1
|
Kasper P, Lang S, Steffen HM, Demir M. Management of alcoholic hepatitis: A clinical perspective. Liver Int 2023; 43:2078-2095. [PMID: 37605624 DOI: 10.1111/liv.15701] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Alcohol-associated liver disease is the primary cause of liver-related mortality worldwide and one of the most common indications for liver transplantation. Alcoholic hepatitis represents the most acute and severe manifestation of alcohol-associated liver disease and is characterized by a rapid onset of jaundice with progressive inflammatory liver injury, worsening of portal hypertension, and an increased risk for multiorgan failure in patients with excessive alcohol consumption. Severe alcoholic hepatitis is associated with a poor prognosis and high short-term mortality. During the COVID-19 pandemic, rates of alcohol-associated hepatitis have increased significantly, underscoring that it is a serious and growing health problem. However, adequate management of alcohol-associated hepatitis and its complications in everyday clinical practice remains a major challenge. Currently, pharmacotherapy is limited to corticosteroids, although these have only a moderate effect on reducing short-term mortality. In recent years, translational studies deciphering key mechanisms of disease development and progression have led to important advances in the understanding of the pathogenesis of alcoholic hepatitis. Emerging pathophysiology-based therapeutic approaches include anti-inflammatory agents, modifications of the gut-liver axis and intestinal dysbiosis, epigenetic modulation, antioxidants, and drugs targeting liver regeneration. Concurrently, evidence is increasing that early liver transplantation is a safe treatment option with important survival benefits in selected patients with severe alcoholic hepatitis not responding to medical treatment. This narrative review describes current pathophysiology and management concepts of alcoholic hepatitis, provides an update on emerging treatment options, and focuses on the need for holistic and patient-centred treatment approaches to improve prognosis.
Collapse
Affiliation(s)
- Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
2
|
Dhanda AD, Yates E, Schewitz-Bowers LP, Lait PJ, Lee RWJ, Cramp ME. Ex Vivo T Cell Cytokine Expression Predicts Survival in Patients with Severe Alcoholic Hepatitis. Gut Liver 2021; 14:265-268. [PMID: 31158952 PMCID: PMC7096227 DOI: 10.5009/gnl19035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Alcoholic hepatitis (AH) is an acute inflammatory liver condition with high early mortality rate. Steroids improve short-term survival but nonresponders have the worst outcomes. There is a clinical need to identify these high-risk individuals at the time of presentation. T cells are implicated in AH and steroid responsiveness. We measured ex vivo T cell cytokine expression as a candidate biomarker of outcomes in patients with AH. Consecutive patients (bilirubin >80 µmol/L and ratio of aspartate aminotransferase to alanine aminotransferase >1.5 who were heavy alcohol consumers with discriminant function [DF] ≥32), were recruited from University Hospitals Plymouth NHS Trust. T cells were obtained and stimulated ex vivo. Cytokine expression levels were determined by flow cytometry and protein multiplex analysis. Twenty-three patients were recruited (10 male; median age 51 years; baseline DF 67; 30% 90-day mortality). Compared to T cells from nonsurvivors at day 90, T cells from survivors had higher baseline baseline intracellular interleukin (IL)-10:IL-17A ratio (0.43 vs 1.20, p=0.02). Multiplex protein analysis identified interferon γ (IFNγ) and tumor necrosis factor-α (TNF-α) as independent predictors of 90-day mortality (p=0.04, p=0.01, respectively). The ratio of IFNγ to TNF-α was predictive of 90-day mortality (1.4 vs 0.2, p=0.03). These data demonstrate the potential utility of T cell cytokine release assays performed on pretreatment blood samples as biomarkers of survival in patients with severe AH. Our key findings were that intracellular IL-10:IL-17A and IFNγ:TNF-α in culture supernatants were predictors of 90-day mortality. This offers the promise of developing T cell-based diagnostic tools for risk stratification.
Collapse
Affiliation(s)
- Ashwin D Dhanda
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth, UK.,Hepatology Research Group, University of Plymouth, Plymouth, UK
| | - Euan Yates
- Hepatology Research Group, University of Plymouth, Plymouth, UK
| | | | - Philippa J Lait
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Richard W J Lee
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Matthew E Cramp
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth, UK.,Hepatology Research Group, University of Plymouth, Plymouth, UK
| |
Collapse
|
3
|
Sun Z, Chang B, Huang A, Hao S, Gao M, Sun Y, Shi M, Jin L, Zhang W, Zhao J, Teng G, Han L, Tian H, Liang Q, Zhang JY, Zou Z. Plasma levels of soluble ST2, but not IL-33, correlate with the severity of alcoholic liver disease. J Cell Mol Med 2018; 23:887-897. [PMID: 30478965 PMCID: PMC6349182 DOI: 10.1111/jcmm.13990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Alcoholic liver disease (ALD) is a complication that is a burden on global health and economy. Interleukin‐33 (IL‐33) is a newly identified member of the IL‐1 cytokine family and is released as an “alarmin” during inflammation. Soluble suppression of tumourigenicity 2 (sST2), an IL‐33 decoy receptor, has been reported as a new biomarker for the severity of systemic and highly inflammatory diseases. Here, we found the levels of plasma sST2, increased with the disease severity from mild to severe ALD. Importantly, the plasma sST2 levels in ALD patients not only correlated with scores for prognostic models (Maddrey's discriminant function, model for end‐stage liver disease and Child‐Pugh scores) and indexes for liver function (total bilirubin, international normalized ratio, albumin, and cholinesterase) but also correlated with neutrophil‐associated factors as well as some proinflammatory cytokines. In vitro, lipopolysaccharide‐activated monocytes down‐regulated transmembrane ST2 receptor but up‐regulated sST2 mRNA and protein expression and produced higher levels of tumour necrosis factor‐α (TNF‐α). By contrast, monocytes pretreated with recombinant sST2 showed decreased TNF‐α production. In addition, although plasma IL‐33 levels were comparable between healthy controls and ALD patients, we found the IL‐33 expression in liver tissues from ALD patients was down‐regulated at both RNA and protein levels. Immunohistochemical staining further showed that the decreased of IL‐33‐positive cells were mainly located in liver lobule area. These results suggested that sST2, but not IL‐33, is closely related to the severity of ALD. Consequently, sST2 could be used as a potential biomarker for predicting the prognosis of ALD.
Collapse
Affiliation(s)
- Zijian Sun
- Center of Non-infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Binxia Chang
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Ang Huang
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Shuli Hao
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Miaomiao Gao
- Center of Non-infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Ying Sun
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Wei Zhang
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Jun Zhao
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Guangju Teng
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Lin Han
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Hui Tian
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Qingsheng Liang
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zhengsheng Zou
- Center of Non-infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| |
Collapse
|
4
|
Sarin SK, Choudhury A. Management of acute-on-chronic liver failure: an algorithmic approach. Hepatol Int 2018; 12:402-416. [PMID: 30116993 DOI: 10.1007/s12072-018-9887-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a distinct syndrome of liver failure in a patient with chronic liver disease presenting with jaundice, coagulopathy and ascites and/or hepatic encephalopathy, developing following an acute hepatic insult and associated with high 28-day mortality. The definition though lacks global consensus, excludes patients with known distinct entities such as acute liver failure and those with end-stage liver disease. The initial Systemic Inflammatory Response Syndrome (SIRS) because of cytokine storm in relation to acute insult and/or subsequent development of sepsis due to immunoparalysis leads to extrahepatic organ failure. These cascades of events progress through a 'Golden Window' period of about 7 days, subsequent to which majority of the patients develop complications, such as sepsis and extrahepatic organ failure. Prevention of sepsis, support of organs and management of organ failure (commonly hepatic, renal, cerebral, coagulation) and early referral for transplant is crucial. The APASL ACLF research consortium (AARC) liver failure score is a dynamic prognostic model for management decisions and is superior to existing models. Aggressive multidisciplinary approach can lead to a transplant-free survival in nearly half of the cases. The present review provides an algorithmic approach to management of organ failure, sepsis prevention, use of dynamic prognostic models for management decision and is aimed to improve the skills for managing and improving the outcomes of such critically ill patients.
Collapse
Affiliation(s)
- Shiv Kumar Sarin
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, D-1, VasantKunj, New Delhi, 110070, India.
| | - Ashok Choudhury
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, D-1, VasantKunj, New Delhi, 110070, India
| |
Collapse
|
5
|
Huang A, Chang B, Sun Y, Lin H, Li B, Teng G, Zou ZS. Disease spectrum of alcoholic liver disease in Beijing 302 Hospital from 2002 to 2013: A large tertiary referral hospital experience from 7422 patients. Medicine (Baltimore) 2017; 96:e6163. [PMID: 28207552 PMCID: PMC5319541 DOI: 10.1097/md.0000000000006163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alcohol consumption in China has substantially increased over the last 3 decades and the number of patients with alcoholic liver disease (ALD) is rising at an alarming rate. However, accurate and representative data on time trends in its hospitalization rates are not available. The aim of this study is to assess the current status and burden of ALD in China by analyzing the data from a large tertiary referral hospital, Beijing 302 Hospital.Data were retrospectively recorded from patients diagnosed as ALD in Beijing 302 Hospital from 2002 to 2013. The disease spectrum and biochemical parameters of each patient were collected.The patients with ALD accounted for 3.93% (7422) of all patients (188,902) with liver diseases between 2002 and 2013. The number of patients hospitalized with ALD increased from 110 in 2002 to 1672 in 2013. The ratio of patients hospitalized with ALD to all patients hospitalized with liver diseases was rising almost continuously and increased from 1.68% in 2002 to 4.59% in 2013. Most patients with ALD were male. Age distribution of ALD hospitalization showed that the highest rate was in 40- to 49-year-old group in subjects. Notably, the annual proportion of severe alcoholic hepatitis (SAH) increased 2.43 times from 2002 to 2013. We found the highest levels of mean corpuscular volume, the aspartate aminotransferase/alanine aminotransferase ratio, total bilirubin, international normalized ratio, and alkaline phosphatase in SAH patients, while serum levels of hemoglobin, albumin, and cholinesterase were significantly decreased in SAH group. Among these ALD, the SAH patient population has the worst prognosis. Alcoholic cirrhosis (ALC) is the most common ALD, and annual admissions for ALC increased significantly during the analyzed period.The number of hospitalized patients with ALD and the annual hospitalization rate of ALD were increasing continuously in Beijing 302 Hospital from 2002 to 2013. More attention should be paid to develop population-based effective strategy to control ALD.
Collapse
Affiliation(s)
- Ang Huang
- Center of Noninfectious Liver Diseases, Beijing 302 Hospital
- Institute of Alcoholic Liver Disease, Beijing 302 Hospital, Beijing, China
| | - Binxia Chang
- Center of Noninfectious Liver Diseases, Beijing 302 Hospital
- Institute of Alcoholic Liver Disease, Beijing 302 Hospital, Beijing, China
| | - Yin Sun
- Center of Noninfectious Liver Diseases, Beijing 302 Hospital
- Institute of Alcoholic Liver Disease, Beijing 302 Hospital, Beijing, China
| | - Huiming Lin
- Center of Noninfectious Liver Diseases, Beijing 302 Hospital
- Institute of Alcoholic Liver Disease, Beijing 302 Hospital, Beijing, China
| | - Baosen Li
- Center of Noninfectious Liver Diseases, Beijing 302 Hospital
- Institute of Alcoholic Liver Disease, Beijing 302 Hospital, Beijing, China
| | - Guangju Teng
- Center of Noninfectious Liver Diseases, Beijing 302 Hospital
- Institute of Alcoholic Liver Disease, Beijing 302 Hospital, Beijing, China
| | - Zheng-Sheng Zou
- Center of Noninfectious Liver Diseases, Beijing 302 Hospital
- Institute of Alcoholic Liver Disease, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
6
|
Mitchell MC, McClain CJ, McClain CJ. Medical Management of Severe Alcoholic Hepatitis: Expert Review from the Clinical Practice Updates Committee of the AGA Institute. Clin Gastroenterol Hepatol 2017; 15:5-12. [PMID: 27979049 PMCID: PMC5172399 DOI: 10.1016/j.cgh.2016.08.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023]
Abstract
The purpose of this clinical practice update is to review diagnostic criteria for severe acute alcoholic hepatitis and to determine the current best practices for this life-threatening condition. The best practices in this review are based on clinical trials, systematic reviews including meta-analysis and expert opinion to develop an approach to diagnosis and management. Best Practice Advice 1: Abstinence from drinking alcohol is the cornerstone of treatment for alcohol hepatitis (AH). Best Practice Advice 2: Patients with jaundice and suspected AH should have cultures of blood, urine, and ascites, if present, to determine the presence of bacterial infections regardless of whether they have fever. Best Practice Advice 3: Patients with AH who have jaundice should be admitted to the hospital to encourage abstinence, restore adequate nutrition, and exclude serious infections. Best Practice Advice 4: Imaging of the liver is warranted as part of the evaluation, but caution should be used in administering iodinated contrast dye, as it increases the risk of acute kidney injury (AKI). Best Practice Advice 5: Patients with AH require a diet with 1-1.5 g protein and 30-40 kcal/kg body weight for adequate recovery. If the patient is unable to eat because of anorexia or altered mental status, a feeding tube should be considered for enteral feeding. Parenteral nutrition alone is inadequate. Best Practice Advice 6: Severity and prognosis of AH should be evaluated using Maddrey Discriminant Function (MDF), Model for End-Stage Liver Disease (MELD), age, bilirubin, international normalized ratio, and creatinine (ABIC), or Glasgow scoring systems. Current treatments are based on this assessment. Best Practice Advice 7: Presence of systemic inflammatory response syndrome (SIRS) on admission is associated with an increased risk of multi-organ failure (MOF) syndrome. Development of MOF, usually due to infections developing after initial diagnosis of AH, is associated with a very high mortality rate. Best Practice Advice 8: Nephrotoxic drugs, including diuretics, should be avoided or used sparingly in patients with AH, since AKI is an early manifestation of MOF. Best Practice Advice 9: Patients with MDF > 32 or MELD score > 20 without a contraindication to glucocorticoid, such as hepatitis B viral infection, tuberculosis, or other serious infectious diseases, may be treated with methylprednisolone 32 mg daily, but the appropriate duration of treatment remains a subject of controversy. Methylprednisolone does not improve survival beyond 28 days, and the benefits for < 28 days are modest. Best Practice Advice 10: Patients with a contraindication to glucocorticoids may be treated with pentoxifylline 400 mg three times daily with meals. Data regarding the efficacy are conflicting. Best Practice Advice 11: Patients with severe AH, particularly those with a MELD score > 26 with good insight into their alcohol use disorder and good social support should be referred for evaluation for liver transplantation, as the 90-day mortality rate is very high. Best Practice Advice 12: Patients with mild to moderate AH defined by a MELD score < 20 and MDF < 32 should be referred for abstinence counseling and prescribed a high protein diet supplemented with B vitamins and folic acid.
Collapse
Affiliation(s)
| | | | - Craig J McClain
- Division of Gastroenterology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
7
|
Williams EL, Stimpson ML, Collins PL, Enki DG, Sinha A, Lee RW, Dhanda AD. Development and validation of a novel bioassay to determine glucocorticoid sensitivity. Biomark Res 2016; 4:26. [PMID: 27999674 PMCID: PMC5157083 DOI: 10.1186/s40364-016-0079-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Glucocorticoids (GCs) remain the first line treatment for almost all non-infectious inflammatory diseases, ranging from acute asthma to rheumatoid arthritis. However, across all conditions, patients have a variable response to GCs with approximately 30% being non-responders. This group of GC resistant patients is typically exposed to high-dose GCs and their side-effects before more appropriate immunotherapy is instituted. Hence, there is a pressing clinical need for a predictive biomarker of GC responsiveness. The availability of such a tool would also enable patient stratification for the conduct of smart clinical trials in GC resistance. Lymphocyte GC sensitivity has been shown to be closely associated with clinical GC sensitivity in a number of inflammatory diseases. However, the method for determining in vitro GC response is not standardized and requires the use of specialist equipment, including a radioisotope to quantify cellular proliferation, making it challenging to translate into clinical practice. Results Here we describe the optimization and validation of a novel non-radioactive in vitro bioassay based on measuring cellular proliferation by incorporation of bromodeoxyuridine (BrdU), termed the BrdU incorporation in lymphocyte steroid sensitivity assay (BLISS). In comparison to the current gold standard lymphocyte GC sensitivity assay in 101 healthy control samples, BLISS has an area under receiver operating characteristic of 0.82 and a sensitivity of 83% for correctly identifying GC resistant subjects. Conclusions The performance of the novel BLISS bioassay makes it a strong candidate biomarker for clinical application. It now requires validation in a prospective patient cohort. Electronic supplementary material The online version of this article (doi:10.1186/s40364-016-0079-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily L Williams
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Madeleine L Stimpson
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Peter L Collins
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,Department of Liver Medicine, University Hospitals Bristol NHS Foundation Trust, Bristol, BS2 8HW UK
| | - Doyo G Enki
- Biostatistics, Bioinformatics and Biomarkers research group, Plymouth University, N15 Plymouth Science Park, Plymouth, PL6 8BX UK
| | - Ashish Sinha
- Department of Liver Medicine, University Hospitals Bristol NHS Foundation Trust, Bristol, BS2 8HW UK
| | - Richard W Lee
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ashwin D Dhanda
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth, PL6 8BU UK.,South West Liver Unit, Plymouth Hospitals NHS Trust, Plymouth, UK
| |
Collapse
|
8
|
Abstract
Acute-on-chronic liver failure (ACLF) is a distinct entity that differs from acute liver failure and decompensated cirrhosis in timing, presence of treatable acute precipitant, and course of disease, with a potential for self-recovery. The core concept is acute deterioration of existing liver function in a patient of chronic liver disease with or without cirrhosis in response to an acute insult. The insult should be a hepatic one and presentation in the form of liver failure (jaundice, encephalopathy, coagulopathy, ascites) with or without extrahepatic organ failure in a defined time frame. ACLF is characterized by a state of deregulated inflammation. Initial cytokine burst presenting as SIRS, progression to CARS and associated immunoparalysis leads to sepsis and multi-organ failure. Early identification of the acute insult and mitigation of the same, use of nucleoside analogue in HBV-ACLF, steroid in severe alcoholic hepatitis, steroid in severe autoimmune hepatitis and/or bridging therapy lead to recovery, with a 90-day transplant-free survival rate of up to 50 %. First-week presentation is crucial concerning SIRS/sepsis, development, multiorgan failure and consideration of transplant. A protocol-based multi-disciplinary approach including critical care hepatology, early liver transplant before multi-organ involvement, or priority for organ allocation may improve the outcome. Presentation with extrahepatic organ involvement or inclusion of sepsis as an acute insult in definition restricts the therapy, i.e., liver transplant or bridging therapy, and needs serious consideration. Augmentation of regeneration, cell-based therapy, immunotherapy, and gut microbiota modulation are the emerging areas and need further research.
Collapse
Affiliation(s)
- Shiv Kumar Sarin
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, D-1, VasantKunj, New Delhi, 110070, India.
| | - Ashok Choudhury
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, D-1, VasantKunj, New Delhi, 110070, India
| |
Collapse
|
9
|
Shasthry SM, Sarin SK. New treatment options for alcoholic hepatitis. World J Gastroenterol 2016; 22:3892-3906. [PMID: 27099434 PMCID: PMC4823241 DOI: 10.3748/wjg.v22.i15.3892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/07/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
The burden of alcoholic liver disease has rapidly grown in the past two decades and is expected to increase further in the coming years. Alcoholic hepatitis, the most florid presentation of alcoholic liver disease, continues to have high morbidity and mortality, with significant financial and healthcare burden with limited treatment options. Steroids remain the current standard of care in severe alcoholic hepatitis in carefully selected patients. No specific treatments are available for those patients who are steroid ineligible, intolerant or unresponsive. Liver transplant has shown good short-term outcome; however, feasibility, ethical and economic concerns remain. Modification of gut microbiota composition and their products, such as lipopolysaccharide, nutritional interventions, immune modulation, increasing steroid sensitivity, genetic polymorphism and epigenetic modification of alcohol induced liver damage, augmenting hepatic regeneration using GCSF are potential therapeutic avenues in steroid non-responsive/ineligible patients. With better understanding of the pathophysiology, using “Omics” platforms, newer options for patients with alcoholic hepatitis are expected soon.
Collapse
|
10
|
Pal P, Ray S. Alcoholic Liver Disease: A Comprehensive Review. EUROPEAN MEDICAL JOURNAL 2016. [DOI: 10.33590/emj/10312346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alcoholic liver disease, a leading cause of morbidity, mortality, and cirrhosis, can range from simple steatosis to hepatocellular carcinoma. Multiple mechanisms such as oxidative stress, mitochondrial dysfunction, and alteration in gut-liver axis have been proposed for the pathogenesis of alcoholic liver disease. Based on different prognostic models, alcoholic hepatitis patients can be stratified into sub-groups and specific pharmacological therapy can be started. Alcohol abstinence has a clear cut mortality benefit and nutritional support is very important as most of the patients are malnourished and in a hypercatabolic state. Other than conventional glucocorticoids and pentoxifylline, newer agents and combination therapy can be used in severe alcoholic hepatitis in patients not responsive to conventional glucocorticoid therapy. Liver transplantation improves survival in advanced alcoholic cirrhosis and it can be an option in severe alcoholic hepatitis patients who are not responding to other medical therapies. Whether early transplantation can improve the survival compared with the conventional waiting period of 6 months is an active area of investigation. This is due to the fact that most of the disease-related mortality occurs in the first 2 months.
Collapse
Affiliation(s)
- Partha Pal
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Sayantan Ray
- Department of Endocrinology, Institute of Post Graduate Medical Education & Research (IPGMER) and SSKM Hospital, Kolkata, India
| |
Collapse
|
11
|
Abstract
Acute-on-chronic liver failure (ACLF) is a distinct clinical entity and differs from acute liver failure and decompensated cirrhosis in timing, presence of acute precipitant, course of disease and potential for unaided recovery. The definition involves outlining the acute and chronic insults to include a homogenous patient group with liver failure and an expected outcome in a specific timeframe. The pathophysiology of ACLF relates to persistent inflammation, immune dysregulation with initial wide-spread immune activation, a state of systematic inflammatory response syndrome and subsequent sepsis due to immune paresis. The disease severity and outcome can be predicted by both hepatic and extrahepatic organ failure(s). Clinical recovery is expected with the use of nucleoside analogues for hepatitis B, and steroids for severe alcoholic hepatitis and, possibly, severe autoimmune hepatitis. Artificial liver support systems help remove toxins and metabolites and serve as a bridge therapy before liver transplantation. Hepatic regeneration during ongoing liver failure, although challenging, is possible through the use of growth factors. Liver transplantation remains the definitive treatment with a good outcome. Pre-emptive antiviral agents for hepatitis B before chemotherapy to prevent viral reactivation and caution in using potentially hepatotoxic drugs can prevent the development of ACLF.
Collapse
Affiliation(s)
- Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi 110070, India
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi 110070, India
| |
Collapse
|
12
|
Abstract
Alcoholic liver disease (ALD) is a complex process that includes a wide spectrum of hepatic lesions, from steatosis to cirrhosis. Cell injury, inflammation, oxidative stress, regeneration and bacterial translocation are key drivers of alcohol-induced liver injury. Alcoholic hepatitis is the most severe form of all the alcohol-induced liver lesions. Animal models of ALD mainly involve mild liver damage (that is, steatosis and moderate inflammation), whereas severe alcoholic hepatitis in humans occurs in the setting of cirrhosis and is associated with severe liver failure. For this reason, translational studies using humans and human samples are crucial for the development of new therapeutic strategies. Although multiple attempts have been made to improve patient outcome, the treatment of alcoholic hepatitis is still based on abstinence from alcohol and brief exposure to corticosteroids. However, nearly 40% of patients with the most severe forms of alcoholic hepatitis will not benefit from treatment. We suggest that future clinical trials need to focus on end points other than mortality. This Review discusses the main pathways associated with the progression of liver disease, as well as potential therapeutic strategies targeting these pathways.
Collapse
|
13
|
Dhanda AD, di Mambro AJ, Hunt VL, McCune CA, Dayan CM, Dick AD, Lee RWJ, Collins PL. Long-term outcome in patients with severe alcoholic hepatitis can be reliably determined using an in vitro measure of steroid sensitivity. Hepatology 2015; 61:1099. [PMID: 24811769 DOI: 10.1002/hep.27211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Ashwin D Dhanda
- School of Clinical Sciences, University of Bristol, Bristol, UK; Department of Liver Medicine, University Hospitals Bristol, NHS Foundation Trust, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim W. [Diagnostic and therapeutic strategies for severe alcoholic hepatitis]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2015; 65:4-11. [PMID: 25603848 DOI: 10.4166/kjg.2015.65.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcoholic hepatitis (AH) is defined as an acute hepatic manifestation resulting from heavy alcohol intake. Histologically, alcoholic steatohepatitis (ASH) is characterized by hepatocellular steatosis, inflammation, and fibrosis. Alcohol abstinence is the sine qua non of therapy for AH and, in the milder forms, is prerequisite to clinical recovery. Severe ASH may lead to multi-organ failure such as acute kidney injury and infection, which has a major impact on survival and thus should be closely monitored. Patients with severe ASH have a drastic short-term mortality of up to 40-50%. Specific therapies should be considered for patients with severe ASH at risk of early death. Corticosteroids are the standard of care for patients with severe ASH. When corticosteroids are contraindicated, pentoxifylline may be an alternative option. Steroid responsiveness should be evaluated on the basis of Lille score. Tactically, we should explore novel therapeutic targets to suppress inflammation based on cytokine profiles, promote hepatic regeneration, limit innate immune responses, and restore altered gut mucosal integrity in severe ASH.
Collapse
Affiliation(s)
- Won Kim
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| |
Collapse
|
15
|
Kim W, Kim DJ. Severe alcoholic hepatitis-current concepts, diagnosis and treatment options. World J Hepatol 2014; 6:688-695. [PMID: 25349640 PMCID: PMC4209414 DOI: 10.4254/wjh.v6.i10.688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic hepatitis (AH) is an acute hepatic manifestation occurring from heavy alcohol ingestion. Alcoholic steatohepatitis (ASH) is histologically characterized by steatosis, inflammation, and fibrosis in the liver. Despite the wide range of severity at presentation, those with severe ASH (Maddrey's discriminant function ≥ 32) typically present with fever, jaundice, and abdominal tenderness. Alcohol abstinence is the cornerstone of therapy for AH and, in the milder forms, is sufficient for clinical recovery. Severe ASH may progress to multi-organ failure including acute kidney injury and infection. Thus, infection and renal failure have a major impact on survival and should be closely monitored in patients with severe ASH. Patients with severe ASH have a reported short-term mortality of up to 40%-50%. Severe ASH at risk of early death should be identified by one of the available prognostic scoring systems before considering specific therapies. Corticosteroids are the mainstay of treatment for severe ASH. When corticosteroids are contraindicated, pentoxifylline may be alternatively used. Responsiveness to steroids should be assessed at day 7 and stopping rules based on Lille score should come into action. Strategically, future studies for patients with severe ASH should focus on suppressing inflammation based on cytokine profiles, balancing hepatocellular death and regeneration, limiting activation of the innate immune response, and maintaining gut mucosal integrity.
Collapse
Affiliation(s)
- Won Kim
- Won Kim, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156-707, South Korea
| | - Dong Joon Kim
- Won Kim, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156-707, South Korea
| |
Collapse
|
16
|
Higuera-de la Tijera F, Servín-Caamaño AI, Cruz-Herrera J, Serralde-Zúñiga AE, Abdo-Francis JM, Gutiérrez-Reyes G, Pérez-Hernández JL. Treatment with metadoxine and its impact on early mortality in patients with severe alcoholic hepatitis. Ann Hepatol 2014; 13:343-352. [PMID: 24756009 DOI: 10.1016/s1665-2681(19)30863-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
BACKGROUND & AIM Despite treatment with glucocorticoids, mortality remains high in patients with severe alcoholic hepatitis. Oxidative stress and depletion of mitochondrial glutathione are implicated factors in liver injury. The aim of this study was to evaluate the impact of the addition of metadoxine, a drug which possesses a multifactorial mechanism of action, including antioxidant properties, to standard treatment with glucocorticoids in patients with severe alcoholic hepatitis. MATERIAL AND METHODS This randomized open label clinical trial was performed in Mexico's General Hospital (Registry Key DIC/10/107/03/043). We randomized 70 patients with severe alcoholic hepatitis. The first group received prednisone (40 mg/day), and the second group received prednisone (40 mg/day) plus metadoxine tablets (500 mg three times daily). The duration of treatment in both groups was 30 days. Survival at 30 and 90 days, development of complications, adverse events and response to treatment (Lille model) were assessed. RESULTS In the group receiving metadoxine, significant improvements were observed, as follows: survival at 30 days (74.3 vs. 45.7%, P = 0.02); survival at 90 days (68.6 vs. 20.0%, P = 0.0001). There was less development or progression of encephalopathy (28.6 vs. 60.0%, P = 0.008) and hepatorenal syndrome (31.4 vs. 54.3%, P = 0.05), and the response to treatment (Lille model) was higher in the metadoxine group (0.38 vs. 0.63, P = 0.001; 95% CI 0.11 to 0.40). There were no differences between groups regarding the development or progression of variceal hemorrhage or infection. The incidence of adverse events, mainly gastrointestinal, was similar in both groups. CONCLUSIONS Addition of metadoxine to glucocorticoid treatment improves the short-term survival of patients with severe alcoholic hepatitis and diminishes the development or progression of encephalopathy and hepatorenal syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | - Gabriela Gutiérrez-Reyes
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | | |
Collapse
|
17
|
Parker R, McCune CA. Diagnosis and treatment of alcoholic hepatitis. Frontline Gastroenterol 2014; 5:123-129. [PMID: 28839759 PMCID: PMC5369720 DOI: 10.1136/flgastro-2013-100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 02/04/2023] Open
Abstract
Alcoholic liver disease (ALD) is increasing in incidence in the UK. It is the commonest cause of liver-related deaths, predominantly in people below the age of 60. Alcoholic hepatitis (AH) is an acute form of ALD with high mortality when severe. Jaundice and coagulopathy are clinical hallmarks of severe AH. Histology findings are characterised by parenchymal inflammation and hepatocellular damage although biopsy is only required when diagnostic uncertainty exists; clinical findings are usually sufficient for accurate diagnosis. Patients with AH should be stratified as non-severe or severe using non-invasive scoring systems such as the discriminant function or the Glasgow Alcoholic Hepatitis Score. In patients with non-severe AH, abstinence is the mainstay of treatment, and it is important that steps are taken to help patients stop drinking. Severe AH requires specialist treatment. Consensus guidelines recommend the use of prednisolone although this remains subject to clinical trials. Pentoxifylline may have a survival benefit if corticosteroids are contraindicated. Nutritional support and N-acetylcysteine should be considered for use in conjunction with corticosteroids although evidence of benefit is not conclusive. Patients with severe disease who do not respond to therapy within a week have a very poor outcome. Recent data have shown a survival benefit of liver transplantation in this group although this remains experimental at present. Current and future research should focus on targeted therapies for severe AH and those who fail first-line treatment.
Collapse
Affiliation(s)
- R Parker
- NIHR Centre for Liver Research, University of Birmingham, Birmingham, UK,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - C A McCune
- Department of Liver Medicine, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
18
|
Kwon HJ, Won YS, Park O, Feng D, Gao B. Opposing effects of prednisolone treatment on T/NKT cell- and hepatotoxin-mediated hepatitis in mice. Hepatology 2014; 59:1094-106. [PMID: 24115096 PMCID: PMC3943761 DOI: 10.1002/hep.26748] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Prednisolone is a corticosteroid that has been used to treat inflammatory liver diseases such as autoimmune hepatitis and alcoholic hepatitis. However, the results have been controversial, and how prednisolone affects liver disease progression remains unknown. In the current study we examined the effect of prednisolone treatment on several models of liver injury, including T/NKT cell hepatitis induced by concanavalin A (ConA) and α-galactosylceramide (α-GalCer), and hepatotoxin-mediated hepatitis induced by carbon tetrachloride (CCl4 ) and/or ethanol. Prednisolone administration attenuated ConA- and α-GalCer-induced hepatitis and systemic inflammatory responses. Treating mice with prednisolone also suppressed inflammatory responses in a model of hepatotoxin (CCl4 )-induced hepatitis, but surprisingly exacerbated liver injury and delayed liver repair. In addition, administration of prednisolone also enhanced acetaminophen-, ethanol-, or ethanol plus CCl4 -induced liver injury. Immunohistochemical and flow cytometric analyses demonstrated that prednisolone treatment inhibited hepatic macrophage and neutrophil infiltration in CCl4 -induced hepatitis and suppressed their phagocytic activities in vivo and in vitro. Macrophage and/or neutrophil depletion aggravated CCl4 -induced liver injury and impeded liver regeneration. Finally, conditional disruption of glucocorticoid receptor in macrophages and neutrophils abolished prednisolone-mediated exacerbation of hepatotoxin-induced liver injury. CONCLUSION Prednisolone treatment prevents T/NKT cell hepatitis but exacerbates hepatotoxin-induced liver injury by inhibiting macrophage- and neutrophil-mediated phagocytic and hepatic regenerative functions. These findings may not only increase our understanding of the steroid treatment mechanism but also help us to better manage steroid therapy in liver diseases.
Collapse
Affiliation(s)
- Hyo-Jung Kwon
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Young-Suk Won
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, 363-883, South Korea
| | - Ogyi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 965] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
20
|
Abstract
BACKGROUND AND AIMS Despite high recidivism rates in those treated for alcoholism, recurrent episodes of severe alcoholic hepatitis (SAH) have not been described. Our aim was to assess the clinical characteristics and outcomes in recurrent SAH. PATIENTS AND METHODS A retrospective review of patient records was carried out. Recurrent SAH was defined as two or more discrete episodes of SAH (discriminant function≥32) coinciding with recidivism in the same patient, with documented improvement/resolution of jaundice during intervening periods of abstinence. RESULTS Of 56 patients with recidivism following index presentation with SAH, 10 (17.9%) developed recurrent SAH. We report on 17 episodes in seven patients with complete data. The mean age and duration of alcohol use were 47.9±7.4 and 16.1±5.2 years, respectively. Compared with those without recurrence, the cohort with recurrent SAH were more likely to be women (57.1 vs. 34.8%, P=0.405), had higher alcohol consumption during relapse (16.0±15.3 vs. 11.3±8.1 U/day, P=0.591) and a recidivism pattern of alcohol relapse after initial abstinence rather than continuous alcohol use. Recurrent episodes were more severe compared with the index one (discriminant function 70.4±27.9 vs. 50.5±10.9; MELD score 26.2±3.7 vs. 22.1±1.5, P<0.05), the overall mortality being 57.1%. Treatment responses to corticosteroids were consistent in 66.7% of patients. CONCLUSION Approximately 18% of patients, especially women, develop recurrent SAH because of recidivism, with increasing disease severity and mortality approaching 60%. Our data underscore the urgent need to develop strategies to prevent recidivism following index presentation with SAH.
Collapse
|
21
|
Abstract
Alcoholic hepatitis (AH) remains a major cause of liver-related morbidity and mortality in the United States and is actually increasing in certain areas of Europe. Thus, there is a pressing need for new therapies/approaches. Major barriers for reducing morbidity, mortality, and costs of care include: lack of translational animal and human studies of new therapies for AH; limited trials of combination therapies in AH targeted at specific disease mechanisms (e.g., gut permeability, cytokines, oxidative stress); limited studies on non-invasive, non-mortality end points; few studies on mechanisms of steroid non-responsiveness; and inadequate prognostic indicators, to name only a few. In spite of these gaps, we have made major advances in understanding mechanisms for AH and appropriate therapies for AH. This article reviews mechanisms and rationale for use of steroids and pentoxifylline in AH and future directions in therapy.
Collapse
|
22
|
Dhanda AD, Lee RWL, Collins PL, McCune CA. Molecular targets in the treatment of alcoholic hepatitis. World J Gastroenterol 2012; 18:5504-13. [PMID: 23112542 PMCID: PMC3482636 DOI: 10.3748/wjg.v18.i39.5504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/26/2012] [Accepted: 07/29/2012] [Indexed: 02/06/2023] Open
Abstract
Alcohol related costs to health and society are high. One of the most serious complications of alcohol misuse to the individual is the development of alcoholic hepatitis (AH), a clinical syndrome of jaundice and progressive inflammatory liver injury in patients with a history of recent heavy alcohol use. It has a poor outcome and few existing successful therapies. The use of glucocorticoids in patients with severe AH is still controversial and there remains a group of patients with glucocorticoid-resistant disease. However, as our understanding of the pathogenesis of the condition improves there are opportunities to develop new targeted therapies with specific actions to control liver inflammation without having a detrimental effect on the immune system as a whole. In this article we review the molecular mechanisms of AH concentrating on the activation of the innate and adaptive immune response. We consider existing treatments including glucocorticoids, anti-tumor necrosis factor therapy and pentoxifylline and their limitations. Using our knowledge of the disease pathogenesis we discuss possible novel therapeutic approaches. New targets include pro-inflammatory cytokines such as interleukin (IL)-17, chemokines and their receptors (for example IL-8, CXCL9 and CXCR3) and augmentation of anti-inflammatory molecules such as IL-10 and IL-22. And there is also future potential to consider combination therapy to selectively modulate the immune response and gain control of disease.
Collapse
|
23
|
Dhanda A, Lee R, Collins P. Is primary biliary cirrhosis a steroid-sensitive autoimmune disease? Hepatol Res 2012; 42:619-20. [PMID: 22568459 DOI: 10.1111/j.1872-034x.2012.00970.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ashwin Dhanda
- School of Clinical Sciences, University of Bristol, Department of Hepatology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | | | | |
Collapse
|
24
|
GAO BIN, BATALLER RAMON. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141:1572-85. [PMID: 21920463 PMCID: PMC3214974 DOI: 10.1053/j.gastro.2011.09.002] [Citation(s) in RCA: 1454] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease worldwide and can lead to fibrosis and cirrhosis. The latest surveillance report published by the National Institute on Alcohol Abuse and Alcoholism showed that liver cirrhosis was the 12th leading cause of death in the United States, with a total of 29,925 deaths in 2007, 48% of which were alcohol related. The spectrum of ALD includes simple steatosis, alcoholic hepatitis, fibrosis, cirrhosis, and superimposed hepatocellular carcinoma. Early work on the pathogenesis of the disease focused on ethanol metabolism-associated oxidative stress and glutathione depletion, abnormal methionine metabolism, malnutrition, and production of endotoxins that activate Kupffer cells. We review findings from recent studies that have characterized specific intracellular signaling pathways, transcriptional factors, aspects of innate immunity, chemokines, epigenetic features, microRNAs, and stem cells that are associated with ALD, improving our understanding of its pathogenesis. Despite this progress, no targeted therapies are available. The cornerstone of treatment for alcoholic hepatitis remains as it was 40 years ago: abstinence, nutritional support, and corticosteroids. There is an urgent need to develop new pathophysiology-oriented therapies. Recent translational studies of human samples and animal models have identified promising therapeutic targets.
Collapse
Affiliation(s)
- BIN GAO
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - RAMON BATALLER
- Liver Unit, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Catalonia, Spain
| |
Collapse
|
25
|
Los corticoides mejoran la supervivencia a corto plazo en los pacientes con hepatitis alcohólica grave: metaanálisis de datos de pacientes individuales. Rev Clin Esp 2011. [DOI: 10.1016/j.rce.2011.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|