1
|
Xu M, Zhao J, Zhu L, Ge C, Sun Y, Wang R, Li Y, Dai X, Kuang Q, Hu L, Luo J, Kuang G, Ren Y, Wang B, Tan J, Shi S. Targeting PYK2 with heterobifunctional T6BP helps mitigate MASLD and MASH-HCC progression. J Hepatol 2025; 82:277-300. [PMID: 39260704 DOI: 10.1016/j.jhep.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND & AIMS The mechanisms underlying the regulation of hepatocyte non-receptor tyrosine kinases in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear. METHODS Hepatocyte-specific overexpression or deletion and anti-protein tyrosine kinase 2 beta (PYK2) or anti-TRAF6-binding protein (T6BP) crosslinking were utilized to study fatty liver protection by T6BP. A P-PTC (peptide-proteolysis targeting chimera) degrades PYK2 to block MASH progression. RESULTS We found that T6BP is a novel and critical suppressor of PYK2 that reduces hepatic lipid accumulation, pro-inflammatory factor release, and pro-fibrosis production. Mechanistic evidence suggests that T6BP directly targets PYK2 and prevents its N-terminal FERM domain-triggered dimerization, disrupting downstream PYK2-JNK signaling hyperactivation. Additionally, T6BP favorably recruits CBL, a particular E3 ubiquitin ligase targeting PYK2, to form a complex and degrade PYK2. T6BP (F1), a core fragment of T6BP, directly blocks N-terminal FERM domain-associated dimerization of PYK2, followed by T6BP-recruiting CBL-mediated PYK2 degradation in a typical T6BP-dependent manner when the tiny fragment is specifically expressed using thyroxine binding globulin (TBG) vectors. This inhibits the progression of MASH, MASH-related hepatocellular carcinoma, and metabolic syndrome in dietary rodent models. We devised, and validated in animal models, the first-ever P-PTC based on the core segment of T6BP, as a ligand for the targeted recruitment of CBL, that could be used to target metabolic disorders like MASH. CONCLUSIONS Our study uncovered a previously unknown mechanism, with T6BP identified as a key suppressor of steatosis. This, alongside the discovery of crucial T6BP-based fragments that interrupt PYK2 dimerization hold much promise for the treatment of MASH. IMPACT AND IMPLICATIONS Excessive high-energy diet ingestion is critical in driving steatohepatitis via regulation of hepatocyte non-receptor tyrosine kinases. The mechanisms underlying the regulation of hepatocyte PYK2 in metabolic dysfunction-associated steatohepatitis remain largely unclear. Here, we found that T6BP as a critical fatty liver eliminator could be used for the development of promising therapeutic options. Additionally, vital T6BP-based pharmacon fragments that impede PYK2 dimerization have been found, offering new and effective treatments for advanced fatty liver symptoms and complications.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Junjie Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yan Sun
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Ranran Wang
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing 400067, PR China
| | - Yuanyuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Yanrong Ren
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China.
| | - Shengbin Shi
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 250117, PR China.
| |
Collapse
|
2
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Zheng Q, Lu C, Yu L, Zhan Y, Chen Z. Exploring the metastasis-related biomarker and carcinogenic mechanism in liver cancer based on single cell technology. Heliyon 2024; 10:e27473. [PMID: 38509894 PMCID: PMC10950590 DOI: 10.1016/j.heliyon.2024.e27473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal primary malignancy characterized by high invasion and migration. We aimed to explore the underlying metastasis-related mechanism supporting the development of HCC. Methods The dataset of single cell RNA-seq (GSE149614) were collected for cell clustering by using the Seurat R package, the FindAllMarkers function was used to find the highly expression and defined the cell cluster. The WebGestaltR package was used for the GO and KEGG function analysis of shared genes, the Gene Set Enrichment Analysis (GSVA) was performed by clusterProfiler R package, the hTFtarget database was used to identify the crucial transcription factors (TFs), the Genomics of Drug Sensitivity in Cancer (GDSC) database was used for the drug sensitivity analysis. Finally, the overexpression and trans-well assay was used for gene function analysis. Results We obtained 9 cell clusters from the scRNA-seq data, including the nature killer (NK)/T cells, Myeloid cells, Hepatocytes, Epithelial cells, Endothelial cells, Plasma B cells, Smooth muscle cells, B cells, Liver bud hepatic cells. Further cell ecological analysis indicated that the Hepatocytes and Endothelial cell cluster were closely related to the cancer metastasis. Subsequently, the NDUFA4L2-Hepatocyte, GTSE1-Hepatocyte, ENTPD1-Endothelial and NDUFA4L2-Endothelial were defined as metastasis-supporting cell clusters, in which the NDUFA4L2-Hepatocyte cells was closely related to angiogenesis, while the NDUFA4L2-Endothelial was related with the inflammatory response and complement response. The overexpression and trans-well assay displayed that NDUFA4L2 exhibited clearly metastasis-promoting role in HCC progression. Conclusion We identified and defined 4 metastasis-supporting cell clusters by using the single cell technology, the specify shared gene was observed and played crucial role in promoting cancer progression, our findings were expected to provide new insight in control cancer metastasis.
Collapse
Affiliation(s)
- Qiuxiang Zheng
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Cuiping Lu
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Ying Zhan
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Zhiyong Chen
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| |
Collapse
|
4
|
Wang P, Jie Y, Yao L, Sun YM, Jiang DP, Zhang SQ, Wang XY, Fan Y. Cells in the liver microenvironment regulate the process of liver metastasis. Cell Biochem Funct 2024; 42:e3969. [PMID: 38459746 DOI: 10.1002/cbf.3969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
The research of liver metastasis is a developing field. The ability of tumor cells to invade the liver depends on the complicated interactions between metastatic cells and local subpopulations in the liver (including Kupffer cells, hepatic stellate cells, liver sinusoidal endothelial cells, and immune-related cells). These interactions are mainly mediated by intercellular adhesion and the release of cytokines. Cell populations in the liver microenvironment can play a dual role in the progression of liver metastasis through different mechanisms. At the same time, we can see the participation of liver parenchymal cells and nonparenchymal cells in the process of liver metastasis of different tumors. Therefore, the purpose of this article is to summarize the relationship between cellular components of liver microenvironment and metastasis and emphasize the importance of different cells in the occurrence or potential regression of liver metastasis.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Jie
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lin Yao
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi-Meng Sun
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Da-Peng Jiang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shi-Qi Zhang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Tarchi SM, Pernia Marin M, Hossain MM, Salvatore M. Breast stiffness, a risk factor for cancer and the role of radiology for diagnosis. J Transl Med 2023; 21:582. [PMID: 37649088 PMCID: PMC10466778 DOI: 10.1186/s12967-023-04457-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
Over the last five decades, breast density has been associated with increased risk of developing breast cancer. Mammographically dense breasts are considered those belonging to the heterogeneously dense breasts, and extremely dense breasts subgroups according to the American College of Radiology's Breast Imaging Reporting and Data System (BI-RADS). There is a statistically significant correlation between the increased mammographic density and the presence of more glandular tissue alone. However, the strength of this correlation is weak. Although the mechanisms driving breast density-related tumor initiation and progression are still unknown, there is evidence suggesting that certain molecular pathways participating in epithelial-stromal interactions may play a pivotal role in the deposition of fibrillar collagen, increased matrix stiffness, and cell migration that favor breast density and carcinogenesis. This article describes these molecular mechanisms as potential "landscapers" for breast density-related cancer. We also introduce the term "Breast Compactness" to reflect collagen density of breast tissue on chest CT scan and the use of breast stiffness measurements as imaging biomarkers for breast cancer screening and risk stratification.
Collapse
Affiliation(s)
- Sofia M Tarchi
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Md Murad Hossain
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
7
|
Yang W, Pan L, Cheng Y, Wu X, Tang B, Zhu H, Zhang M, Zhang Y. Nintedanib alleviates pulmonary fibrosis in vitro and in vivo by inhibiting the FAK/ERK/S100A4 signalling pathway. Int Immunopharmacol 2022; 113:109409. [PMID: 36461602 DOI: 10.1016/j.intimp.2022.109409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
8
|
Zhou J, Zhang B, Wang H, Wang D, Zhang M, Zhang M, Wang X, Fan S, Xu Y, Zeng Q, Jia Y, Xi J, Nan X, He L, Zhou X, Li S, Zhong W, Yue W, Pei X. A Functional Screening Identifies a New Organic Selenium Compound Targeting Cancer Stem Cells: Role of c-Myc Transcription Activity Inhibition in Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201166. [PMID: 35652264 PMCID: PMC9353477 DOI: 10.1002/advs.202201166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Indexed: 05/04/2023]
Abstract
Cancer stem cells (CSCs) are reported to play essential roles in chemoresistance and metastasis. Pathways regulating CSC self-renewal and proliferation, such as Hedgehog, Notch, Wnt/β-catenin, TGF-β, and Myc, may be potential therapeutic targets. Here, a functional screening from the focused library with 365 compounds is performed by a step-by-step strategy. Among these candidate molecules, phenyl-2-pyrimidinyl ketone 4-allyl-3-amino selenourea (CU27) is chosen for further identification because it proves to be the most effective compound over others on CSC inhibition. Through ingenuity pathway analysis, it is shown CU27 may inhibit CSC through a well-known stemness-related transcription factor c-Myc. Gene set enrichment analysis, dual-luciferase reporter assays, expression levels of typical c-Myc targets, molecular docking, surface plasmon resonance, immunoprecipitation, and chromatin immunoprecipitation are conducted. These results together suggest CU27 binds c-Myc bHLH/LZ domains, inhibits c-Myc-Max complex formation, and prevents its occupancy on target gene promoters. In mouse models, CU27 significantly sensitizes sorafenib-resistant tumor to sorafenib, reduces the primary tumor size, and inhibits CSC generation, showing a dramatic anti-metastasis potential. Taken together, CU27 exerts inhibitory effects on CSC and CSC-associated traits in hepatocellular carcinoma (HCC) via c-Myc transcription activity inhibition. CU27 may be a promising therapeutic to treat sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Jun‐Nian Zhou
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Hai‐Yang Wang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Dong‐Xing Wang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
| | - Ming‐Ming Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
| | - Min Zhang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xiao‐Kui Wang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Shi‐Yong Fan
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Ying‐Chen Xu
- Department of Hepatobiliary SurgeryBeijing Tongren HospitalBeijing100730P. R. China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Ya‐Li Jia
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Jia‐Fei Xi
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Xue Nan
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Li‐Juan He
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Xin‐Bo Zhou
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Song Li
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Wu Zhong
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Wen Yue
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Xue‐Tao Pei
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| |
Collapse
|
9
|
Parveen S, Khamari A, Raju J, Coppolino MG, Datta S. Syntaxin 7 contributes to breast cancer cell invasion by promoting invadopodia formation. J Cell Sci 2022; 135:275829. [PMID: 35762511 DOI: 10.1242/jcs.259576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
Invasion in various cancer cells requires coordinated delivery of signaling proteins, adhesion proteins, actin-remodeling proteins and proteases to matrix-degrading structures called invadopodia. Vesicular trafficking involving SNAREs plays a crucial role in the delivery of cargo to the target membrane. Screening of 13 SNAREs from the endocytic and recycling route using a gene silencing approach coupled with functional assays identified syntaxin 7 (STX7) as an important player in MDA-MB-231 cell invasion. Total internal reflection fluorescence microscopy (TIRF-M) studies revealed that STX7 resides near invadopodia and co-traffics with MT1-MMP (also known as MMP14), indicating a possible role for this SNARE in protease trafficking. STX7 depletion reduced the number of invadopodia and their associated degradative activity. Immunoprecipitation studies revealed that STX7 forms distinct SNARE complexes with VAMP2, VAMP3, VAMP7, STX4 and SNAP23. Depletion of VAMP2, VAMP3 or STX4 abrogated invadopodia formation, phenocopying what was seen upon lack of STX7. Whereas depletion of STX4 reduced MT1-MMP level at the cell surfaces, STX7 silencing significantly reduced the invadopodia-associated MT1-MMP pool and increased the non-invadosomal pool. This study highlights STX7 as a major contributor towards the invadopodia formation during cancer cell invasion. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| | - Amrita Khamari
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| | - Jyothikamala Raju
- Thazhathemalayil House, Thodupuzha East PO, Keerikode, Kerala 685585, India
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| |
Collapse
|
10
|
Shen X, Zhao J, Wang Q, Chen P, Hong Y, He X, Chen D, Liu H, Wang Y, Cai X. The Invasive Potential of Hepatoma Cells Induced by Radiotherapy is Related to the Activation of Stellate Cells and Could be Inhibited by EGCG Through the TLR4 Signaling Pathway. Radiat Res 2022; 197:365-375. [PMID: 35051295 DOI: 10.1667/rade-21-00129.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
Post-radiotherapy recurrence and metastasis of liver cancer were thought to arise from the invasion and metastasis of residual hepatocellular carcinoma cells, but it has now been shown to be closely related to the increased metastatic potential of residual liver cancer cells mediated by radiotherapy. The changes of liver microenvironment after radiotherapy also provide a favorable condition for promoting the metastatic potential of hepatocellular carcinoma. Studies have shown that radiation-induced activation of hepatic stellate cells (HSCs) is one of the main changes in the microenvironment of hepatocellular carcinoma. Therefore, we hypothesized that activated HSCs are involved in regulating the metastatic capacity of residual cancer cells after radiotherapy. The present study observed that 48 h co-culture of three human hepatoma cell lines (MHCC97-L, Hep-3B, LM3) with a irradiated human HSC line (LX-2) in a transwell chamber could significantly improve the invasion of the human hepatoma cells; and the culture supernatant of activated HSCs could also enhance the invasion of the hepatoma cells. In contrast, co-culture with irradiated hepatoma cells enhanced the invasion of LX-2 cells. In vitro, irradiation enhanced the activation phenotype and the toll like receptor 4 (TLR4) signaling pathway of LX-2 cells or primary mouse HSCs, which upregulated intercellular cell adhesion molecule-1 (ICAM1), laminin receptor (67 LR), Interleukin- 6 (IL-6), and CX3C chemokine ligand 1 (CX3CL1) and downregulated toll-interacting proteins. The compound (-)-epigallocatechin-3-gallate (EGCG) inhibited signal transduction of activated TLR4 and radiation-induced invasion of LX-2 cells by binding to 67 LR. These observations indicated that the enhancement of the metastatic potential of hepatoma cells after irradiation was relevant to the activation of HSCs, and the activation of TLR4 signaling pathway was involved in this process, which was inhibited by EGCG. Our results will help enhance the therapeutic efficacy of liver cancer stereotactic body radiation therapy to prevent and decrease the risks of post-radiotherapy recurrence and metastasis.
Collapse
Affiliation(s)
- Xiaoyun Shen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Jia Zhao
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Qi Wang
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Ping Chen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yiyang Hong
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaoyan He
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Dafang Chen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hui Liu
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
11
|
Review: Challenges of In Vitro CAF Modelling in Liver Cancers. Cancers (Basel) 2021; 13:cancers13235914. [PMID: 34885024 PMCID: PMC8656609 DOI: 10.3390/cancers13235914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Liver cancer and tumours spreading from other organs to the liver are associated with high death rates. Current treatments include surgical removal of the tumour and chemotherapy. Unfortunately, patients are often re-diagnosed with liver nodules in the years after cessation of the treatment. Therefore, scientists are looking for alternative treatment strategies, and these include targeting the tumour environment. The tumour environment includes the cancer-associated fibroblasts, which could be an interesting target for therapy in combination with current strategies. In this review paper we summarize the current models to investigate the effect of the tumour on the cancer-associated fibroblasts. Not many studies focus on the cancer-associated fibroblasts in non-animal models and this should improve in order to better understand the role of the cancer-associated fibroblasts and to evaluate the potential of cancer-associated fibroblast-directed therapies. Abstract Primary and secondary liver cancer are the third cause of death in the world, and as the incidence is increasing, liver cancer represents a global health burden. Current treatment strategies are insufficient to permanently cure patients from this devastating disease, and therefore other approaches are under investigation. The importance of cancer-associated fibroblasts (CAFs) in the tumour microenvironment is evident, and many pre-clinical studies have shown increased tumour aggressiveness in the presence of CAFs. However, it remains unclear how hepatic stellate cells are triggered by the tumour to become CAFs and how the recently described CAF subtypes originate and orchestrate pro-tumoural effects. Specialized in vitro systems will be needed to address these questions. In this review, we present the currently used in vitro models to study CAFs in primary and secondary liver cancer and highlight the trend from using oversimplified 2D culture systems to more complex 3D models. Relatively few studies report on the impact of cancer (sub)types on CAFs and the tumour microenvironment, and most studies investigated the impact of secreted factors due to the nature of the models.
Collapse
|
12
|
Grgurevic I, Bozin T, Mikus M, Kukla M, O’Beirne J. Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease: From Epidemiology to Diagnostic Approach. Cancers (Basel) 2021; 13:5844. [PMID: 34830997 PMCID: PMC8616369 DOI: 10.3390/cancers13225844] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of liver morbidity worldwide and, as such, represents the pathogenic background for the increasing incidence of hepatocellular carcinoma (HCC). The annual incidence of NAFLD-related HCC is expected to increase by 45-130% by 2030. Diabetes mellitus is the most important risk factor for HCC development in NAFLD, with the risk further increased when associated with other metabolic traits, such as obesity, arterial hypertension and dyslipidemia. The highest risk of HCC exists in patients with advanced fibrosis or cirrhosis, although 20-50% of HCC cases arise in NAFLD patients with an absence of cirrhosis. This calls for further investigation of the pathogenic mechanisms that are involved in hepatocarcinogenesis, including genetics, metabolomics, the influence of the gut microbiota and immunological responses. Early identification of patients with or at risk of NAFLD is of utmost importance to improve outcomes. As NAFLD is highly prevalent in the community, the identification of cases should rely upon simple demographic and clinical characteristics. Once identified, these patients should then be evaluated for the presence of advanced fibrosis or cirrhosis and subsequently enter HCC surveillance programs if appropriate. A significant problem is the early recognition of non-cirrhotic NAFLD patients who will develop HCC, where new biomarkers and scores are potential solutions to tackle this issue.
Collapse
Affiliation(s)
- Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
- Faculty of Pharmacy and Biochemistry, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Tonci Bozin
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
| | - Mislav Mikus
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia;
| | - Michal Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, 30688 Cracow, Poland;
| | - James O’Beirne
- Department of Hepatology, University of the Sunshine Coast, Sunshine Coast 4556, Australia;
| |
Collapse
|
13
|
Sun H, Meng Q, Shi C, Yang H, Li X, Wu S, Familiari G, Relucenti M, Aschner M, Wang X, Chen R. Hypoxia-Inducible Exosomes Facilitate Liver-Tropic Premetastatic Niche in Colorectal Cancer. Hepatology 2021; 74:2633-2651. [PMID: 34110633 DOI: 10.1002/hep.32009] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/17/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Liver metastasis is a frequent occurrence in patients with colorectal cancer (CRC), with 15%-25% of CRC patients having liver metastases at the time of initial diagnosis. Specifically, some regional-stage patients with mild symptoms (stage 1 or 2) will also advance to liver metastases rapidly, even if the CRC lesion in situ is resected in time. Nevertheless, the precise mechanism of liver metastasis is still unclear. APPROACH AND RESULTS Fresh tumor tissues from patients with CRC, adjacent noncancerous tissues, and colorectal adenoma tissues were subjected to microarray analysis to identify differentially expressed microRNA. Exosomes from human serum and cell culture medium were separated, quantitated, and verified by transmission electronic microscopy and Zetasizer Nano. Luciferase reporter assay, real-time quantitative PCR, western blot, immunoprecipitation, chromatin and re-chromatin immunoprecipitation, migration and invasion assay, PDX mouse model, flow cytometry, immunohistochemistry, and immunofluorescence staining were employed to explore the regulation among CRC liver metastases, immunosuppression, and cell adhesion. In this study, we demonstrated that the hypoxic microenvironment in primary CRC lesions boosted exosome release, selectively initiated favorable premetastatic niche formation in the liver but not in other organs. Mechanistically, Kupffer cells (KCs) can phagocytose exosomes containing highly expressed miR-135a-5p from the blood circulation into the liver. Exosomal miR-135a-5p initiated the large tumor suppressor kinase 2-yes-associated protein-matrix metalloproteinase 7 axis to promote the occurrence of CRC liver metastasis, and cluster of differentiation 30-TNF receptor-associated factor 2-p65-mediated immunosuppression signaling also contributed to this process. CONCLUSIONS Hypoxia-induced exosomal miR-135a-5p correlates with the development, clinical severity, and prognosis of CRC liver metastases through the premetastatic niche; and our findings revealed that miR-135a-5p might be a promising target in halting CRC liver metastases.
Collapse
Affiliation(s)
- Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Chengyu Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Hongbao Yang
- Center for Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Giuseppe Familiari
- Laboratory of Electron Microscopy "Pietro Motta,", SAIMLAL Department, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Michela Relucenti
- Laboratory of Electron Microscopy "Pietro Motta,", SAIMLAL Department, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Feng Y, Wei G, Zhang L, Zhou H, Wang W, Guo P, Cheng C, Ji L, Cai Q, Feng Y, Tu H. LncRNA DARS-AS1 aggravates the growth and metastasis of hepatocellular carcinoma via regulating the miR-3200-5p-Cytoskeleton associated protein 2 (CKAP2) axis. Bioengineered 2021; 12:8217-8232. [PMID: 34596006 PMCID: PMC8806480 DOI: 10.1080/21655979.2021.1982272] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Accumulating signs have found that long noncoding RNAs (lncRNAs) contribute to hepatocellular carcinoma (HCC). Here, we probed the effect and mechanism of lncRNA DARS-AS1 in HCC. The profiles of DARS-AS1 and Cytoskeleton associated protein 2 (CKAP2) in 50 HCC tissues and non-tumor tissues were examined by real-time quantitative polymerase chain reaction (RT-qPCR). DARS-AS1 and CKAP2 overexpression and/or knockdown cell models were established. The proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) were determined. CKAP2, and focal adhesion kinase (FAK)-extracellular signal-regulated kinase (ERK) was tested by Western blot (WB). The relationship between DARS-AS1 and CKAP2 was predicted by Bioinformatics, and the dual-luciferase reporter assay was applied to verify the targeting association between miR-3200-5p and DARS-AS1 and CKAP2. DARS-AS1 was overexpressed in HCC tissues (vs. that in non-tumor tissues) and was closely correlated with the patients’ tumor stage. DARS-AS1 facilitated HCC cell proliferation and hampered apoptosis. HCC cell migration and EMT were enhanced by DARS-AS1. DARS-AS1 up-regulated CKAP2, which aggravated HCC. Further investigation illustrated that either DARS-AS1 or CKAP2 activated FAK-ERK pathway, and miR-3200-5p was competitively restrained by DARS-AS1. miR-3200-5p exerted tumor-suppressive effects in HCC and inactivated CKAP2 and FAK-ERK pathway. All in all, this study corroborates that DARS-AS1 facilitates HCC proliferation and metastasis by regulating miR-3200-5p-mediated CKAP2, which provides a potential target for HCC diagnosis and treatment. Abbreviations: CCK-8: cell counting kit-8; CKAP2: Cytoskeleton associated protein 2; cDNA:complementary DNA; DAPI: 4ʹ,6-diamidino-2-phenylindole; DARS-AS1: DARS1 antisense RNA 1; DEPC: diethyl pyrocarbonate; DMEM-F12: Dulbecco’s minimal essential medium/Ham’s-F12; EMT: epithelial-mesenchymal transition; ERK: extracellular signal-regulated kinase; FAK: focal adhesion kinase; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC: hepatocellular carcinoma; HE: hematoxylin-eosin; IHC: Immunohistochemistry; LIHC: Liver hepatocellular carcinoma; lncRNAs: long noncoding RNAs; MIAT: lncRNA myocardial infarction-related transcripts; MT: Mutant; NC: negative control; PBS: phosphate-buffered saline; PMSF: Phenylmethylsulfonyl fluoride; PVDF: polyvinylidene difluoride; RT: room temperature; RT-qPCR: real-time quantitative polymerase chain reaction; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SPF: specific pathogen-free; TMAP: tumor-associated microtubule-associated protein; TUNEL: TdT-mediated dUTP nick end labeling; V: volume; WT: wild type.
Collapse
Affiliation(s)
- Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Gang Wei
- Department of Gastroentrology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Linfei Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Guo
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Caitao Cheng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Ji
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
15
|
Li Y, Sun XL, Ma CL, Li C, Zhan Y, Li WT, Li C, Wang YH. STX2 Promotes Trophoblast Growth, Migration, and Invasion Through Activation of the PI3K-AKT Pathway in Preeclampsia. Front Cell Dev Biol 2021; 9:615973. [PMID: 34295885 PMCID: PMC8292021 DOI: 10.3389/fcell.2021.615973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Abnormal trophoblast behaviors during pregnancy contribute to the development of preeclampsia (PE). Syntaxin2 (STX2) has been shown to be a crucial epithelial mediator in numerous diseases. However, the functions of STX2 and the mechanisms underlying its role in PE remain largely unknown. The aim of this study was to explore the role of STX2 on trophoblast biology and unravel the molecular mechanisms that contribute to the development and progression of PE. Materials and Methods We first compared the expression of STX2 in placental tissues from women with PE and women with normal pregnancies. Then, we investigated the role of STX2 on trophoblast proliferation, migration and invasion in HTR-8/SVneo and primary human trophoblast cells by loss or gain of function experiments. In addition, co-immunoprecipitation, pulldown and immunofluorescence assays were performed to investigate the co-localization of STX2 with other proteins, and to help clarify the mechanisms underlying STX2-mediated functions on trophoblasts. Results We demonstrated that STX2 expression was downregulated in placental tissues of women with PE compared with those from normal pregnancies. Loss and gain of function experiments further confirmed a role for STX2 in cell proliferation, migration and invasion in trophoblasts. By co-immunoprecipitation, pulldown and immunofluorescence co-localization assays, we revealed that STX2 selectively interacted with p85, a subunit of PI3K, and directly recruited p85 to the cytomembrane, thereby activating the AKT signaling pathway. We further demonstrated that the AKT activation was abolished by the use of a PI3K inhibitor (LY294002), which negatively affected STX2-mediated functions on trophoblasts. Conclusion All together, our findings point to a crucial role for STX2 in PE progression. Our new insights also suggest that STX2 may be a potential diagnostic tool and a novel therapeutic target for treating PE.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xian-Li Sun
- Department of Obstetrics and Gynecology, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Chun-Ling Ma
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Li
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ying Zhan
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wen-Ting Li
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Can Li
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yi-Hao Wang
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Wu J, Gao W, Tang Q, Yu Y, You W, Wu Z, Fan Y, Zhang L, Wu C, Han G, Zuo X, Zhang Y, Chen Z, Ding W, Li X, Lin F, Shen H, Tang J, Zhang Y, Wang X. M2 Macrophage-Derived Exosomes Facilitate HCC Metastasis by Transferring α M β 2 Integrin to Tumor Cells. Hepatology 2021; 73:1365-1380. [PMID: 32594528 PMCID: PMC8360085 DOI: 10.1002/hep.31432] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/26/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS The development and progression of hepatocellular carcinoma (HCC) is dependent on its local microenvironment. Tumor-associated macrophages (TAMs) are deemed a key factor for the tumor microenvironment and attribute to contribute to tumor aggressiveness. However, the detailed mechanism underlying the pro-metastatic effect of TAMs on HCC remains undefined. APPROACH AND RESULTS The present study proved that TAMs were enriched in HCC. TAMs were characterized by an M2-polarized phenotype and accelerated the migratory potential of HCC cells in vitro and in vivo. Furthermore, we found that M2-derived exosomes induced TAM-mediated pro-migratory activity. With the use of mass spectrometry, we identified that integrin, αM β2 (CD11b/CD18), was notably specific and efficient in M2 macrophage-derived exosomes (M2 exos). Blocking either CD11b and/or CD18 elicited a significant decrease in M2 exos-mediated HCC cell metastasis. Mechanistically, M2 exos mediated an intercellular transfer of the CD11b/CD18, activating the matrix metalloproteinase-9 signaling pathway in recipient HCC cells to support tumor migration. CONCLUSIONS Collectively, the exosome-mediated transfer of functional CD11b/CD18 protein from TAMs to tumor cells may have the potency to boost the migratory potential of HCC cells, thus providing insights into the mechanism of tumor metastasis.
Collapse
|
17
|
Wang F, Malnassy G, Qiu W. The Epigenetic Regulation of Microenvironment in Hepatocellular Carcinoma. Front Oncol 2021; 11:653037. [PMID: 33791228 PMCID: PMC8005717 DOI: 10.3389/fonc.2021.653037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal and complex malignancy strongly influenced by the surrounding tumor microenvironment. The HCC microenvironment comprises hepatic stellate cells (HSCs), tumor-associated macrophages (TAMs), stromal and endothelial cells, and the underlying extracellular matrix (ECM). Emerging evidence demonstrates that epigenetic regulation plays a crucial role in altering numerous components of the HCC tumor microenvironment. In this review, we summarize the current understanding of the mechanisms of epigenetic regulation of the microenvironment in HCC. We review recent studies demonstrating how specific epigenetic mechanisms (DNA methylation, histone regulation, and non-coding RNAs mediated regulation) in HSCs, TAMs, and ECM, and how they contribute to HCC development, so as to gain new insights into the treatment of HCC via regulating epigenetic regulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|
18
|
Wang Y, Li Y, Zhou H, Qian X, Hu Y. Syntaxin 2 promotes colorectal cancer growth by increasing the secretion of exosomes. J Cancer 2021; 12:2050-2058. [PMID: 33754003 PMCID: PMC7974533 DOI: 10.7150/jca.51494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most common cancers with high mortality worldwide. Uncontrolled growth is an important hallmark of CRC. However, the mechanisms are poorly understood. Methods: Syntaxin 2 (STX2) expression was analyzed in 160 cases of paraffin-embedded CRC tissue by immunohistochemistry, in 10 cases of fresh CRC tissue by western blot, and in 2 public databases. Gain- and loss-of-function analyses were used to investigate the biological function of STX2 in CRC growth. Exosomes isolation, characterization, Co-immunoprecipitation (Co-IP), flow cytometry and fluorescence were conducted to study the molecular mechanism of STX2 in CRC growth. Results: The expression of STX2 was obviously up-regulated in human CRC tissues. Overexpression of STX2 increased the growth of CRC cells in vitro and in vivo. Downregulation of STX2 repressed the growth of CRC. STX2 modulated exosomes secretion of CRC cells which might correlated with Rab8a expression. The secreted exosomes could be ingested by CRC cells, and ultimately promoted the growth of CRC by arresting the tumor cells at S phase. Conclusions: Our data provide evidence that STX2 promotes CRC growth by increasing exosomes secretion of CRC cells; And the modulation of STX2 in exosomes secretion correlates with Rab8a. Thus, our study identified a new mechanism of STX2 in CRC growth and may provide a possible strategy for CRC therapy.
Collapse
Affiliation(s)
- Yongxia Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Provincial Key Laboratory of Molecular Tumor Pathology, Henan, Xinxiang, China
| | - Yongzhen Li
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Provincial Key Laboratory of Molecular Tumor Pathology, Henan, Xinxiang, China
| | - Hong Zhou
- Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xinlai Qian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Provincial Key Laboratory of Molecular Tumor Pathology, Henan, Xinxiang, China
| | - Yuhan Hu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Provincial Key Laboratory of Molecular Tumor Pathology, Henan, Xinxiang, China
| |
Collapse
|
19
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
20
|
Wang YX, Li YZ, Zhu HF, Zhang ZY, Qian XL, He GY. STX2 drives colorectal cancer proliferation via upregulation of EXOSC4. Life Sci 2020; 263:118597. [PMID: 33075373 DOI: 10.1016/j.lfs.2020.118597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
AIMS To explore the biological function and mechanism of Syntaxin2 (STX2) in Colorectal cancer (CRC) proliferation. MAIN METHODS A series of gain- and loss-of-function analysis were conducted the to explore the biological function of STX2 in CRC proliferation in vivo and in vitro. Western blot, Co-immunoprecipitation (Co-IP) and the functional analyses were taken to analyze the regulative role of STX2 on Exosome Complex 4 (EXOSC4) in CRC proliferation; Immunohistochemistry (IHC) and Real-time quantitative polymerase chain reaction (qPCR) were used to further verify the relationship between the expression of STX2 and EXOSC4 in human CRC samples. KEY FINDINGS Our study revealed that the over-expression of STX2 promoted CRC proliferation, while knockdown of STX2 repressed CRC proliferation; STX2 promoted CRC proliferation via increasing EXOSC4 protein; There was a positive correlation between STX2 and EXOSC4 expression. SIGNIFICANCE The current data verify that STX2 drives the proliferation of CRC via increasing the expression of EXOSC4.
Collapse
Affiliation(s)
- Yong-Xia Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China
| | - Yong-Zhen Li
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China
| | - Hui-Fang Zhu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China
| | - Zhe-Ying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China
| | - Xin-Lai Qian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China.
| | - Guo-Yang He
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China.
| |
Collapse
|
21
|
Barry AE, Baldeosingh R, Lamm R, Patel K, Zhang K, Dominguez DA, Kirton KJ, Shah AP, Dang H. Hepatic Stellate Cells and Hepatocarcinogenesis. Front Cell Dev Biol 2020; 8:709. [PMID: 32850829 PMCID: PMC7419619 DOI: 10.3389/fcell.2020.00709] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) are a significant component of the hepatocellular carcinoma (HCC) tumor microenvironment (TME). Activated HSCs transform into myofibroblast-like cells to promote fibrosis in response to liver injury or chronic inflammation, leading to cirrhosis and HCC. The hepatic TME is comprised of cellular components, including activated HSCs, tumor-associated macrophages, endothelial cells, immune cells, and non-cellular components, such as growth factors, proteolytic enzymes and their inhibitors, and other extracellular matrix (ECM) proteins. Interactions between HCC cells and their microenvironment have become topics under active investigation. These interactions within the hepatic TME have the potential to drive carcinogenesis and create challenges in generating effective therapies. Current studies reveal potential mechanisms through which activated HSCs drive hepatocarcinogenesis utilizing matricellular proteins and paracrine crosstalk within the TME. Since activated HSCs are primary secretors of ECM proteins during liver injury and inflammation, they help promote fibrogenesis, infiltrate the HCC stroma, and contribute to HCC development. In this review, we examine several recent studies revealing the roles of HSCs and their clinical implications in the development of fibrosis and cirrhosis within the hepatic TME.
Collapse
Affiliation(s)
- Anna E Barry
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Rajkumar Baldeosingh
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Ryan Lamm
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Keyur Patel
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kai Zhang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Dana A Dominguez
- Department of General Surgery, UCSF East Bay, Oakland, CA, United States
| | - Kayla J Kirton
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashesh P Shah
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
22
|
Min X, Zhang X, Li Y, Cao X, Cheng H, Li Y, Li C, Kong Q, Mao Q, Peng P, Ni Y, Li J, Duan Y, Liu L, Ding Z. HSPA12A unstabilizes CD147 to inhibit lactate export and migration in human renal cell carcinoma. Am J Cancer Res 2020; 10:8573-8590. [PMID: 32754264 PMCID: PMC7392002 DOI: 10.7150/thno.44321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Metastasis accounts for 90% of cancer-associated mortality in patients with renal cell carcinoma (RCC). However, the clinical management of RCC metastasis is challenging. Lactate export is known to play an important role in cancer cell migration. This study investigated the role of heat shock protein A12A (HSPA12A) in RCC migration. Methods: HSPA12A expression was examined in 82 pairs of matched RCC tumors and corresponding normal kidney tissues from patients by immunoblotting and immunofluorescence analyses. The proliferation of RCC cells was analyzed using MTT and EdU incorporation assays. The migration of RCC cells was evaluated by wound healing and Transwell migration assays. Extracellular acidification was examined using Seahorse technology. Protein stability was determined following treatment with protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132. Mass spectrometry, immunoprecipitation, and immunoblotting were employed to examine protein-protein interactions. Results: RCC tumors from patients showed downregulation of HSPA12A, which was associated with advanced tumor node metastasis stage. Intriguingly, overexpression of HSPA12A in RCC cells inhibited migration, whereas HSPA12A knockdown had the opposite effect. Lactate export, glycolysis rate, and CD147 protein abundance were also inhibited by HSPA12A overexpression but promoted by HSPA12A knockdown. An interaction of HSPA12A with HRD1 ubiquitin E3 ligase was detected in RCC cells. Further studies demonstrated that CD147 ubiquitination and proteasomal degradation were promoted by HSPA12A overexpression whereas inhibited by HSPA12A knockdown. Notably, the HSPA12A overexpression-induced inhibition of lactate export and migration were abolished by CD147 overexpression. Conclusion: Human RCC shows downregulation of HSPA12A. Overexpression of HSPA12A in RCC cells unstabilizes CD147 through increasing its ubiquitin-proteasome degradation, thereby inhibits lactate export and glycolysis, and ultimately suppresses RCC cell migration. Our results demonstrate that overexpression of HSPA12A might represent a viable strategy for managing RCC metastasis.
Collapse
|
23
|
Chen X, Yin T, Zhang B, Sun B, Chen J, Xiao T, Wang B, Li M, Yang J, Fan X. Inhibitory effects of brusatol delivered using glycosaminoglycan‑placental chondroitin sulfate A‑modified nanoparticles on the proliferation, migration and invasion of cancer cells. Int J Mol Med 2020; 46:817-827. [PMID: 32626948 PMCID: PMC7307823 DOI: 10.3892/ijmm.2020.4627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Breakthroughs in cancer management result from the development of drugs that can be used for early diagnosis and effective treatment. Surgery, chemotherapy, radiotherapy and hormone therapy are the main anticancer therapies. However, traditional cancer chemotherapy is associated with serious systemic side effects. Nanoparticles (NPs) provide an effective solution for cancer treatment via the targeted delivery of drugs to cancer cells, while minimizing injury to normal cells. Glycosaminoglycan-placental chondroitin sulfate A (plCSA) is expressed in a number of tumor cells and trophoblasts. A plCSA-binding peptide (plCSA-BP) was isolated from malaria protein VAR2CSA, which can effectively promote the binding of lipid polymer NPs to tumor cells, thereby significantly enhancing the anticancer effect of encapsulated drugs. Brusatol is an important compound derived from Brucea javanica that exerts a multitude of biological effects, including inhibiting tumor cell growth, reducing the reproduction of malaria parasites, reducing inflammation and resisting virus invasion. In the present study, brusatol-loaded NPs (BNPs) or coumarin 6 NPs (CNPs), plCSA-BP and scrambled control peptide-bound BNPs or CNPs were prepared. Ovarian cancer cells (SKOV3), endometrial cancer cells (HEC-1-A) and lung cancer cells (A549) were treated with the NPs. The uptake of plCSA-CNPs by tumor cells was found to be markedly higher compared with that of other types of NPs. Further studies demonstrated that the plCSA-BNPs promoted the apoptosis of cancer cells more effectively and inhibited their proliferation, invasion and migration, accompanied by downregulation of matrix metalloproteinase (MMP)-2, MMP-9 and B-cell CLL/lymphoma 2 (BCL2) levels, but upregulation of BCL2-associated X protein BAX and cleaved caspase-3 levels. The results demonstrated the potential of brusatol delivered by plCSA-modified NPs as a chemotherapeutic agent for the targeted therapy of tumors by regulating the BCL2, BAX, cleaved caspase-3, MMP-2 and MMP-9 pathways, and indicated that it may be an effective and safe strategy for the treatment of various tumors.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, P.R. China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, P.R. China
| | - Baozhen Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518052, P.R. China
| | - Beini Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - Jie Chen
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518052, P.R. China
| | - Tianxia Xiao
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518052, P.R. China
| | - Baobei Wang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518052, P.R. China
| | - Mengxia Li
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518052, P.R. China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, P.R. China
| | - Xiujun Fan
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|
24
|
Kim BR, Ha J, Lee S, Park J, Cho S. Anti-cancer effects of ethanol extract of Reynoutria japonica Houtt. radix in human hepatocellular carcinoma cells via inhibition of MAPK and PI3K/Akt signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112179. [PMID: 31445130 DOI: 10.1016/j.jep.2019.112179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reynoutria japonica Houtt. has been used as a traditional medicine of cancer in East Asia for thousands of years. However, the mechanism of the anti-cancer effect of R. japonica has not been investigated at the molecular level. The regulation of intracellular signaling pathways by the extract of R. japonica radix needs to be evaluated for a deeper understanding and application of the anti-cancer effect of R. japonica radix. AIM OF THE STUDY The purpose of this study was to evaluate the inhibitory effects of the ethanol extracts of R. japonica radix (ERJR) on cancer metastasis and the regulation mechanism of metastasis by ERJR in human hepatocellular carcinomas. MATERIALS AND METHODS Suppression of cancer metastasis by ERJR in SK-Hep1 and Huh7 cells were investigated. Prior to experiments, the cytotoxic effect of ERJR was examined by cell viability assays. To evaluate the inhibitory effects of ERJR on cancer metastasis, wound-healing assays, invasion assays, zymography, and multicellular tumor spheroids (MCTS) assays were performed. Molecular mechanisms in the suppressive regulation of metastasis by ERJR were verified by measuring the expression levels of metastatic markers, and the phosphorylation and protein levels of cancer metastasis-related signaling pathways. RESULTS In all experiments, ERJR was used at a maximum concentration of 20 μg/ml, which did not show cytotoxicity in SK-Hep1 and Huh7 cells. We examined the inhibitory effects of ERJR on cancer metastasis. In wound-healing and invasion assays, ERJR treatment effectively suppressed the wound-recovery of Huh7 cells and inhibited the invasion ability of SK-Hep1 cells. Also, ERJR treatment significantly decreased the enzymatic activity of matrix metalloproteinase-2 and -9 in SK-Hep1 cells. ERJR suppressed the growth of MCTS in SK-Hep1 cells in a dose-dependent manner. These results indicated that ERJR effectively inhibited the invasive and proliferative ability of SK-Hep1 and Huh7 cells. Moreover, ERJR treatment reduced the expression levels of Snail1, Twist1, N-cadherin, and Vimentin, which are metastatic markers, by inhibiting the activation of protein kinase B and mitogen-activated protein kinases in SK-Hep1 cells. CONCLUSIONS These results verified the molecular mechanism of ERJR that has been used in traditional anti-cancer remedy and suggest that it can be developed as a promising therapy for cancer metastasis in the future.
Collapse
Affiliation(s)
- Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
25
|
Wang HY, Zhang B, Zhou JN, Wang DX, Xu YC, Zeng Q, Jia YL, Xi JF, Nan X, He LJ, Yue W, Pei XT. Arsenic trioxide inhibits liver cancer stem cells and metastasis by targeting SRF/MCM7 complex. Cell Death Dis 2019; 10:453. [PMID: 31186405 PMCID: PMC6560089 DOI: 10.1038/s41419-019-1676-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate due to the lack of effective treatments and drugs. Arsenic trioxide (ATO), which has been proved to successfully treat acute promyelocytic leukemia (APL), was recently reported to show therapeutic potential in solid tumors including HCC. However, its anticancer mechanisms in HCC still need further investigation. In this study, we demonstrated that ATO inhibits tumorigenesis and distant metastasis in mouse models, corresponding with a prolonged mice survival time. Also, ATO was found to significantly decrease the cancer stem cell (CSC)-associated traits. Minichromosome maintenance protein (MCM) 7 was further identified to be a potential target suppressed dramatically by ATO, of which protein expression is increased in patients and significantly correlated with tumor size, cellular differentiation, portal venous emboli, and poor patient survival. Moreover, MCM7 knockdown recapitulates the effects of ATO on CSCs and metastasis, while ectopic expression of MCM7 abolishes them. Mechanistically, our results suggested that ATO suppresses MCM7 transcription by targeting serum response factor (SRF)/MCM7 complex, which functions as an important transcriptional regulator modulating MCM7 expression. Taken together, our findings highlight the importance of ATO in the treatment of solid tumors. The identification of SRF/MCM7 complex as a target of ATO provides new insights into ATO’s mechanism, which may benefit the appropriate use of this agent in the treatment of HCC.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China. .,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Dong-Xing Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Ying-Chen Xu
- Department of Hepatobiliary Surgery, Beijing Tongren Hospital, Beijing, 100730, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Ya-Li Jia
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Li-Juan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| |
Collapse
|
26
|
Hypo-phosphorylated CD147 promotes migration and invasion of hepatocellular carcinoma cells and predicts a poor prognosis. Cell Oncol (Dordr) 2019; 42:537-554. [DOI: 10.1007/s13402-019-00444-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 02/08/2023] Open
|
27
|
Recent Insight into the Role of Fibrosis in Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20071745. [PMID: 30970564 PMCID: PMC6480228 DOI: 10.3390/ijms20071745] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most widespread tumors in the world and its prognosis is poor because of lack of effective treatments. Epidemiological studies show that non-alcoholic steatohepatitis (NASH) and advanced fibrosis represent a relevant risk factors to the HCC development. However little is known of pathophysiological mechanisms linking liver fibrogenesis to HCC in NASH. Recent advances in scientific research allowed to discover some mechanisms that may represent potential therapeutic targets. These include the integrin signaling, hepatic stellate cells (HSCs) activation, Hedgehog signaling and alteration of immune system. In the near future, knowledge of fibrosis-dependent carcinogenic mechanisms, will help optimize antifibrotic therapies as an approach to prevent and treat HCC in patients with NASH and advanced fibrosis.
Collapse
|
28
|
The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int J Mol Sci 2019. [PMID: 30959975 DOI: 10.3390/ijms20071723.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and lacks effective therapeutic approaches. Most HCC develops in the setting of chronic liver injury, hepatic inflammation, and fibrosis. Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) are key players in liver fibrogenesis and hepatocarcinogenesis, respectively. CAFs, which probably derive from HSCs, activate into extracellular matrix (ECM)-producing myofibroblasts and crosstalk with cancer cells to affect tumor growth and invasion. In this review, we describe the different components which form the HCC premalignant microenvironment (PME) and the tumor microenvironment (TME), focusing on the liver fibrosis process and the biology of CAFs. We will describe the CAF-dependent mechanisms which have been suggested to promote hepatocarcinogenesis, such as the alteration of ECM, CAF-dependent production of cytokines and angiogenic factors, CAF-dependent reduction of immuno-surveillance, and CAF-dependent promotion of epithelial-mesenchymal transition (EMT). New knowledge of the fibrosis process and the role of CAFs in HCC may pave the way for new therapeutic strategies for liver cancer.
Collapse
|
29
|
Baglieri J, Brenner DA, Kisseleva T. The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20071723. [PMID: 30959975 PMCID: PMC6479943 DOI: 10.3390/ijms20071723] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and lacks effective therapeutic approaches. Most HCC develops in the setting of chronic liver injury, hepatic inflammation, and fibrosis. Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) are key players in liver fibrogenesis and hepatocarcinogenesis, respectively. CAFs, which probably derive from HSCs, activate into extracellular matrix (ECM)-producing myofibroblasts and crosstalk with cancer cells to affect tumor growth and invasion. In this review, we describe the different components which form the HCC premalignant microenvironment (PME) and the tumor microenvironment (TME), focusing on the liver fibrosis process and the biology of CAFs. We will describe the CAF-dependent mechanisms which have been suggested to promote hepatocarcinogenesis, such as the alteration of ECM, CAF-dependent production of cytokines and angiogenic factors, CAF-dependent reduction of immuno-surveillance, and CAF-dependent promotion of epithelial-mesenchymal transition (EMT). New knowledge of the fibrosis process and the role of CAFs in HCC may pave the way for new therapeutic strategies for liver cancer.
Collapse
Affiliation(s)
- Jacopo Baglieri
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| | - David A Brenner
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
30
|
Cheng Q, Tong TJ, Li Z, Hu SH, Chen DB, Wang SQ, Zhu JY. Paradoxical effects of cellular senescence-inhibited gene involved in hepatocellular carcinoma migration and proliferation by ERK pathway and mesenchymal-like markers. Onco Targets Ther 2019; 12:2035-2046. [PMID: 30936720 PMCID: PMC6421901 DOI: 10.2147/ott.s188449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cellular senescence-inhibited gene (CSIG) strongly prolongs the progression of replicative senescence. However, roles and mechanisms of CSIG in tumor progression have not been studied widely. METHODS Roles of CSIG in migration and proliferation of SMMC7721 and Huh7 cells were analyzed by transwell or cell viability assays, respectively. Tumorigenicity assays were used to study whether CSIG knockdown could affect SMMC7721 proliferation in vivo. Next, Western blotting and RT-PCR were preformed to evaluate the effects of CSIG on P-ERK cascade and epithelial mesenchymal transformation markers. Then, the location and expression of CSIG protein was detected by immunofluorescence and Western blotting, respectively. Finally, the Cancer Genome Atlas dataset was used to analyze CSIG mRNA levels in hepatocellular carcinoma (HCC) and adjacent non-tumor tissues. RESULTS In this study, we found that CSIG overexpression promoted SMMC7721 cell migration, and CSIG knockdown suppressed tumorigenicity of SMMC7721 cells. In contrast to expectation, CSIG up-regulation could significantly inhibit Huh7 cell growth and migration. CSIG could promote P-ERK activation and levels of mesenchymal-like markers in SMMC7721 cells, whereas CSIG suppressed P-ERK activation and levels of mesenchymal-like markers in Huh7 cells. CSIG protein was located in nucleoli as well as nucleoplasm of SMMC7721 cells, whereas CSIG protein was mainly expressed in the nucleoli rather than nucleoplasm of Huh7 cells. Finally, due to individual differences, raised or down-regulated trends of CSIG in HCC as compared with adjacent non-tumor tissues are different among various patient populations. CONCLUSION In summary, these results indicate that CSIG might play different roles in SMMC7721 and Huh7 cells through regulating P-ERK pathway and mesenchymal-like markers. The differential distribution of CSIG might be an important factor that causes its different functions in SMMC7721 and Huh7 cells. CSIG might play different roles in various patient populations.
Collapse
Affiliation(s)
- Qian Cheng
- Peking University Institute of Organ Transplantation, Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China,
| | - Tan-Jun Tong
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhao Li
- Peking University Institute of Organ Transplantation, Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China,
| | - Shi-Hua Hu
- Peking University Institute of Organ Transplantation, Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China,
| | - Ding-Bao Chen
- Peking University Institute of Organ Transplantation, Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China,
| | - Si-Qi Wang
- Peking University Institute of Organ Transplantation, Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China,
| | - Ji-Ye Zhu
- Peking University Institute of Organ Transplantation, Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China,
| |
Collapse
|
31
|
Zhang J, Li J, Song H, Xiong Y, Liu D, Bai X. Hydroxysafflor yellow A suppresses angiogenesis of hepatocellular carcinoma through inhibition of p38 MAPK phosphorylation. Biomed Pharmacother 2018; 109:806-814. [PMID: 30551534 DOI: 10.1016/j.biopha.2018.09.086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022] Open
Abstract
The antitumor effect of hydroxysafflor yellow A (HSYA), an active ingredient of the herb Carthamus tinctorius L. (Asteraceae) (safflower), was investigated in the current work. Researches of HSYA on vasculogenesis inhibition, along with the related molecular mechanisms, including the expression of MMP-2, MMP-9, and p38MAPK (COX-2, ATF-2, p-p38MAPK, and p38MAPK) signaling pathway in H22 tumor-bearing mice or HepG2 cells were performed. The animal experiments proved the level of MMP-2 and MMP-9 in H22-transplanted tumor tissue in mice markedly decreased by HSYA, and results both in vivo and in vitro confirmed that COX-2 expression was reduced significantly via p38MAPK|ATF-2 signaling pathway. According to the outcomes, HSYA suppressed p38MAPK phosphorylation in a concentration-dependent manner, while exerting no effect on the total p38MAPK protein expression. It was also showed that suppression of p38 activation by SB203580 decreased the HepG2 cell viability, proliferation, and migration, wherein HSYA exhibited a similar effect. Furthermore, Western blot analysis on caspase-3 and cleaved-caspase-3 revealed that HSYA could induce apoptosis of HepG2 cells. These findings provided experimental evidences that HSYA might be a promising anticancer agent for HCC.
Collapse
Affiliation(s)
- Jingyu Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Histology and Embryology, Heze Medical College, Heze 274000, China
| | - Jingmin Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Haoran Song
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yanlian Xiong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Desheng Liu
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xianyong Bai
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
32
|
Chen R, Cai X, Liu J, Bai B, Li X. Sphingosine 1-phosphate promotes mesenchymal stem cell-mediated cardioprotection against myocardial infarction via ERK1/2-MMP-9 and Akt signaling axis. Life Sci 2018; 215:31-42. [PMID: 30367841 DOI: 10.1016/j.lfs.2018.10.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023]
Abstract
AIMS The sphingolipid metabolite sphingosine 1‑phosphate (S1P) has emerged as a potential cardioprotective molecule against ischemic heart disease. Moreover, S1P triggers mobilization and homing of bone marrow-derived stem/progenitor cells into the damaged heart. However, it remains elusive whether S1P promotes mesenchymal stem cells (MSCs)-mediated cardioprotection against ischemic heart diseases. MAIN METHODS Adipose tissue-derived MSCs (AT-MSCs) were obtained from GFP transgenic mice or C57BL/6J. Myocardial infarction (MI) was induced in C57BL/6J mice by ligation of the left anterior descending coronary artery (LAD). Subsequently, S1P-treated AT-MSCs or vehicle-treated AT-MSCs were intravenously administered for 24 h after induction of MI or sham procedure. KEY FINDINGS Pre-conditioning with S1P significantly enhanced the migratory and anti-apoptotic efficacies of AT-MSCs. In MI-induced mice, intravenous administration of S1P-treated AT-MSCs significantly augmented their homing and engraftment in ischemic area. Besides, AT-MSCs with S1P pre-treatment exhibited enhanced potencies to inhibit cardiomyocyte apoptosis and fibrosis, and stimulate angiogenesis and preserve cardiac function. Mechanistic studies revealed that S1P promoted AT-MSCs migration through activation of ERK1/2-MMP-9, and protected AT-MSCs against apoptosis via Akt activation. Further, S1P activated the ERK1/2 and Akt via S1P receptor 2 (S1PR2), but not through S1PR1. S1PR2 knockdown by siRNA, however, significantly attenuated S1P-mediated AT-MSCs migration and anti-apoptosis. SIGNIFICANCE The findings of the present study revealed the protective efficacies of S1P pretreatment on the survival/retention and cardioprotection of engrafted MSCs. Pre-conditioning of donor MSCs with S1P is an effective strategy to promote the therapeutic potential of MSCs for ischemic heart diseases.
Collapse
Affiliation(s)
- Ruirui Chen
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China
| | - Xiqiang Cai
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China
| | - Jing Liu
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China
| | - Baobao Bai
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China
| | - Xue Li
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China.
| |
Collapse
|
33
|
Wang Y, Xu H, Jiao H, Wang S, Xiao Z, Zhao Y, Bi J, Wei W, Liu S, Qiu J, Li T, Liang L, Ye Y, Liao W, Ding Y. STX2 promotes colorectal cancer metastasis through a positive feedback loop that activates the NF-κB pathway. Cell Death Dis 2018; 9:664. [PMID: 29855462 PMCID: PMC5981218 DOI: 10.1038/s41419-018-0675-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/08/2023]
Abstract
Metastatic progression is the main contributor to the poor prognosis of colorectal cancer (CRC). Thus, identifying the determinants of CRC metastasis will be of great significance. Based on our previous bioinformatics analysis, Syntaxin2 (STX2) may be upregulated and correlated with the poor prognosis of CRC patients. In this study, we found that STX2 expression was associated with CRC invasion and metastasis and poor patient survival. Gain- and loss-of-function analyses demonstrated that STX2 functioned as a key oncogene by promoting CRC invasion and metastasis. Mechanistically, STX2 selectively interacted with tumor necrosis factor receptor-associated factor 6 (TRAF6) and activated the nuclear transcription factor-κB (NF-κB) signaling pathway. Furthermore, chromatin immunoprecipitation (ChIP) analysis revealed that NF-κB directly bound to the STX2 promoter and drove STX2 transcription. Therefore, STX2 activated the NF-κB pathway, and in turn, NF-κB increased STX2 expression, forming a positive signaling loop that eventually promoted CRC metastasis. Collectively, our results reveal STX2 as a crucial modulator of the aggressive CRC phenotype and highlight STX2 as a potential prognostic biomarker and therapeutic target for combating CRC metastasis.
Collapse
Affiliation(s)
- Yongxia Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Honghai Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhiyuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yali Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jiaxin Bi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wenting Wei
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
Fu L, Liu S, Wang H, Ma Y, Li L, He X, Mou X, Tong X, Hu Z, Ru G. Low expression of NEK2 is associated with hepatocellular carcinoma progression and poor prognosis. Cancer Biomark 2018; 20:101-106. [PMID: 28759960 DOI: 10.3233/cbm-170586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND NIMA-related kinase 2 (NEK2), a serine/threonine kinase, is located in the centrosome and is a member of cell cycle regulation related protein kinase (CCRK) family. Aberrant expression of NEK2 is linked with carcinogenesis and progression of various tumors. OBJECTIVE To investigate the expression level of NEK2 and its relationship with clinicopathological factors in hepatocellular carcinoma (HCC). METHODS Immunohistochemistry was used to measure the expression of NEK2 in 310 patients' specimen tissues and 197 adjacent normal liver tissues of HCC cases, and the subsequent prognostic value for each sample was estimated. RESULTS NEK2 expression levels in HCC were lower than in adjacent tissues (49.7% vs. 72.6%, P< 0.001). First, patients with relatively low NEK2 expression had increased cancer progression and poorer prognosis than those with high expression. Second, NEK2 expression was significantly reduced in patients with large tumors (P= 0.025), with stage III Edmondson-Steiner Grading (P= 0.015). Third, patients' tumor size positively correlated with high AFP concentration (P= 0.017). Fourth, using the Kaplan-Meier survival curve, we found a lower survival rate in patients with decreased expression of NEK2 than those with high NEK2 expression in HCC (P= 0.029, Log-rank test). CONCLUSIONS Low NEK2 expression might be a useful predictor in HCC as a poor prognostic factor, and could serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Suxia Liu
- School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Department of Clinical Laboratory, Lishui Central Hospital, Lishui 323000, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Li Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xiangmin Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Department of Clinical Laboratory, Lishui Central Hospital, Lishui 323000, Zhejiang, China
| | - Zhiming Hu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
35
|
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and distant metastasis is the leading cause of death among CRC patients. However, the underlying mechanisms of distant metastasis remain largely unknown. Amplification of 8q24 is a common chromosomal abnormality in CRC. In the present study, a putative oncogene at 8q24, TRIB1, was characterized for its role in CRC metastasis and underlying molecular mechanisms. Higher expression of TRIB1 protein was detected in 58/83 (69.9%) of CRC tissues, compared with adjacent non-tumor tissues. Moreover, the expression of TRIB1 was significantly associated with distant metastasis (P=0.043) and advanced staging (P=0.008) in CRC tissues. TRIB1 overexpression was also correlated with poor prognosis in CRC patients as analyzed in PrognoScan database. In addition, elevated expression of TRIB1 promoted CRC cell motility and adhesive ability, while silencing of TRIB1 reduced those effects. Further study revealed that TRIB1-mediated migration and invasion of CRC cells required up-regulation of MMP-2 through the activation of FAK/Src and ERK pathway. Collectively, the results suggest that TRIB1 promotes CRC cell motility by activation MMP-2 via the FAK/Src and ERK pathways. It may provide a potential diagnostic and therapeutic target for CRC.
Collapse
|
36
|
Abstract
The tumor microenvironment (TME) is defined as the structural and dynamic network of cellular and non-cellular interactions between malignant cells and the surrounding non-malignant matrix. Hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) are two of the most challenging gastrointestinal malignancies. Despite clinical advancements in understanding tumor biology and growth of the chemotherapeutic industry, there have been no corresponding improvements in prognosis and overall survival of HCC and PDAC. Both of these cancers have a very intimate relationship with their surrounding environment; the TME is thought to actively participate in initiating and sustaining these malignancies. Individual TME constituents play a vital role in chemoresistance and recurrence after surgery and have been established as independent prognostic factors. This review article will highlight the diverse structural components, key signaling pathways, and extracellular matrices of HCC and PDAC and discuss their crosstalk with tumor cells to promote growth and metastasis. The article will also summarize the latest laboratory and clinical research based on therapeutic targets identified within the TME of both HCC and PDAC.
Collapse
Affiliation(s)
- Fathima Kamil
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julie H Rowe
- Division of Oncology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
37
|
Paracrine regulation of matrix metalloproteinases contributes to cancer cell invasion by hepatocellular carcinoma-secreted 14-3-3σ. Oncotarget 2018; 7:36988-36999. [PMID: 27175590 PMCID: PMC5095053 DOI: 10.18632/oncotarget.9234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/23/2016] [Indexed: 02/07/2023] Open
Abstract
14-3-3σ overexpression results in enhanced hepatocellular carcinoma (HCC) cell migration and HCC tumor vascular-invasion is significantly associated with 14-3-3σ expression. However, increased expression of 14-3-3σ paradoxically suppresses in vitro cell invasion of HCC. We hypothesize that surrounding tumor-associated stromal cells play a crucial role in 14-3-3σ-regulated HCC cell invasion. In this study, H68 fibroblasts, THP-1 and phorbol-12-myristate-13-acetate (PMA)-treated THP-1 (PMA-THP-1) cells were incubated with conditioned media of control (control-CM) and 14-3-3σ-overepxressing cells (14-3-3σ-CM), followed by co-culture with HCC cells. Invasiveness of HCC cells was examined by a Boyden chamber assay. HCC cells co-cultured with 14-3-3σ-CM treated cells significantly enhanced their invasive ability compared with control-CM treated cells. Moreover, incubation with 14-3-3σ-CM induced differential expression profiles of matrix metalloproteinases (MMPs) in fibroblasts (MMP-1, MMP-2, MMP-9, MMP-12 and MMP-14), THP-1 (MMP-1 and MMP-12) and PMA-THP-1 cells (MMP-2, MMP-12 and MMP-14). In contrast, silencing of 14-3-3σ by siRNA significantly abolished 14-3-3σ-CM induced MMPs. In addition, treatment with recombinant 14-3-3σ (r14-3-3σ) protein exhibits a similar expression profile of MMPs induced by 14-3-3σ-CM in fibroblasts, THP-1 and PMA-THP-1 cells. Finally, knockdown of aminopeptidase N (APN) significantly abrogated r14-3-3σ induced expression of MMPs in HS68 fibroblasts. These results suggest that HCC-secreted 14-3-3σ promotes expression of MMPs in cancerous surrounding cells via an APN dependent mechanism. 14-3-3σ has a paracrine effect in educating stromal cells in tumor-associated microenvironment.
Collapse
|
38
|
Methylation-mediated repression of microRNA-129-2 suppresses cell aggressiveness by inhibiting high mobility group box 1 in human hepatocellular carcinoma. Oncotarget 2018; 7:36909-36923. [PMID: 27191994 PMCID: PMC5095048 DOI: 10.18632/oncotarget.9377] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs) and its dysfunction have been revealed as crucial modulators of cancer initiation and progression. MiR-129-2 has been reported to play a tumor suppressive role in different human malignancies. Here, we demonstrated that miR-129-2 was significantly decreased in hepatocellular carcinoma (HCC) tissues and cell lines. Furthermore, miR-129-2 was expressed at significant lower levels in aggressive and recurrent tumor tissues. Clinical analysis indicated that miR-129-2 expression was inversely correlated with venous infiltration, high Edmondson-Steiner grading and advanced tumor-node-metastasis (TNM) stage in HCC. Notably, miR-129-2 was an independent prognostic factor for indicating overall survival (OS) and disease-free survival (DFS) of HCC patients. Ectopic expression of miR-129-2 inhibited cell migration and invasion in vitro and in vivo. Furthermore, we confirmed that high mobility group box 1 (HMGB1) was a direct target of miR-129-2, and it abrogated the function of miR-129-2 in HCC. Mechanistic investigations showed that miR-129-2 overexpression inhibited AKT phosphorylation at Ser473 and decreased the expression of matrix metalloproteinase2/9 (MMP2/9). Upregulation of p-AKT abolished the decreased cell migration and invasion induced by miR-129-2 in HCC. Whereas inhibition of Akt phosphorylation significantly decreased HMGB1-enhanced HCC cell migration and invasion. Moreover, we found that miR-129-2 was downregulated by DNA methylation, and demethylation of miR-129-2 increased miR-129-2 expression in HCC cells and resulted in significant inhibitory effects on cell migration and invasion. In conclusion, miR-129-2 may serve as a prognostic indicator for HCC patients and exerts tumor suppressive role, at least in part, by inhibiting HMGB1.
Collapse
|
39
|
Li ZQ, Wu WR, Zhao C, Zhao C, Zhang XL, Yang Z, Pan J, Si WK. CCN1/Cyr61 enhances the function of hepatic stellate cells in promoting the progression of hepatocellular carcinoma. Int J Mol Med 2017; 41:1518-1528. [PMID: 29286082 PMCID: PMC5819939 DOI: 10.3892/ijmm.2017.3356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/28/2017] [Indexed: 01/27/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the main extracellular matrix (ECM)-producing cells in liver fibrosis. Activated HSCs stimulate the proliferation and migration of hepatocellular carcinoma (HCC) cells. Cysteine-rich 61 (CCN1/Cyr61) is an ECM protein. Our previous studies demonstrated that the expression of CCN1 was significantly higher in benign hepatic cirrhosis tissue and cancer-adjacent hepatic cirrhosis tissues. CCN1 is a target gene of β-catenin in HCC and promotes the proliferation of HCC cells. The present study aimed to examine whether CCN1 can activate HSCs and affect the function of activated HSCs in promoting the progression of HCC. CCN1 expression was determined during the progression of liver fibrosis in a mouse model. LX-2 cells, which were infected with adenoviruses AdCCN1 or AdRFP, and HepG2 cells were co-cultured or subcutaneously co-implanted into in nude mice. MTT assay, Crystal Violet staining, Boyden chamber, matrigel invasion and monolayer scratch assays were used to analyze the proliferation, migration and invasion capability of HepG2 cells. Xenograft sizes were measured and histological analyses were performed by hematoxylin and eosin, immunohistochemical, immunefluorescence and Sirius Red staining. It was demonstrated that the expression of CCN1 was continually increased in liver fibrosis and the that expression may be correlated with the progression of liver fibrosis. CCN1 affected the function of LX-2 and enhanced the effect of LX-2 on promoting the viability, migration and invasion of HepG2 cells in vitro. CCN1 enhanced the effect of LX-2 on promoting the growth of HepG2 xenografts in vivo. CCN1 also affected the function of activated HSCs and regulated the formation of the xenograft microenvironment, including fibrogenesis and angiogenesis, which are beneficial for the progression of HCC. These findings demonstrated that CCN1 may be involved in the progression of the hepatic cirrhosis-HCC axis through regulating HSCs.
Collapse
Affiliation(s)
- Zhi-Qiang Li
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Wei-Ru Wu
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Chen Zhao
- The First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, P.R. China
| | - Chen Zhao
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Xiao-Li Zhang
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Zhong Yang
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jing Pan
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Wei-Ke Si
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
40
|
Wang ZQ, He CY, Hu L, Shi HP, Li JF, Gu QL, Su LP, Liu BY, Li C, Zhu Z. Long noncoding RNA UCA1 promotes tumour metastasis by inducing GRK2 degradation in gastric cancer. Cancer Lett 2017; 408:10-21. [PMID: 28843497 DOI: 10.1016/j.canlet.2017.08.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 01/26/2023]
Abstract
Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) regulate gene and protein expression by exerting an influence on transcriptional and post-transcriptional processes. Here, we report that the lncRNA UCA1 increases the metastatic ability of gastric cancer (GC) cells by regulating GRK2 protein stability by promoting Cbl-c-mediated GRK2 ubiquitination and degradation. This process then activates the ERK-MMP9 signalling pathway. Furthermore, we demonstrate that GRK2 is downregulated in GC cells and that silencing of GRK2 might cause similar phenotypic changes and signalling pathway activation as those induced by elevated UCA1 in GC cells. Our results suggest that UCA1 might function as a mediator of protein ubiquitination and may be a promising molecular target for GC therapy.
Collapse
Affiliation(s)
- Zhen-Qiang Wang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Chang-Yu He
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lei Hu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Hong-Peng Shi
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jian-Fang Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Qin-Long Gu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Li-Ping Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Bing-Ya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Chen Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Zhenggang Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
41
|
Thymidine phosphorylase promotes metastasis and serves as a marker of poor prognosis in hepatocellular carcinoma. J Transl Med 2017; 97:903-912. [PMID: 28530649 DOI: 10.1038/labinvest.2017.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as one of the most common and lethal malignancies worldwide. A better understanding of the mechanism responsible for HCC metastasis will be helpful for the treatment of HCC patients. Thymidine phosphorylase (TP), a key enzyme that catalyzes the conversion of thymidine to thymine and deoxyribose-1-phosphate, was demonstrated to promote the invasion and metastasis of HCC in our study. Clinical retrospective analysis revealed that metastatic HCC tumor tissues have higher TP expression, and TP expression was significantly correlated with matrix metalloproteinase (MMP) 2 and 9 expression. Survival analysis revealed that TP expression was negatively correlated with the prognosis of HCC patients. Moreover, in vitro cell experiments confirmed that TP could promote the migration and invasion of HCC cells. In addition, MMP2 and MMP9 were activated by TP overexpression. Overall, this study suggests that TP promotes metastasis and may serve as a marker of poor prognosis in HCC. Thus, TP is a potential target for the treatment of HCC.
Collapse
|
42
|
Liu T, Shang S, Li W, Qin X, Sun L, Zhang S, Liu Y. Assessment of Hepatocellular Carcinoma Metastasis Glycobiomarkers Using Advanced Quantitative N-glycoproteome Analysis. Front Physiol 2017; 8:472. [PMID: 28736531 PMCID: PMC5500640 DOI: 10.3389/fphys.2017.00472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatocelluar carcinoma (HCC) is one of the most common malignant tumors with high incidence of metastasis. Glycosylation is involved in fundamental molecular and cell biology process occurring in cancer including metastasis formation. In this study, lectin microarray, lectin blotting, lectin affinity chromatography and tandem 18O stable isotope labeling coupled with liquid chromatography-mass spectrometer (LC-MS) analysis were applied to quantify the changes in N-glycosite occupancy for HCC metastasis serum. Firstly, lectin microarray was used to screen glycoforms and Phaseolus vulgaris Leucoagglutinin (PHA-L) reactive structure (β1,6-GlcNAc branched N-glycan) was found to be increased significantly in HCC patients with metastasis compared with those with non-metastasis. Then, PHA-L affinity glycoproteins were enriched followed by N-glycosite occupancy measurement with strategy of tandem 18O stable isotope labeling. 11 glycoproteins with significantly changed N-glycosite occupancy were identified, they were associated with cell migration, invasion and adhesion through p38 mitogen-activated protein kinase signaling pathway and nuclear factor kappa B signaling pathway. Quantification of N-glycosite occupancy for PHA-L reactive glycoproteins could help to discover important glycoproteins of potential clinically significance in terms of HCC etiology. Also, understanding of N-glycosite occupancy alterations will aid the characterization of molecular mechanism of HCC metastasis as well as establishment of novel glycobiomarkers.
Collapse
Affiliation(s)
- Tianhua Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Shuxin Shang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Wei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Lu Sun
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Shu Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Yinkun Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
43
|
Horigome T, Takumi S, Shirai K, Kido T, Hagiwara-Chatani N, Nakashima A, Adachi N, Yano H, Hirai Y. Sulfated glycosaminoglycans and non-classically secreted proteins, basic FGF and epimorphin, coordinately regulate TGF-β-induced cell behaviors of human scar dermal fibroblasts. J Dermatol Sci 2017; 86:132-141. [DOI: 10.1016/j.jdermsci.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 12/15/2022]
|
44
|
Wang F, Jia Y, Liu J, Zhai J, Cao N, Yue W, He H, Pei X. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease. Cell Biol Int 2017; 41:639-650. [PMID: 28328017 DOI: 10.1002/cbin.10767] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/19/2017] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD.
Collapse
Affiliation(s)
- Feixiang Wang
- Department of Stomatology, Chinese PLA General Hospital and Chinese PLA Medical School, 28, Fuxing Road, Beijing, 100853, China
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Academy of Military Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Jiajing Liu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Academy of Military Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Jinglei Zhai
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Academy of Military Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Ning Cao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Academy of Military Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Academy of Military Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Huixia He
- Department of Stomatology, Chinese PLA General Hospital and Chinese PLA Medical School, 28, Fuxing Road, Beijing, 100853, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Academy of Military Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| |
Collapse
|
45
|
Yan X, Jiao SC, Zhang GQ, Guan Y, Wang JL. Tumor-associated immune factors are associated with recurrence and metastasis in non-small cell lung cancer. Cancer Gene Ther 2017; 24:57-63. [PMID: 28084319 PMCID: PMC5339429 DOI: 10.1038/cgt.2016.40] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 12/28/2022]
Abstract
Dynamic interaction between tumor cells and the microenvironment is critical for tumorigenesis, and cancer immunosurveillance plays an important role in the tumor evolution. In some tumors (such as esophageal cancer, pancreatic cancer and colorectal cancer), studies have shown that the number of tumor-infiltrating lymphocytes (TILs) has a significant relationship with the prognosis, but there is little research on the prognosis of TILs and non-small cell lung cancer (NSCLC) has been performed. Therefore, it is necessary to discover the relationship between the TILs and cytokines with NSCLC prognosis and metastasis in patients. Tumor samples were carefully examined for tissue preservation and complete follow-up. A total of 107 tumor samples from NSCLC patients with radical surgical resection were enrolled for the analysis. All samples were subjected to immunohistochemistry for detection of CD3, CD4, CD8, CD28, forkhead box protein P3 (Foxp3), cytotoxic T lymphocyte-associated protein-4, cyclooxygenase2 (COX-2), transforming growth factor β 1, interleukin-2 (IL-2), interleukin-6, interleukin-10, interleukin-12 receptor and hypoxia inducible factor 1a (HIF-1a). The number, function and location of the targets were analyzed to determine their correlation with disease-free survival (DFS) and overall survival (OS). Immunhistochemical results from 107 samples indicated that the FoxP3+ regulatory TIL (HR=1.336, P=0.031), IL-2 (HR=0.595, P=0.007) and HIF-1a (HR=1.510, P=0.002) levels in tumor cells closely correlated with DFS in a COX analysis model. FoxP3+ regulatory TILs (HR=1.566, P=0.002) significantly correlated with OS and tumor node metastasis staging. The patients were divided into two groups due to the coexpression pattern of the IL-2, FoxP3+ and HIF-1a. The high-risk group had an overall worse survival than those at low risk. We confirmed that Foxp3 expression in lymphocyte and IL-2 expression in tumor cells were associated with recurrence or transfer. Furthermore, we also observed that HIF-1a expression significantly correlated with DFS and OS.
Collapse
Affiliation(s)
- X Yan
- Medical Oncology Department, PLA General Hospital, Beijing, China
| | - S-C Jiao
- Medical Oncology Department, PLA General Hospital, Beijing, China
| | - G-Q Zhang
- Medical Oncology Department, PLA General Hospital, Beijing, China
| | - Y Guan
- Medical Oncology Department, PLA General Hospital, Beijing, China
| | - J-L Wang
- Medical Oncology Department, PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Fu ZG, Wang L, Cui HY, Peng JL, Wang SJ, Geng JJ, Liu JD, Feng F, Song F, Li L, Zhu P, Jiang JL, Chen ZN. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells. Oncotarget 2017; 7:9429-47. [PMID: 26882566 PMCID: PMC4891050 DOI: 10.18632/oncotarget.6990] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
CD147, a type I transmembrane glycoprotein, is highly expressed in various cancer types and plays important roles in tumor progression, especially by promoting the motility and invasion of hepatocellular carcinoma (HCC) cells. These crucial roles make CD147 an attractive target for therapeutic intervention in HCC, but no small-molecule inhibitors of CD147 have been developed to date. To identify a candidate inhibitor, we used a pharmacophore model derived from the structure of CD147 to virtually screen over 300,000 compounds. The 100 highest-ranked compounds were subjected to biological assays, and the most potent one, dubbed AC-73 (ID number: AN-465/42834501), was studied further. We confirmed that AC-73 targeted CD147 and further demonstrated it can specifically disrupt CD147 dimerization. Moreover, molecular docking and mutagenesis experiments showed that the possible binding sites of AC-73 on CD147 included Glu64 and Glu73 in the N-terminal IgC2 domain, which two residues are located in the dimer interface of CD147. Functional assays revealed that AC-73 inhibited the motility and invasion of typical HCC cells, but not HCC cells that lacked the CD147 gene, demonstrating on-target action. Further, AC-73 reduced HCC metastasis by suppressing matrix metalloproteinase (MMP)-2 via down-regulation of the CD147/ERK1/2/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, AC-73 attenuated progression in an orthotopic nude mouse model of liver metastasis, suggesting that AC-73 or its derivatives have potential for use in HCC intervention. We conclude that the novel small-molecule inhibitor AC-73 inhibits HCC mobility and invasion, probably by disrupting CD147 dimerization and thereby mainly suppressing the CD147/ERK1/2/STAT3/MMP-2 pathways, which are crucial for cancer progression.
Collapse
Affiliation(s)
- Zhi-guang Fu
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, Xi'an, P.R. China
| | - Hong-yong Cui
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Jian-long Peng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Shi-jie Wang
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Jie-jie Geng
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Ji-de Liu
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fei Feng
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fei Song
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Ling Li
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Ping Zhu
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Jian-li Jiang
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Zhi-nan Chen
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
47
|
Affo S, Yu LX, Schwabe RF. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:153-186. [PMID: 27959632 DOI: 10.1146/annurev-pathol-052016-100322] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver cancer is the second leading cause of cancer mortality worldwide, causing more than 700,000 deaths annually. Because of the wide landscape of genomic alterations and limited therapeutic success of targeting tumor cells, a recent focus has been on better understanding and possibly targeting the microenvironment in which liver tumors develop. A unique feature of liver cancer is its close association with liver fibrosis. More than 80% of hepatocellular carcinomas (HCCs) develop in fibrotic or cirrhotic livers, suggesting an important role of liver fibrosis in the premalignant environment (PME) of the liver. Cholangiocarcinoma (CCA), in contrast, is characterized by a strong desmoplasia that typically occurs in response to the tumor, suggesting a key role of cancer-associated fibroblasts (CAFs) and fibrosis in its tumor microenvironment (TME). Here, we discuss the functional contributions of myofibroblasts, CAFs, and fibrosis to the development of HCC and CCA in the hepatic PME and TME, focusing on myofibroblast- and extracellular matrix-associated growth factors, fibrosis-associated immunosuppressive pathways, as well as mechanosensitive signaling cascades that are activated by increased tissue stiffness. Better understanding of the role of myofibroblasts in HCC and CCA development and progression may provide the basis to target these cells for tumor prevention or therapy.
Collapse
Affiliation(s)
- Silvia Affo
- Department of Medicine, Columbia University, New York, NY 10032;
| | - Le-Xing Yu
- Department of Medicine, Columbia University, New York, NY 10032;
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032;
| |
Collapse
|
48
|
Zhu N, Si M, Yang N, Jing Y, Fu Y, Zhao X, Lin Z, Yang G. Overexpression of RAS-Association Domain Family 6 (RASSF6) Inhibits Proliferation and Tumorigenesis in Hepatocellular Carcinoma Cells. Oncol Res 2016; 25:1001-1008. [PMID: 27983932 PMCID: PMC7841125 DOI: 10.3727/096504016x14796039599926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ras-association domain family 6 (RASSF6), a member of the RASSF family, is frequently downregulated in various types of cancer. However, the roles of RASSF6 in human hepatocellular carcinoma (HCC) are still unclear. In this study, we investigated the biological functions and related molecular mechanisms in HCC. Our results found that RASSF6 is expressed in low amounts in HCC tissues and cell lines. Overexpression of RASSF6 obviously inhibited the proliferation, invasion, and EMT process in HCC cells. Furthermore, overexpression of RASFF6 greatly downregulated the protein levels of phosphorylated focal adhesion kinase (FAK), MMP-2, and MMP-9 in HepG2 cells. Last, overexpression of RASFF6 significantly attenuated tumor growth in Balb/c nude mice. In conclusion, the present study revealed that RASFF6 can inhibit the proliferation, invasion, and migration of HCC cells both in vivo and in vitro. These inhibitory effects are through suppressing FAK phosphorylation, leading to decreased MMP-2/9 expression. RASFF6 is therefore a potential therapeutic target for treating HCC.
Collapse
|
49
|
Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway. Oncotarget 2016; 6:34859-74. [PMID: 26472188 PMCID: PMC4741495 DOI: 10.18632/oncotarget.5414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC.
Collapse
|
50
|
Jha HC, Sun Z, Upadhyay SK, El-Naccache DW, Singh RK, Sahu SK, Robertson ES. KSHV-Mediated Regulation of Par3 and SNAIL Contributes to B-Cell Proliferation. PLoS Pathog 2016; 12:e1005801. [PMID: 27463802 PMCID: PMC4963126 DOI: 10.1371/journal.ppat.1005801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/09/2016] [Indexed: 12/23/2022] Open
Abstract
Studies have suggested that Epithelial-Mesenchymal Transition (EMT) and transformation is an important step in progression to cancer. Par3 (partitioning-defective protein) is a crucial factor in regulating epithelial cell polarity. However, the mechanism by which the latency associated nuclear antigen (LANA) encoded by Kaposi's Sarcoma associated herpesvirus (KSHV) regulates Par3 and EMTs markers (Epithelial-Mesenchymal Transition) during viral-mediated B-cell oncogenesis has not been fully explored. Moreover, several studies have demonstrated a crucial role for EMT markers during B-cell malignancies. In this study, we demonstrate that Par3 is significantly up-regulated in KSHV-infected primary B-cells. Further, Par3 interacted with LANA in KSHV positive and LANA expressing cells which led to translocation of Par3 from the cell periphery to a predominantly nuclear signal. Par3 knockdown led to reduced cell proliferation and increased apoptotic induction. Levels of SNAIL was elevated, and E-cadherin was reduced in the presence of LANA or Par3. Interestingly, KSHV infection in primary B-cells led to enhancement of SNAIL and down-regulation of E-cadherin in a temporal manner. Importantly, knockdown of SNAIL, a major EMT regulator, in KSHV cells resulted in reduced expression of LANA, Par3, and enhanced E-cadherin. Also, SNAIL bound to the promoter region of p21 and can regulate its activity. Further a SNAIL inhibitor diminished NF-kB signaling through upregulation of Caspase3 in KSHV positive cells in vitro. This was also supported by upregulation of SNAIL and Par3 in BC-3 transplanted NOD-SCID mice which has potential as a therapeutic target for KSHV-associated B-cell lymphomas.
Collapse
Affiliation(s)
- Hem C. Jha
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhiguo Sun
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Santosh K. Upadhyay
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Darine W. El-Naccache
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajnish K. Singh
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sushil K. Sahu
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|