1
|
Han S, Fan H, Zhong G, Ni L, Shi W, Fang Y, Wang C, Wang L, Song L, Zhao J, Tang M, Yang B, Li L, Bai X, Zhang Q, Liang T, Xu Y, Feng XH, Ding C, Fang D, Zhao B. Nuclear KRT19 is a transcriptional corepressor promoting histone deacetylation and liver tumorigenesis. Hepatology 2025; 81:808-822. [PMID: 38557414 DOI: 10.1097/hep.0000000000000875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND AIMS Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 and REST corepressor 1, components of the corepressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing histone deacetylase 1 and REST corepressor 1 interaction, thus increasing the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha ( HNF4A ), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to histone deacetylase 1 inhibitors especially in combination with lenvatinib. CONCLUSIONS Our data show that nuclear KRT19 acts as a transcriptional corepressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.
Collapse
Affiliation(s)
- Shixun Han
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haonan Fan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guoxuan Zhong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lei Ni
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhao Shi
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yushan Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chenliang Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Li Wang
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lang Song
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Tang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Li Li
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhui Xu
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chen Ding
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dong Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| |
Collapse
|
2
|
Gu Y, Jin K, Gao S, Sun W, Yin M, Han J, Zhang Y, Wang X, Zeng M, Sheng R. A preoperative nomogram with MR elastography in identifying cytokeratin 19 status of hepatocellular carcinoma. Br J Radiol 2025; 98:210-219. [PMID: 39657213 DOI: 10.1093/bjr/tqae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVES Developing a nomogram integrating MR elastography (MRE)-based tumour stiffness and contrast-enhanced MRI in identifying cytokeratin 19 (CK19) status of hepatocellular carcinoma (HCC) preoperatively. METHODS One hundred twenty CK19-negative HCC and 39 CK19-positive HCC patients undergoing curative resection were prospectively evaluated. All received MRE and contrast-enhanced MRI. Clinical and MRI tumour features were compared. Univariate and multivariate logistic regression analyses identified independent predictors for CK19 status. Receiver operating characteristic curve analysis evaluated diagnostic performance. A nomogram was established with calibration and decision curve analysis. RESULTS Multivariate analysis revealed serum alpha fetoprotein (AFP) level (P < 0.001), targetoid appearance (P = 0.007), and tumour stiffness (P = 0.011) as independent significant variables for CK19-positive HCC. The area under the curve for tumour stiffness was 0.729 (95% confidence interval [CI] 0.653, 0.796). Combining these features, a nomogram-based model achieved an area under the curve value of 0.844 (95% CI 0.778, 0.897), with sensitivity, specificity, and accuracy of 76.92%, 85.00%, and 83.02%, respectively. Calibration and decision curve analyses demonstrated good agreement and optimal net benefit. CONCLUSIONS MRE-measured tumour stiffness aids in predicting CK19 status in HCC. The combined nomogram incorporating tumour stiffness, targetoid appearance, and AFP provides a reliable biomarker for CK19-positive HCC. ADVANCES IN KNOWLEDGE MRE-measured tumour stiffness can be used to predict CK19 status in HCC. The nomogram, which integrates tumour stiffness, targetoid appearance, and AFP levels, has shown improved diagnostic performance. It offers a comprehensive preoperative tool for clinical decision-making, further advancing personalized treatment strategies in HCC management.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kaipu Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai 201104, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Minyan Yin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jing Han
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ruofan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
3
|
Yang C, Xiang W, Wu Z, Li N, Xie G, Huang J, Zeng L, Yu H, Xiang B. CK19 protein expression: the best cutoff value on the prognosis and the prognosis model of hepatocellular carcinoma. BMC Cancer 2025; 25:55. [PMID: 39789507 PMCID: PMC11720332 DOI: 10.1186/s12885-024-13399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND AND OBJECTIVE In clinical practice, CK19 can be an important predictor for the prognosis of HCC. Due to the high incidence and mortality rates of HCC, more effective and practical prognostic prediction models need to be developed urgently. METHODS A total of 1,168 HCC patients, who underwent radical surgery at the Guangxi Medical University Cancer Hospital, between January 2014 and July 2019, were recruited, and their clinicopathological data were collected. Among the clinicopathological data, the optimal cutoff value of CK19-positive HCC was determined by calculating the area under the curve (AUC) using survival analysis and time-dependent receiver operating characteristic (timeROC) curve analysis. The predictors were screened using univariate and multivariate COX regression and least absolute shrinkage and selection operator (LASSO) regression to construct nomogram prediction models, and their predictive potentials were assessed using calibration curves and AUC values. RESULTS The 0% positive rate of CK19 was considered the optimal cutoff value to predict the poor prognosis of CK19-positive HCC. The survival analysis of 335 CK19-positive HCC showed no significant statistical differences in the overall survival (OS) and disease-free survival (DFS) of CK19-positive HCC patients. A five-factor risk (CK19, CA125, Edmondson, BMI, and tumor number) scoring model and an OS nomograph model were constructed and established, and the OS nomograph model showed a good predictive performance and was subsequently verified. CONCLUSION A 0% expression level of CK19 protein may be an optimal threshold for predicting the prognosis of CK19-positive HCC. Based on this, CK19 marker a good nomogram model was constructed to predict HCC prognosis.
Collapse
Affiliation(s)
- Chenglei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
- Guangxi Hepatocellular Carcinoma Diagnosis and Treatment Engineering Technology Research Center, Nanning, Guangxi Province, 530021, China
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China
| | - Wanyan Xiang
- The First Clinical Medical College of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Zongze Wu
- The First Clinical Medical College of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Nannan Li
- Department of Ultrasound, Guangxi Zhuang Autonomous Region Workers' Hospital, Nanning, Guangxi Province, 530021, China
| | - Guoliang Xie
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
- Guangxi Hepatocellular Carcinoma Diagnosis and Treatment Engineering Technology Research Center, Nanning, Guangxi Province, 530021, China
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China
| | - Juntao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
- Guangxi Hepatocellular Carcinoma Diagnosis and Treatment Engineering Technology Research Center, Nanning, Guangxi Province, 530021, China
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China
| | - Lixia Zeng
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
| | - Hongping Yu
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China.
- Tumor Prevention and Control Office, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China.
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China.
- Guangxi Hepatocellular Carcinoma Diagnosis and Treatment Engineering Technology Research Center, Nanning, Guangxi Province, 530021, China.
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China.
| |
Collapse
|
4
|
Guo T, Zhang S, Zeng W, Liang Y, Xie J, Liu S, Qiu Y, Fu Y, Ou Y, Ma K, Wang B, Gu W, Duan Y. Isolation and identification of patient-derived liver cancer stem cells and development of personalized treatment strategies. J Transl Med 2024; 22:1036. [PMID: 39558364 PMCID: PMC11575129 DOI: 10.1186/s12967-024-05870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) are thought to drive the metastasis and recurrence, however, the heterogeneity of molecular markers of LCSCs has hindered the development of effective methods to isolate them. METHODS This study introduced an effective approach to isolate and culture LCSCs from human primary liver cancer (HPLC), leveraging mouse embryonic fibroblasts (MEFs) as feeder cells in conjunction with using defined medium. Isolated LCSCs were further characterized by multiple approaches. Transcriptome sequencing data analysis was conducted to identify highly expressed genes in LCSCs and classify different subtypes of liver cancers. RESULTS Total sixteen cell strains were directly isolated from 24 tissues of three types of HPLC without sorting, seven of which could be maintained long-term culture as colony growth on MEFs, which is unique characteristics of stem cells. Even 10 of cloned cells formed the tumors in immunodeficient mice, indicating that those cloned cells were tumorgenic. The histologies and gene expression pattern of human xenografts were very similar to those of HPLC where these cloned cells were isolated. Moreover, putative markers of LCSCs were further verified to all express in cloned cells, confirming that these cells were LCSCs. These cloned LCSCs could be cryopreserved, and still maintained the feature of colony growth on MEFs after the recovery. Compared to suspension culture as conventional approach to culture LCSCs, our approach much better maintained stemness of LCSCs for a long time. To date, these cloned cells could be cultured on MEFs over 12 passages. Moreover, bioinformatics analysis of sequencing data revealed the gene expression profiles in LCSCs, and liver cancers were classified into two subtypes C1 and C2 based on genes associated with the prognosis of LCSCs. Patients of the C2 subtype, which is closely related to the extracellular matrix, were found to be sensitive to treatments such as Cisplatin, Axitinib, JAK1 inhibitors, WNT-c59, Sorafenib, and RO-3306. CONCLUSION In summary, this effective approach offers new insights into the molecular landscape of human liver cancers, and the identification of the C2 subtype and its unique response to the treatment pave the way for the creation of more effective, personalized therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, P.R. China
| | - Weiping Zeng
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yan Liang
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Jinghe Xie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P.R. China
| | - ShouPei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yaqi Qiu
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yimeng Ou
- Department of General Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, P.R. China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, P.R. China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, P.R. China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, P.R. China.
- Department of Gastroenterology and Hepatology Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, No.1 Panfu Road, Guangzhou, 510180, P.R. China.
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, The Second Affiliation Hospital, School of Medicine, South China University of Technology, No.10 Huanyu Erlu, 9th Floor, Guangzhou, 510180, P.R. China.
| |
Collapse
|
5
|
Shalannandia WA, Chou Y, Bashari MH, Khairani AF. Intermediate Filaments in Breast Cancer Progression, and Potential Biomarker for Cancer Therapy: A Narrative Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:689-704. [PMID: 39430570 PMCID: PMC11488350 DOI: 10.2147/bctt.s489953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
Collapse
Affiliation(s)
- Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| |
Collapse
|
6
|
Zhu D, Yang W, Zhou HF, Shi HB, Liu S, Shao ZF, Zhou WZ. Prognostic implications of CK19 positivity in patients with early recurrent hepatocellular carcinoma after hepatic resection undergoing transarterial chemoembolization. BMC Gastroenterol 2024; 24:347. [PMID: 39363264 PMCID: PMC11451204 DOI: 10.1186/s12876-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND This study aimed to compare the survival outcomes of transarterial chemoembolization (TACE) between patients with early recurrent hepatocellular carcinoma (rHCC) after hepatic resection, stratified by cytokeratin (CK) 19 expression. METHODS A retrospective analysis was conducted on 63 patients with early rHCC after hepatic resection who underwent TACE between January 2017 and December 2021. Patients were divided into two groups based on CK19 expression: CK19-negative (n=31) and CK19-positive (n=32). Overall survival (OS) and progression-free survival (PFS) were compared between the two groups using the Kaplan-Meier method and log-rank test. Cox regression analysis was performed to identify independent risk factors for OS and PFS. RESULTS The CK19-negative group demonstrated a significantly longer median OS compared to the CK19-positive group (635 days vs. 432 days, p=0.013). Similarly, the CK19-negative group had a longer median PFS than the CK19-positive group (291 days vs. 117 days, p=0.014). Multivariate Cox analysis identified Child-Pugh A grade, CK19-negative expression, and increased TACE sessions as protective factors for OS. No severe TACE-related adverse events were observed. CONCLUSION In patients with early rHCC after hepatic resection, those with CK19-positive expression had poorer survival outcomes following TACE compared to CK19-negative patients. These findings suggest the need for additional therapies to improve survival in CK19-positive individuals.
Collapse
Affiliation(s)
- Di Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Wei Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Hai-Feng Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Ze-Feng Shao
- Department of Interventional Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Wei-Zhong Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China.
| |
Collapse
|
7
|
Cai TT, Desterke C, Peng J, Agnetti J, Song P, Ouazib D, Dos Santos A, Guettier C, Samuel D, Gassama‐Diagne A. Septin 9 expression regulates 'don't eat me' signals and identifies an immune-epithelial class of intrahepatic cholangiocarcinoma. Mol Oncol 2024; 18:2369-2392. [PMID: 39082897 PMCID: PMC11459040 DOI: 10.1002/1878-0261.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 10/09/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and aggressive liver cancer with limited therapeutic options. Precise classification and immunotherapy are perspectives to improve the treatments. We reported the role of septin 9 in apico-basal polarity and epithelial-to-mesenchymal transition (EMT). Here, we aim to elucidate its role in iCCA. We analyzed single-cell transcriptomes from human iCCA tumor cells based on phenotype and cell state. Knockdown of the septin 9 gene (SEPT9) was done using small interfering RNA (siRNA); interferon-γ (IFN-γ) stimulation was performed using different CCA cells; gene expressions were analyzed by reverse transcription and real-time PCR analysis (RT-qPCR); and immunofluorescence, immunoblotting, and flow cytometry were performed to assess the expression of proteins. The differential distributions of SEPT9 and vimentin (VIM) gene expressions allowed us to define specific cellular trajectories of malignant cells and thus identified distinct clusters of iCCA cells. One cluster was enriched in VIM and extracellular-matrix (ECM) remodeling molecules, and another had high expression of SEPT9 and genes from the 'don't eat me' signal involved in immune escape. This antagonism between SEPT9 and VIM was confirmed by in vitro experiments. Notably, SEPT9 and 'don't eat me' gene expressions were inversely correlated to those of vimentin and the EMT markers. SEPT9 expression was upregulated by IFN-γ and SEPT9 knockdown decreased expression of 'don't eat me' signal genes and increased expression of mesenchymal markers. Cancer Cell Line Encyclopedia (CCLE) transcriptome database analyses confirmed that iCCA cells enriched in septin 9 exhibit epithelial-like features. This study revealed septin 9 as a cytoskeleton element of iCCA epithelial-like cells and a regulator of the immune system response. It also brings new insights into the enigmatic relationship between EMT and immune response. Notably, we decoded a potential mechanism that could sensitize patients to immunotherapies.
Collapse
Affiliation(s)
- Ting ting Cai
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | | | - Juan Peng
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Jean Agnetti
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Peixuan Song
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Dalila Ouazib
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Alexandre Dos Santos
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Catherine Guettier
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Didier Samuel
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
- AP‐HP Hôpital Paul Brousse, Centre Hépato‐BiliaireAP‐HP Hôpital Paul‐Brousse, Centre Hépato‐BiliaireVillejuifFrance
| | - Ama Gassama‐Diagne
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| |
Collapse
|
8
|
Guo Q, Qiu P, Pan K, Liang H, Liu Z, Lin J. Integrated machine learning algorithms identify KIF15 as a potential prognostic biomarker and correlated with stemness in triple-negative breast cancer. Sci Rep 2024; 14:21449. [PMID: 39271768 PMCID: PMC11399402 DOI: 10.1038/s41598-024-72406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer stem cells (CSCs) have the potential to self-renew and induce cancer, which may contribute to a poor prognosis by enabling metastasis, recurrence, and therapy resistance. Hence, this study was performed to identify the association between CSC-related genes and triple-negative breast cancer (TNBC) development. Stemness gene sets were downloaded from StemChecker. Based on the online databases, a consensus clustering algorithm was conducted for unsupervised classification of TNBC samples. The variations between subtypes were assessed with regard to prognosis, tumor immune microenvironment (TIME), and chemotherapeutic sensitivity. The stemness-related gene signature was established and random survival forest analysis was employed to identify the core gene for validation experiments and tumor sphere formation assays. 499 patients with TNBC were classified into three subgroups and the Cluster 1 had a better OS than others. After that, WGCNA study was performed to identify genes important for Cluster 1 subtype. Out of all 8 modules, the subtype of Cluster 1 and the yellow module with 103 genes demonstrated the largest positive association. After that, a four-gene stemness-related signature was established. Based on the yellow module, the 39 potential pivotal genes were subjected to the random forest survival analysis to find out the gene that was relatively important for OS. KIF15 was confirmed as the targeted gene by LASSO and random survival forest analyses. In vitro experiments, the downregulation of KIF15 promoted the stemness of TNBC cells. The expression levels of stem cell markers Nanog, SOX2, and OCT4 were found to be elevated in TNBC cell lines after KIF15 inhibition. A stemness-associated risk model was constructed to forecast the clinical outcomes of TNBC patients. The downregulation of KIF15 expression in a subpopulation of TNBC stem cells may promote stemness and possibly TNBC progression.
Collapse
Affiliation(s)
- Qiaonan Guo
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pengjun Qiu
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Kelun Pan
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huikai Liang
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zundong Liu
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| | - Jianqing Lin
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
9
|
Chen J, Sun W, Wang W, Fu C, Grimm R, Zeng M, Rao S. Diffusion-based virtual MR elastography for predicting recurrence of solitary hepatocellular carcinoma after hepatectomy. Cancer Imaging 2024; 24:106. [PMID: 39138500 PMCID: PMC11320769 DOI: 10.1186/s40644-024-00759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND To explore the capability of diffusion-based virtual MR elastography (vMRE) in the preoperative prediction of recurrence in hepatocellular carcinoma (HCC) and to investigate the underlying relevant histopathological characteristics. METHODS Between August 2015 and December 2016, patients underwent preoperative MRI examination with a dedicated DWI sequence (b-values: 200,1500 s/mm2) were recruited. The ADC values and diffusion-based virtual shear modulus (μdiff) of HCCs were calculated and MR morphological features were also analyzed. The Cox proportional hazards model was used to identify the risk factors associated with tumor recurrence. A preoperative radiologic model and postoperative model including pathological features were built to predict tumor recurrence after hepatectomy. RESULTS A total of 87 patients with solitary surgically confirmed HCCs were included in this study. Thirty-five patients (40.2%) were found to have tumor recurrence after hepatectomy. The preoperative model included higher μdiff and corona enhancement, while the postoperative model included higher μdiff, microvascular invasion, and histologic tumor grade. These factors were identified as significant prognostic factors for recurrence-free survival (RFS) (all p < 0.05). The HCC patients with μdiff values > 2.325 kPa showed poorer 5-year RFS after hepatectomy than patients with μdiff values ≤ 2.325 kPa (p < 0.001). Moreover, the higher μdiff values was correlated with the expression of CK19 (3.95 ± 2.37 vs. 3.15 ± 1.77, p = 0.017) and high Ki-67 labeling index (4.22 ± 1.63 vs. 2.72 ± 2.12, p = 0.001). CONCLUSIONS The μdiff values related to the expression of CK19 and Ki-67 labeling index potentially predict RFS after hepatectomy in HCC patients.
Collapse
Affiliation(s)
- Jiejun Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wentao Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caixia Fu
- MR Application development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthineers AG, Erlangen, Germany
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, China.
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Baek S, Ha HS, Park JS, Cho MJ, Kim HS, Yu SE, Chung S, Kim C, Kim J, Lee JY, Lee Y, Kim H, Nam Y, Cho S, Lee K, Yoon JK, Choi JS, Han DH, Sung HJ. Chip collection of hepatocellular carcinoma based on O 2 heterogeneity from patient tissue. Nat Commun 2024; 15:5117. [PMID: 38879551 PMCID: PMC11180182 DOI: 10.1038/s41467-024-49386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Hepatocellular carcinoma frequently recurs after surgery, necessitating personalized clinical approaches based on tumor avatar models. However, location-dependent oxygen concentrations resulting from the dual hepatic vascular supply drive the inherent heterogeneity of the tumor microenvironment, which presents challenges in developing an avatar model. In this study, tissue samples from 12 patients with hepatocellular carcinoma are cultured directly on a chip and separated based on preference of oxygen concentration. Establishing a dual gradient system with drug perfusion perpendicular to the oxygen gradient enables the simultaneous separation of cells and evaluation of drug responsiveness. The results are further cross-validated by implanting the chips into mice at various oxygen levels using a patient-derived xenograft model. Hepatocellular carcinoma cells exposed to hypoxia exhibit invasive and recurrent characteristics that mirror clinical outcomes. This chip provides valuable insights into treatment prognosis by identifying the dominant hepatocellular carcinoma type in each patient, potentially guiding personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sewoom Baek
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Su Ha
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong Su Park
- Department of Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Jeong Cho
- Department of Clinical Pharmacology & Therapeutics, Catholic University of Korea, Seoul St. Mary's Hospital, 222, BanpoDaero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Eun Yu
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seyong Chung
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chansik Kim
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jueun Kim
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Youn Lee
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yerin Lee
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunjae Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yujin Nam
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungwoo Cho
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Ja Kyung Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Sub Choi
- Department of Surgery, Division of Hepato-biliary and Pancreatic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Division of Hepato-biliary and Pancreatic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Hak-Joon Sung
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Taher MY, Hassouna EM, El-Hadidi AS, El-Aassar OS, Bakosh MF. Predictive Value of Serum CYFRA 21-1 and CK19-2G2 for Tumor Aggressiveness and Overall Survival in Hepatitis C-Related Hepatocellular Carcinoma Among Egyptians: A Prospective Study. J Gastrointest Cancer 2024; 55:749-758. [PMID: 38231289 DOI: 10.1007/s12029-023-01012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Cytokeratin 19 fragment 21-1 (CYFRA 21-1) and cytokeratin 19 fragment 2G2 (CK 19-2G2) are two soluble fragments of cytokeratin 19 (CK 19) that can be detected in serum. CK 19-positive hepatocellular carcinoma (HCC) is characterized by an aggressive behavior and a poor outcome. This study aimed to assess the prognostic value of serum CYFRA 21-1 and CK 19-2G2 in predicting tumor aggressiveness and overall survival (OS) in patients with hepatic C virus (HCV)-related HCC. METHODS The current study included 138 patients with HCV-related HCC recruited from the Hepatobiliary and Interventional Radiology Units at Alexandria's main university hospitals and 40 healthy individuals as controls. Patients were assessed for clinical, radiological tumor characteristics, and aggressiveness index. Baseline serum CYFRA 21-1 and CK 19-2G2 levels were measured by enzyme-linked immunosorbent assay. RESULTS Elevated CYFRA 21-1 levels were associated with tumors size ≥ 5 cm (p < 0.001), malignant portal vein thrombosis (mPVT) (p < 0.001), distant metastasis (p = 0.030), ill-defined/infiltrative pattern (p = 0.010), and aggressiveness index > 4 (p = 0.045). Elevated CK19-2G2 levels were not associated with any clinical or radiological characteristics. Either or both elevated serum CYFRA 21-1 and CK 19-2G2 in combination with alpha-feto protein (AFP) ≥ 400 ng/ml have a better predictability for mPVT and ill-defined/infiltrative patterns (sensitivity (10-25%) and specificity (96-100%)). Elevated levels of CYFRA 21-1, CK 19-2G2, or AFP ≥ 400 ng/ml were associated with decreased 1-year OS. CONCLUSIONS Either or both elevated serum CYFRA 21-1 and CK 19-2G2 levels when added to AFP ≥ 400 ng/ml are specific but less sensitive biomarkers for predicting tumor aggressiveness. These biomarkers can be used independently to predict reduced 1-year OS in Egyptian patients with HCV-related HCC.
Collapse
Affiliation(s)
- Mohamed Yousry Taher
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ehab Mostafa Hassouna
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer Shawky El-Hadidi
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Omar Sameh El-Aassar
- Diagnostic and Interventional Radiology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Fathy Bakosh
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
12
|
El-Kholy MA, Abu-Seadah SS, Hasan A, Elhussiny MEA, Abdelwahed MS, Hanbazazh M, Samman A, Alrashdi SA, Rashed ZF, Ashmawy D, Othman AE, Abdelaleem MF, Abo-Saif AIA, Abdel-Maqsoud RR, Attiah SM, Assiri ES, Nasr M, Ismail KA, Saad DZ, El-Mosely MM. The Role of Epithelial Cell Adhesion Molecule Cancer Stem Cell Marker in Evaluation of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:915. [PMID: 38929532 PMCID: PMC11205386 DOI: 10.3390/medicina60060915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Hepatocellular carcinoma (HCC) is a prevalent form of malignancy that is characterized by high mortality rates and prognosis that remain suboptimal, largely due to treatment resistance mechanisms. Recent studies have implicated cancer stem cells (CSCs), particularly those expressing epithelial cell adhesion molecule (EpCAM), in HCC progression and resistance. In the present study, we sought to assess EpCAM expression in HCC patients and its correlation with various clinicopathological parameters. Materials and Methods: Tissue samples from 42 HCC patients were subjected to immunohistochemical staining to evaluate EpCAM expression. Clinicopathological data were obtained including the size, grade and stage of tumors, vascular invasion status, alpha-fetoprotein levels, and cirrhosis status. The Chi square and Fisher's exact tests were employed to assess the association between categorical groups. Independent Student-t test or Mann-Whitney U test was used to investigate the association between continuous patient characteristics and survival. Results: Immunohistochemical analysis revealed EpCAM expression in 52.5% of HCC cases. EpCAM-positive tumors exhibited characteristics indicative of aggressive disease, including larger tumor sizes (p = 0.006), greater tumor multiplicity (p = 0.004), higher grades (p = 0.002), more advanced stages (p = 0.003), vascular invasion (p = 0.023), elevated alpha-fetoprotein levels (p = 0.013), and cirrhosis (p = 0.052). Survival analysis demonstrated that EpCAM expression was significantly associated with lower overall rates of survival and higher rates of recurrence in HCC patients. Conclusions: Our findings suggest that EpCAM expression may serve as a prognostic biomarker for HCC with a potential role in patient management. Targeting EpCAM-positive CSCs may represent a promising approach to overcome treatment resistance and improve clinical outcomes in HCC. However, further investigation into the molecular mechanisms underlying EpCAM's role in HCC progression is warranted to facilitate the development of personalized therapeutic interventions.
Collapse
Affiliation(s)
- Marwa A. El-Kholy
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Shimaa S. Abu-Seadah
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Abdulkarim Hasan
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed E. A. Elhussiny
- General Medicine Practice Program, Histology Department, Batterjee Medical Collage, Aseer 61421, Saudi Arabia
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed S. Abdelwahed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
- Pathology Department, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Mehenaz Hanbazazh
- Pathology Department, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Abdulhadi Samman
- Pathology Department, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Saeed A. Alrashdi
- Laboratory Department, Al-Mezailef General Hospital, Ministry of Health, Al-Mezailef 21912, Saudi Arabia
| | - Zaky F. Rashed
- Anesthesia Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
- Anesthesia, Intensive Care and Pain Management Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Diaa Ashmawy
- Pathology Department, Faculty of Medicine, Al-Azhar University, Damietta 34517, Egypt
| | - Alyaa E. Othman
- Infectious Diseases Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Amany I. A. Abo-Saif
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Rania R. Abdel-Maqsoud
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Samah M. Attiah
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Eissa Saeed Assiri
- Laboratory Department, Aseer Central Hospital, Ministry of Health, Abha 62523, Saudi Arabia
| | - Mohamed Nasr
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Khadiga Ahmed Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Diana Z. Saad
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Marwa M. El-Mosely
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
13
|
Ye L, Schneider JS, Ben Khaled N, Schirmacher P, Seifert C, Frey L, He Y, Geier A, De Toni EN, Zhang C, Reiter FP. Combined Hepatocellular-Cholangiocarcinoma: Biology, Diagnosis, and Management. Liver Cancer 2024; 13:6-28. [PMID: 38344449 PMCID: PMC10857821 DOI: 10.1159/000530700] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/03/2023] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Combined hepatocellular-cholangiocarcinoma (cHCC-iCCA) is a rare type of primary liver cancer displaying characteristics of both hepatocytic and cholangiocytic differentiation. SUMMARY Because of its aggressive nature, patients with cHCC-iCCA exhibit a poorer prognosis than those with HCC. Surgical resection and liver transplantation may be considered curative treatment approaches; however, only a minority of patients are eligible at the time of diagnosis, and postoperative recurrence rates are high. For cases that are not eligible for surgery, locoregional and systemic therapy are often administered based on treatment protocols applied for HCC or iCCA. Owing to the rarity of this cancer, there are still no established standard treatment protocols; therefore, the choice of therapy is often personalized and guided by the suspected predominant component. Further, the genomic and molecular heterogeneity of cHCC-iCCA can severely compromise the efficacy of the available therapies. KEY MESSAGES In the present review, we summarize the latest advances in cHCC-iCCA and attempt to clarify its terminology and molecular biology. We provide an overview of the etiology of cHCC-iCCA and present new insights into the molecular pathology of this disease that could contribute to further studies aiming to improve the patient outcomes through new systemic therapies.
Collapse
Affiliation(s)
- Liangtao Ye
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Julia S. Schneider
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | | | - Carolin Seifert
- Institute for Pathology, University Würzburg, Würzburg, Germany
| | - Lea Frey
- Institute for Pathology, University Würzburg, Würzburg, Germany
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Florian P. Reiter
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Zhou L, Chen Y, Li Y, Wu C, Xue C, Wang X. Diagnostic value of radiomics in predicting Ki-67 and cytokeratin 19 expression in hepatocellular carcinoma: a systematic review and meta-analysis. Front Oncol 2024; 13:1323534. [PMID: 38234405 PMCID: PMC10792117 DOI: 10.3389/fonc.2023.1323534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Background Radiomics have been increasingly used in the clinical management of hepatocellular carcinoma (HCC), such as markers prediction. Ki-67 and cytokeratin 19 (CK-19) are important prognostic markers of HCC. Radiomics has been introduced by many researchers in the prediction of these markers expression, but its diagnostic value remains controversial. Therefore, this review aims to assess the diagnostic value of radiomics in predicting Ki-67 and CK-19 expression in HCC. Methods Original studies were systematically searched in PubMed, EMBASE, Cochrane Library, and Web of Science from inception to May 2023. All included studies were evaluated by the radiomics quality score. The C-index was used as the effect size of the performance of radiomics in predicting Ki-67and CK-19 expression, and the positive cutoff values of Ki-67 label index (LI) were determined by subgroup analysis and meta-regression. Results We identified 34 eligible studies for Ki-67 (18 studies) and CK-19 (16 studies). The most common radiomics source was magnetic resonance imaging (MRI; 25/34). The pooled C-index of MRI-based models in predicting Ki-67 was 0.89 (95% CI:0.86-0.92) in the training set, and 0.87 (95% CI: 0.82-0.92) in the validation set. The pooled C-index of MRI-based models in predicting CK-19 was 0.86 (95% CI:0.81-0.90) in the training set, and 0.79 (95% CI: 0.73-0.84) in the validation set. Subgroup analysis suggested Ki-67 LI cutoff was a significant source of heterogeneity (I 2 = 0.0% P>0.05), and meta-regression showed that the C-index increased as Ki-67 LI increased. Conclusion Radiomics shows promising diagnostic value in predicting positive Ki-67 or CK-19 expression. But lacks standardized guidelines, which makes the model and variables selection dependent on researcher experience, leading to study heterogeneity. Therefore, standardized guidelines are warranted for future research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023427953.
Collapse
Affiliation(s)
- Lu Zhou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yiheng Chen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoyong Wu
- Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen, China
| | - Chongxiang Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xihong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Lin Q, Tang Z, Qin Y, Deng X, Wei C, Liu F, Pan X, Liu D, Zhan T, Fang M. Clonorchis sinensis infection amplifies hepatocellular carcinoma stemness, predicting unfavorable prognosis. PLoS Negl Trop Dis 2024; 18:e0011906. [PMID: 38285640 PMCID: PMC10824460 DOI: 10.1371/journal.pntd.0011906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Extensive evidence links Clonorchis sinensis (C. sinensis) to cholangiocarcinoma; however, its association with hepatocellular carcinoma (HCC) is less acknowledged, and the underlying mechanism remains unclear. This study was designed to investigate the association between C. sinensis infection and HCC and reveal the relationship between C. sinensis infection and cancer stemness. METHODS A comprehensive analysis of 839 HCC patients categorized into C. sinensis (-) HCC and C. sinensis (+) HCC groups was conducted. Chi-square and Mann-Whitney U tests were used to assess the association between C. sinensis infection and clinical factors. Kaplan-Meier and Cox regression analyses were used to evaluate survival outcomes. Immunohistochemistry was used to determine CK19 and EpCAM expression in HCC specimens. RESULTS Compared to C. sinensis (-) HCC patients, C. sinensis (+) HCC patients exhibited advanced Barcelona Clinic Liver Cancer (BCLC) stage, higher male prevalence and more liver cirrhosis as well as elevated alpha-fetoprotein (AFP), carbohydrate antigen 19-9 (CA19-9), eosinophil, complement 3 (C3), and complement 4 (C4) values. C. sinensis infection correlated with shorter overall survival (OS) (p < 0.05) and recurrence-free survival (RFS) (p < 0.05). Furthermore, Cox multivariate analysis revealed that C. sinensis infection was an independent prognostic factor for OS in HCC patients. Importantly, C. sinensis infection upregulated the expression of HCC cancer stem cell markers CK19 and EpCAM. CONCLUSION HCC patients with C. sinensis infection exhibit a poor prognosis following hepatectomy. Moreover, C. sinensis infection promotes the acquisition of cancer stem cell-like characteristics, consequently accelerating the malignant progression of HCC. AUTHOR SUMMARY Clonorchis sinensis (C. sinensis) is a prominent food-borne parasite prevalent in regions such as China, particularly in Guangxi. C. sinensis has been associated with various hepatobiliary system injuries, encompassing inflammation, periductal fibrosis, cholangiocarcinoma and even hepatocellular carcinoma (HCC). A substantial body of evidence links C. sinensis to cholangiocarcinoma, However, the connection between C. sinensis and HCC and the intricate mechanisms underlying its contribution to HCC development remain incompletely elucidated. Our study demonstrates clear clinicopathological associations between C. sinensis and HCC, such as gender, BCLC stage, liver cirrhosis, MVI, AFP, CA19-9, circulating eosinophils and complements. Furthermore, we found that the co-occurrence of C. sinensis exhibited a significant association with shorter OS and RFS in patients diagnosed with HCC. A major finding was that C. sinensis infection promotes the acquisition of cancer stem cell-like characteristics, consequently accelerating the malignant progression of HCC. Our results provide a more comprehensive comprehension of the interplay between C. sinensis and HCC, shedding fresh light on the carcinogenic potential of C. sinensis.
Collapse
Affiliation(s)
- Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Fengfei Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Dengyu Liu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Tingzheng Zhan
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
- Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| |
Collapse
|
16
|
Espírito Santo J, Ladeirinha A, Alarcão A, Strelet E, Reis M, Santos R, Carvalho L. Preoperative Locoregional Therapy May Relate with Stemness and Distinct Transitions Between Epithelial and Mesenchymal States in Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101268. [PMID: 38076372 PMCID: PMC10709210 DOI: 10.1016/j.jceh.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/12/2023] [Indexed: 01/05/2025] Open
Abstract
Background/Objectives Locoregional therapy (LRT) might impel hepatocellular carcinoma (HCC) to exhibit different phenotypes by modulating tumoral cell adaptation. HCCs presurgically treated with LRT were studied, focusing on stemness and mesenchymal features. Methods Clinicopathological and immunohistochemical data (Ki67, p53, EpCAM, CK19, CK7, ASMA and vimentin expression) were considered in 89 HCC nodules (30 treated with LRT; 59 non-treated), comprising 46 liver transplanted/surgically resected patients. Results In LRT group, well and poorly differentiated tumors without fibrous encapsulation were predominant (P < 0.05) and peritumoral necroinflammation severity tended to be greater. Peritumoral Ki67 expression was higher (P < 0.05) and p53, EpCAM, CK19 and CK7 peritumoral expression was relevant after LRT, where ablated carcinomas displayed higher peritumoral CK19 expression (P < 0.05). Tumoral ASMA and vimentin expression was higher in non-LRT group (P < 0.05). In LRT group, an exclusive association between progenitor/cholangiocytic cell and mesenchymal markers expressed by tumoral cells was observed (P < 0.05): EpCAM tumoral expression associated with vimentin stromal expression; tumoral CK19 expression associated with stromal ASMA expression; tumoral CK7 expression associated with tumoral vimentin expression. Conclusion Peritumoral cellular proliferation and expression of progenitor/cholangiocytic cell markers seem to be more frequent after LRT, with a distinctive epithelial-mesenchymal interplay and plasticity in peritumoral and tumoral compartments.
Collapse
Affiliation(s)
- Joana Espírito Santo
- Coimbra Hospital and University Centre, Adult Liver Transplantation Unit, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Ladeirinha
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Alarcão
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Eugeniu Strelet
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II – Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Marco Reis
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II – Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Rui Santos
- Coimbra Hospital and University Centre, Internal Medicine Department, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Coimbra Hospital and University Centre, Pathology Department, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
| |
Collapse
|
17
|
Ferrell LD, Kakar S, Terracciano LM, Wee A. Tumours and Tumour-Like Lesions. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:842-946. [DOI: 10.1016/b978-0-7020-8228-3.00013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Zhang N, Chen R, Cao X, Wang L. Aberrantly expressed HIF-1α enhances HCC stem cell-like traits via Wnt/β-catenin signaling activation after insufficient radiofrequency ablation. J Cancer Res Ther 2023; 19:1517-1524. [PMID: 38156917 DOI: 10.4103/jcrt.jcrt_1458_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Radiofrequency ablation has become a favorable treatment modality for small hepatocellular carcinoma (HCC) recently; however, insufficient radiofrequency ablation (RFA) was shown to lead to enhanced invasiveness and metastasis of HCC in our previous study, while the underlying molecular mechanism has not been understood. MATERIALS AND METHODS In order to explore the influence of the hypoxic microenvironment on residual cancer and cancer stem cell (CSC)-like characteristics of HCC cells in this process, an in vitro hypoxic model and an insufficient RFA mouse model were established with HCC cancer cell lines. Immunochemistry staining and western blot were used to examine the expression of hypoxia-inducible factor (HIF)-1α and liver CSC markers. The 3D colon formation assay, tumor cell invasion assay, and gene transfection assays were applied to test the change in liver CSC stemness and HCC cell invasion. RESULTS After insufficient RFA treatment, the upregulated HIF-1α expression was associated with an increase in the CSC-like population in residual cancer. In vitro, hypoxic tumor cells showed aggressive CSC-like properties and phenotypes. Wnt/β-catenin signaling activation was shown to be necessary for the acquisition of liver CSC-like characteristics under hypoxic conditions. CONCLUSION Overall, the aberrantly enhanced HIF-1α expression enhanced the liver CSC-like traits via abnormal Wnt/β-catenin signaling activation after insufficient RFA, and the overexpressed HIF-1α would be a vital factor and useful biomarker during the HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
19
|
Hemida AS, Taie DM, El-Wahed MMA, Shabaan MI, Tantawy MS, Ehsan NA. EpCAM, Ki67, and ESM1 Predict Hepatocellular Carcinoma Recurrence After Liver Transplantation. Appl Immunohistochem Mol Morphol 2023; 31:596-606. [PMID: 37668411 DOI: 10.1097/pai.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/01/2023] [Indexed: 09/06/2023]
Abstract
Liver transplantation (LT) is a good therapeutic decision, cures hepatocellular carcinoma (HCC) and promotes survival of cases with unrespectable HCC based on the Milan criteria. HCC still recur after LT. Identifying high risk tissue markers that predict recurrence becomes important for LT decision-making. Little is known regarding use of tissue expression of epithelial cell adhesion molecule (EpCAM) to predict HCC recurrence. This study investigates the role of EpCAM, Ki67, and endothelial-cell-specific molecule-1 (ESM1) as immunohistochemical markers to predict HCC recurrence after LT. It included 52 explanted HCC tissues from Egyptian patients who had undergone LT for HCC according to Milan criteria. Immunohistochemical staining was done on paraffin-embedded formalin-fixed tissue sections. HCC recurrence occurred in 13.5% cases. Positive EpCAM expression in HCC, was significantly associated with HCC recurrence, ( P =0.011), achieving 71.43% sensitivity, 84.44% specificity and 78.8% accuracy in predicting recurrence. High Ki67 percentage was significantly associated with HCC recurrence, ( P =0.005), achieving 57.14% sensitivity, 86.67% specificity and 82.69% accuracy in predicting HCC recurrence. ESM1 showed significant association with HCC recurrence ( P =0.041), with 71.43% sensitivity, 71.11% specificity and 71.15% accuracy in predicting HCC recurrence. EpCAM score and Ki67 percentage showed positive correlation. In conclusion, it is suggested that large tumor size (≥3 cm), advanced pathologic staging and Ki67 could be stratified as high risk predictors of HCC recurrence after LT. Although higher classes of Child-Turcotte-Pugh classification, high serum alpha-fetoprotein, microvascular invasion, positive EpCAM and ESM1 are stratified as lower risk predictors of HCC recurrence after LT.
Collapse
Affiliation(s)
| | - Doha Maher Taie
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Kom, Egypt
| | | | | | - Mona Saeed Tantawy
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Kom, Egypt
| | - Nermine Ahmed Ehsan
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Kom, Egypt
| |
Collapse
|
20
|
Krüger J, Fischer A, Breunig M, Allgöwer C, Schulte L, Merkle J, Mulaw MA, Okeke N, Melzer MK, Morgenstern C, Azoitei N, Seufferlein T, Barth TF, Siebert R, Hohwieler M, Kleger A. DNA methylation-associated allelic inactivation regulates Keratin 19 gene expression during pancreatic development and carcinogenesis. J Pathol 2023; 261:139-155. [PMID: 37555362 DOI: 10.1002/path.6156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/29/2023] [Accepted: 06/09/2023] [Indexed: 08/10/2023]
Abstract
Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jana Krüger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Anja Fischer
- Institute of Human Genetics, Ulm University & Ulm University Hospital, Ulm, Germany
| | - Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Chantal Allgöwer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Lucas Schulte
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | | | - Medhanie A Mulaw
- Unit for Single-cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Nnamdi Okeke
- Institute of Human Genetics, Ulm University & Ulm University Hospital, Ulm, Germany
| | - Michael K Melzer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Clara Morgenstern
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Ninel Azoitei
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Thomas Fe Barth
- Department of Pathology, Ulm University Hospital, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- Organoid Core Facility, Ulm University, Ulm, Germany
| |
Collapse
|
21
|
Choi JH, Thung SN. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023; 11:2582. [PMID: 37761023 PMCID: PMC10526317 DOI: 10.3390/biomedicines11092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by hepatocellular differentiation. HCC is molecularly heterogeneous with a wide spectrum of histopathology. The prognosis of patients with HCC is generally poor, especially in those with advanced stages. HCC remains a diagnostic challenge for pathologists because of its morphological and phenotypic diversity. However, recent advances have enhanced our understanding of the molecular genetics and histological subtypes of HCC. Accurate diagnosis of HCC is important for patient management and prognosis. This review provides an update on HCC pathology, focusing on molecular genetics, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
22
|
El-Bendary M, Farid K, Arafa M, Elkashef W, Abdullah T, El-Mesery A. Prognostic value of S100A4 and Glypican-3 in hepatocellular carcinoma in cirrhotic HCV patients. J Egypt Natl Canc Inst 2023; 35:26. [PMID: 37599312 DOI: 10.1186/s43046-023-00184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
AIMS Both S100A4 and Glypican-3 have been known to be engaged in HCC development and progression. This study aimed to evaluate both S100A4 and GPC3 expression in HCC tissues as a prognostic markers. METHODS Tissues from 70 patients of HCC in cirrhotic HCV patients were evaluated by immunohistochemistry using antibodies against SA100A4 and GPC3 and compared with tumor-adjacent tissue (controls). All cases were followed for 40 months. RESULTS GPC3 was more expressed in HCC (79%) than S100A4 (21%). S100A4 was more significantly expressed in cases showing metastasis, microscopic vascular emboli, necrosis, and grade III tumors. There was no relationship between overall survival and both S100A4 and GPC3. The only significant independent predictor for recurrence was decompensation (OR 3.037), while metastasis was significantly predicted by S100A4 expression (OR 9.63) and necrosis (OR 8.33). CONCLUSION S100A4 might be used as a prognostic marker for HCC, while GPC3 is a reliable marker of HCC diagnosis.
Collapse
Affiliation(s)
- Mahmoud El-Bendary
- Tropical Medicine and Hepatogastroenterology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, 35516, Dakahlyia, Egypt.
| | - Khaled Farid
- Tropical Medicine and Hepatogastroenterology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, 35516, Dakahlyia, Egypt
| | - Mohammad Arafa
- Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wagdi Elkashef
- Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Talaat Abdullah
- Gastroenterology Surgery Center, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed El-Mesery
- Tropical Medicine and Hepatogastroenterology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, 35516, Dakahlyia, Egypt
| |
Collapse
|
23
|
Lv J, Yin H, Yu H, Shi H. The added value of 18F-FDG PET/MRI multimodal imaging in hepatocellular carcinoma for identifying cytokeratin 19 status. Abdom Radiol (NY) 2023; 48:2331-2339. [PMID: 37119293 DOI: 10.1007/s00261-023-03911-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE In hepatocellular carcinoma (HCC), cytokeratin 19(CK19) has been proven to be associated with clinical aggressiveness. Therefore, this study aimed to explore the added value of 18F-FDG PET/MRI in predicting CK19 status in HCC. METHODS Sixty-six patients who underwent whole-body or abdominal 18F-FDG PET/MRI after conventional PET/CT for HCC were retrospectively enrolled. The maximal standard uptake value (T-SUVmax) and the mean apparent diffusion coefficient (T-ADCmean) of the tumor (T), as well as those of the normal liver tissues (L) were derived, followed by calculations of the T-SUVmax/L-SUVmax (SUVmax-T/L) and the T-ADCmean/L-ADCmean (ADCmean-T/L) ratios. Combined with the postoperative pathological results, the performance in predicting the CK19 status in HCC was evaluated using receiver operating characteristic analysis (ROC). RESULTS The areas under the ROC curve (AUCs) for T-SUVmax, SUVmax-T/L, T-ADCmean, and ADCmean-T/L in predicting the CK19-positive HCC were 0.700, 0.717, 0.717, and 0.735, respectively. In the logistic regression analysis, the T-SUVmax was an independent and significant factor to predict CK19-positive HCC, with an odds ratio of 1.27. In addition, no significant differences were found in the pathological grading, microvascular invasion, liver capsular invasion, Hepatitis B virus (HBV) infection, alpha fetoprotein (AFP) level, and tumor diameter between the CK19-positive and CK19-negative groups, except the recurrent rate. CONCLUSIONS The radiomic features derived from 18F-FDG PET/MRI can be used to predict the CK19 status of HCC. T-SUVmax and T-ADCmean were significant indicators, whereas T-SUVmax was an independent predictor.
Collapse
Affiliation(s)
- Jing Lv
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hongyan Yin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
24
|
Minagawa T, Itano O, Kitago M, Abe Y, Yagi H, Hibi T, Shinoda M, Ojima H, Sakamoto M, Kitagawa Y. Surgical and Oncological Outcomes of Salvage Hepatectomy for Locally Recurrent Hepatocellular Carcinoma after Locoregional Therapy: A Single-Institution Experience. Cancers (Basel) 2023; 15:cancers15082320. [PMID: 37190248 DOI: 10.3390/cancers15082320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Surgical and oncological outcomes of hepatectomy for recurrent hepatocellular carcinoma (HCC) after locoregional therapy, including locally recurrent HCC (LR-HCC), were examined. Among 273 consecutive patients who underwent hepatectomy for HCC, 102 with recurrent HCC were included and retrospectively reviewed. There were 35 patients with recurrent HCC after primary hepatectomy and 67 with recurrent HCC after locoregional therapies. Pathologic review revealed 30 patients with LR-HCC. Background liver function was significantly worse in patients with recurrent HCC after locoregional therapy (p = 0.002). AFP (p = 0.031) and AFP-L3 (p = 0.033) serum levels were significantly higher in patients with LR-HCC. Perioperative morbidities were significantly more frequently observed with recurrent HCC after locoregional therapies (p = 0.048). Long-term outcomes of recurrent HCC after locoregional therapies were worse than those after hepatectomy, though there was no prognostic difference according to the recurrence patterns after locoregional therapies. Multivariate analyses showed that prognostic factors for resected recurrent HCC were previous locoregional therapy (hazard ratio [HR] 2.0; p = 0.005), multiple HCCs (HR 2.8; p < 0.001), and portal venous invasion (HR 2.3; p = 0.001). LR-HCC was not a prognostic factor. In conclusion, salvage hepatectomy for LR-HCC showed worse surgical outcomes but a favorable prognosis.
Collapse
Affiliation(s)
- Takuya Minagawa
- Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, School of Medicine, International University of Health and Welfare, Chiba 286-0124, Japan
| | - Osamu Itano
- Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, School of Medicine, International University of Health and Welfare, Chiba 286-0124, Japan
| | - Minoru Kitago
- Departments of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuta Abe
- Departments of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Yagi
- Departments of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masahiro Shinoda
- Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, School of Medicine, International University of Health and Welfare, Chiba 286-0124, Japan
| | - Hidenori Ojima
- Departments of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michiie Sakamoto
- Departments of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Departments of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
25
|
Kim M, Jo KW, Kim H, Han ME, Oh SO. Genetic heterogeneity of liver cancer stem cells. Anat Cell Biol 2023; 56:94-108. [PMID: 36384888 PMCID: PMC9989795 DOI: 10.5115/acb.22.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kwang-Woo Jo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hyojin Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
26
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 PMCID: PMC10060418 DOI: 10.1038/s41419-023-05733-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
27
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 DOI: 10.1038/s41419-023-05733-z.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 10/14/2024]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
28
|
Zhou C, Xiang Y, Ren Y, Li M, Gou X, Li W. Keratin19 promotes pancreatic cancer progression and poor prognosis via activating the Hedgehog pathway. Int J Oncol 2023; 62:43. [PMID: 36825581 PMCID: PMC9946805 DOI: 10.3892/ijo.2023.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Pancreatic cancer is a serious threat to human health, with strong invasiveness, rapid progression and poor prognosis. Tumors expressing keratin 19 (K19) have stronger invasiveness and a worse prognosis. However, the role and mechanism of K19 in pancreatic cancer have remained largely elusive. In the present study, K19 expression was detected in pancreatic cancer tissues, its effect on proliferation, apoptosis and metastasis of pancreatic cancer at the cellular, in vivo preclinical and clinical levels was evaluated and its effect on the Hedgehog pathway was analyzed. K19 was significantly overexpressed in pancreatic cancer, promoted pancreatic cancer proliferation and metastasis, inhibited tumor cell apoptosis and was associated with poor prognosis. Mechanistically, these effects were mediated through the activation of the Hedgehog pathway. In conclusion, K19 may be a novel target molecule for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Changsheng Zhou
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yi Xiang
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yantao Ren
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ming Li
- Xiamen Medicine Research Institute, Xiamen, Fujian 361005, P.R. China
| | - Xin Gou
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China,Correspondence to: Dr Xin Gou, Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, 83 Zhongshandong Road, Guiyang, Guizhou 550002, P.R. China, E-mail:
| | - Wengang Li
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Dr Wengang Li, School of Medicine, Xiamen University, 4221 Xiang'annan Road, Xiamen, Fujian 361102, P.R. China, E-mail:
| |
Collapse
|
29
|
Rigual MDM, Sánchez Sánchez P, Djouder N. Is liver regeneration key in hepatocellular carcinoma development? Trends Cancer 2023; 9:140-157. [PMID: 36347768 DOI: 10.1016/j.trecan.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
The liver is the largest organ of the mammalian body and has the remarkable ability to fully regenerate in order to maintain tissue homeostasis. The adult liver consists of hexagonal lobules, each with a central vein surrounded by six portal triads localized in the lobule border containing distinct parenchymal and nonparenchymal cells. Because the liver is continuously exposed to diverse stress signals, several sophisticated regenerative processes exist to restore its functional status following impairment. However, these stress signals can affect the liver's capacity to regenerate and may lead to the development of hepatocellular carcinoma (HCC), one of the most aggressive liver cancers. Here, we review the mechanisms of hepatic regeneration and their potential to influence HCC development.
Collapse
Affiliation(s)
- María Del Mar Rigual
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Paula Sánchez Sánchez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain.
| |
Collapse
|
30
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
31
|
SOX9 Expression Is Superior to Other Stem Cell Markers K19 and EpCAM in Predicting Prognosis in Hepatocellular Carcinoma. Am J Surg Pathol 2023; 47:1-11. [PMID: 36322988 DOI: 10.1097/pas.0000000000001990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Various stem cell markers (eg, epithelial cell adhesion molecule [EpCAM], cytokeratin 19 [K19]) have been reported as predictors of poor prognosis in hepatocellular carcinoma (HCC). However, the data remain limited, particularly in Western populations, and are often contradictory. In this study, the prognostic value of positive SOX9 immunohistochemistry was compared with that of more established markers EpCAM and K19 in a large cohort (n=216) of North American patients. The independent HCC cohort in The Cancer Gene Atlas (n=360) was utilized to validate our findings. Finally, molecular signatures associated with SOX9 -high HCC were determined. We found that the expression of SOX9, but not EpCAM or K19, was associated with worse overall survival and disease-free survival (DFS) and was an independent prognostic factor for DFS in our North American cohort, in which hepatitis C infection was the most common underlying etiology. High SOX9 mRNA level, but not increased expression of EpCAM mRNA or K19 mRNA, was also associated with worse DFS and was an independent prognostic factor for DFS in The Cancer Gene Atlas cohort. This group had underlying causes, including an increased incidence of hepatitis B, significantly different from our initial cohort. High SOX9 mRNA level is associated with molecular pathways important in HCC pathogenesis. Increased SOX9 expression is clinically and biologically relevant for HCC arising in patients with a variety of underlying etiologies. Immunohistochemistry for SOX9 is a reliable proxy for increased SOX9 mRNA and can be used to predict prognosis in HCC cases.
Collapse
|
32
|
Lu M, Qu Q, Xu L, Zhang J, Liu M, Jiang J, Shen W, Zhang T, Zhang X. Prediction for Aggressiveness and Postoperative Recurrence of Hepatocellular Carcinoma Using Gadoxetic Acid-Enhanced Magnetic Resonance Imaging. Acad Radiol 2022; 30:841-852. [PMID: 36577606 DOI: 10.1016/j.acra.2022.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the predictive value of gadoxetic acid-enhanced magnetic resonance imaging (MRI) features on the pathologic grade, microvascular invasion (MVI), and cytokeratin-19 (CK19) expression in hepatocellular carcinomas (HCC), and to evaluate their association with postoperative recurrence of HCC. MATERIALS AND METHODS This retrospective study included 147 patients with surgically confirmed HCCs who underwent gadoxetic-enhanced MRI. The lesions were evaluated quantitatively in terms of the relative enhancement ratio (RER), and qualitatively based on imaging features and clinical parameters. Logistic regression analyses were performed to investigate the value of these parameters in predicting the pathologic grade, MVI, and CK19 in HCC. Predictive factors for postoperative recurrence were determined using a Cox proportional hazards model. RESULTS Peritumoral enhancement (odds ratio [OR], 3.396; p = 0.025) was an independent predictor of high pathologic grades. Serum protein induced by vitamin K absence or antagonist (PIVKA) level > 40 mAU/mL (OR, 3.763; p = 0.018) and peritumoral hypointensity (OR, 4.343; p = 0.003) were independent predictors of MVI. Predictors of CK19 included serum alpha-fetoprotein (AFP) level > 400 ng/mL (OR, 4.576; p = 0.005), rim enhancement (OR, 5.493; p = 0.024), and lower RER (OR, 0.013; p = 0.011). Peritumoral hypointensity (hazard ratio [HR], 1.957; p = 0.027) and poor pathologic grades (HR, 2.339; p = 0.043) were independent predictors of recurrence. CONCLUSION We demonstrated the value of preoperative gadoxetic-enhanced MRI in predicting aggressive pathological features of HCC. Poor pathologic grades and peritumoral hypointensity may independently predict the recurrence of HCC.
Collapse
Affiliation(s)
- Mengtian Lu
- Nantong University, Nantong, Jiangsu, China; Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Qi Qu
- Nantong University, Nantong, Jiangsu, China; Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Lei Xu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Jiyun Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Maotong Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Jifeng Jiang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Wei Shen
- Philips Healthcare Shanghai, Shanghai, China.
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
33
|
Zhang L, Qi Q, Li Q, Ren S, Liu S, Mao B, Li X, Wu Y, Yang L, Liu L, Li Y, Duan S, Zhang L. Ultrasomics prediction for cytokeratin 19 expression in hepatocellular carcinoma: A multicenter study. Front Oncol 2022; 12:994456. [PMID: 36119507 PMCID: PMC9478580 DOI: 10.3389/fonc.2022.994456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Objective The purpose of this study was to investigate the preoperative prediction of Cytokeratin (CK) 19 expression in patients with hepatocellular carcinoma (HCC) by machine learning-based ultrasomics. Methods We retrospectively analyzed 214 patients with pathologically confirmed HCC who received CK19 immunohistochemical staining. Through random stratified sampling (ratio, 8:2), patients from institutions I and II were divided into training dataset (n = 143) and test dataset (n = 36), and patients from institution III served as external validation dataset (n = 35). All gray-scale ultrasound images were preprocessed, and then the regions of interest were then manually segmented by two sonographers. A total of 1409 ultrasomics features were extracted from the original and derived images. Next, the intraclass correlation coefficient, variance threshold, mutual information, and embedded method were applied to feature dimension reduction. Finally, the clinical model, ultrasonics model, and combined model were constructed by eXtreme Gradient Boosting algorithm. Model performance was assessed by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. Results A total of 12 ultrasomics signatures were used to construct the ultrasomics models. In addition, 21 clinical features were used to construct the clinical model, including gender, age, Child-Pugh classification, hepatitis B surface antigen/hepatitis C virus antibody (positive/negative), cirrhosis (yes/no), splenomegaly (yes/no), tumor location, tumor maximum diameter, tumor number, alpha-fetoprotein, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutamyl-transpeptidase, albumin, total bilirubin, conjugated bilirubin, creatinine, prothrombin time, fibrinogen, and international normalized ratio. The AUC of the ultrasomics model was 0.789 (0.621 – 0.907) and 0.787 (0.616 – 0.907) in the test and validation datasets, respectively. However, the performance of the combined model covering clinical features and ultrasomics signatures improved significantly. Additionally, the AUC (95% CI), sensitivity, specificity, and accuracy were 0.867 (0.712 – 0.957), 0.750, 0.875, 0.861, and 0.862 (0.703 – 0.955), 0.833, 0.862, and 0.857 in the test dataset and external validation dataset, respectively. Conclusion Ultrasomics signatures could be used to predict the expression of CK19 in HCC patients. The combination of clinical features and ultrasomics signatures showed excellent effects, which significantly improved prediction accuracy and robustness.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qinghua Qi
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Li
- Department of Ultrasound, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Shanshan Ren
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shunhua Liu
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bing Mao
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xin Li
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuejin Wu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lanling Yang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Luwen Liu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yaqiong Li
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shaobo Duan
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Health Management, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- *Correspondence: Lianzhong Zhang, ; Shaobo Duan,
| | - Lianzhong Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Lianzhong Zhang, ; Shaobo Duan,
| |
Collapse
|
34
|
Yoo JE, Nahm JH, Kim YJ, Jeon Y, Park YN. The dual role of transforming growth factor-beta signatures in human B viral multistep hepatocarcinogenesis: early and late responsive genes. JOURNAL OF LIVER CANCER 2022; 22:115-124. [PMID: 37383409 PMCID: PMC10035736 DOI: 10.17998/jlc.2022.04.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 06/30/2023]
Abstract
Background/Aim Transforming growth factor-beta (TGF-β) has a dichotomous role, functioning as a tumor suppressor and tumor promoter. TGF-β signatures, explored in mouse hepatocytes, have been reported to predict the clinical outcomes of hepatocellular carcinoma (HCC) patients; HCCs exhibiting early TGF-β signatures showed a better prognosis than those with late TGF-β signatures. The expression status of early and late TGF-β signatures remains unclear in defined lesions of human B-viral multistep hepatocarcinogenesis. Methods The expression of TGF-β signatures, early and late responsive signatures of TGF-β were investigated and analyzed for their correlation in cirrhosis, low-grade dysplastic nodules (DNs), high-grade DNs, early HCCs and progressed HCCs (pHCCs) by real-time PCR and immunohistochemistry. Results The expression levels of TGF-β signaling genes (TGFB1, TGFBR1, TGFBR2 and SMAD4) gradually increased with the progression of hepatocarcinogenesis, peaking in pHCCs. The expression of early responsive genes of TGF-β (GADD45B, FBP1, CYP1A2 and CYP3A4) gradually decreased, and that of the late TGF-β signatures (TWIST and SNAI1) significantly increased according to the progression of multistep hepatocarcinogenesis. Furthermore, mRNA levels of TWIST and SNAI1 were well correlated with those of stemness markers, with upregulation of TGF-β signaling, whereas FBP1 expression was inversely correlated with that of stemness markers. Conclusions The enrichment of the late responsive signatures of TGF-β with induction of stemness is considered to be involved in the progression of the late stage of multistep hepatocarcinogenesis, whereas the early responsive signatures of TGF-β are suggested to have tumor-suppressive roles in precancerous lesions of the early stage of multistep hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Joo Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
| | - Youngsic Jeon
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Gerber TS, Ridder DA, Schindeldecker M, Weinmann A, Duret D, Breuhahn K, Galle PR, Schirmacher P, Roth W, Lang H, Straub BK. Constitutive Occurrence of E:N-cadherin Heterodimers in Adherens Junctions of Hepatocytes and Derived Tumors. Cells 2022; 11:cells11162507. [PMID: 36010583 PMCID: PMC9406782 DOI: 10.3390/cells11162507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cell–cell junctions are pivotal for embryogenesis and tissue homeostasis but also play a major role in tumorigenesis, tumor invasion, and metastasis. E-cadherin (CDH1) and N-cadherin (CDH2) are two adherens junction’s transmembrane glycoproteins with tissue-specific expression patterns in epithelial and neural/mesenchymal cells. Aberrant expression has been implicated in the process of epithelial–mesenchymal transition (EMT) in malignant tumors. We could hitherto demonstrate cis-E:N-cadherin heterodimer in endoderm-derived cells. Using immunoprecipitation in cultured cells of the line PLC as well as in human hepatocellular carcinoma (HCC)-lysates, we isolated E-N-cadherin heterodimers in a complex with the plaque proteins α- and β-catenin, plakoglobin, and vinculin. In confocal laser scanning microscopy, E-cadherin co-localized with N-cadherin at the basolateral membrane of normal hepatocytes, hepatocellular adenoma (HCA), and in most cases of HCC. In addition, we analyzed E- and N-cadherin expression via immunohistochemistry in a large cohort of 868 HCCs from 570 patients, 25 HCA, and respective non-neoplastic liver tissue, and correlated our results with multiple prognostic markers. While E- or N-cadherin were similarly expressed in tumor sites with vascular invasion or HCC metastases, HCC with vascular encapsulated tumor clusters (VETC) displayed slightly reduced E-cadherin, and slightly increased N-cadherin expression. Analyzing The Cancer Genome Atlas patient cohort, we found that reduced mRNA levels of CDH1, but not CDH2 were significantly associated with unfavorable prognosis; however, in multivariate analysis, CDH1 did not correlate with prognosis. In summary, E- and N-cadherin are specific markers for hepatocytes and derived HCA and HCC. E:N-cadherin heterodimers are constitutively expressed in the hepatocytic lineage and only slightly altered in malignant progression, thereby not complying with the concept of EMT.
Collapse
Affiliation(s)
- Tiemo Sven Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Dirk Andreas Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Tissue Biobank, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Arndt Weinmann
- 1st Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Diane Duret
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Peter R. Galle
- 1st Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
36
|
Mori JO, White J, Elhussin I, Duduyemi BM, Karanam B, Yates C, Wang H. Molecular and pathological subtypes related to prostate cancer disparities and disease outcomes in African American and European American patients. Front Oncol 2022; 12:928357. [PMID: 36033462 PMCID: PMC9399459 DOI: 10.3389/fonc.2022.928357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) disproportionately affects African American (AA) men, yet present biomarkers do not address the observed racial disparity. The objective of this study was to identify biomarkers with potential benefits to AA PCa patients. Differentially expressed genes (DEG) analysis coupled with gene set enrichment analysis (GSEA) and leading-edge genes analysis showed that the keratin family of genes, including KRT8, KRT15, KRT19, KRT34, and KRT80, constituted the single most prominent family of genes enriched in AA compared to European American (EA) PCa cell lines. In PCa patients (TCGA and MSKCC patient cohorts), KRT8, KRT15, and KRT19 expression were relatively higher in AA than in EA patients. The differences in the expression of KRT15 and KRT19, but not KRT8, were enhanced by Gleason score and ERG fusion status; in low Gleason (Gleason ≤ 6 [TCGA cohort] and Gleason ≤ 7 [MSKCC cohort]), the expression of KRT15 and KRT19 was significantly (p ≤ 0.05) higher in AA than in EA patients. Survival analysis revealed that high expression of KRT15 and KRT19 was associated with increased risk of biochemical recurrence in low Gleason category patients in the TCGA patient cohort. Interestingly, KRT15 and KRT19 expression were also associated with an increased risk of death in the metastatic prostate adenocarcinoma cohort, suggesting the potential to predict the risks of disease recurrence and death in the low Gleason category and advanced disease conditions respectively. Gene set enrichment analysis revealed known oncogenic gene signatures, including KRAS and ERBB2, to be enriched in patients expressing high KRT15 and KRT19. Furthermore, high KRT15 and KRT19 were linked to the basal and LumA PCa subtypes, which are associated with poor postoperative androgen deprivation therapy (ADT) response compared to the LumB subtype. Taken together, the present study identifies genes with high expression in AA than in EA PCa. The identified genes are linked to oncogenic gene signatures, including KRAS and ERBB2, and to basal and LumA PCa subtypes that are associated with poor postoperative ADT response. This study, therefore, reveals biomarkers with the potential to address biomarker bias in PCa risk stratification and/or prognosis.
Collapse
Affiliation(s)
- Joakin O. Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- Department of Integrative Biosciences, Tuskegee University, Tuskegee, AL, United States
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- Department of Integrative Biosciences, Tuskegee University, Tuskegee, AL, United States
| | - Babatunde M. Duduyemi
- College of Medicine and Allied Health Sciences, University of Sierra Leone Teaching Hospital, Freetown, Sierra Leone
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- *Correspondence: Honghe Wang,
| |
Collapse
|
37
|
MRI features of histologic subtypes of hepatocellular carcinoma: correlation with histologic, genetic, and molecular biologic classification. Eur Radiol 2022; 32:5119-5133. [PMID: 35258675 DOI: 10.1007/s00330-022-08643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
Abstract
HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression. Advancements in imaging techniques have allowed imaging diagnosis to become a critical part of managing HCC in the clinical setting, even without pathologic diagnosis. With the identification of many HCC subtypes, there is increasing correlative evidence between imaging phenotypes and histologic, molecular, and genetic characteristics of various HCC subtypes. In this review, current knowledge of histologic heterogeneity of HCC correlated to features on gadolinium-enhanced dynamic liver MRI will be discussed. In addition, HCC subtype classification according to transcriptomic profiles will be outlined with descriptions of histologic, genetic, and molecular characteristics of some relatively well-established morphologic subtypes, namely the low proliferation class (steatohepatitic HCC and CTNNB1-mutated HCC) and the high proliferation class (macrotrabecular-massive HCC (MTM-HCC), scirrhous HCC, and CK19-positive HCC). Characteristics of sarcomatoid HCC and fibrolamellar HCC will also be discussed. Further research on radiological characteristics of HCC subtypes may ultimately enable non-invasive diagnosis and serve as a biomarker in predicting prognosis, molecular characteristics, and therapeutic response. In the era of precision medicine, a multidisciplinary effort to develop an integrated radiologic and clinical diagnostic system of various HCC subtypes is necessary. KEY POINTS: • HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression, which can be divided into many subtypes according to transcriptome profiles. • There is increasing evidence of a correlation between imaging phenotypes and histologic, genetic, and molecular biologic characteristics of various HCC subtypes. • Imaging characteristics may ultimately enable non-invasive diagnosis and subtype characterization, serving as a biomarker for predicting prognosis, molecular characteristics, and therapeutic response.
Collapse
|
38
|
Combined Hepatocellular-Cholangiocarcinoma: An Update on Pathology and Diagnostic Approach. Biomedicines 2022; 10:biomedicines10081826. [PMID: 36009374 PMCID: PMC9405224 DOI: 10.3390/biomedicines10081826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver carcinoma displaying both hepatocytic and cholangiocytic differentiation within the same tumor. Relative to classic hepatocellular carcinoma (HCC), cHCC-CCA has more aggressive behavior and a poorer prognosis. Though recent advances have improved our understanding of the biology underlying cHCC-CCAs, they remain diagnostically challenging for pathologists because of their morphologic and phenotypic diversity. Accurate diagnosis of cHCC-CCA is important for patient management and prognostication. Herein, we review recent updates on cHCC-CCA, focusing on tumor classification, pathology, and diagnostic approach.
Collapse
|
39
|
Etiology, Pathogenesis, Diagnosis, and Practical Implications of Hepatocellular Neoplasms. Cancers (Basel) 2022; 14:cancers14153670. [PMID: 35954333 PMCID: PMC9367411 DOI: 10.3390/cancers14153670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a major global contributor of cancer death, usually arises in a background of chronic liver disease, as a result of molecular changes that deregulate important signal transduction pathways. Recent studies have shown that certain molecular changes of hepatocarcinogenesis are associated with clinicopathologic features and prognosis, suggesting that subclassification of HCC is practically useful. On the other hand, subclassification of hepatocellular adenomas (HCAs), a heterogenous group of neoplasms, has been well established on the basis of genotype–phenotype correlations. Histologic examination, aided by immunohistochemistry, is the gold standard for the diagnosis and subclassification of HCA and HCC, while clinicopathologic correlation is essential for best patient management. Advances in clinico-radio-pathologic correlation have introduced a new approach for the diagnostic assessment of lesions arising in advanced chronic liver disease by imaging (LI-RADS). The rapid expansion of knowledge concerning the molecular pathogenesis of HCC is now starting to produce new therapeutic approaches through precision oncology. This review summarizes the etiology and pathogenesis of HCA and HCC, provides practical information for their histologic diagnosis (including an algorithmic approach), and addresses a variety of frequently asked questions regarding the diagnosis and practical implications of these neoplasms.
Collapse
|
40
|
Salehi O, Vega EA, Kutlu OC, Lunsford K, Freeman R, Ladin K, Alarcon SV, Kazakova V, Conrad C. Poorly differentiated hepatocellular carcinoma: resection is equivalent to transplantation in patients with low liver fibrosis. HPB (Oxford) 2022; 24:1100-1109. [PMID: 34969618 DOI: 10.1016/j.hpb.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Organ allocation criteria for liver transplantation focus on tumor size and multifocality while tumor differentiation and existing liver damage are omitted. This study analyzes the impact of hepatocellular carcinoma (HCC) grade and liver fibrosis comparing resection (SX) to transplantation (LT). METHODS The National Cancer Database was queried between 2004 and 2016 for solitary HCC meeting Milan criteria undergoing SX vs LT. Two groups were created: low fibrosis (LF) vs high fibrosis (HF) and stratified by grade. Cox multivariable regression models, Kaplan-Meier survival analyses and log-rank tests were performed. RESULTS 1515 patients were identified; 780 had LT and 735 had SX. Median overall survival (mOS) was 39.7 months; LT mOS was 47.9 months vs SX mOS of 34.9 months (P < .001). Multivariate analysis revealed SX, no chemotherapy, longer hospital stays, and age to be associated with worse survival. However, while transplantation conferred survival benefit for well-moderately differentiated tumors, SX vs LT did not impact survival for poorly differentiated HCC in LF patients, independent of tumor size. DISCUSSION HCC differentiation and liver fibrosis, but not size, synergistically determine efficacy of SX vs LT. Therefore, current HCC transplantation criteria should incorporate tumor grade or liver fibrosis for optimal organ allocation.
Collapse
Affiliation(s)
- Omid Salehi
- Department of Surgery, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Eduardo A Vega
- Department of Surgery, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Onur C Kutlu
- Department of Surgery, University of Miami Health System, Miller School of Medicine, Miami, FL, USA
| | - Keri Lunsford
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Richard Freeman
- Department of Surgery, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Keren Ladin
- Department of Occupational Therapy and Community Health, Tufts University, Boston, MA, USA
| | - Sylvia V Alarcon
- Department of Medical Oncology, Dana-Farber Cancer Institute at St. Elizabeth's Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vera Kazakova
- Department of Medical Oncology, Dana-Farber Cancer Institute at St. Elizabeth's Medical Center, Harvard Medical School, Boston, MA, USA
| | - Claudius Conrad
- Department of Surgery, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
41
|
Qin SD, Zhang J, Qi YP, Zhong JH, Xiang BD. Individual and joint influence of cytokeratin 19 and microvascular invasion on the prognosis of patients with hepatocellular carcinoma after hepatectomy. World J Surg Oncol 2022; 20:209. [PMID: 35725470 PMCID: PMC9210815 DOI: 10.1186/s12957-022-02632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate the individual and combined associations of cytokeratin 19 (CK19) and microvascular invasion (MVI) with prognosis of patients with hepatocellular carcinoma (HCC). METHODS Clinicopathological data on 352 patients with HCC who underwent radical resection at our hospital between January 2013 and December 2015 were retrospectively analyzed. Patients were divided into four groups: CK19(-)/MVI(-), CK19(-)/MVI(+), CK19(+)/MVI(-), and CK19(+)/MVI(+). RESULTS Of the 352 HCC patients, 154 (43.8%) were CK19(-)/MVI(-); 116 (33.0%), CK19(-)/MVI(+); 31 (8.8%), CK19(+)/MVI(-); and 51 (14.5%), CK19(+)/MVI(+). The disease-free survival of CK19(-)/MVI(-) patients was significantly higher than that of CK19(-)/MVI(+) patients and CK19(+)/MVI(+) patients. Similar results were observed for overall survival. CK19(+)/MVI(+) patients showed significantly lower overall survival than the other three groups. CONCLUSIONS CK19 expression and MVI predict poor prognosis after radical resection of HCC, and the two markers jointly contribute to poor OS. Combining CK19 and MVI may predict post-resection prognosis better than using either factor on its own.
Collapse
Affiliation(s)
- Shang-Dong Qin
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi China
| | - Jie Zhang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi China
| | - Ya-Peng Qi
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi China
| | - Bang-De Xiang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi China
| |
Collapse
|
42
|
Jang TH, Huang WC, Tung SL, Lin SC, Chen PM, Cho CY, Yang YY, Yen TC, Lo GH, Chuang SE, Wang LH. MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J Biomed Sci 2022; 29:42. [PMID: 35706019 PMCID: PMC9202219 DOI: 10.1186/s12929-022-00824-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023] Open
Abstract
Background The development of drug resistance in oral squamous cell carcinoma (OSCC) that frequently leads to recurrence and metastasis after initial treatment remains an unresolved challenge. Presence of cancer stem cells (CSCs) has been increasingly reported to be a critical contributing factor in drug resistance, tumor recurrence and metastasis. Thus, unveiling of mechanisms regulating CSCs and potential targets for developing their inhibitors will be instrumental for improving OSCC therapy. Methods siRNA, shRNA and miRNA that specifically target keratin 17 (KRT17) were used for modulation of gene expression and functional analyses. Sphere-formation and invasion/migration assays were utilized to assess cancer cell stemness and epithelial mesenchymal transition (EMT) properties, respectively. Duolink proximity ligation assay (PLA) was used to examine molecular proximity between KRT17 and plectin, which is a large protein that binds cytoskeleton components. Cell proliferation assay was employed to evaluate growth rates and viability of oral cancer cells treated with cisplatin, carboplatin or dasatinib. Xenograft mouse tumor model was used to evaluate the effect of KRT17- knockdown in OSCC cells on tumor growth and drug sensitization. Results Significantly elevated expression of KRT17 in highly invasive OSCC cell lines and advanced tumor specimens were observed and high KRT17 expression was correlated with poor overall survival. KRT17 gene silencing in OSCC cells attenuated their stemness properties including markedly reduced sphere forming ability and expression of stemness and EMT markers. We identified a novel signaling cascade orchestrated by KRT17 where its association with plectin resulted in activation of integrin β4/α6, increased phosphorylation of FAK, Src and ERK, as well as stabilization and nuclear translocation of β-catenin. The activation of this signaling cascade was correlated with enhanced OSCC cancer stemness and elevated expression of CD44 and epidermal growth factor receptor (EGFR). We identified and demonstrated KRT17 to be a direct target of miRNA-485-5p. Ectopic expression of miRNA-485-5p inhibited OSCC sphere formation and caused sensitization of cancer cells towards cisplatin and carboplatin, which could be significantly rescued by KRT17 overexpression. Dasatinib treatment that inhibited KRT17-mediated Src activation also resulted in OSCC drug sensitization. In OSCC xenograft mouse model, KRT17 knockdown significantly inhibited tumor growth, and combinatorial treatment with cisplatin elicited a greater tumor inhibitory effect. Consistently, markedly reduced levels of integrin β4, active β-catenin, CD44 and EGFR were observed in the tumors induced by KRT17 knockdown OSCC cells. Conclusions A novel miRNA-485-5p/KRT17/integrin/FAK/Src/ERK/β-catenin signaling pathway is unveiled to modulate OSCC cancer stemness and drug resistance to the common first-line chemotherapeutics. This provides a potential new therapeutic strategy to inhibit OSCC stem cells and counter chemoresistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00824-z.
Collapse
Affiliation(s)
- Te-Hsuan Jang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Zhubei City, Hsinchu County, Taiwan.,Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan City, Taiwan
| | - Sheng-Chieh Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Po-Ming Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Guo-Hsuen Lo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Lu-Hai Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
43
|
Yuan RH, Hsu CL, Jhuang YL, Liu YR, Hsieh TH, Jeng YM. Tumor-matrix interaction induces phenotypic switching in liver cancer cells. Hepatol Int 2022; 16:562-576. [PMID: 35525880 DOI: 10.1007/s12072-022-10315-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/13/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is characterized by fibrous stroma and clinical behavior more aggressive than that of hepatocellular carcinoma (HCC). Scirrhous HCC is a subtype of HCC with fibrous stroma, frequently has partial cholangiocytic differentiation, and is more likely to have an aggressive behavior. This study explored the interaction of liver cancer cells with the extracellular matrix. METHODS AND RESULTS Liver cancer cells grown on collagen 1-coated plates showed upregulation of cholangiocytic marker expression but downregulation of hepatocytic marker expression. Three-dimensional sphere culture and Boyden chamber assay showed enhanced invasion and migration ability in collagen 1-conditioned liver cancer cells. Interaction with collagen 1 reduced liver cancer cell proliferation. RNA sequencing showed that in the liver cancer cells, collagen 1 upregulated cell cycle inhibitor expression and cell-matrix interaction, tumor migration, and angiogenesis pathways, but downregulated liver metabolic function pathways. Cholangiocytic differentiation and invasiveness induced by collagen 1 was mediated by the mitogen-activated protein kinase (MAPK) pathway, which was regulated by cell-matrix interaction-induced Src activation. Analysis of the Cancer Genome Atlas cohort showed that collagen 1 induced and suppressed genes were highly enriched in ICC and HCC, respectively. In HCC samples, collagen 1-regulated genes were strongly coexpressed and correlated with COL1A1 expression. CONCLUSIONS Liver cancer cell-matrix interaction induces cholangiocytic differentiation and switches liver cancer cells from a proliferative to an invasive phenotype through the Src/MAPK pathway, which may partly explain the differences in the behaviors of HCC and ICC.
Collapse
Affiliation(s)
- Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, Hsinchu Branch, National Taiwan University Hospital, Hsinchu, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Lin Jhuang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
44
|
Lu C, Miao J, Li M, Zheng Q, Xu F, Pan Y, Wang Y, Yang Z, Xia X, Zhu H, Chen J, Bao S. Characterization of the Estrogen Response Helps to Predict Prognosis and Identify Potential Therapeutic Targets in Cholangiocarcinoma. Front Oncol 2022; 12:870840. [PMID: 35664769 PMCID: PMC9162778 DOI: 10.3389/fonc.2022.870840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy originating from the epithelium of the bile duct. The prognosis of patients is poor regardless of radical resection and chemoradiotherapy. The current classification and prognostic model of CCA are unable to satisfy the requirements for predicting the clinical outcome and exploring therapeutic targets. Estrogen signaling is involved in diverse cancer types, and it has long been established that CCA could be regulated by estrogen. In our study, estrogen response was identified to be significantly and stably correlated with poor prognosis in CCA. Employing several algorithms, CCA was classified into ES cluster A and B. ES cluster B was mainly composed of patients with fluke infection and overlapped with CCA cluster 1/2, and ES cluster A was mainly composed of patients without fluke infection and overlapped with CCA cluster 3/4. COMT and HSD17B1 were identified to be responsible for the differential estrogen response between ES clusters A and B, and the estrogen response may be correlated with the differentiation and cancer stemness of CCA at the single-cell level. Complement activation and the expression of C3 and C5, which are mainly expressed by CCA cells, were significantly downregulated in ES cluster B. An estrogen response risk score (ESRS) model was constructed to predict the prognosis of CCA, followed by a nomogram integrating ESRS and clinical features. Finally, altered pathways, applicable drugs and sensitivity to chemical drugs were analyzed specific to the estrogen response. In summary, our results provide insights into the role of the estrogen response in CCA progression as well as applicable drugs and potential therapeutic targets in estrogen metabolism, the complement system and ESRS-related pathways.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Minhuan Li
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qisi Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Feng Xu
- Department of General Surgery, Changshu NO.1 People’s Hospital, The Affiliated Hospital of Soochow University, Changshu, China
| | - Yiming Pan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yizhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shanhua Bao, ; Jie Chen, ; Hao Zhu,
| | - Jie Chen
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shanhua Bao, ; Jie Chen, ; Hao Zhu,
| | - Shanhua Bao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shanhua Bao, ; Jie Chen, ; Hao Zhu,
| |
Collapse
|
45
|
Shigematsu Y, Amori G, Kanda H, Takahashi Y, Takazawa Y, Takeuchi K, Inamura K. Decreased ARG1 expression as an adverse prognostic phenotype in non-alcoholic non-virus-related hepatocellular carcinoma. Virchows Arch 2022; 481:253-263. [PMID: 35459975 DOI: 10.1007/s00428-022-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
Abstract
The incidence of non-alcoholic non-virus-related hepatocellular carcinoma (NANV-HCC) is increasing along with the growing prevalence of metabolic disorders. In this subset, few useful biomarkers are available to narrow down the high-risk group for recurrence. This study aimed to evaluate the prognostic impact of decreased ARG1 (arginase-1), which is pathologically known as a marker reflecting hepatocyte differentiation, in NANV-HCC. Besides, its relationship with biliary/progenitor cell markers, whose expressions are associated with poor prognosis, was also assessed. To reveal the clinicopathological association of decreased ARG1 expression in NANV-HCC, we investigated 99 patients who underwent curative-intent hepatectomy for NANV-HCC. Tissue microarrays were employed for immunohistochemical analysis. A total of 21 NANV-HCC cases (21%; 21/99) showed decreased ARG1 expression. Decreased ARG1 expression was an independent prognostic factor for both poor DFS (hazard ratio 2.17; 95% confidence interval 1.15-4.09; p = 0.02) and OS (hazard ratio 4.09; 95% confidence interval 1.71-9.80; p = 0.002). In addition, decreased ARG1 expression was significantly associated with expressions of biliary/progenitor cell markers, CK19 and CD56 (p < 0.01). As cytologic features of tumor cells, decreased ARG1 expression was significantly associated with lipid-less cytologic morphology (p = 0.045). These findings indicate that decreased ARG1 expression is a predictive phenotype of postoperative recurrence with poor prognosis in patients with NANV-HCC. Decreased ARG1 expression may be a precursor or overlapping feature with biliary/progenitor cell marker expressions in NANV-HCC.
Collapse
Affiliation(s)
- Yasuyuki Shigematsu
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.,Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Gulanbar Amori
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.,Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, 780 Omuro Kitaadachi-gun, Ina-machi, Saitama, 362-0806, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Yutaka Takazawa
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato, Tokyo, 105-8470, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.,Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.,Pathology Project for Molecular Targets, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Kentaro Inamura
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan. .,Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.
| |
Collapse
|
46
|
Parafibromin Is Highly Expressed in Hepatocellular Carcinoma and Its Expression Correlates with Poor Prognosis. J Clin Med 2022; 11:jcm11071773. [PMID: 35407381 PMCID: PMC9000084 DOI: 10.3390/jcm11071773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Much progress has been made regarding the understanding of hepatocarcinogenesis, yet the long-term survival rate of HCC patients remains poor. Recent efforts have shown parafibromin has a pathologic role in many human cancers, but little is known about the effects of parafibromin in HCC. This study aimed to investigate the pattern of parafibromin expression and its clinicopathologic significance in human HCC. Immunohistochemical analysis of HCC and matched non-tumor liver tissues from 50 HCC patients showed that the nuclear expression of parafibromin was higher in HCC tissues (50/50 cases) than in non-tumor liver tissues (17/50 cases). Moreover, elevated parafibromin expression was found to be significantly correlated with the presence of microvascular invasion (p = 0.017), hepatitis virus infection-induced occurrence (p = 0.005), and poorer tumor differentiation (Edmondson-Steiner grade; p = 0.000). Kaplan-Meier analysis showed that HCC patients with elevated parafibromin expression had poorer recurrence-free (p = 0.014, log-rank test = 6.079) and overall survival (p = 0.036, log-rank test = 4.414). These findings indicate parafibromin may be related to the pathogenesis of HCC and a potential prognostic marker for HCC patients after hepatectomy.
Collapse
|
47
|
CK19 Predicts Recurrence and Prognosis of HBV Positive HCC. J Gastrointest Surg 2022; 26:341-351. [PMID: 34506016 DOI: 10.1007/s11605-021-05107-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/01/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cytokeratin is associated with the recurrence and metastasis of some cancers and tends to increase the malignancy of the disease. It is getting more and more attention in cancer research. Abnormal expression of cytokeratin 19 (CK19) has been reported as an important prognostic factor in cancers. CK19 is a marker of bile duct cells, liver progenitor cells (HPCs), and early hepatoblasts, and its expression is associated with poor prognosis in patients diagnosed with hepatocellular carcinoma (HCC). The purpose of this study was to evaluate the predictive value of CK19 for tumor recurrence after radical resection in patients with hepatitis B virus (HBV) positive HCC. METHODS This study was a retrospective study conducted in two institutions. A total of 674 patients with HBV positive HCC who underwent radical HCC resection from January 2010 to May 2020 were included in this study. Chi-square test or Fisher's exact test was used to compare the classification variables and continuous variables were compared by t-test or Wilcoxon rank sum test. Cox regression model was used for univariate and multi-variable survival analyses. Based on the results of the multi-variable analyses of Cox regression, the nomogram of 2-year recurrence-free survival (RFS) was plotted. The model was validated internally in the Hangzhou cohort (training set) and then externally in the Lanzhou cohort (test set) and the effectiveness of the model was tested. RESULTS For all 674 patients, 223 cases (33.1%) were positive and 451 cases (66.9%) were negative for CK19. The 2-year RFS rate was higher in patients with CK19 negative than in patients with CK19 positive. In the training set, correlation analysis showed that CK19 expression was correlated with preoperative potassium (P value(P) = 0.030), satellite nodules (P < 0.001) and microvascular invasion (P = 0.020). In the test set, CK19 expression was correlated with postoperative platelet (P = 0.038), satellite nodules (P = 0.003), microvascular invasion (P = 0.011), and maximum tumor size (P = 0.039). Univariate Cox regression correlation analyses showed that CK19 expression was correlated with preoperative potassium (P value(P) = 0.030), satellite nodules (P < 0.001), and microvascular invasion (P = 0.020). Training and test sets showed that postoperative platelet (> 300/L), CK19, satellite nodules in the training set, microvascular invasion, maximum tumor size, and tumor boundary were adverse factors for predicting RFS. Multi-variable analyses showed that in the training set, postoperative platelet > 300/L (hazard ratios (HR) = 2.753, 95% confidence interval (95%CI):1.234-6.142, P = 0.013), CK19 (HR = 1.410, 95%CI:1.006-1.976, P = 0.046), satellite nodule (HR = 1.476, 95%CI:1.026-2.120, P = 0.036), microvascular invasion (HR = 2.927, 95%CI:2.006-4.146, P < 0.001), incomplete tumor capsule (HR = 1.539, 95%CI:1.012-2.341, P = 0.044) were independent prognostic indicator of poor RFS. In the test set, postoperative platelet > 300/L (HR = 2.816, 95%CI:1.043-7.603, P = 0.041), CK19 (HR = 1.586, 95%CI:1.016-2.475, P = 0.042), satellite nodule (HR = 1.706, 95%CI:1.067-2.728, P = 0.026), microvascular invasion (HR = 1.611, 95%CI:1.034-2.510, P = 0.035), and tumor without capsule (HR = 1.870, 95%CI:1.120-3.120, P = 0.017) were independent prognostic indicators of poor RFS. The C-index for the nomogram was 0.698 (95%CI: 0.654-0.742) and the C-index for the test set was 0.670 (95%CI: 0.616-0.724). Both internal and external verification showed good results in identification and calibration. CONCLUSION CK19 plays a key role in tumor malignancy through overexpression and the expression of CK19 is an independent adverse factor affecting recurrence; therefore, CK19 can be used as a potential biomarker to predict adverse prognosis after surgery and adjuvant therapy in HCC patients.
Collapse
|
48
|
Woo HY. Biphasic synovial sarcoma with a striking morphological divergence from the main mass to lymph node metastasis: A case report. Medicine (Baltimore) 2022; 101:e28481. [PMID: 35029897 PMCID: PMC8735718 DOI: 10.1097/md.0000000000028481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
RATIONALE Synovial sarcoma accounts for 5% to 10% of all soft tissue sarcomas and involves almost any anatomic site, particularly the deep soft tissue of the extremities of young adults. The incidence rate of lymph node metastases in synovial sarcoma is 3% to 7%, but the detailed morphological features of the metastatic tumors in the lymph node have not been documented. PATIENT CONCERNS A 64-year-old Korean man presented with a huge mass in the left lower thorax and multiple hypermetabolic lymph nodes along the mediastinal, supraclavicular, internal mammary, and retrocrural regions. DIAGNOSES The patient was diagnosed with primary pleuropulmonary biphasic synovial sarcoma with lymph node metastases, where the main mass mostly comprised spindle cells (>95%) and the metastatic lymph nodes comprised only epithelial cells. INTERVENTIONS Left lower lobe lobectomy with the resection of the chest wall (including left ribs 8-10) and diaphragm and mediastinal lymph node dissection were performed. OUTCOMES In the 2-month follow-up period, there have been no complications so far, and the attending physician is currently planning for the adjuvant chemotherapy. LESSONS The main mass and the metastatic lesion can be clearly different morphologically. In tumors with biphasic differentiation, such as synovial sarcoma, cells that constitute only a small fraction of the main mass may appear as the dominant cells in metastatic lesions.
Collapse
Affiliation(s)
- Ha Young Woo
- Department of Pathology, National Cancer Center, Goyang, Republic of Korea
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
49
|
Su T, Wang T, Zhang N, Shen Y, Li W, Xing H, Yang M. Long non-coding RNAs in gastrointestinal cancers: implications for protein phosphorylation. Biochem Pharmacol 2022; 197:114907. [PMID: 35007523 DOI: 10.1016/j.bcp.2022.114907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
Phosphorylation of proteins is one of the most extensively investigated post-translational protein modifications. Threonine, serine and tyrosine in proteins are the most commonly phosphorylated amino acids. Dysregulated cancer-related signaling pathways due to aberrant phosphorylation status of the key protein(s) in these pathways exist in most malignancies. Intensive studies in the recent decade have implicated long non-coding RNAs (lncRNAs) in the precise regulation of protein phosphorylation in cancers. In this review, we systematically delve into recent advance that underlines the multidimensional role of lncRNAs in modulating protein phosphorylation, regulating cancerous signaling and impacting prognosis of gastrointestinal (GI) cancers including hepatocellular carcinoma, colorectal cancer, gastric cancer, esophageal cancer, and pancreatic cancer. LncRNAs regulate protein phosphorylation via directly binding to the target protein(s), interacting with the partner protein(s) of the target protein(s) or lncRNAs-encoded small peptides. Although there are still extensive studies on disclosing the intricate interactions between lncRNAs and proteins and their impacts on protein phosphorylation, we believe that targeting lncRNAs controlling phosphorylation of key protein(s) in cancerous signaling pathways might provide novel paths for precision therapeutics of GI cancers in the future.
Collapse
Affiliation(s)
- Tao Su
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Teng Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China
| | - Yue Shen
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenwen Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.
| | - Ming Yang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China.
| |
Collapse
|
50
|
Woo HY, Rhee H, Yoo JE, Kim SH, Choi GH, Kim DY, Woo HG, Lee HS, Park YN. Lung and lymph node metastases from hepatocellular carcinoma: Comparison of pathological aspects. Liver Int 2022; 42:199-209. [PMID: 34490997 DOI: 10.1111/liv.15051] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/30/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Extrahepatic metastasis from hepatocellular carcinoma (HCC) is a catastrophic event, yet organ-specific pathological characteristics of metastatic HCC remain unclear. We aimed to characterize the pathological aspects of HCC metastases to various organs. METHODS We collected intrahepatic HCC (cohort 1, n = 322) and extrahepatic metastatic HCC (cohort 2, n = 130) samples. Clinicopathological evaluation and immunostaining for K19, CD34, αSMA, fibroblast-associated protein (FAP), CAIX, VEGF, PD-L1, CD3, CD8, Foxp3, CD163 and epithelial-mesenchymal transition (EMT)-related markers were performed. RESULTS Independent factors for extrahepatic metastasis included BCLC stage B-C, microvascular invasion (MVI), vessels encapsulating tumour clusters (VETC)-HCC, K19 and FAP expression, and CD163+ macrophage infiltration (cohort 1, P < .05 for all). Lung metastases (n = 63) had the highest proportion of VETC-HCC and macrotrabecular-massive (MTM)-HCC. Lymph node metastases (n = 19) showed significantly high rates of EMT-high features, K19 expression, fibrous tumour stroma with αSMA and FAP expression, high immune cell infiltration, PD-L1 expression (combined positive score), CD3+, CD8+, Foxp3+ T cell and CD163+ macrophage infiltration (adjusted P < .05 for all). In both cohorts, EMT-high HCCs showed higher rates of K19 expression, fibrous tumour stroma, high immune cell infiltration, PD-L1 expression and CD3+ T cell infiltration, whereas EMT-low HCCs were more frequent among VETC-HCCs (P < .05 for all). Overall phenotypic features were not significantly different between paired primary-metastatic HCCs (n = 32). CONCLUSIONS Metastatic HCCs to various organs showed different pathological features. VETC and MTM subtypes were related to lung metastasis, whereas K19 expression, EMT-high features with fibrous tumour stroma and high immune cell infiltration were related to lymph node metastasis.
Collapse
Affiliation(s)
- Ha Young Woo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Hyungjin Rhee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gi Hong Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|