injury in a mouse model of obesity through dysregulation of the unfolded protein response. PBA ameliorated chronic-plus-binge EtOH-induced liver injury by reducing ER and oxidative stress after an EtOH binge.
Collapse
Affiliation(s)
- Maiko Suzuki
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kon
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumiko Arai
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Uchiyama
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomonori Aoyama
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shunhei Yamashina
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Laboratory of Proteomics and Medical Science, Research Support Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Sumio Watanabe
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Lin CJ, Hu ZG, Yuan GD, Lei B, He SQ. Complements are involved in alcoholic fatty liver disease, hepatitis and fibrosis. World J Hepatol 2018; 10:662-669. [PMID: 30386459 PMCID: PMC6206158 DOI: 10.4254/wjh.v10.i10.662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The complement system is a key component of the body's immune system. When abnormally activated, this system can induce inflammation and damage to normal tissues and participate in the development and progression of a variety of diseases. In the past, many scholars believed that alcoholic liver disease (ALD) is induced by the stress of ethanol on liver cells, including oxidative stress and dysfunction of mitochondria and protease bodies, causing hepatocyte injury and apoptosis. Recent studies have shown that complement activation is also involved in the genesis and development of ALD. This review focuses on the roles of complement activation in ALD and of therapeutic intervention in complement-activation pathways. We intend to provide new ideas on the diagnosis and treatment of ALD.
Collapse
Affiliation(s)
- Cheng-Jie Lin
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Gao Hu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Guan-Dou Yuan
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Biao Lei
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Song-Qing He
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
19
|
McCullough RL, McMullen MR, Sheehan MM, Poulsen KL, Roychowdhury S, Chiang DJ, Pritchard MT, Caballeria J, Nagy LE. Complement Factor D protects mice from ethanol-induced inflammation and liver injury. Am J Physiol Gastrointest Liver Physiol 2018; 315:G66-G79. [PMID: 29597356 PMCID: PMC6109707 DOI: 10.1152/ajpgi.00334.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 03/04/2018] [Indexed: 01/31/2023]
Abstract
Complement plays a crucial role in microbial defense and clearance of apoptotic cells. Emerging evidence suggests complement is an important contributor to alcoholic liver disease. While complement component 1, Q subcomponent (C1q)-dependent complement activation contributes to ethanol-induced liver injury, the role of the alternative pathway in ethanol-induced injury is unknown. Activation of complement via the classical and alternative pathways was detected in alcoholic hepatitis patients. Female C57BL/6J [wild type (WT)], C1q-deficient ( C1qa-/-, lacking classical pathway activation), complement protein 4-deficient ( C4-/-, lacking classical and lectin pathway activation), complement factor D-deficient ( FD-/-, lacking alternative pathway activation), and C1qa/FD-/- (lacking classical and alternative pathway activation) mice were fed an ethanol-containing liquid diet or pair-fed control diet for 4 or 25 days. Following chronic ethanol exposure, liver injury, steatosis, and proinflammatory cytokine expression were increased in WT but not C1qa-/-, C4-/-, or C1qa/FD-/- mice. In contrast, liver injury, steatosis, and proinflammatory mediators were robustly increased in ethanol-fed FD-/- mice compared with WT mice. Complement activation, assessed by hepatic accumulation of C1q and complement protein 3 (C3) cleavage products (C3b/iC3b/C3c), was evident in livers of WT mice in response to both short-term and chronic ethanol. While C1q accumulated in ethanol-fed FD-/- mice (short term and chronic), C3 cleavage products were detected after short-term but not chronic ethanol. Consistent with impaired complement activation, chronic ethanol induced the accumulation of apoptotic cells and fibrogenic responses in the liver of FD-/- mice. These data highlight the protective role of complement factor D (FD) and suggest that FD-dependent amplification of complement is an adaptive response that promotes hepatic healing and recovery in response to chronic ethanol. NEW & NOTEWORTHY Complement, a component of the innate immune system, is an important pathophysiological contributor to ethanol-induced liver injury. We have identified a novel role for factor D, a component of the alternative pathway, in protecting the liver from ethanol-induced inflammation, accumulation of apoptotic hepatocytes, and profibrotic responses. These data indicate a dual role of complement with regard to inflammatory and protective responses and suggest that accumulation of apoptotic cells impairs hepatic healing/recovery during alcoholic liver disease.
Collapse
Affiliation(s)
- Rebecca L McCullough
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Megan R McMullen
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Megan M Sheehan
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Kyle L Poulsen
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Sanjoy Roychowdhury
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Dian J Chiang
- Division of Gastroenterology, Swedish Medical Group , Seattle, Washington
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas
| | - Juan Caballeria
- Institut d'Investigacions Biomediques August Pi iSunyer, Hospital Clinic of Barcelona , Barcelona , Spain
| | - Laura E Nagy
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
- Department of Gastroenterology and Hepatology, Cleveland Clinic , Cleveland, Ohio
| |
Collapse
|
20
|
Xia T, Zhang J, Yao J, Zhang B, Duan W, Zhao C, Du P, Song J, Zheng Y, Wang M. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response. Nutrients 2018; 10:E805. [PMID: 29932157 PMCID: PMC6073858 DOI: 10.3390/nu10070805] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
Shanxi aged vinegar (SAV) is a typical fermented and antioxidant food, which has various health-promoting effects. This work aimed to explore the effects of SAV on alcohol-induced liver injury. A mice model of alcoholic liver injury was established to illuminate its potential mechanisms. All mice pretreated with SAV and then received an ethanol solution (50% w/v, 4.8 g/kg b.w.). The results showed that SAV ameliorated alcohol-induced histological changes and elevation of liver enzymes. SAV attenuated alcohol-induced oxidative stress by declining levels of hepatic oxidants, and restoring depletion of antioxidant enzyme activities in mice livers. Moreover, SAV alleviated alcohol-induced oxidative damage by activating nuclear factor erythroid-2-related factor 2 (Nrf2)-mediated signal pathway. In addition, SAV prevented alcohol-induced inflammation by suppressing lipopolysaccharide (LPS) level and activities of pro-inflammatory enzymes, and regulating inflammatory cytokines. SAV inhibited alcohol-induced inflammation through down-regulating the expression of Toll-like receptor 4 (TLR4)-mediated inflammatory response. The findings provide crucial evidence for elucidating the hepatoprotective mechanisms of SAV and encourage the future application of SAV as a functional food for liver protection.
Collapse
Affiliation(s)
- Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jin Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiahui Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenhui Duan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Chaoya Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Peng Du
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
21
|
Li Z, Zhao J, Zhang S, Weinman SA. FOXO3-dependent apoptosis limits alcohol-induced liver inflammation by promoting infiltrating macrophage differentiation. Cell Death Discov 2018. [PMID: 29531813 PMCID: PMC5841311 DOI: 10.1038/s41420-017-0020-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alcohol consumption is generally well tolerated by the liver but in some individuals it results in persistent inflammation and liver disease. The mechanisms that regulate alcohol-induced liver inflammation are poorly understood. The transcription factor FOXO3 has previously been shown to be involved in suppressing alcohol-induced liver injury. In this study we demonstrate that in response to alcohol, approximately 10% of mouse hepatic macrophages undergo FOXO3-dependent apoptosis. By 3 days of alcohol exposure total hepatic macrophage numbers declined by 30% but these were restored to normal after 10 days of continued exposure. Whole body or myeloid specific Foxo3-/- mice failed to show this apoptotic response. After 10 days of alcohol exposure, Foxo3−/− mice had an increased basal inflammatory phenotype and an increase in the proportion of pro-inflammatory CD11b+, Ly6C+ infiltrating macrophages (IMs) infiltrating. This led to marked sensitivity to LPS with a 5-fold ALT elevation and liver injury after LPS challenge in Foxo3−/− but not WT mice. Restoring the early macrophage apoptosis burst with a pulse of intravenous GdCl3 at day 2 had no effect on the day 10 phenotype of WT mice but it corrected the hyper-inflammatory phenotype in Foxo3−/− mice. In conclusion, FOXO3-dependent hepatic macrophage apoptosis in response to ethanol serves to promote differentiation of infiltrating macrophages thus limiting the magnitude of the inflammatory response to ethanol.
Collapse
Affiliation(s)
- Zhuan Li
- 1Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS USA
| | - Jie Zhao
- 1Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS USA
| | - Shujun Zhang
- 2Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven A Weinman
- 1Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS USA.,3Liver Center, University of Kansas Medical Center, Kansas City, KS USA
| |
Collapse
|
22
|
Ghosh Dastidar S, Warner JB, Warner DR, McClain CJ, Kirpich IA. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules 2018; 8:biom8010003. [PMID: 29342874 PMCID: PMC5871972 DOI: 10.3390/biom8010003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Both chronic and acute (binge) alcohol drinking are important health and economic concerns worldwide and prominent risk factors for the development of alcoholic liver disease (ALD). There are no FDA-approved medications to prevent or to treat any stage of ALD. Therefore, discovery of novel therapeutic strategies remains a critical need for patients with ALD. Relevant experimental animal models that simulate human drinking patterns and mimic the spectrum and severity of alcohol-induced liver pathology in humans are critical to our ability to identify new mechanisms and therapeutic targets. There are several animal models currently in use, including the most widely utilized chronic ad libitum ethanol (EtOH) feeding (Lieber–DeCarli liquid diet model), chronic intragastric EtOH administration (Tsukamoto–French model), and chronic-plus-binge EtOH challenge (Bin Gao—National Institute on Alcohol Abuse and Alcoholism (NIAAA) model). This review provides an overview of recent advances in rodent models of binge EtOH administration which help to recapitulate different features and etiologies of progressive ALD. These models include EtOH binge alone, and EtOH binge coupled with chronic EtOH intake, a high fat diet, or endotoxin challenge. We analyze the strengths, limitations, and translational relevance of these models, as well as summarize the liver injury outcomes and mechanistic insights. We further discuss the application(s) of binge EtOH models in examining alcohol-induced multi-organ pathology, sex- and age-related differences, as well as circadian rhythm disruption.
Collapse
Affiliation(s)
- Shubha Ghosh Dastidar
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Jeffrey B Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Craig J McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center and Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA.
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center and Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
23
|
|
24
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of chronic liver disease with a wide spectrum of manifestations including simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Liver injury in ALD is caused by chronic inflammation, which has been actively investigated as a therapeutic target for the treatment of ALD for over the last four decades. In this review, we summarize a wide variety of inflammatory mediators that have been shown to contribute to the pathogenesis of ALD, and discuss the therapeutic potential of these mediators for the treatment of ALD.
Collapse
|
25
|
Wegner SA, Pollard KA, Kharazia V, Darevsky D, Perez L, Roychowdhury S, Xu A, Ron D, Nagy LE, Hopf FW. Limited Excessive Voluntary Alcohol Drinking Leads to Liver Dysfunction in Mice. Alcohol Clin Exp Res 2017; 41:345-358. [PMID: 28103636 DOI: 10.1111/acer.13303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Liver damage is a serious and sometimes fatal consequence of long-term alcohol intake, which progresses from early-stage fatty liver (steatosis) to later-stage steatohepatitis with inflammation and fibrosis/necrosis. However, very little is known about earlier stages of liver disruption that may occur in problem drinkers, those who drink excessively but are not dependent on alcohol. METHODS We examined how repeated binge-like alcohol drinking in C57BL/6 mice altered liver function, as compared with a single binge-intake session and with repeated moderate alcohol consumption. We measured a number of markers associated with early- and later-stage liver disruption, including liver steatosis, measures of liver cytochrome P4502E1 (CYP2E1) and alcohol dehydrogenase (ADH), alcohol metabolism, expression of cytokine mRNA, accumulation of 4-hydroxynonenal (4-HNE) as an indicator of oxidative stress, and alanine transaminase/aspartate transaminase as a measure of hepatocyte injury. RESULTS Importantly, repeated binge-like alcohol drinking increased triglyceride levels in the liver and plasma, and increased lipid droplets in the liver, indicators of steatosis. In contrast, a single binge-intake session or repeated moderate alcohol consumption did not alter triglyceride levels. In addition, alcohol exposure can increase rates of alcohol metabolism through CYP2E1 and ADH, which can potentially increase oxidative stress and liver dysfunction. Intermittent, excessive alcohol intake increased liver CYP2E1 mRNA, protein, and activity, as well as ADH mRNA and activity. Furthermore, repeated, binge-like drinking, but not a single binge or moderate drinking, increased alcohol metabolism. Finally, repeated, excessive intake transiently elevated mRNA for the proinflammatory cytokine IL-1B and 4-HNE levels, but did not alter markers of later-stage liver hepatocyte injury. CONCLUSIONS Together, we provide data suggesting that even relatively limited binge-like alcohol drinking can lead to disruptions in liver function, which might facilitate the transition to more severe forms of liver damage.
Collapse
Affiliation(s)
- Scott A Wegner
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Katherine A Pollard
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Viktor Kharazia
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - David Darevsky
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Luz Perez
- Diabetes Center, University of California at San Francisco, San Francisco, California
| | - Sanjoy Roychowdhury
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Allison Xu
- Diabetes Center, University of California at San Francisco, San Francisco, California
| | - Dorit Ron
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Frederic Woodward Hopf
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| |
Collapse
|
26
|
The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3. Oncogene 2016; 36:1887-1898. [PMID: 27669435 DOI: 10.1038/onc.2016.359] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/19/2022]
Abstract
The multispecific transcription factor and tumor suppressor FOXO3 is an important mediator of apoptosis, but the mechanisms that control its proapoptotic function are poorly understood. There has long been evidence that acetylation promotes FOXO3-driven apoptosis and recently a specific JNK (c-Jun N-terminal kinase)-dependent S574 phosphorylated form (p-FOXO3) has been shown to be specifically apoptotic. This study examined whether acetylation and S574 phosphorylation act independently or in concert to regulate the apoptotic function of FOXO3. We observed that both sirtuins 1 and 7 (SIRT1 and SIRT7) are able to deacetylate FOXO3 in vitro and in vivo, and that lipopolysaccharide (LPS) treatment of THP-1 monocytes induced a rapid increase of FOXO3 acetylation, partly by suppression of SIRT1 and SIRT7. Acetylation was required for S574 phosphorylation and cellular apoptosis. Deacetylation of FOXO3 by SIRT activation or SIRT1 or SIRT7 overexpression prevented its S574 phosphorylation and blocked apoptosis in response to LPS. We also found that acetylated FOXO3 preferentially bound JNK1, and a mutant FOXO3 lacking four known acetylation sites (K242, 259, 290 and 569R) abolished JNK1 binding and failed to induce apoptosis. This interplay of acetylation and phosphorylation also regulated cell death in primary human peripheral blood monocytes (PBMs). PBMs isolated from alcoholic hepatitis patients had high expression of SIRT1 and SIRT7 and failed to induce p-FOXO3 and apoptosis in response to LPS. PBMs from healthy controls had lower SIRT1 and SIRT7 and readily formed p-FOXO3 and underwent apoptosis when similarly treated. These results reveal that acetylation is permissive for generation of the apoptotic form of FOXO3 and the activity of SIRT1 and particularly SIRT7 regulate this process in vivo, allowing control of monocyte apoptosis in response to LPS.
Collapse
|
27
|
Abstract
Acute and chronic alcohol use leads to an impaired immune response and dysregulated inflammatory state that contributes to a markedly increased risk of infection. Via shared mechanisms of immune-mediated injury, alcohol can alter the clinical course of viral infections such as hepatitis B, hepatitis C, and human immunodeficiency virus. These effects are most evident in patients with alcoholic hepatitis and cirrhosis. This article provides an overview of alcohol's effect on the immune system and contribution to the risks and outcomes of specific infectious diseases.
Collapse
Affiliation(s)
- Christine Chan
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Chicago, IL 60611, USA
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Bavia L, de Castro ÍA, Cogliati B, Dettoni JB, Alves VAF, Isaac L. Complement C5 controls liver lipid profile, promotes liver homeostasis and inflammation in C57BL/6 genetic background. Immunobiology 2016; 221:822-32. [DOI: 10.1016/j.imbio.2016.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
|
29
|
McCullough RL, Saikia P, Pollard KA, McMullen MR, Nagy LE, Roychowdhury S. Myeloid Mixed Lineage Kinase 3 Contributes to Chronic Ethanol-Induced Inflammation and Hepatocyte Injury in Mice. Gene Expr 2016; 17:61-77. [PMID: 27302422 PMCID: PMC8751240 DOI: 10.3727/105221616x691730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proinflammatory activity of hepatic macrophages plays a key role during progression of alcoholic liver disease (ALD). Since mixed lineage kinase 3 (MLK3)-dependent phosphorylation of JNK is involved in the activation of macrophages, we tested the hypothesis that myeloid MLK3 contributes to chronic ethanol-induced inflammatory responses in liver, leading to hepatocyte injury and cell death. Primary cultures of Kupffer cells, as well in vivo chronic ethanol feeding, were used to interrogate the role of MLK3 in the progression of liver injury. Phosphorylation of MLK3 was increased in primary cultures of Kupffer cells isolated from ethanol-fed rats compared to cells from pair-fed rats. Kupffer cells from ethanol-fed rats were more sensitive to LPS-stimulated cytokine production; this sensitization was normalized by pharmacological inhibition of MLK3. Chronic ethanol feeding to mice increased MLK3 phosphorylation robustly in F4/80(+) Kupffer cells, as well as in isolated nonparenchymal cells. MLK3(-/-) mice were protected from chronic ethanol-induced phosphorylation of MLK3 and JNK, as well as multiple indicators of liver injury, including increased ALT/AST, inflammatory cytokines, and induction of RIP3. However, ethanol-induced steatosis and hepatocyte apoptosis were not affected by MLK3. Finally, chimeric mice lacking MLK3 only in myeloid cells were also protected from chronic ethanol-induced phosphorylation of JNK, expression of inflammatory cytokines, and increased ALT/AST. MLK3 expression in myeloid cells contributes to phosphorylation of JNK, increased cytokine production, and hepatocyte injury in response to chronic ethanol. Our data suggest that myeloid MLK3 could be targeted for developing potential therapeutic strategies to suppress liver injury in ALD patients.
Collapse
Affiliation(s)
- Rebecca L. McCullough
- *Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Paramananda Saikia
- *Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Katherine A. Pollard
- *Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R. McMullen
- *Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
| | - Laura E. Nagy
- *Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- †Department of Gastroenterology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- ‡Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sanjoy Roychowdhury
- *Department of Pathobiology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, OH, USA
- ‡Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
30
|
Differential contribution of complement receptor C5aR in myeloid and non-myeloid cells in chronic ethanol-induced liver injury in mice. Mol Immunol 2016; 75:122-32. [PMID: 27280845 DOI: 10.1016/j.molimm.2016.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Complement is implicated in the development of alcoholic liver disease. C3 and C5 contribute to ethanol-induced liver injury; however, the role of C5a receptor (C5aR) on myeloid and non-myeloid cells to progression of injury is not known. METHODS C57BL/6 (WT), global C5aR-/-, myeloid-specific C5aR-/-, and non-myeloid-specific C5aR-/- mice were fed a Lieber-DeCarli diet (32%kcal EtOH) for 25 days. Cultured hepatocytes were challenged with ethanol, TNFα, and C5a. RESULTS Chronic ethanol feeding increased expression of pro-inflammatory mediators in livers of WT mice; this response was completely blunted in C5aR-/- mice. However, C5aR-/- mice were not protected from other measures of hepatocellular damage, including ethanol-induced increases in hepatic triglycerides, plasma alanine aminotransferase and hepatocyte apoptosis. CYP2E1 and 4-hydroxynonenal protein adducts were induced in WT and C5aR-/- mice. Myeloid-specific C5aR-/- mice were protected from ethanol-induced increases in hepatic TNFα, whereas non-myeloid-specific C5aR-/- displayed increased hepatocyte apoptosis and inflammation after chronic ethanol feeding. In cultured hepatocytes, cytotoxicity induced by challenge with ethanol and TNFα was completely eliminated by treatment with C5a in cells from WT, but not C5aR-/- mice. Further, treatment with C5a enhanced activation of pro-survival signal AKT in hepatocytes challenged with ethanol and TNFα. CONCLUSION Taken together, these data reveal a differential role for C5aR during ethanol-induced liver inflammation and injury, with C5aR on myeloid cells contributing to ethanol-induced inflammatory cytokine expression, while non-myeloid C5aR protects hepatocytes from death after chronic ethanol feeding.
Collapse
|
31
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of liver-related morbidity and mortality worldwide. ALD encompasses a spectrum of disorders including asymptomatic steatosis, steatohepatitis, fibrosis, cirrhosis and its related complications, and the acute-on-chronic state of alcoholic hepatitis. While multidisciplinary efforts continue to be aimed at curbing progression of this spectrum of disorders, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of ALD. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with severe AH is very high (20-50 % at 3 months). The current therapeutic regimens are limited. The development of new therapies requires translational studies in human samples and suitable animal models that reproduce clinical and histological features of human AH. This review article summarizes the clinical syndrome, pre-clinical translational tools, and pathogenesis of AH at a molecular and cellular level, with the aim of identifying new targets of potential therapeutic intervention.
Collapse
|
32
|
Smathers RL, Chiang DJ, McMullen MR, Feldstein AE, Roychowdhury S, Nagy LE. Soluble IgM links apoptosis to complement activation in early alcoholic liver disease in mice. Mol Immunol 2016; 72:9-18. [PMID: 26922040 DOI: 10.1016/j.molimm.2016.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ethanol feeding in mice activates complement via C1q binding to apoptotic cells in the liver; complement contributes to ethanol-induced inflammation and injury. Despite the critical role of C1q in ethanol-induced injury, the mechanism by which ethanol activates C1q remains poorly understood. Secretory IgM (sIgM), traditionally considered to act as an anti-microbial, also has critical housekeeping functions, facilitating clearance of apoptotic cells, at least in part through activation of C1q. Therefore, we hypothesized that (1) ethanol-induced apoptosis in the liver recruits sIgM, facilitating the activation of C1q and complement and (2) C1INH (C1 esterase inhibitor), which inhibits C1 functional activity, prevents complement activation and decreases ethanol-induced liver injury. METHODS Female C57BL/6 wild-type, C1qa(-/-), BID(-/-) and sIgM(-/-) mice were fed ethanol containing liquid diets or pair-fed control diets. C1INH or vehicle was given via tail vein injection to ethanol- or pair-fed wild-type mice at 24 and 48h prior to euthanasia. RESULTS Ethanol exposure increased apoptosis in the liver, as well as the accumulation of IgM in the liver. In the early stages of ethanol feeding, C1q co-localized with IgM in the peri-sinusoidal space of the liver and accumulation of IgM and C3b was dependent on ethanol-induced BID-dependent apoptosis. sIgM(-/-) mice were protected from both ethanol-induced activation of complement and early ethanol-induced liver injury when compared to wild-type mice. Treatment with C1INH also decreased hepatic C3b deposition and ethanol-induced injury. CONCLUSION These data indicate that sIgM contributes to activation of complement and ethanol-induced increases in inflammatory cytokine expression and hepatocyte injury in the early stages of ethanol-induced liver injury.
Collapse
Affiliation(s)
- Rebecca L Smathers
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, United States
| | - Dian J Chiang
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, United States; Department of Gastroenterology, Cleveland Clinic, United States
| | - Megan R McMullen
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, United States
| | - Ariel E Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, San Diego, CA, United States
| | - Sanjoy Roychowdhury
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, United States
| | - Laura E Nagy
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, United States; Department of Gastroenterology, Cleveland Clinic, United States; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
33
|
Deshpande KT, Liu S, McCracken JM, Jiang L, Gaw TE, Kaydo LN, Richard ZC, O'Neil MF, Pritchard MT. Moderate (2%, v/v) Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice. Biomolecules 2016; 6:5. [PMID: 26751492 PMCID: PMC4808799 DOI: 10.3390/biom6010005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl4-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl4 exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl4 and euthanized 24–96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl4-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl4 exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl4-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl4. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure.
Collapse
Affiliation(s)
- Krutika T Deshpande
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Shinlan Liu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Jennifer M McCracken
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Lu Jiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Ta Ehpaw Gaw
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Lindsey N Kaydo
- Department of Gastroenterology and Hepatology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Zachary C Richard
- Department of Gastroenterology and Hepatology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Maura F O'Neil
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
34
|
Latchoumycandane C, Hanouneh M, Nagy LE, McIntyre TM. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption. PLoS One 2015; 10:e0145691. [PMID: 26720402 PMCID: PMC4697844 DOI: 10.1371/journal.pone.0145691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/06/2015] [Indexed: 12/20/2022] Open
Abstract
Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR) for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh) and Indian hedgehog (Ihh) expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO) is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo-/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not commonly biopsied.
Collapse
Affiliation(s)
- Calivarathan Latchoumycandane
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Mohamad Hanouneh
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
35
|
Skin Immunization Obviates Alcohol-Related Immune Dysfunction. Biomolecules 2015; 5:3009-28. [PMID: 26561838 PMCID: PMC4693267 DOI: 10.3390/biom5043009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/12/2023] Open
Abstract
Alcoholics suffer from immune dysfunction that can impede vaccine efficacy. If ethanol (EtOH)-induced immune impairment is in part a result of direct exposure of immune cells to EtOH, then reduced levels of exposure could result in less immune dysfunction. As alcohol ingestion results in lower alcohol levels in skin than blood, we hypothesized that the skin immune network may be relatively preserved, enabling skin-targeted immunizations to obviate the immune inhibitory effects of alcohol consumption on conventional vaccines. We employed the two most common chronic EtOH mouse feeding models, the liver-damaging Lieber-DeCarli (LD) and liver-sparing Meadows-Cook (MC) diets, to examine the roles of EtOH and/or EtOH-induced liver dysfunction on alcohol related immunosuppression. Pair-fed mice were immunized against the model antigen ovalbumin (OVA) by DNA immunization or against flu by administering the protein-based influenza vaccine either systemically (IV, IM), directly to liver (hydrodynamic), or cutaneously (biolistic, ID). We measured resulting tissue EtOH levels, liver stress, regulatory T cell (Treg), and myeloid-derived suppressor cell (MDSC) populations. We compared immune responsiveness by measuring delayed-type hypersensitivity (DTH), antigen-specific cytotoxic T lymphocyte (CTL), and antibody induction as a function of delivery route and feeding model. We found that, as expected, and independent of the feeding model, EtOH ingestion inhibits DTH, CTL lysis, and antigen-specific total IgG induced by traditional systemic vaccines. On the other hand, skin-targeted vaccines were equally immunogenic in alcohol-exposed and non-exposed subjects, suggesting that cutaneous immunization may result in more efficacious vaccination in alcohol-ingesting subjects.
Collapse
|
36
|
Rubenstein DA, Hom S, Ghebrehiwet B, Yin W. Tobacco and e-cigarette products initiate Kupffer cell inflammatory responses. Mol Immunol 2015; 67:652-60. [PMID: 26072673 DOI: 10.1016/j.molimm.2015.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Abstract
Kupffer cells are liver resident macrophages that are responsible for screening and clearing blood of pathogens and foreign particles. It has recently been shown that Kupffer cells interact with platelets, through an adhesion based mechanism, to aid in pathogen clearance and then these platelets re-enter the general systemic circulation. Thus, a mechanism has been identified that relates liver inflammation to possible changes in the systemic circulation. However, the role that Kupffer cells play in cardiovascular disease initiation/progression has not been elucidated. Thus, our objective was to determine whether or not Kupffer cells are responsive to a classical cardiovascular risk factor and if these changes can be transmitted into the general systemic circulation. If Kupffer cells initiate inflammatory responses after exposure to classical cardiovascular risk factors, then this provides a potential alternative/synergistic pathway for cardiovascular disease initiation. We aimed to elucidate the prevalence of this potential pathway. We hypothesized that Kupffer cells would initiate a robust inflammatory response after exposure to tobacco cigarette or e-cigarette products and that the inflammatory response would have the potential to antagonize other salient cells for cardiovascular disease progression. To test this, Kupffer cells were incubated with tobacco smoke extracts, e-cigarette vapor extracts or pure nicotine. Complement deposition onto Kupffer cells, Kupffer cell complement receptor expression, oxidative stress production, cytokine release and viability and density were assessed after the exposure. We observed a robust inflammatory response, oxidative stress production and cytokine release after Kupffer cells were exposed to tobacco or e-cigarette extracts. We also observed a marginal decrease in cell viability coupled with a significant decrease in cell density. In general, this was not a function of the extract formulation (e.g. tobacco vs. e-cigarette products or the formulation of the cigarette product). These results indicate that Kupffer cells are responsive to classical cardiovascular risk factors and that an inflammatory response is initiated that may pass into the general systemic circulation.
Collapse
Affiliation(s)
- David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Sarah Hom
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
| | - Berhane Ghebrehiwet
- School of Medicine, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
37
|
C57BL/6 and A/J Mice Have Different Inflammatory Response and Liver Lipid Profile in Experimental Alcoholic Liver Disease. Mediators Inflamm 2015; 2015:491641. [PMID: 26448681 PMCID: PMC4584053 DOI: 10.1155/2015/491641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is an important worldwide public health issue characterized by liver steatosis, inflammation, necrosis, and apoptosis of hepatocytes with eventual development of fibrosis and cirrhosis. Comparison of murine models with different inflammatory responses for ALD is important for an evaluation of the importance of genetic background in the interpretation of ethanol-induced phenotypes. Here, we investigated the role of inflammation and genetic background for the establishment of ALD using two different mouse strains: C57BL/6 (B6) and A/J. B6 and A/J mice were treated with a high fat diet containing ethanol (HFDE) and compared to the controls for 10 weeks. Hepatomegaly and steatohepatitis were similar in B6 and A/J mice, but only A/J mice were resistant to weight gain. On the other hand, HFDE-fed B6 accumulated more triglycerides (TG) and cholesterol and presented more intense cellular infiltrate in the liver when compared to HFDM-fed mice. Liver inflammatory environment was distinct in these two mouse strains. While HFDE-fed B6 produced more liver IL-12, A/J mice increased the TNF-α production. We concluded that mouse genetic background could dictate the intensity of the HFDE-induced liver injury.
Collapse
|
38
|
Guan Y, Yao H, Wang J, Sun K, Cao L, Wang Y. NF-κB-DICER-miRs Axis Regulates TNF-α Expression in Responses to Endotoxin Stress. Int J Biol Sci 2015; 11:1257-68. [PMID: 26435691 PMCID: PMC4582149 DOI: 10.7150/ijbs.12611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
Unbalanced tumor necrosis factor (TNF)-α production is associated with pathogenesis of a variety of human diseases. However, the molecular pathways maintaining TNF-α homeostasis remain elusive. Here, we report that NF-κB/p65-DICER-miRs axis negatively regulates TNF-α production. We demonstrated that NF-κB bound to DICER promoter and transcriptionally regulated DICER expression. In addition, the NF-κB/DICER signaling suppresses TNF-α expression by generating mature forms of miR-125b and miR-130a which negatively regulate TNF-α mRNA. Furthermore, we showed that the hepatocyte-specific depletion of Dicer in mice resulted in TNF-α overproduction and sensitized the mice to endotoxin, which could be corrected by administration of miR-125b mimics. These data suggest that NF-κB/p65-DICER-miRs axis involved in maintaining of TNF-α homeostasis, and injection of miR-125b as a potential therapeutic method for septic shock.
Collapse
Affiliation(s)
- Yi Guan
- 1. Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110122, China
| | - Hailan Yao
- 2. Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, SIBS, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junfeng Wang
- 2. Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, SIBS, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kailai Sun
- 3. Department of Medical Genetics, China Medical University, Shenyang, 110122, China
| | - Liu Cao
- 1. Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110122, China
| | - Yizheng Wang
- 2. Laboratory of Neural Signal Transduction, Institute of Neuroscience, State Key Laboratory of Neuroscience, SIBS, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
39
|
Abstract
Inflammation contributes to the pathogenesis of most acute and chronic liver diseases. Inflammasomes are multiprotein complexes that can sense danger signals from damaged cells and pathogens and assemble to mediate caspase-1 activation, which proteolytically activates the cytokines IL-1β and IL-18. In contrast to other inflammatory responses, inflammasome activation uniquely requires two signals to induce inflammation, therefore setting an increased threshold. IL-1β, generated upon caspase-1 activation, provides positive feed-forward stimulation for inflammatory cytokines, thereby amplifying inflammation. Inflammasome activation has been studied in different human and experimental liver diseases and has been identified as a major contributor to hepatocyte damage, immune cell activation and amplification of liver inflammation. In this Review, we discuss the different types of inflammasomes, their activation and biological functions in the context of liver injury and disease progression. Specifically, we focus on the triggers of inflammasome activation in alcoholic steatohepatitis and NASH, chronic HCV infection, ischaemia-reperfusion injury and paracetamol-induced liver injury. The application and translation of these discoveries into therapies promises novel approaches in the treatment of inflammation in liver disease.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
40
|
Liu J, Tan Y, Zhang J, Zou L, Deng G, Xu X, Wang F, Ma Z, Zhang J, Zhao T, Liu Y, Li Y, Zhu B, Guo B. C5aR, TNF-α, and FGL2 contribute to coagulation and complement activation in virus-induced fulminant hepatitis. J Hepatol 2015; 62:354-62. [PMID: 25200905 DOI: 10.1016/j.jhep.2014.08.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Viral fulminant hepatitis (FH) is a disease with a high mortality rate. Activation of the complement system correlates with the development of FH. However, the key factors mediating complement activation in FH remain elusive. METHODS Liver tissues were isolated from FH patients infected by hepatitis B virus (HBV) and from mice infected with murine hepatitis virus strain 3 (MHV-3). Wild type mice were treated with or without antagonists of C5aR or TNF-α, and mice deficient for C5aR (C5aR(-/-)), Fgl2 (Fgl2(-/-)), and Tnfα (Tnfα(-/-)) mice were not treated with the antagonists. C5b-9, C5aR, FGL2, CD31, CD11b, fibrin, TNF-α, and complement C3 cleavage products were detected by immunohistochemistry, immunofluorescence, or ELISA. Sorted liver sinusoidal endothelial cells (LSECs) or myeloid-derived (CD11b(+)) cells were stimulated with C5a, TNF-α or MHV-3 in vitro. The mRNA expressions levels of Fgl2 and Tnfα were determined by qRT-PCR analyses. RESULTS We observed that complement activation, coagulation and pro-inflammatory cytokine production were upregulated in the HBV(+) patients with FH. Similar observations were made in the murine FH models. Complement activation and coagulation were significantly reduced in MHV-3 infected mice in the absence of C5aR, Tnfα or Fgl2. The MHV-3 infected C5aR(-/-) mice exhibited reduced numbers of infiltrated inflammatory CD11b(+) cells and a reduced expression of TNF-α and FGL2. Moreover, C5a administration stimulated TNF-α production by CD11b(+) cells, which in turn promoted the expression of FGL2 in CD31(+) LSEC-like cells in vitro. Administration of antagonists against C5aR or TNF-α ameliorated MHV-3-induced FH. CONCLUSIONS Our results demonstrate that C5aR, TNF-α, and FGL2 form an integral network that contributes to coagulation and complement activation, and suggest that those are potential therapeutic targets in viral FH intervention.
Collapse
Affiliation(s)
- Jianjun Liu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Histology & Embryology, Third Military Medical University, Chongqing, China
| | - Yulong Tan
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Liyun Zou
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Guohong Deng
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueqing Xu
- Department of Medical Genetics, Third Military Medical University, Chongqing, China
| | - Feng Wang
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhengwei Ma
- Institute of Hepatobiliary Surgery & Southwest Hospital, Third Military Medical University, District Shapingba, Chongqing, China
| | - Jue Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tingting Zhao
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Yunlai Liu
- Department of Histology & Embryology, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Bo Guo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
41
|
Mandal P, Nagy LE. Stellate Cells in Alcoholic Hepatitis. STELLATE CELLS IN HEALTH AND DISEASE 2015:163-174. [DOI: 10.1016/b978-0-12-800134-9.00010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Ju C, Mandrekar P. Macrophages and Alcohol-Related Liver Inflammation. Alcohol Res 2015; 37:251-62. [PMID: 26717583 PMCID: PMC4590621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent studies have suggested that macrophages have a critical role in the development of alcohol-induced inflammation in the liver. To define the precise pathogenic function of these cells during alcoholic liver disease (ALD), it is extremely important to conduct extensive studies in clinical settings that further elucidate the phenotypic diversity of macrophages In the context of ALD. Research to date already has identified several characteristics of macrophages that underlie the cells' actions, including macrophage polarization and their phenotypic diversity. Other analyses have focused on the contributions of resident versus infiltrating macrophages/monocytes, as well as on the roles of macrophage mediators, in the development of ALD. Findings point to the potential of macrophages as a therapeutic target in alcoholic liver injury. Future studies directed toward understanding how alcohol affects macrophage phenotypic switch in the liver and other tissues, whether the liver microenvironment determines macrophage function in ALO and if targeting of macrophages alleviates alcoholic liver injury, will provide promising strategies to manage patients with alcoholic hepatitis.
Collapse
|
43
|
Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J Gastroenterol 2014; 20:17756-17772. [PMID: 25548474 PMCID: PMC4273126 DOI: 10.3748/wjg.v20.i47.17756] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing proteasome function in macrophages and dendritic cells, and consequently alters allogenic antigen presentation. Finally, acetaldehyde and ROS have a role in alcohol-related carcinogenesis because they can form DNA adducts that are prone to mutagenesis, and they interfere with methylation, synthesis and repair of DNA, thereby increasing HCC susceptibility.
Collapse
|
44
|
Cresci GA, Allende D, McMullen MR, Nagy LE. Alternative complement pathway component Factor D contributes to efficient clearance of tissue debris following acute CCl₄-induced injury. Mol Immunol 2014; 64:9-17. [PMID: 25467802 DOI: 10.1016/j.molimm.2014.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022]
Abstract
Complement, part of the innate immune system, is involved with immune protection against invading pathogens as well as cell survival and tissue regeneration. It is known that complement activation is required for timely hepatocyte recovery following an acute toxic injury, but which pathway of complement activation is involved in response to hepatocyte injury has not been identified. In these studies we utilize mice deficient in C1qa, C4 and Factor D, lacking the classical, classical/MBL, and alternative pathways of complement activation, respectively, to identify an essential role for Factor D in the ability of the liver to recover from acute toxic injury. Here we demonstrate that following an acute CCl4-induced injury, the involvement of the alternative complement pathway is essential for efficient liver recovery.
Collapse
Affiliation(s)
- Gail A Cresci
- Department of Gastroenterology, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniela Allende
- Department of Pathology Cleveland Clinic, Cleveland, OH 44195, USA
| | - Megan R McMullen
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Laura E Nagy
- Department of Gastroenterology, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
45
|
Segers FM, Verdam FJ, de Jonge C, Boonen B, Driessen A, Shiri-Sverdlov R, Bouvy ND, Greve JWM, Buurman WA, Rensen SS. Complement alternative pathway activation in human nonalcoholic steatohepatitis. PLoS One 2014; 9:e110053. [PMID: 25299043 PMCID: PMC4192551 DOI: 10.1371/journal.pone.0110053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023] Open
Abstract
The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10) or with NASH (n = 12) using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01) in subjects with NASH despite reduced native C3 concentrations (0.94±0.12 vs. 0.57±0.09; p<0.01). Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05) and C3c/C3 activation ratio (rs = 0.59; p<0.05). C3c, C3 activation status (C3c/C3 ratio) and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05). Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00±0.19 vs. 0.71±0.07, p = 0.26; factor D: 1.00±0.21 vs. 0.66±0.14, p = 0.29;). Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00±0.14 vs. 2.37±0.72; p = 0.22; protein: 0.51±0.11 vs. 1.97±0.67; p = 0.28). In contrast, factor H mRNA was downregulated in patients with NASH (1.00±0.09 vs. 0.71±0.06; p<0.05) and a similar trend was observed with hepatic protein levels (1.12±0.16 vs. 0.78±0.07; p = 0.08). Collectively, these data suggest a role for alternative pathway activation in driving hepatic inflammation in NASH. Therefore, alternative pathway factors may be considered attractive targets for treating NASH by inhibiting complement activation.
Collapse
Affiliation(s)
- Filip M. Segers
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Froukje J. Verdam
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Charlotte de Jonge
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Surgery, Atrium Medical Centre Parkstad, Heerlen, the Netherlands
| | - Bas Boonen
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ann Driessen
- Department of Pathology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Nicole D. Bouvy
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jan Willem M. Greve
- Department of Surgery, Atrium Medical Centre Parkstad, Heerlen, the Netherlands
| | - Wim A. Buurman
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Sander S. Rensen
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
- * E-mail:
| |
Collapse
|
46
|
Shen H, French BA, Liu H, Tillman BC, French SW. Increased activity of the complement system in the liver of patients with alcoholic hepatitis. Exp Mol Pathol 2014; 97:338-44. [PMID: 25217811 DOI: 10.1016/j.yexmp.2014.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022]
Abstract
Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH.
Collapse
Affiliation(s)
- Hong Shen
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA.
| | - Barbara A French
- LA BioMed at Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - Hui Liu
- LA BioMed at Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | - Samuel W French
- LA BioMed at Harbor-UCLA Medical Center, Torrance, CA 90509, USA; Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| |
Collapse
|
47
|
The complement system in human cardiometabolic disease. Mol Immunol 2014; 61:135-48. [PMID: 25017306 DOI: 10.1016/j.molimm.2014.06.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
The complement system has been implicated in obesity, fatty liver, diabetes and cardiovascular disease (CVD). Complement factors are produced in adipose tissue and appear to be involved in adipose tissue metabolism and local inflammation. Thereby complement links adipose tissue inflammation to systemic metabolic derangements, such as low-grade inflammation, insulin resistance and dyslipidaemia. Furthermore, complement has been implicated in pathophysiological mechanisms of diet- and alcohol induced liver damage, hyperglycaemia, endothelial dysfunction, atherosclerosis and fibrinolysis. In this review, we summarize current evidence on the role of the complement system in several processes of human cardiometabolic disease. C3 is the central component in complement activation, and has most widely been studied in humans. C3 concentrations are associated with insulin resistance, liver dysfunction, risk of the metabolic syndrome, type 2 diabetes and CVD. C3 can be activated by the classical, the lectin and the alternative pathway of complement activation; and downstream activation of C3 activates the terminal pathway. Complement may also be activated via extrinsic proteases of the coagulation, fibrinolysis and the kinin systems. Studies on the different complement activation pathways in human cardiometabolic disease are limited, but available evidence suggests that they may have distinct roles in processes underlying cardiometabolic disease. The lectin pathway appeared beneficial in some studies on type 2 diabetes and CVD, while factors of the classical and the alternative pathway were related to unfavourable cardiometabolic traits. The terminal complement pathway was also implicated in insulin resistance and liver disease, and appears to have a prominent role in acute and advanced CVD. The available human data suggest a complex and potentially causal role for the complement system in human cardiometabolic disease. Further, preferably longitudinal studies are needed to disentangle which aspects of the complement system and complement activation affect the different processes in human cardiometabolic disease.
Collapse
|
48
|
McDaniel K, Herrera L, Zhou T, Francis H, Han Y, Levine P, Lin E, Glaser S, Alpini G, Meng F. The functional role of microRNAs in alcoholic liver injury. J Cell Mol Med 2014; 18:197-207. [PMID: 24400890 PMCID: PMC3930407 DOI: 10.1111/jcmm.12223] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/28/2013] [Indexed: 12/16/2022] Open
Abstract
The function of microRNAs (miRNAs) during alcoholic liver disease (ALD) has recently become of great interest in biological research. Studies have shown that ALD associated miRNAs play a crucial role in the regulation of liver-inflammatory agents such as tumour necrosis factor-alpha (TNF-α), one of the key inflammatory agents responsible for liver fibrosis (liver scarring) and the critical contributor of alcoholic liver disease. Lipopolysaccharide (LPS), a component of the cell wall of gram-negative bacteria, is responsible for TNF-α release by Kupffer cells. miRNAs are the critical mediators of LPS signalling in Kupffer cells, hepatocytes and hepatic stellate cells. Certain miRNAs, in particular miR-155 and miR-21, show a positive correlation in up-regulation of LPS signalling when they are exposed to ethanol. ALD is related to enhanced gut permeability that allows the levels of LPS to increase, leads to increased secretion of TNF-α by the Kupffer cells and subsequently promotes alcoholic liver injury through specific miRNAs. Meanwhile, two of the most frequently dysregulated miRNAs in steatohepatitis, miR-122 and miR-34a are the critical mediators in ethanol/LPS activated survival signalling during ALD. In this review, we summarize recent findings regarding the experimental and clinical aspects of functions of specific microRNAs, focusing mainly on inflammation and cell survival after ethanol/LPS treatment, and advances on the role of circulating miRNAs in human alcoholic disorders.
Collapse
Affiliation(s)
- Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, TX, USA; Department of Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Scott & White Healthcare, Temple, TX, USA; Academic Operations, Scott & White Hospital, Temple, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The consumption of alcohol is associated with many health issues including alcoholic liver disease (ALD). The natural history of ALD involves the development of steatosis, inflammation (steatohepatitis), fibrosis and cirrhosis. During the stage of steatohepatitis, the combination of inflammation and cellular damage can progress to a severe condition termed alcoholic hepatitis (AH). Unfortunately, the pathogenesis of AH remains uncharacterized. Some modulations have been identified in host defense and liver immunity mechanisms during AH that highlight the role of intrahepatic lymphocyte accumulation and associated inflammatory cytokine responses. Also, it is hypothesized that alcohol-induced injury to liver cells may significantly contribute to the aberrant lymphocytic distribution that is seen in AH. In particular, the regulation of lymphocytes by hepatocytes may be disrupted in the alcoholic liver resulting in altered immunologic homeostasis and perpetuation of disease. In recent studies, it was demonstrated that the direct killing of activated T lymphocytes by hepatocytes is facilitated by the asialoglycoprotein receptor (ASGPR). The ASGPR is a well-characterized glycoprotein receptor that is exclusively expressed by hepatocytes. This hepatic receptor is known for its role in the clearance of desialylated glycoproteins or cells, yet neither its physiological function nor its role in disease states has been determined. Interestingly, alcohol markedly impairs ASGPR function; however, the effect alcohol has on ASGPR-mediated cytotoxicity of lymphocytes remains to be elucidated. This review discusses the contribution of hepatocytes in immunological regulation and, importantly, how pathological effects of ethanol disrupt hepatocellular-mediated defense mechanisms.
Collapse
|
50
|
Abstract
Kupffer cells are a critical component of the mononuclear phagocytic system and are central to both the hepatic and systemic response to pathogens. Kupffer cells are reemerging as critical mediators of both liver injury and repair. Kupffer cells exhibit a tremendous plasticity; depending on the local metabolic and immune environment, then can express a range of polarized phenotypes, from the proinflammatory M1 phenotype to the alternative/M2 phenotype. Multiple M2 phenotypes can be distinguished, each involved in the resolution of inflammation and wound healing. Here, we have provided an update on recent research that has contributed to the developing delineation of the contribution of Kupffer cells to different types of liver injury, with an emphasis on alcoholic and nonalcoholic liver diseases. These recent advances in our understanding of Kupffer cell function and regulation will likely provide new insights into the potential for therapeutic manipulation of Kupffer cells to promote the resolution of inflammation and enhance wound healing in liver disease.
Collapse
Affiliation(s)
- Laura J Dixon
- Liver Disease Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|