1
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025; 15:1935-1961. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
2
|
Liu Q, Chen Z, Wang B, Pan B, Zhang Z, Shen M, Zhao W, Zhang T, Li S, Liu L. Leveraging Network Target Theory for Efficient Prediction of Drug-Disease Interactions: A Transfer Learning Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409130. [PMID: 39874191 PMCID: PMC11923905 DOI: 10.1002/advs.202409130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/22/2024] [Indexed: 01/30/2025]
Abstract
Efficient virtual screening methods can expedite drug discovery and facilitate the development of innovative therapeutics. This study presents a novel transfer learning model based on network target theory, integrating deep learning techniques with diverse biological molecular networks to predict drug-disease interactions. By incorporating network techniques that leverage vast existing knowledge, the approach enables the extraction of more precise and informative drug features, resulting in the identification of 88,161 drug-disease interactions involving 7,940 drugs and 2,986 diseases. Furthermore, this model effectively addresses the challenge of balancing large-scale positive and negative samples, leading to improved performance across various evaluation metrics such as an Area under curve (AUC) of 0.9298 and an F1 score of 0.6316. Moreover, the algorithm accurately predicts drug combinations and achieves an F1 score of 0.7746 after fine-tuning. Additionally, it identifies two previously unexplored synergistic drug combinations for distinct cancer types in disease-specific biological network environments. These findings are further validated through in vitro cytotoxicity assays, demonstrating the potential of the model to enhance drug development and identify effective treatment regimens for specific diseases.
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Zizhen Chen
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
| | - Boyang Wang
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Boyu Pan
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
| | - Zhuoyu Zhang
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Miaomiao Shen
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
| | - Weibo Zhao
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Tingyu Zhang
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Shao Li
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
- Henan Academy of SciencesHenan450046China
| | - Liren Liu
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
| |
Collapse
|
3
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
4
|
Panda SK, Robinson N, Desiderio V. Decoding secret role of mesenchymal stem cells in regulating cancer stem cells and drug resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189205. [PMID: 39481663 DOI: 10.1016/j.bbcan.2024.189205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Drug resistance caused by the efflux of chemotherapeutic drugs is one of the most challenging obstacles to successful cancer therapy. Several efflux transporters have been identified since the discovery of the P-gp/ABCB1 transporter in 1976. Over the last four decades, researchers have focused on developing efflux transporter inhibitors to overcome drug resistance. However, even with the third-generation inhibitors available, we are still far from effectively inhibiting the efflux transporters. Additionally, Cancer stem cells (CSCs) pose another significant challenge, contributing to cancer recurrence even after successful treatment. The ability of CSCs to enter dormancy and evade detection makes them almost invulnerable to chemotherapeutic drug treatment. In this review, we discuss how Mesenchymal stem cells (MSCs), one of the key components of the Tumor Microenvironment (TME), regulate both the CSCs and efflux transporters. We propose a new approach focusing on MSCs, which can be crucial to successfully address CSCs and efflux transporters.
Collapse
Affiliation(s)
- Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Nirmal Robinson
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
5
|
Sen K, Kumar Das S, Ghosh N, Sinha K, Sil PC. Lupeol: A dietary and medicinal triterpene with therapeutic potential. Biochem Pharmacol 2024; 229:116545. [PMID: 39293501 DOI: 10.1016/j.bcp.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Lupeol, a triterpene derived from various plants, has emerged as a potent dietary supplement with extensive therapeutic potential. This review offers a comprehensive examination of lupeol's applications across diverse health conditions. By meticulously analyzing current scientific literature, we have synthesized findings that underscore lupeol's impact on cancer, diabetes, gastrointestinal disorders, neurological diseases, dermatological conditions, nephrological issues, and cardiovascular health. The review delves into molecular studies that reveal lupeol's ability to modulate disease pathways and alleviate symptoms, positioning it as a promising therapeutic agent. Moreover, we discuss the potential role of lupeol in clinical practice and public health strategies, emphasizing its substantial benefits as a natural compound. This thorough analysis serves as a critical resource for researchers, providing insights into the multifaceted therapeutic properties of lupeol and its potential to significantly enhance health outcomes.
Collapse
Affiliation(s)
- Koushik Sen
- Jhargram Raj College, Jhargram 721507, India
| | | | | | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
6
|
Fatma H, Jameel M, Siddiqui AJ, Kuddus M, Buali NS, Bahrini I, Siddique HR. Chemotherapeutic potential of lupeol against cancer in pre-clinical model: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155777. [PMID: 38943695 DOI: 10.1016/j.phymed.2024.155777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Extensive research on Lupeol's potential in cancer prevention highlights its ability to target various cancer-related factors. It regulates proliferative markers, modulates signaling pathways, including PI3K/AKT/mTOR, and influences inflammatory and apoptotic mechanisms. Additionally, Lupeol demonstrates selectivity in killing cancer cells while sparing normal cells, thus minimizing the risk of toxic effects on healthy tissues. HYPOTHESIS Therefore, we aimed to explore Lupeol's potential roles as a chemotherapeutic agent and as a sensitizer to chemotherapy by reviewing various animal-based studies published on its effects. STUDY DESIGN We conducted a comprehensive search across databases, including PubMed, PMC, Cochrane, EuroPMC, and ctri.gov.in to identify pertinent articles. Our focus was solely on published animal studies examining Lupeol's anti-cancer effects, with reviewers independently assessing bias risk and resolving discrepancies through consensus. RESULT 20 studies were shortlisted. The results demonstrated that Lupeol brings changes in the tumor volume by [Hedges's g: -6.62; 95 % CI: -8.68, -4.56; τ2: 24.36, I2: 96.50 %; p < 0.05] and tumor weight by [Hedges's g: -3.97; 95 % CI: -5.20, -2.49; τ2: 2.70, I2: 79.27 %; p <0.05]. The high I2, negative Egger's value, and asymmetrical funnel plot show the publication bias among the studies. Further, Lupeol in combination with other chemotherapeutic agents showed better outcomes as compared to them alone [Hedges's g: -6.38; 95 % CI: -11.82, -0.94; τ2: 46.91; I2: 98.68 %; p <0.05]. Lupeol also targets various signaling molecules and pathways to exert an anti-cancer effect. CONCLUSION In conclusion, Lupeol significantly reduces tumor volume and weight. Combining Lupeol with other chemotherapy agents shows promise for enhancing anti-cancer effects. However, high variability among studies and evidence of publication bias suggest caution in interpreting results.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Mohd Jameel
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Hail, PO Box 2440, Kingdom of Saudi Arabia.
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Ha'il, Hail, Kingdom of Saudi Arabia
| | - Nouha Saleh Buali
- Department of Biology, College of Science, University of Ha'il, Hail, PO Box 2440, Kingdom of Saudi Arabia
| | - Insaf Bahrini
- Department of Biology, College of Science, University of Ha'il, Hail, PO Box 2440, Kingdom of Saudi Arabia
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Yang S, Ruan X, Hu B, Tu J, Cai H. lncRNA SNHG9 enhances liver cancer stem cell self-renewal and tumorigenicity by negatively regulating PTEN expression via recruiting EZH2. Cell Tissue Res 2023; 394:441-453. [PMID: 37851112 DOI: 10.1007/s00441-023-03834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Liver cancer stem cell (CSC) self-renewal and tumorigenesis are important causes of hepatocellular carcinoma (HCC) recurrence. We purposed to investigate the function of long noncoding RNA small nucleolar RNA host gene 9 (SNHG9) in liver CSC self-renewal and tumorigenesis in this study. Flow cytometry was carried out to separate CD133+ Populations and CD133- Populations from HCC cell lines. A combination of CD133+ cells and Matrigel matrix was subcutaneously injected to create the NOD-SCID mouse xenograft tumor model. Colony formation test and spheroids formation assay were carried out to clarify the impact of SNHG9 on the self-renewal of liver CSCs. RNA immunoprecipitation, RNA-pull down, and chromatin immunoprecipitation were performed on CD133+ cells to elucidate the mechanism of SNHG9 regulating PTEN expression. We found that SNHG9 was highly expressed in HCC clinical samples, HCC cells, and CD133+ cells. In vitro, interference with SNHG9 prevented the formation of colonies and spheroids in liver CSC cells and primary HCC cells. In vivo, interference with SNHG9 reduced the tumor volume and weight. SNHG9 could bind to EZH2, and SNHG9 interference suppressed EZH2 recruitment and H3K27me3 levels in the PTEN promoter region. In addition, SNHG9 inhibition promoted PTEN expression while having little impact on EZH2 levels. Interference with SNHG9 inhibited liver CSC self-renewal and tumorigenesis by up-regulating PTEN levels. In conclusion, by binding to EZH2, SNHG9 down-regulated PTEN levels, promoting liver CSC self-renewal and tumor formation, and exacerbating HCC progression.
Collapse
Affiliation(s)
- Shouzhang Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, 325000, China
| | - Xiaojiao Ruan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bingren Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, 325000, China
| | - Jinfu Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, 325000, China
| | - Huajie Cai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Jing F, Li X, Jiang H, Sun J, Guo Q. Combating drug resistance in hepatocellular carcinoma: No awareness today, no action tomorrow. Biomed Pharmacother 2023; 167:115561. [PMID: 37757493 DOI: 10.1016/j.biopha.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the sixth most common cancer worldwide, is associated with a high degree of malignancy and poor prognosis. Patients with early HCC may benefit from surgical resection to remove tumor tissue and a margin of healthy tissue surrounding it. Unfortunately, most patients with HCC are diagnosed at an advanced or distant stage, at which point resection is not feasible. Systemic therapy is now routinely prescribed to patients with advanced HCC; however, drug resistance has become a major obstacle to the treatment of HCC and exploring purported mechanisms promoting drug resistance remains a challenge. Here, we focus on the determinants of drug resistance from the perspective of non-coding RNAs (ncRNAs), liver cancer stem cells (LCSCs), autophagy, epithelial-mesenchymal transition (EMT), exosomes, ferroptosis, and the tumor microenvironment (TME), with the aim to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Fanbo Jing
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Li
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Jiang
- Qingdao Haici Hospital, Qingdao 266000, China
| | - Jialin Sun
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Yan ZJ, Chen L, Wang HY. To be or not to be: The double-edged sword roles of liver progenitor cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188870. [PMID: 36842766 DOI: 10.1016/j.bbcan.2023.188870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/28/2023]
Abstract
Given the liver's remarkable and unique regenerative capacity, researchers have long focused on liver progenitor cells (LPCs) and liver cancer stem cells (LCSCs). LPCs can differentiate into both hepatocytes and cholangiocytes. However, the mechanism underlying cell conversion and its distinct contribution to liver homeostasis and tumorigenesis remain unclear. In this review, we discuss the complicated conversions involving LPCs and LCSCs. As the critical intermediate state in malignant transformation, LPCs play double-edged sword roles. LPCs are not only involved in hepatic wound-healing responses by supplementing liver cells and bile duct cells in the damaged liver but may transform into LCSCs under dysregulation of key signaling pathways, resulting in refractory malignant liver tumors. Because LPC lineages are temporally and spatially dynamic, we discuss crucial LPC subgroups and summarize regulatory factors correlating with the trajectories of LPCs and LCSCs in the liver tumor microenvironment. This review elaborates on the double-edged sword roles of LPCs to help understand the liver's regenerative potential and tumor heterogeneity. Understanding the sources and transformations of LPCs is essential in determining how to exploit their regenerative capacity in the future.
Collapse
Affiliation(s)
- Zi-Jun Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| |
Collapse
|
10
|
Huang H, Tsui YM, Ng IOL. Fueling HCC Dynamics: Interplay Between Tumor Microenvironment and Tumor Initiating Cells. Cell Mol Gastroenterol Hepatol 2023; 15:1105-1116. [PMID: 36736664 PMCID: PMC10036749 DOI: 10.1016/j.jcmgh.2023.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Liver cancer (hepatocellular carcinoma) is a common cancer worldwide. It is an aggressive cancer, with high rates of tumor relapse and metastasis, high chemoresistance, and poor prognosis. Liver tumor-initiating cells (LTICs) are a distinctive subset of liver cancer cells with self-renewal and differentiation capacities that contribute to intratumoral heterogeneity, tumor recurrence, metastasis, and chemo-drug resistance. LTICs, marked by different TIC markers, have high plasticity and use diverse signaling pathways to promote tumorigenesis and tumor progression. LTICs are nurtured in the tumor microenvironment (TME), where noncellular and cellular components participate to build an immunosuppressive and tumor-promoting niche. As a result, the TME has emerged as a promising anticancer therapeutic target, as exemplified by some successful applications of tumor immunotherapy. In this review, we discuss the plasticity of LTICs in terms of cellular differentiation, epithelial-mesenchymal transition, and cellular metabolism. We also discuss the various components of the TME, including its noncellular and cellular components. Thereafter, we discuss the mutual interactions between TME and LTICs, including recently reported molecular mechanisms. Lastly, we summarize and describe new ideas concerning novel approaches and strategies for liver cancer therapy.
Collapse
Affiliation(s)
- Hongyang Huang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Rojas Á, Gil-Gómez A, de la Cruz-Ojeda P, Muñoz-Hernández R, Sánchez-Torrijos Y, Gallego-Durán R, Millán R, Rico MC, Montero-Vallejo R, Gato-Zambrano S, Maya-Miles D, Ferrer MT, Muntané J, Robles-Frías MJ, Ampuero J, Padillo FJ, Romero-Gómez M. Long non-coding RNA H19 as a biomarker for hepatocellular carcinoma. Liver Int 2022; 42:1410-1422. [PMID: 35243752 DOI: 10.1111/liv.15230] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Liver cancer stem cells (CSCs) could be involved in the carcinogenesis, recurrence, metastasis and chemoresistance of hepatocellular carcinoma (HCC). The aim of this study was to explore the role of lncRNA-H19 as a biomarker for liver cancer. METHODS LncRNA-H19 expression levels and the functional assays were conducted in EpCAM+ CD133+ CSCs and C57BL/6J mice fed with a high-fat high-cholesterol carbohydrate (HFHCC) or standard diet for 52 weeks. Liver tissue and plasma samples from patients with cirrhosis, with or without HCC, were used for the analyses of gene expression and circulating lncRNA-H19 levels in an estimation and validation cohort. RESULTS EpCAM+ CD133+ cells showed a stem cell-like phenotype, self-renewal capacity, upregulation of pluripotent gene expression and overexpressed lncRNA-H19 (p < .001). Suppression of lncRNA-H19 by antisense oligonucleotide treatment significantly reduced the self-renewal capacity (p < .001). EpCAM, CD133 and lncRNA-h19 expression increased accordingly with disease progression in HFHCC-fed mice (p < .05) and also in liver tissue from HCC patients (p = .0082). Circulating lncRNA-H19 levels were significantly increased in HCC patients in both cohorts (p = .013; p < .0001). In addition, lncRNA-H19 levels increased accordingly with BCLC staging (p < .0001) and decreased after a partial and complete therapeutic response (p < .05). In addition, patients with cirrhosis who developed HCC during follow-up showed higher lncRNA-H19 levels (p = .0025). CONCLUSION LncRNA-H19 expression was increased in CSCs, in liver tissue and plasma of patients with HCC and decreased after partial/complete therapeutic response. Those patients who developed HCC during the follow-up showed higher levels of lncRNA-H19. LncRNA-H19 could constitute a new biomarker of HCC.
Collapse
Affiliation(s)
- Ángela Rojas
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Antonio Gil-Gómez
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Rocío Muñoz-Hernández
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Yolanda Sánchez-Torrijos
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Raquel Millán
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María Carmen Rico
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Rocío Montero-Vallejo
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Sheila Gato-Zambrano
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Douglas Maya-Miles
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - M Teresa Ferrer
- Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Jordi Muntané
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain.,Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | | | - Javier Ampuero
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Francisco J Padillo
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain.,Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,General Surgery Department, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Manuel Romero-Gómez
- Seliver Group, Institute of Biomedicine of Seville/ /Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
12
|
López-Huerta FA, Teresa Ramírez-Apan M, Méndez-Cuesta CA, Nieto-Camacho A, Hernández-Ortega S, Almeida-Aguirre EK, Cerbón MA, Delgado G. Synthesis, Biological Evaluation, Molecular Docking Studies and In-silico ADMET Evaluation of Pyrazines of Pentacyclic Triterpenes. Bioorg Chem 2022; 125:105924. [DOI: 10.1016/j.bioorg.2022.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
|
13
|
Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol 2022; 19:26-44. [PMID: 34504325 DOI: 10.1038/s41575-021-00508-3] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive disease with a poor clinical outcome. The cancer stem cell (CSC) model states that tumour growth is powered by a subset of tumour stem cells within cancers. This model explains several clinical observations in HCC (as well as in other cancers), including the almost inevitable recurrence of tumours after initial successful chemotherapy and/or radiotherapy, as well as the phenomena of tumour dormancy and treatment resistance. The past two decades have seen a marked increase in research on the identification and characterization of liver CSCs, which has encouraged the design of novel diagnostic and treatment strategies for HCC. These studies revealed novel aspects of liver CSCs, including their heterogeneity and unique immunobiology, which are suggestive of opportunities for new research directions and potential therapies. In this Review, we summarize the present knowledge of liver CSC markers and the regulators of stemness in HCC. We also comprehensively describe developments in the liver CSC field with emphasis on experiments utilizing single-cell transcriptomics to understand liver CSC heterogeneity, lineage-tracing and cell-ablation studies of liver CSCs, and the influence of the CSC niche and tumour microenvironment on liver cancer stemness, including interactions between CSCs and the immune system. We also discuss the potential application of liver CSC-based therapies for treatment of HCC.
Collapse
|
14
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Jain D, Murti Y, Khan WU, Hossain R, Hossain MN, Agrawal KK, Ashraf RA, Islam MT, Janmeda P, Taheri Y, Alshehri MM, Daştan SD, Yeskaliyeva B, Kipchakbayeva A, Sharifi-Rad J, Cho WC. Roles of Therapeutic Bioactive Compounds in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9068850. [PMID: 34754365 PMCID: PMC8572616 DOI: 10.1155/2021/9068850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Wasi Ullah Khan
- Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops Hainan University, Haikou, China
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Dhaka, Bangladesh
| | - Mohammad Nabil Hossain
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | | | - Rana Azeem Ashraf
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, China
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Dhaka, Bangladesh
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
16
|
Sureda A, Martorell M, Capó X, Monserrat-Mesquida M, Quetglas-Llabrés MM, Rasekhian M, Nabavi SM, Tejada S. Antitumor Effects of Triterpenes in Hepatocellular Carcinoma. Curr Med Chem 2021; 28:2465-2484. [PMID: 32484765 DOI: 10.2174/0929867327666200602132000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triterpenes are a large group of secondary metabolites mainly produced by plants with a variety of biological activities, including potential antitumor effects. Hepatocellular carcinoma (HCC) is a very common primary liver disease spread worldwide. The treatment can consist of surgical intervention, radiotherapy, immunotherapy and chemotherapeutic drugs. These drugs mainly include tyrosine multikinase inhibitors, although their use is limited by the underlying liver disease and displays side effects. For that reason, the utility of natural compounds such as triterpenes to treat HCC is an interesting line of research. No clinical studies are reported in humans so far. OBJECTIVE The aim of the present work is to review the knowledge about the effects of triterpenes as a possible coadjuvant tool to treat HCC. RESULTS In vitro and xenograft models have pointed out the cytotoxic and anti-proliferative effects as well as improvements in tumor growth and development of many triterpenes. In addition, they have also shown to be chemosensitizing agents when co-administered with chemotherapeutic agents. The mechanisms of action are diverse and involve the participation of mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, and the survival-associated PI3K / Akt signaling pathway. However, no clinical studies are still reported in humans. CONCLUSION Triterpenes could become a future strategy to address HCC or at least improve results when administered in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| |
Collapse
|
17
|
Liang Z, Wu B, Ji Z, Liu W, Shi D, Chen X, Wei Y, Jiang J. The binding of LDN193189 to CD133 C-terminus suppresses the tumorigenesis and immune escape of liver tumor-initiating cells. Cancer Lett 2021; 513:90-100. [PMID: 33984420 DOI: 10.1016/j.canlet.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The tumor-initiating cell (TIC) marker CD133 promotes TIC self-renewal and tumorigenesis through the tyrosine phosphorylation of its c-terminal domain. Therefore, finding compounds that target the phosphorylation of CD133 will provide an effective method for inhibiting TICs characteristics. Here, through small molecule microarray screening, compound LDN193189 was found to bind to the c-terminus of CD133 and influenced its tyrosine phosphorylation. LDN193189 inhibited the interaction between CD133 and p85, accompanied by a reduction in the self-renewal and tumorigenicity of liver TIC. In addition, LDN193189 inhibited the expression and transcription of Galectin-3 by reducing the tyrosine phosphorylation of CD133. Galectin-3 secreted by liver TICs inhibited the proliferation of activated CD8+ T cells by binding to PD-1. LDN193189 suppressed the immune escape ability of liver TICs by downregulating Galectin-3. Taken together, LDN193189 suppressed the tumorigenesis and immune escape of liver CSCs by targeting the CD133-Galectin-3 axis.
Collapse
Affiliation(s)
- Ziwei Liang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Bingrui Wu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Zhi Ji
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Weitao Liu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Danfang Shi
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yuanyan Wei
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China.
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
18
|
Che S, Wu S, Yu P. Lupeol induces autophagy and apoptosis with reduced cancer stem-like properties in retinoblastoma via phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin inhibition. J Pharm Pharmacol 2021; 74:208-215. [PMID: 33836050 DOI: 10.1093/jpp/rgab060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the anticancer effects of lupeol in retinoblastoma cells. METHODS WERI-Rb-1 and Y-79 cell lines were used to evaluate the anticancer effect of lupeol. After lupeol treatment, the viability, proliferation, apoptosis, cancer stem-like properties, autophagy and in vivo tumour xenograft formation were detected. KEY FINDINGS In this study, lupeol decreased cell viability in both WERI-Rb-1 and Y-79 cell lines. Lupeol could also inhibit proliferation and induce apoptosis of RB cells, with increased Bax level and decreased Ki67, survivin and Bcl-2 levels. Furthermore, lupeol could suppress the spheroid formation and stem-like properties of RB cells. Moreover, LC3 II/LC3 I ratio and the levels of Beclin1 and ATG7 were increased after lupeol treatment, indicating that lupeol could induce autophagy in RB cells. Next, the inhibitory effect of lupeol on the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway was observed. In tumour-bearing mice, lupeol suppressed tumour growth, and this might relate to its role in cell apoptosis, autophagy and stem-like properties. CONCLUSIONS Lupeol suppressed proliferation and cancer stem-like properties, and promoted autophagy and apoptosis of RB cells by restraining the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Songtian Che
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Shuai Wu
- Department of Orbital Disease and Ocular Plastic Surgery, the Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Peng Yu
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
19
|
Zhang J, Hu X, Zheng G, Yao H, Liang H. In vitro and in vivo antitumor effects of lupeol-loaded galactosylated liposomes. Drug Deliv 2021; 28:709-718. [PMID: 33825591 PMCID: PMC8032341 DOI: 10.1080/10717544.2021.1905749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lupeol liposomes, modified with Gal-PEG-DSPE, were developed following a thin-film dispersion method. Then, the morphology, physicochemical properties, and in vitro release properties of those liposomes were investigated. The scanning electron microscopic images showed that most of the liposomes were spherical particles; they were similar in size and uniformly dispersed. Both lupeol liposomes and Gal-lupeol liposomes exhibited an average particle size of about 100 nm. The encapsulation efficiency was greater than 85%. The encapsulation efficiency of lupeol liposome and Gal-lupeol liposome, stored with 15% sucrose as glycoprotein for 6 months, was higher than 80%; although the particle size increased, they remained within 200 nm. The cell-uptake study demonstrated that the Gal-lupeol-liposome uptake efficiency was the highest in HepG2 cells. The HepG2 cells treated with the Gal-lupeol liposomes had higher apoptotic efficiency than the lupeol liposome and free lupeol. After HepG2 cells were treated with Gal-lupeol liposome, the expressions of AKT/mTOR-related proteins (p-AKT308 and p-AKT473) were also significantly reduced than the lupeol-liposome and free lupeol group. The in vivo targeting studies showed that Gal-NR-L exhibited liver-targeting effects on FVB mice. The pharmacodynamic study was performed by transfecting AKT and c-MET via the high-pressure tail vein of FVB mice. After Gal-lupeol-L administration, the liver index and liver weight of mice were less than those non-targeted group. The histopathological study showed that the lobular structure in the mice liver was clearer, the vacuoles were more obvious, and the cytoplasm was more abundant after Gal-lupeol-L administration. Also, the qRT-PCR study showed that AFP, GPC3, and EpCAM mRNA expression levels were significantly lower than those non-targeted lupeol-liposomes.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Xixi Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Hui Yao
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, China
| | - Huali Liang
- Nursing Department, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| |
Collapse
|
20
|
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 2020; 164:105373. [PMID: 33316380 DOI: 10.1016/j.phrs.2020.105373] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Lupeol is a natural triterpenoid that widely exists in edible fruits and vegetables, and medicinal plants. In the last decade, a plethora of studies on the pharmacological activities of lupeol have been conducted and have demonstrated that lupeol possesses an extensive range of pharmacological activities such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Pharmacokinetic studies have indicated that absorption of lupeol by animals was rapid despite its nonpolar characteristics, and lupeol belongs to class II BCS (biopharmaceutics classification system) compounds. Moreover, the bioactivities of some isolated or synthesized lupeol derivatives have been investigated, and these results showed that, with modification to C-3 or C-19, some derivatives exhibit stronger activities, e.g., antiprotozoal or anticancer activity. This review aims to summarize the advances in pharmacological and pharmacokinetic studies of lupeol in the last decade with an emphasis on its anticancer and anti-inflammatory activities, as well as the research progress of lupeol derivatives thus far, to provide researchers with the latest information, point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
21
|
Gu Y, Zheng X, Ji J. Liver cancer stem cells as a hierarchical society: yes or no? Acta Biochim Biophys Sin (Shanghai) 2020; 52:723-735. [PMID: 32490517 DOI: 10.1093/abbs/gmaa050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) are cells possessing abilities of self-renewal, differentiation, and tumorigenicity in NOD/SCID mice. Based on this definition, multiple cell surface markers (such as CD24, CD133, CD90, and EpCAM) as well as chemical methods are discovered to enrich liver CSCs in the recent decade. Accumulated studies have revealed molecular signatures and signaling pathways involved in regulating different liver CSCs. Among liver CSCs positive for different markers, some molecular features and regulatory pathways are commonly shared, while some are only unique in certain CSC populations. These studies imply that liver CSCs exhibit diverse heterogeneity, while a functional relationship also exists. The aim of this review is to revisit the society of liver CSCs and summarize the common or unique molecular features of known liver CSCs. We hope to call for attention of researchers on the relationship of the liver CSC subgroups and to provide clues on the hierarchical structure of the liver CSC society.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin Zheng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Mohapatra P, Singh P, Sahoo SK. Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells. Drug Discov Today 2020; 25:1307-1321. [PMID: 32554061 DOI: 10.1016/j.drudis.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Research suggests that tumor relapse and metastasis is caused by minor population of tumor-initiating cells called cancer stem cells (CSCs), which exhibit self-renewability, quiescence, antiapoptosis, and drug resistance. Conventional chemotherapeutics target rapidly proliferating cells but fail to exert cytotoxic effects on CSCs, thus enriching them and driving metastasis and relapse. Hence, targeting CSCs is essential for developing novel therapies for effective cancer treatment. Pertaining to this, several phytochemicals have been identified that exhibit anti-CSC activity. However, poor pharmacokinetics prevents their clinical translation. Hence, developing phytonanomedicine can help to improve the pharmacokinetic profile of these biologically active molecules. In this review, we summarize the current state of the art of phytonanomedicine in the context of CSCs and their clinical status in cancer treatment.
Collapse
Affiliation(s)
| | - Priya Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | |
Collapse
|
23
|
Tang KY, Du SL, Wang QL, Zhang YF, Song HY. Traditional Chinese medicine targeting cancer stem cells as an alternative treatment for hepatocellular carcinoma. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:196-202. [DOI: 10.1016/j.joim.2020.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
24
|
Yuan P, Zheng A, Tang Q. Tripartite motif protein 25 is associated with epirubicin resistance in hepatocellular carcinoma cells via regulating PTEN/AKT pathway. Cell Biol Int 2020; 44:1503-1513. [PMID: 32196840 DOI: 10.1002/cbin.11346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Yuan
- Department of Interventional TherapyThe People's Hospital of JianhuJianhu 224700 Jiangsu P. R. China
| | - Aidong Zheng
- Department of Intensive MedicineThe People's Hospital of JianhuJianhu 224700 Jiangsu P. R. China
| | - Qing Tang
- Department of OncologyThe People's Hospital of Funing County in Yancheng CityYancheng 224400 Jiangsu P. R. China
| |
Collapse
|
25
|
Tsui YM, Chan LK, Ng IOL. Cancer stemness in hepatocellular carcinoma: mechanisms and translational potential. Br J Cancer 2020; 122:1428-1440. [PMID: 32231294 PMCID: PMC7217836 DOI: 10.1038/s41416-020-0823-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stemness, referring to the stem-cell-like phenotype of cancer cells, has been recognised to play important roles in different aspects of hepatocarcinogenesis. A number of well-established cell-surface markers already exist for liver cancer stem cells, with potential new markers of liver cancer stem cells being identified. Both genetic and epigenetic factors that affect various signalling pathways are known to contribute to cancer stemness. In addition, the tumour microenvironment—both physical and cellular—is known to play an important role in regulating cancer stemness, and the potential interaction between cancer stem cells and their microenvironment has provided insight into the regulation of the tumour-initiating ability as well as the cellular plasticity of liver CSCs. Potential specific therapeutic targeting of liver cancer stemness is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcome by reducing chemoresistance.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong. .,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
26
|
Maurya SK, Shadab G, Siddique HR. Chemosensitization of Therapy Resistant Tumors: Targeting Multiple Cell Signaling Pathways by Lupeol, A Pentacyclic Triterpene. Curr Pharm Des 2020; 26:455-465. [DOI: 10.2174/1381612826666200122122804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
The resistance of cancer cells to different therapies is one of the major stumbling blocks
for successful cancer treatment. Various natural and pharmaceuticals drugs are unable to control drug-resistance
cancer cell's growth. Also, chemotherapy and radiotherapy have several side effects and cannot apply to the patient
in excess. In this context, chemosensitization to the therapy-resistant cells by non-toxic phytochemicals
could be an excellent alternative to combat therapy-resistant cancers.
Objective:
To review the currently available literature on chemosensitization of therapy resistance cancers by
Lupeol for clinically approved drugs through targeting different cell signaling pathways.
Methods:
We reviewed relevant published articles in PubMed and other search engines from 1999 to 2019 to
write this manuscript. The key words used for the search were “Lupeol and Cancer”, “Lupeol and Chemosensitization”,
“Lupeol and Cell Signaling Pathways”, “Cancer Stem Cells and Lupeol” etc. The published results on the
chemosensitization of Lupeol were compared and discussed.
Results:
Lupeol chemosensitizes drug-resistant cancer cells for clinically approved drugs. Lupeol alone or in
combination with approved drugs inhibits inflammation in different cancer cells through modulation of expression
of IL-6, TNF-α, and IFN-γ. Lupeol, through altering the expression levels of BCL-2, BAX, Survivin, FAS,
Caspases, and PI3K-AKT-mTOR signaling pathway, significantly induce cell deaths among therapy-resistant
cells. Lupeol also modulates the molecules involved in cell cycle regulation such as Cyclins, CDKs, P53, P21,
and PCNA in different cancer types.
Conclusion:
Lupeol chemosensitizes the therapy-resistant cancer cells for the treatment of various clinically
approved drugs via modulating different signaling pathways responsible for chemoresistance cancer. Thus, Lupeol
might be used as an adjuvant molecule along with clinically approved drugs to reduce the toxicity and increase
the effectiveness.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - G.G.H.A. Shadab
- Molecular Toxicology & Cytogenetics Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
27
|
Jiang Y, Hong D, Lou Z, Tu X, Jin L. Lupeol inhibits migration and invasion of colorectal cancer cells by suppressing RhoA-ROCK1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2185-2196. [PMID: 32025757 DOI: 10.1007/s00210-020-01815-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Metastasis is the main cause of death in colorectal cancer (CRC) patients. However, current treatment options for CRC metastasis are very limited. Lupeol, a triterpene that is widely found in vegetables and fruits, has been reported to possess the cancer-preventive and anti-inflammatory functions. However, the roles of Lupeol in the migration and invasion of colorectal cancer remain unclear. Here, we evaluated the effect of Lupeol treatment on colorectal cancer cell lines, HCT116 and SW620, and delineated its underlying mechanisms. Our results showed that Lupeol induced a dose-dependent inhibition of HCT116 and SW620 cells viability, measured by CCK8 assay. Wound healing and Transwell migration and invasion assays revealed that Lupeol significantly suppressed the migration and invasion of CRC cells. Using laser confocal microscope, we observed that the pseudopods and protrusions of HCT116 and SW620 cells decreased and disrupted after treatment with Lupeol. In addition, the quantitative real-time PCR and Western blotting results showed that Lupeol downregulated the expression of RhoA and RhoC, and their downstream effectors ROCK1, Cofilin, p-MLC, and the associated regulatory protein Cyclin A2. Interestingly, the migration and invasion capacity of CRC cells was reduced after RhoA knockdown. And there were no additional changes in CRC cells with RhoA knockdown to treat with Lupeol. These findings demonstrate that Lupeol can suppress the migration and invasion of colorectal cancer cells by remodeling the actin cytoskeleton via RhoA-ROCK1 pathway inhibition, which may provide an effective anti-metastatic agent for CRC patients.
Collapse
Affiliation(s)
- Yiwen Jiang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan Hong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhefeng Lou
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuezi Tu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Longjin Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
28
|
Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J Hepatol 2020; 72:104-118. [PMID: 31541681 DOI: 10.1016/j.jhep.2019.08.035] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Hepatic resection and liver transplantation with adjuvant chemo- and radiotherapy are the mainstay of hepatocellular carcinoma (HCC) treatment, but the 5-year survival rate remains poor because of frequent recurrence and intrahepatic metastasis. Only sorafenib and lenvatinib are currently approved for the first-line treatment of advanced, unresected HCC, but they yield modest survival benefits. Thus, there is a need to identify new therapeutic targets to improve current HCC treatment modalities. METHODS The HCC tumor model was generated by hydrodynamic transfection of AKT1 and β-catenin (CTNNB1) oncogenes. Cancer cells with stemness properties were characterized following isolation using side population (SP) and CD44 surface markers by flow cytometry. The effect of Jak/Stat inhibitors was analyzed in vitro by using tumorsphere culture and in vivo using an allograft mouse model. RESULTS Co-activation of both Wnt/β-catenin and Akt/mTOR pathways was found in 14.4% of our HCC patient cohort. More importantly, these patients showed poorer survival than those with either Wnt/β-catenin or Akt/mTOR pathway activation alone, demonstrating the clinical relevance of our study. In addition, we observed that Akt/β-catenin tumors contained a subpopulation of cells with stem/progenitor-like characteristics identified through SP analysis and expression of the cancer stem cell-like marker CD44, which may contribute to tumor self-renewal and drug resistance. Consequently, we identified small molecule inhibitors of the Jak/Stat pathway that demonstrated efficacy in mitigating tumor proliferation and formation in Akt/β-catenin-driven HCC. CONCLUSIONS In conclusion, we have shown that Akt/β-catenin tumors contain a subpopulation of tumor-initiating cells with stem/progenitor-like characteristics which can be effectively targeted with inhibitors of the Jak/Stat pathway, demonstrating that inhibition of the Jak/Stat pathway could be an alternative method to overcome drug resistance and effectively treat Akt/β-catenin-driven HCC tumors. LAY SUMMARY The prognosis for patients with hepatocellular carcinoma is poor, partly because of the lack of effective treatment options for those with more advanced disease. In this study, we identified a subpopulation of cancer cells with stem cell-like properties that were critical for tumor maintenance and growth in a mouse model of hepatocellular carcinoma. Through further experiments, we demonstrated that the Jak/Stat pathway is a promising therapeutic target in hepatocellular carcinoma.
Collapse
|
29
|
Biswas T, Dwivedi UN. Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. PROTOPLASMA 2019; 256:1463-1486. [PMID: 31297656 DOI: 10.1007/s00709-019-01411-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 05/26/2023]
Abstract
The saponins are a diverse class of natural products, with a broad scale distribution across different plant species. Chemically characterized as triterpenoid glycosides, they posses a 30C oxidosqualene precursor-based aglycone moiety (sapogenin), to which glycosyl residues are subsequently attached to yield the corresponding saponin. Based on the chemically distinct aglycone moieties, broadly, they are divided into triterpenoid saponins (dammaranes, ursanes, oleananes, lupanes, hopanes, etc.) and the sterol glycosides. This review aims to present in detail the biosynthesis patterns of the different aglycones from a common precursor and their glycosylation patterns to yield the functionally active glycoside. The review also presents recent advances in the pharmacological activities of these saponins, particularly as potent anti-neoplastic pharmacophores, antioxidants, or anti-viral/antibacterial agents. Since alternate production pedestals for these pharmacologically important triterpenes via cell and tissue cultures are an attractive option for their sustainable production, recent trends in the variety and scale of in vitro production of plant triterpenoids have also been discussed.
Collapse
Affiliation(s)
- Tanya Biswas
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Upendra N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
- Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
30
|
Hsu MJ, Peng SF, Chueh FS, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Huang WW, Chung JG. Lupeol suppresses migration and invasion via p38/MAPK and PI3K/Akt signaling pathways in human osteosarcoma U-2 OS cells. Biosci Biotechnol Biochem 2019; 83:1729-1739. [PMID: 31010399 DOI: 10.1080/09168451.2019.1606693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Lupeol, one of the common components from the fruits and natural foods, has been reported to exert antitumor activities in many human cancer cell lines; however, its effects on osteosarcoma cell metastasis were not elucidated. In the present study, lupeol at 10–25 μM induced cell morphological changes and decreased total viable cell number in U-2 OS cells. Lupeol (5–15 μM) suppressed cell mobility, migration, and invasion by wound healing and transwell chamber assays, respectively. Lupeol inhibited the activities of MMP-2 and −9 in U-2 OS cells by gelatin zymography assay. Lupeol significantly decreased PI3K, pAKT, β-catenin, and increased GSK3β. Furthermore, lupeol decreased the expressions of Ras, p-Raf-1, p-p38, and β-catenin. Lupeol also decreased uPA, MMP-2, MMP-9, and N-cadherin but increased VE-cadherin in U-2 OS cells. Based on these observations, we suggest that lupeol can be used in anti-metastasis of human osteosarcoma cells in the future.
Collapse
Affiliation(s)
- Ming-Jie Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children‘s Hospital, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children‘s Hospital, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME, De Maria R. PTEN Tumor-Suppressor: The Dam of Stemness in Cancer. Cancers (Basel) 2019; 11:E1076. [PMID: 31366089 PMCID: PMC6721423 DOI: 10.3390/cancers11081076] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
PTEN is one of the most frequently inactivated tumor suppressor genes in cancer. Loss or variation in PTEN gene/protein levels is commonly observed in a broad spectrum of human cancers, while germline PTEN mutations cause inherited syndromes that lead to increased risk of tumors. PTEN restrains tumorigenesis through different mechanisms ranging from phosphatase-dependent and independent activities, subcellular localization and protein interaction, modulating a broad array of cellular functions including growth, proliferation, survival, DNA repair, and cell motility. The main target of PTEN phosphatase activity is one of the most significant cell growth and pro-survival signaling pathway in cancer: PI3K/AKT/mTOR. Several shreds of evidence shed light on the critical role of PTEN in normal and cancer stem cells (CSCs) homeostasis, with its loss fostering the CSC compartment in both solid and hematologic malignancies. CSCs are responsible for tumor propagation, metastatic spread, resistance to therapy, and relapse. Thus, understanding how alterations of PTEN levels affect CSC hallmarks could be crucial for the development of successful therapeutic approaches. Here, we discuss the most significant findings on PTEN-mediated control of CSC state. We aim to unravel the role of PTEN in the regulation of key mechanisms specific for CSCs, such as self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-Transition (EMT), with a particular focus on PTEN-based therapy resistance mechanisms and their exploitation for novel therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Francesca Luongo
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Colonna
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federica Calapà
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sara Vitale
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Micol E Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Scientific Vice-Direction, Fondazione Policlinico Universitario "A. Gemelli"-I.R.C.C.S., Largo Francesco Vito 1-8, 00168 Rome, Italy.
| |
Collapse
|
32
|
Khatoon S, Irshad S, Pandey MM, Rastogi S, Rawat AKS. A Validated HPTLC Densitometric Method for Determination of Lupeol, β-Sitosterol and Rotenone in Tephrosia purpurea: A Seasonal Study. J Chromatogr Sci 2019; 57:688-696. [DOI: 10.1093/chromsci/bmz041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 03/29/2019] [Indexed: 11/12/2022]
Abstract
Abstract
Tephrosia purpurea (L.) Pers., commonly known as “sarpunkha” and “wild indigo”, is being used in traditional systems of medicine to treat liver disorders, spleen and kidney. In the present study, a validated High Performance Thin Layer Chromatography (HPTLC) method was established for the estimation of lupeol, β-sitosterol and rotenone in various extracts of T. purpurea with the aim to see the effect of seasons on the quantity of aforesaid phytoconstituents. The plant material was collected in summer (April), rainy (August) and winter (December) during 2013–2014 from Lucknow, India. The method was validated in terms of precision, repeatability, specificity, sensitivity linearity and robustness. The method permits reliable quantification and showed good resolution on silica gel with toluene-ethyl acetate-formic acid (9:1:1 v/v/v) as mobile phase, and characteristic bands of β-sitosterol, rotenone and lupeol were observed at Rf 0.38, 0.45 and 0.52, respectively. The content of aforesaid phytoconstituents varies from season to season and extract to extract. Our finding indicated that winter season (December) may not be appropriate for collection of T. purpurea for the preparation of therapeutic formulations because of the high content of rotenone, a known insecticide that is responsible for Parkinson’s disease and associated with heart failure, fatty liver and liver necrosis.
Collapse
Affiliation(s)
- Sayyada Khatoon
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, 226001, Lucknow, Uttar Pradesh, India
| | - Saba Irshad
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, 226001, Lucknow, Uttar Pradesh, India
| | - Madan Mohan Pandey
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, 226001, Lucknow, Uttar Pradesh, India
| | - Subha Rastogi
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, 226001, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar Singh Rawat
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, 226001, Lucknow, Uttar Pradesh, India
| |
Collapse
|
33
|
Chen D, Li Z, Cheng Q, Wang Y, Qian L, Gao J, Zhu JY. Genetic alterations and expression of PTEN and its relationship with cancer stem cell markers to investigate pathogenesis and to evaluate prognosis in hepatocellular carcinoma. J Clin Pathol 2019; 72:588-596. [DOI: 10.1136/jclinpath-2019-205769] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022]
Abstract
AimsTo investigate molecular alteration and expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in hepatocellular carcinoma (HCC), and to evaluate the correlation between PTEN and cancer stem cell (CSC) markers and the prognostic value of these markers.MethodsWe evaluated changes of PTEN and CSC markers (CD133, epithelial cell adhesion molecule (EpCAM) and CK19) in 183 resection specimens by immunohistochemistry (IHC) and detected PTEN and phosphoinositide-3-kinase catalytic-alpha (PIK3CA) gene by fluorescence in situ hybridisation (FISH) in some specimens.ResultsPTEN and CD133, EpCAM and CK19 in 183 resection specimens were studied by IHC, and PTEN and PIK3CA genes were detected by FISH. PTEN expression was reduced in 92 HCC tissues (50.3%). There were 16 HCCs with PTEN deletion (51.6%). Comparison between PTEN IHC and FISH showed that the analysis was highly concordant (54/59, 91.5%). There were 19 HCCs with PIK3CA amplification. Deletion of PTEN was positively correlated with amplification of PIK3CA. Positive expression of CD133, EpCAM and CK19 was correlated with steatosis, moderate to poor differentiation, and so on. Reduction of PTEN expression was negatively correlated with positive expression of CD133, EpCAM and CK19. Reduced expression of PTEN (p=0.028) was an independent predictor for HCC recurrence and overall survival in HCC. PTEN−/CD133+ group had shorter OS and RFS time.ConclusionsPTEN plays a key role in hepatocarcinogenesis and reduction of PTEN expression is related to increased expression of CD133, EpCAM and CK19, which is a useful tool to evaluate HCC prognosis and recurrence.
Collapse
|
34
|
Min TR, Park HJ, Ha KT, Chi GY, Choi YH, Park SH. Suppression of EGFR/STAT3 activity by lupeol contributes to the induction of the apoptosis of human non‑small cell lung cancer cells. Int J Oncol 2019; 55:320-330. [PMID: 31115519 DOI: 10.3892/ijo.2019.4799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the underlying mechanisms responsible for the anticancer effects of lupeol on human non‑small cell lung cancer (NSCLC). MTT assay and Trypan blue exclusion assay were used to evaluate the cell viability. DAPI staining and flow cytometric analysis were used to detect apoptosis. Molecular docking and western blot analysis were performed to determine the target of lupeol. We found that lupeol suppressed the proliferation and colony formation of NSCLC cells in a dose‑dependent manner. In addition, lupeol increased chromatin condensation, poly(ADP‑ribose) polymerase (PARP) cleavage, sub‑G1 cell populations, and the proportion of Annexin V‑positive cells, indicating that lupeol triggered the apoptosis of NSCLC cells. Notably, lupeol inhibited the phosphorylation of epithelial growth factor receptor (EGFR). A docking experiment revealed that lupeol directly bound to the tyrosine kinase domain of EGFR. We observed that the signal transducer and activator of transcription 3 (STAT3), a downstream molecule of EGFR, was also dephosphorylated by lupeol. Lupeol suppressed the nuclear translocation and transcriptional activity of STAT3 and downregulated the expression of STAT3 target genes. The constitutive activation of STAT3 by STAT3 Y705D overexpression suppressed lupeol‑induced apoptosis, demonstrating that the inhibition of STAT3 activity contributed to the induction of apoptosis. The anticancer effects of lupeol were consistently observed in EGFR tyrosine kinase inhibitor (TKI)‑resistant H1975 cells (EGFR L858R/T790M). Taken together, the findings of this study suggest that lupeol may be used, not only for EGFR TKI‑naïve NSCLC, but also for advanced NSCLC with acquired resistance to EGFR TKIs.
Collapse
Affiliation(s)
- Tae-Rin Min
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Busan National University, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| |
Collapse
|
35
|
Zhang J, Liang H, Yao H, Qiu Z, Chen X, Hu X, Hu J, Zheng G. The preparation, characterization of Lupeol PEGylated liposome and its functional evaluation in vitro as well as pharmacokinetics in rats. Drug Dev Ind Pharm 2019; 45:1052-1060. [DOI: 10.1080/03639045.2019.1569038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jun Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
- Department of Pharmacy, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, People’s Republic of China
| | - Huali Liang
- College of Nursing, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Hui Yao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Xinyan Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Xixi Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| |
Collapse
|
36
|
Bhattacharyya S, Mitra D, Ray S, Biswas N, Banerjee S, Majumder B, Mustafi SM, Murmu N. Reversing effect of Lupeol on vasculogenic mimicry in murine melanoma progression. Microvasc Res 2018; 121:52-62. [PMID: 30381268 DOI: 10.1016/j.mvr.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/16/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Vasculogenic mimicry, an endothelia-independent tumor microcirculation has been found in various cancers and is thought to be achieved by cancer stem like cells. Dacarbazine resistance is one of the most common features of melanoma and recent studies suggest that the mode of resistance is closely related to the formation of vasculogenic mimicry. In our work, we examined the anticancer effect of Lupeol, a novel phytochemical with Dacarbazine in vivo and in vitro. Results demonstrated adequate cytotoxicity followed by down regulation of CD 133 expression in Lupeol treated B16-F10 cell line. In solid tumor model the drug also inhibited vasculogenic mimicry along with angiogenesis by altering both the cancer stem cell as well as the endothelial progenitor cell population. Lupeol hindered the maturation of bone marrow derived endothelial progenitors and thus, retarded the formation of rudimentary tumor microvessels. Notably, Dacarbazine treatment demonstrated unresponsiveness to B16-F10 cells in both in vivo and in vitro model via upregulation of CD 133 expression and increased formation of vasculogenic mimicry tubes. Together, these data indicate that Lupeol alone can become a proficient agent in treating melanoma, inhibiting vasculogenic mimicry and might play a significant role in subduing Dacarbazine induced drug resistance.
Collapse
Affiliation(s)
- Sayantan Bhattacharyya
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Sudipta Ray
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Nirjhar Biswas
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Samir Banerjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Biswanath Majumder
- Department of Molecular Pathology and Cancer Biology, Mitra Biotech, 202, Narayana Nethralaya, Hosur Main Road, Bangalore 560099, India
| | - Saunak Mitra Mustafi
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
37
|
Chen MC, Hsu HH, Chu YY, Cheng SF, Shen CY, Lin YJ, Chen RJ, Viswanadha VP, Lin YM, Huang CY. Lupeol alters ER stress-signaling pathway by downregulating ABCG2 expression to induce Oxaliplatin-resistant LoVo colorectal cancer cell apoptosis. ENVIRONMENTAL TOXICOLOGY 2018; 33:587-593. [PMID: 29436100 DOI: 10.1002/tox.22544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers and causes of cancer-related death. There are several first-line chemotherapeutic drugs used to treat CRC. Oxaliplatin (OXA) is an alkylating cytotoxic agent that is usually combined with other chemotherapeutic drugs to treat stage II and stage III CRC. However, cancer cells commonly acquire multidrug resistance (MDR), which is a major obstruction to cancer treatment. Recent studies have shown that natural components from traditional Chinese medicine or foods that have many biological functions may be new adjuvant therapies in clinical trials. We challenged LoVo CRC cell lines with OXA in a dose-dependent manner to create an OXA-resistant model. The expression of ABCG2 was significantly higher, and levels of endoplasmic reticulum (ER) stress markers were lower than those Parental cells. However, Lupeol, which is found in fruits and vegetables, has been shown to have bioactive properties, including anti-tumor properties that are relevant to many diseases. In our study, Lupeol downregulated cell viability and activated cell apoptosis. Moreover, Lupeol decreased the expression of ABCG2 and activated ER stress to induce OXA-resistant cell death. Importantly, the anti-tumor effect of Lupeol in OXA-resistant cells was higher than that of LoVo Parental cells. In addition, we also confirmed our results with a xenograft animal model, and the tumor size significantly decreased after Lupeol injections. Our findings show that Lupeol served as a strong chemoresistant sensitizer and could be a new adjuvant therapy method for chemoresistant patients.
Collapse
Affiliation(s)
- Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Yuan-Yuan Chu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Sue-Fei Cheng
- Department of Pharmacy, Veterans General Hospital, Taipei, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Yi-Jiun Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City, 700000, Vietnam
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
38
|
|
39
|
Kim DH, Suh J, Surh YJ, Na HK. Regulation of the tumor suppressor PTEN by natural anticancer compounds. Ann N Y Acad Sci 2017; 1401:136-149. [PMID: 28891094 DOI: 10.1111/nyas.13422] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue (PTEN) has phosphatase activity, with phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase (PI3K), as one of the principal substrates. PTEN is a negative regulator of the Akt pathway, which plays a fundamental role in controlling cell growth, survival, and proliferation. Loss of PTEN function has been observed in many different types of cancer. Functional inactivation of PTEN as a consequence of germ-line mutations or promoter hypermethylation predisposes individuals to malignancies. PTEN undergoes posttranslational modifications, such as oxidation, acetylation, phosphorylation, SUMOylation, and ubiquitination, which influence its catalytic activity, interactions with other proteins, and subcellular localization. Cellular redox status is crucial for posttranslational modification of PTEN and its functional consequences. Oxidative stress and inflammation are major causes of loss of PTEN function. Pharmacologic or nutritional restoration of PTEN function is considered a reliable strategy in the management of PTEN-defective cancer. In this review, we highlight natural compounds, such as curcumin, indol-3 carbinol, and omega-3 fatty acids, that have the potential to restore or potentiate PTEN expression/activity, thereby suppressing cancer cell proliferation, survival, and resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- Do-Hee Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jinyoung Suh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, South Korea
| |
Collapse
|
40
|
Tsai FS, Lin LW, Wu CR. Lupeol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 929:145-175. [PMID: 27771924 DOI: 10.1007/978-3-319-41342-6_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lupeol belongs to pentacyclic lupane-type triterpenes and exhibits in edible vegetables, fruits and many plants. Many researches indicated that lupeol possesses many beneficial pharmacological activities including antioxidant, anti-inflammatory, anti-hyperglycemic, anti-dyslipidemic and anti-mutagenic effects. From various disease-targeted animal models, these reports indicated that lupeol has anti-diabetic, anti-asthma, anti-arthritic, cardioprotective, hepatoprotective, nephroprotective, neuroprotective and anticancer efficiency under various routes of administration such as topical, oral, subcutaneous, intraperitoneal and intravenous. It is worth mentioning that clinical trials of lupeol were performed to treat canine oral malignant melanoma and human moderate skin acne in Japan and Korea. The detailed mechanism of anti-inflammatory, anti-diabetic, hepatoprotective and anticancer activities was further reviewed from published papers. These evidence indicate that lupeol is a multi-target agent to exert diverse pharmacological potency with many potential targeting proteins such as α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP 1B) and TCA cycle enzymes and targeting pathway such as IL-1 receptor-associated kinase-mediated toll-like receptor 4 (IRAK-TLR4), Bcl-2 family, nuclear factor kappa B (NF-kB), phosphatidylinositol-3-kinase (PI3-K)/Akt and Wnt/β-catenin signaling pathways. This review also provides suggestion that lupeol might be a valuable and potential lead compound to develop as anti-inflammatory, anti-diabetic, hepatoprotective and anticancer drugs.
Collapse
Affiliation(s)
- Fan-Shiu Tsai
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Li-Wei Lin
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
41
|
Affiliation(s)
- Jairam Vanamala
- Department of Food Science, Pennsylvania State University, University Park, Pennsylvania, USA
- The Penn State Hershey Cancer Institute, Pennsylvania, USA
| |
Collapse
|
42
|
Abstract
Liver cancer is an often fatal malignant tumor with a high recurrence rate and chemoresistance. The major malignant phenotypes of cancer, including recurrence, metastasis, and chemoresistance, are related to the presence of cancer stem cells (CSCs). In the past few decades, CSCs have been identified and characterized in many tumors including liver cancer. Accumulated evidence has revealed many aspects of the biological behavior of liver CSCs and the mechanism of their regulation. Based on these findings, a number of studies have investigated eradication of liver CSCs. This review focuses on the recent advances in our understanding of the biology of liver CSCs and the development of strategies for their treatment.
Collapse
|
43
|
Su R, Nan H, Guo H, Ruan Z, Jiang L, Song Y, Nan K. Associations of components of PTEN/AKT/mTOR pathway with cancer stem cell markers and prognostic value of these biomarkers in hepatocellular carcinoma. Hepatol Res 2016; 46:1380-1391. [PMID: 26932478 DOI: 10.1111/hepr.12687] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
AIM We aimed to investigate the associations between components of the phosphatase and tensin homolog deleted on chromosome 10/protein kinase B/mammalian target of rapamycin (PTEN/AKT/mTOR) pathway and liver cancer stem cell (LCSC) markers, including CD133, CD90, CD44, and epithelial cell adhesion molecule (EpCAM), and to further evaluate the predictive values of these biomarkers for recurrence and survival in hepatocellular carcinoma (HCC). METHOD Protein expressions and mRNA levels of PTEN and LCSC markers were determined in 110 HCC tissues and 98 adjacent non-tumor tissues. Protein expressions of phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR) were detected to evaluate the activation of the PTEN/AKT/mTOR pathway by using immunohistochemistry. Prognostic significance was analyzed by univariate and multivariate analysis. RESULTS Loss of PTEN expression was negatively correlated with positive expression of CD133, CD90, and EpCAM (P < 0.05). Positive expression of p-AKT and p-mTOR were positively associated with positive expression for CD133, CD90, and EpCAM (P < 0.05). By univariate and multivariate analysis, a higher level of α-fetoprotein, loss of PTEN expression, and CD133-positive, p-AKT-positive, p-mTOR-positive, and EpCAM-positive signals were predictors for HCC recurrence, whereas advanced TNM stage, loss of PTEN expression, and positive expression of p-AKT, p-mTOR, and CD133 were predictors for survival. Patients with PTEN- /CD133+ or PTEN- /EpCAM+ HCC had shorter recurrence-free survival and overall survival times. CONCLUSION The PTEN/AKT/mTOR pathway might play a crucial role in driving recurrence and influencing prognosis in HCC. There could be a potential repressive relationship between components of the PTEN/AKT/mTOR pathway and LCSCs. The combination of PTEN with CD133 or EpCAM expression may serve as a screening tool to monitor recurrence and predict prognosis.
Collapse
Affiliation(s)
- Rujuan Su
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Haocheng Nan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Hui Guo
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Zhiping Ruan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Lili Jiang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Song
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Kejun Nan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Cháirez-Ramírez MH, Moreno-Jiménez MR, González-Laredo RF, Gallegos-Infante JA, Rocha-Guzmán NE. Lupane-type triterpenes and their anti-cancer activities against most common malignant tumors: A review. EXCLI JOURNAL 2016; 15:758-771. [PMID: 28337107 PMCID: PMC5318673 DOI: 10.17179/excli2016-642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022]
Abstract
In recent times, a great deal of interest has been motivated on plant derived compounds known as nutraceuticals. These compounds exert important beneficial activities that improve people's health status when are consumed regularly, and now they appear as a viable option to explore their possible therapeutic effects against diseases like cancer. Particularly, lupane-type triterpenes have shown great ability to modulate multiple cancer-related signaling pathways and processes, including NF-κB, Wnt/β-catenin, PI3K/Akt, apoptosis, and many other routes related to proliferation or cell death, which are uncontrolled in malignant tumors. These investigations have promoted in vitro and in vivo studies, searching their mechanisms of action; although more research is still needed to prove its potential in human clinical trials. This review focuses on the ability of betulin, betulinic acid and lupeol to show benefits against the most common types of malignant tumors, which are considered a major global threat for public health.
Collapse
Affiliation(s)
- M H Cháirez-Ramírez
- Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Col Nueva Vizcaya, 34080 Durango, Dgo., México
| | - M R Moreno-Jiménez
- Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Col Nueva Vizcaya, 34080 Durango, Dgo., México
| | - R F González-Laredo
- Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Col Nueva Vizcaya, 34080 Durango, Dgo., México
| | - J A Gallegos-Infante
- Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Col Nueva Vizcaya, 34080 Durango, Dgo., México
| | - Nuria Elizabeth Rocha-Guzmán
- Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Col Nueva Vizcaya, 34080 Durango, Dgo., México
| |
Collapse
|
45
|
He L, Tian DA, Li PY, He XX. Mouse models of liver cancer: Progress and recommendations. Oncotarget 2016; 6:23306-22. [PMID: 26259234 PMCID: PMC4695120 DOI: 10.18632/oncotarget.4202] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/23/2015] [Indexed: 02/06/2023] Open
Abstract
To clarify the pathogenesis of hepatocellular carcinoma (HCC) and investigate the effects of potential therapies, a number of mouse models have been developed. Subcutaneous xenograft models are widely used in the past decades. Yet, with the advent of in vivo imaging technology, investigators are more and more concerned with the orthotopic models nowadays. Genetically engineered mouse models (GEM) have greatly facilitated studies of gene function in HCC development. Recently, GEM of miR-122 and miR-221 provided new approaches for better understanding of the in vivo functions of microRNA in hepatocarcinogenesis. Chemically induced liver tumors in animals share many of the morphological, histogenic, and biochemical features of human HCC. Yet, the complicated and obscure genomic alternation restricts their applications. In this review, we highlight both the frequently used mouse models and some emerging ones with emphasis on their merits or defects, and give advises for investigators to chose a “best-fit” animal model in HCC research.
Collapse
Affiliation(s)
- Li He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-An Tian
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Li
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Bartolomeu AR, Frión-Herrera Y, da Silva LM, Romagnoli GG, de Oliveira DE, Sforcin JM. Combinatorial effects of geopropolis produced by Melipona fasciculata Smith with anticancer drugs against human laryngeal epidermoid carcinoma (HEp-2) cells. Biomed Pharmacother 2016; 81:48-55. [DOI: 10.1016/j.biopha.2016.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/13/2023] Open
|
47
|
Rauth S, Ray S, Bhattacharyya S, Mehrotra DG, Alam N, Mondal G, Nath P, Roy A, Biswas J, Murmu N. Lupeol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway. Mol Cell Biochem 2016; 417:97-110. [PMID: 27206736 DOI: 10.1007/s11010-016-2717-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/13/2016] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) pathway is overexpressed in head and neck cancer (HNC). Lupeol, a natural triterpene (phytosterol found in fruits, vegetables, etc.), has been reported to be effective against multiple cancer indications. Here we investigate the antitumor effects of Lupeol and underlying mechanism in oral cancer. Lupeol-induced antitumor response was evaluated in two oral squamous cell carcinoma (OSCC) cell lines (UPCI:SCC131 and UPCI:SCC084) by viability (MTT), proliferation, and colony formation assays. Lupeol-mediated induction of apoptosis was examined by caspase 3/7 assay and flow cytometry. Effect of Lupeol on EGFR in the presence or absence of EGF was delineated by Western blot. The mRNA stability assay was performed to check the role of Lupeol on COX-2 mRNA regulation. Lupeol inhibited proliferation of OSCC cells in vitro by inducing apoptosis 48 h post treatment. Ligand-induced phosphorylation of EGFR and subsequent activation of its downstream molecules such as protein kinase B (PKB or AKT), I kappa B (IκB), and nuclear factor kappa B (NF-κB) was also found to be, in part, suppressed. Interestingly, Lupeol suppressed expression of COX-2 at mRNA and protein level in a time-dependent manner. Primary explants from oral squamous cell carcinoma tissues further confirmed significant inhibition of proliferation (Ki67) in Lupeol-treated explants as compared to untreated control at 48 h. Together these data suggest that Lupeol may act as a potent inhibitor of the EGFR signaling in OSCC and therefore imply its role in triggering antitumor efficacy.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India
| | - Sudipta Ray
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India
| | - Sayantan Bhattacharyya
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India
| | - Debapriya Ghosh Mehrotra
- Department of Molecular Pathology, Mitra Biotech, Narayana Nethralaya, Narayana Health City, Hosur Main Road, Bangalore, 560099, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India
| | - Goutam Mondal
- Department of Pathology, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India
| | - Partha Nath
- Department of Medical Oncology, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India
| | - Asoke Roy
- Department of Pathology & Cancer Screening, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India
| | - Jaydip Biswas
- Department of Translation Research, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 - S.P Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
48
|
Sun JH, Luo Q, Liu LL, Song GB. Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol 2016; 22:3547-3557. [PMID: 27053846 PMCID: PMC4814640 DOI: 10.3748/wjg.v22.i13.3547] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets.
Collapse
|
49
|
Mitra A, Mishra L, Li S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2016; 6:10697-711. [PMID: 25986923 PMCID: PMC4484413 DOI: 10.18632/oncotarget.4037] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Tumor relapse and metastasis are the primary causes of poor survival rates in patients with advanced cancer despite successful resection or chemotherapeutic treatment. A primary cause of relapse and metastasis is the persistence of cancer stem cells (CSCs), which are highly resistant to chemotherapy. Although highly efficacious drugs suppressing several subpopulations of CSCs in various tissue-specific cancers are available, recurrence is still common in patients. To find more suitable therapy for relapse, the mechanisms underlying metastasis and drug-resistance associated with relapse-initiating CSCs need to be identified. Recent studies in circulating tumor cells (CTCs) of some cancer patients manifest phenotypes of both CSCs and epithelial-mesenchymal transition (EMT). These patients are unresponsive to standard chemotherapies and have low progression free survival, suggesting that EMT-positive CTCs are related to co-occur with or transform into relapse-initiating CSCs. Furthermore, EMT programming in cancer cells enables in the remodeling of extracellular matrix to break the dormancy of relapse-initiating CSCs. In this review, we extensively discuss the association of the EMT program with CTCs and CSCs to characterize a subpopulation of patients prone to relapses. Identifying the mechanisms by which EMT-transformed CTCs and CSCs initiate relapse could facilitate the development of new or enhanced personalized therapeutic regimens.
Collapse
Affiliation(s)
- Abhisek Mitra
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Lupeol inhibits LPS-induced NF-kappa B signaling in intestinal epithelial cells and macrophages, and attenuates acute and chronic murine colitis. Life Sci 2016; 146:100-8. [DOI: 10.1016/j.lfs.2016.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 12/31/2022]
|