1
|
Grycová A, Vyhlídalová B, Dvořák Z. The role of aryl hydrocarbon receptor in antiviral immunity: a focus on RNA viruses. Crit Rev Microbiol 2025:1-15. [PMID: 40299755 DOI: 10.1080/1040841x.2025.2497789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/02/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcriptional factor that is activated by a plethora of exogenous and endogenous compounds, including environmental pollutants, drugs, and microbial metabolites. The AhR plays an important role in modulating immunity. Current findings suggest that AhR activation serves as a mechanism for evasion of host antiviral immune response and promotes viral replication. This review will focus on AhR's role in RNA virus infection because they show high mutation rates compared with DNA viruses, and therefo pose one of the greatest threats to humans in terms of potential pandemic risk. Indeed, they include human immunodeficiency virus (HIV), influenza A virus (IAV), coronaviruses (CoVs), Zika virus, and others. Understanding the mechanisms by which AhR influences the immune response to these viruses is critical for developing effective therapeutic strategies. By focusing on the interplay between AhR signaling and RNA virus infections, this review aims to contribute to the growing body of knowledge regarding host-pathogen interactions and the implications for antiviral immunity.
Collapse
Affiliation(s)
- Aneta Grycová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
2
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
3
|
Del Campo CMZM, Nicolson GL, Sfera A. Neurolipidomics in schizophrenia: A not so well-oiled machine. Neuropharmacology 2024; 260:110117. [PMID: 39153730 DOI: 10.1016/j.neuropharm.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA
| | - Adonis Sfera
- Patton State Hospital, Loma Linda University, Department of Psychiatry, University of California, Riverside, USA.
| |
Collapse
|
4
|
Bolatimi OE, Hua Y, Ekuban FA, Gripshover TC, Ekuban A, Luulay B, Watson WH, Hardesty JE, Wahlang B. Low dose exposure to dioxins alters hepatic energy metabolism and steatotic liver disease development in a sex-specific manner. ENVIRONMENT INTERNATIONAL 2024; 194:109152. [PMID: 39577358 PMCID: PMC11700233 DOI: 10.1016/j.envint.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
"Dioxins" are persistent organic pollutants (POPs) that are continuously present in the environment at appreciable levels and have been associated with increased risk of steatotic liver disease (SLD). However, current understanding of the role of sex and effects of mixtures of dioxins in SLD development is limited. Additionally, there exists debates on the levels of dioxins required to be considered dangerous as emphasis has shifted from high level exposure events to the steady state of lower-level exposures. We therefore investigated sex-dependent effects of low-level exposures to a mixture of dioxins: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) and Polychlorinated biphenyl 126 (PCB126), in the context of SLD and associated metabolic dysfunction. Male and female C57BL/6J mice were fed a low-fat diet and weekly administered either vehicle control or TCDD (10 ng/kg), PeCDF (80 ng/kg) and PCB 126 (140 ng/kg) over a two-week period. Female mice generally demonstrated higher hepatic fat content compared to males. However, exposure to dioxins further elevated hepatic cholesterol levels in females, and this was accompanied by increased lipogenic gene expression (Acaca, Fasn) in the liver. In contrast, exposed males but not females displayed higher white adipose tissue weights. Furthermore, TCDD + PeCDF + PCB126 activated the AHR (hepatic Cyp1a1, Cyp1a2 induction); with Cyp1a1 induction observed only in exposed females. Notably, gene expression of hepatic albumin (Alb) was also reduced only in exposed females. Overall, exposure to the low dose dioxin mixture compromised hepatic homeostasis via metabolic perturbations, and hepatic dysregulation was more accelerated in female livers.
Collapse
Affiliation(s)
- Oluwanifemi E Bolatimi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Yuan Hua
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Frederick A Ekuban
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Tyler C Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Abigail Ekuban
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Bana Luulay
- College of Arts and Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Walter H Watson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Banrida Wahlang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Liang M, Gao Y, Shen Y, Zhang X, Gu J, Ji G. Serum metabolism distribution in individuals exposed to dioxins: A case study of residents near the municipal solid waste incinerators in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174431. [PMID: 38960151 DOI: 10.1016/j.scitotenv.2024.174431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have attracted considerable attention owing to their environmental persistence, bioaccumulation, and high toxicity. This study aimed to investigate changes in serum metabolites following exposure to PCDD/Fs and to reveal a novel pathogenesis of PCDD/Fs. Serum samples were collected from 75 residents living near a municipal solid waste incinerator in China to analyse the relationship between PCDD/Fs and serum metabolic components. The serum level in the low-exposure group [19.07 (13.44-23.89) pg-TEQ/L] was significantly lower than that in the high-exposure group [115.60 (52.28-592.65) pg-TEQ/L]. Non-targeted metabolomic studies based on liquid chromatography-high resolution mass spectrometry have been applied to the metabolomic analysis of serum. Thirty-seven metabolites with significant differences among the different groups were identified as biomarkers. Pathway analysis revealed that high dioxin exposure perturbed various biological processes, including glycerol phospholipid metabolism and the interconversion of pentose and glucuronate. The results of a population health survey showed that the serum dioxin concentration in patients with diabetes was significantly higher than that in the control population. These findings suggest that dioxin exposure is associated with several potential adverse health risks, including inflammation, diabetes, and cardiovascular disease, through metabolic changes.
Collapse
Affiliation(s)
- Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanyun Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuehong Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinyu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
6
|
Andersen ME, Barutcu AR, Black MB, Harrill JA. Transcriptomic analysis of AHR wildtype and Knock-out rat livers supports TCDD's role in AHR/ARNT-mediated circadian disruption and hepatotoxicity. Toxicol Appl Pharmacol 2024; 487:116956. [PMID: 38735589 DOI: 10.1016/j.taap.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Single, high doses of TCDD in rats are known to cause wasting, a progressive loss of 30 to 50% body weight and death within several weeks. To identify pathway perturbations at or near doses causing wasting, we examined differentially gene expression (DGE) and pathway enrichment in centrilobular (CL) and periportal (PP) regions of female rat livers following 6 dose levels of TCDD - 0, 3, 22, 100, 300, and 1000 ng/kg/day, 5 days/week for 4 weeks. At the higher doses, rats lost weight, had increased liver/body weight ratios and nearly complete cessation of liver cell proliferation, signs consistent with wasting. DGE curves were left shifted for the CL versus the PP regions. Canonical Phase I and Phase II genes were maximally increased at lower doses and remained elevated at all doses. At lower doses, ≤ 22 ng/kg/day in the CL and ≤ 100 ng/kg/day, upregulated genes showed transcription factor (TF) enrichment for AHR and ARNT. At the mid- and high-dose doses, there was a large number of downregulated genes and pathway enrichment for DEGs which showed downregulation of many cellular metabolism processes including those for steroids, fatty acid metabolism, pyruvate metabolism and citric acid cycle. There was significant TF enrichment of the hi-dose downregulated genes for RXR, ESR1, LXR, PPARalpha. At the highest dose, there was also pathway enrichment with upregulated genes for extracellular matrix organization, collagen formation, hemostasis and innate immune system. TCDD demonstrates most of its effects through binding the aryl hydrocarbon receptor (AHR) while the downregulation of metabolism genes at higher TCDD doses is known to be independent of AHR binding to DREs. Based on our results with DEG, we provide a hypothesis for wasting in which high doses of TCDD shift circadian processes away from the resting state, leading to greatly reduced synthesis of steroids and complex lipids needed for cell growth, and producing gene expression signals consistent with an epithelial-to-mesenchymal transition in hepatocytes.
Collapse
|
7
|
Sherwood TA, Medvecky R, Miller C, Wetzel DL. Biochemical, molecular, and physiological assessments of crude oil dietary exposure in sub-adult red drum (Sciaenops ocellatus). Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109864. [PMID: 38378123 DOI: 10.1016/j.cbpc.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
A 14-day exposure study in which sub-adult red drum (Sciaenops ocellatus) were fed a petroleum crude oil-treated pellet feed was conducted to assess the potential effects of ingesting an oil-contaminated food source. Though food consumption decreased, significant polycyclic aromatic hydrocarbons accumulated in the body and liver, which did not affect the body and liver's fatty acid composition. In the red drum given the crude oil-treated feed, a significant decrease in the RNA:DNA growth rate index was noted, while only subtle changes in body and liver lipid composition were seen. Differentially expressed gene analysis in the liver demonstrated a significant down-regulation of leptin and up-regulation of the aryl hydrocarbon receptor nuclear translocator-like protein 1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated enrichment of terms and pathways associated with cholesterol biosynthesis and oxidative stress. Ingenuity Pathway Analysis further predicted activation of seven pathways associated with cholesterol biosynthesis. Measured oxidative stress biomarkers in the blood indicated decreased systemic antioxidants with increased lipid peroxidation. The results of this study suggest that dietary oil exposure alters the signaling of biological pathways critical in cholesterol biosynthesis and disruptions in systemic oxidative homeostasis.
Collapse
Affiliation(s)
- Tracy A Sherwood
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA.
| | - Rebecca Medvecky
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Christelle Miller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Dana L Wetzel
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| |
Collapse
|
8
|
Rakateli L, Huchzermeier R, van der Vorst EPC. AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells 2023; 12:2752. [PMID: 38067179 PMCID: PMC10705969 DOI: 10.3390/cells12232752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Traditionally, xenobiotic receptors are known for their role in chemical sensing and detoxification, as receptor activation regulates the expression of various key enzymes and receptors. However, recent studies have highlighted that xenobiotic receptors also play a key role in the regulation of lipid metabolism and therefore function also as metabolic sensors. Since dyslipidemia is a major risk factor for various cardiometabolic diseases, like atherosclerosis and non-alcoholic fatty liver disease, it is of major importance to understand the molecular mechanisms that are regulated by xenobiotic receptors. In this review, three major xenobiotic receptors will be discussed, being the aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Specifically, this review will focus on recent insights into the metabolic functions of these receptors, especially in the field of lipid metabolism and the associated dyslipidemia.
Collapse
Affiliation(s)
- Leonida Rakateli
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Rosanna Huchzermeier
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
9
|
Jurgelewicz A, Nault R, Harkema J, Zacharewski TR, LaPres JJ. Characterizing the impact of simvastatin co-treatment of cell specific TCDD-induced gene expression and systemic toxicity. Sci Rep 2023; 13:16598. [PMID: 37789023 PMCID: PMC10547718 DOI: 10.1038/s41598-023-42972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/17/2023] [Indexed: 10/05/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with metabolic syndrome (MetS) in humans and elicits pathologies in rodents that resemble non-alcoholic fatty liver disease (NAFLD) in humans through activation of the aryl hydrocarbon receptor (AHR) pathway. Dysregulation of cholesterol homeostasis, an aspect of MetS, is linked to NAFLD pathogenesis. TCDD exposure is also linked to the suppression of genes that encode key cholesterol biosynthesis steps and changes in serum cholesterol levels. In a previous experiment, treating mice with TCDD in the presence of simvastatin, a 3-Hydroxy-3-Methylglutaryl-CoA Reductase competitive inhibitor, altered lipid and glycogen levels, AHR-battery gene expression, and liver injury in male mice compared to TCDD alone. The aim of this study was to deduce a possible mechanism(s) for the metabolic changes and increased injury using single-nuclei RNA sequencing in mouse liver. We demonstrated that co-treated mice experienced wasting and increased AHR activation compared to TCDD alone. Furthermore, relative proportions of cell (sub)types were different between TCDD alone and co-treated mice including important mediators of NAFLD progression like hepatocytes and immune cell populations. Analysis of non-overlapping differentially expressed genes identified several pathways where simvastatin co-treatment significantly impacted TCDD-induced changes, which may explain the differences between treatments. Overall, these results demonstrate a connection between dysregulation of cholesterol homeostasis and toxicant-induced metabolic changes.
Collapse
Affiliation(s)
- Amanda Jurgelewicz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA
| | - Rance Nault
- Institute for Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 602 Wilson Rd, East Lansing, MI, 48824, USA
| | - Jack Harkema
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Timothy R Zacharewski
- Institute for Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 602 Wilson Rd, East Lansing, MI, 48824, USA
| | - John J LaPres
- Institute for Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, 602 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Steidemann MM, Liu J, Bayes K, Castro LP, Ferguson-Miller S, LaPres JJ. Evidence for crosstalk between the aryl hydrocarbon receptor and the translocator protein in mouse lung epithelial cells. Exp Cell Res 2023; 429:113617. [PMID: 37172753 PMCID: PMC10330775 DOI: 10.1016/j.yexcr.2023.113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Cellular homeostasis requires the use of multiple environmental sensors that can respond to a variety of endogenous and exogenous compounds. The aryl hydrocarbon receptor (AHR) is classically known as a transcription factor that induces genes that encode drug metabolizing enzymes when bound to toxicants such as 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD). The receptor has a growing number of putative endogenous ligands, such as tryptophan, cholesterol, and heme metabolites. Many of these compounds are also linked to the translocator protein (TSPO), an outer mitochondrial membrane protein. Given a portion of the cellular pool of the AHR has also been localized to mitochondria and the overlap in putative ligands, we tested the hypothesis that crosstalk exists between the two proteins. CRISPR/Cas9 was used to create knockouts for AHR and TSPO in a mouse lung epithelial cell line (MLE-12). WT, AHR-/-, and TSPO-/- cells were then exposed to AHR ligand (TCDD), TSPO ligand (PK11195), or both and RNA-seq was performed. More mitochondrial-related genes were altered by loss of both AHR and TSPO than would have been expected just by chance. Some of the genes altered included those that encode for components of the electron transport system and the mitochondrial calcium uniporter. Both proteins altered the activity of the other as AHR loss caused the increase of TSPO at both the mRNA and protein level and loss of TSPO significantly increased the expression of classic AHR battery genes after TCDD treatment. This research provides evidence that AHR and TSPO participate in similar pathways that contribute to mitochondrial homeostasis.
Collapse
Affiliation(s)
- Michelle M Steidemann
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - Kalin Bayes
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - Lizbeth P Castro
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States; Department of Cell and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - John J LaPres
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
11
|
Elson D, Nguyen BD, Bernales S, Chakravarty S, Jang HS, Korjeff NA, Zhang Y, Wilferd SF, Castro DJ, Plaisier CL, Finlay D, Oshima RG, Kolluri SK. Induction of Aryl Hydrocarbon Receptor-Mediated Cancer Cell-Selective Apoptosis in Triple-Negative Breast Cancer Cells by a High-Affinity Benzimidazoisoquinoline. ACS Pharmacol Transl Sci 2023; 6:1028-1042. [PMID: 37470014 PMCID: PMC10353065 DOI: 10.1021/acsptsci.2c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Indexed: 07/21/2023]
Abstract
Triple-negative breast cancer (TNBC) remains a disease with a paucity of targeted treatment opportunities. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in a wide range of physiological processes, including the sensing of xenobiotics, immune function, development, and differentiation. Different small-molecule AhR ligands drive strikingly varied cellular and organismal responses. In certain cancers, AhR activation by select small molecules induces cell cycle arrest or apoptosis via activation of tumor-suppressive transcriptional programs. AhR is expressed in triple-negative breast cancers, presenting a tractable therapeutic opportunity. Here, we identify a novel ligand of the aryl hydrocarbon receptor that potently and selectively induces cell death in triple-negative breast cancer cells and TNBC stem cells via the AhR. Importantly, we found that this compound, Analog 523, exhibits minimal cytotoxicity against multiple normal human primary cells. Analog 523 represents a high-affinity AhR ligand with potential for future clinical translation as an anticancer agent.
Collapse
Affiliation(s)
- Daniel
J. Elson
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Bach D. Nguyen
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Sebastian Bernales
- Praxis
Biotech, San Francisco, California, 94158, United States
- Centro Ciencia
& Vida, Avda. Del
Valle Norte 725, Santiago, 8580702, Chile
| | | | - Hyo Sang Jang
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Nicholas A. Korjeff
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Yi Zhang
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Sierra F. Wilferd
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - David J. Castro
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
- Oregon Health
& Science University, Portland, Oregon, 97239, United States
| | - Christopher L. Plaisier
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Darren Finlay
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
| | - Robert G. Oshima
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
| | - Siva K. Kolluri
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
- Linus
Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, United
States
- The
Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, Oregon, 97331, United States
| |
Collapse
|
12
|
Milton EM, Cartolano MC, McDonald MD. A multi-targeted investigation of Deepwater Horizon crude oil exposure impacts on the marine teleost stress axis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106444. [PMID: 36848692 DOI: 10.1016/j.aquatox.2023.106444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/09/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The toxicity of the polycyclic aromatic hydrocarbons (PAHs) in Deepwater Horizon (DWH) oil is well-established, but a knowledge gap exists regarding how this combination of PAHs affects the vertebrate stress axis. We hypothesized that (1) marine vertebrates exposed to DWH PAHs experience stress axis impairment, and co-exposure to an additional chronic stressor may exacerbate these effects, (2) serotonin (5-hydroxytryptamine; 5-HT) may act as a secondary cortisol secretagogue in DWH PAH-exposed fish to compensate for impairment, and (3) the mechanism of stress axis impairment may involve downregulation of cyclic adenosine monophosphate (cAMP; as proxy for melanocortin 2 receptor (MC2R) functionality), total cholesterol, and/or mRNA expression of CYP1A and steroidogenic proteins StAR, P450scc, and 11β-h at the level of the kidney. We found that in vivo plasma cortisol and plasma adrenocorticotropic hormone (ACTH) concentrations in Gulf toadfish exposed to an environmentally relevant DWH PAH concentration (ΣPAH50= 4.6 ± 1.6 μg/L) for 7 days were not significantly different from controls, whether fish were chronically stressed or not. However, the rate of cortisol secretion by isolated kidneys after acute stimulation with ACTH was significantly lower in PAH-exposed toadfish compared to clean seawater (SW) controls. 5-HT does not appear to be acting as a secondary cortisol secretagogue, rather, PAH-exposed + stressed toadfish exhibited significantly lower plasma 5-HT concentrations than clean SW + stressed fish as well as a reduced sensitivity to 5-HT at the level of the kidney. There was a tendency for kidney cAMP concentrations to be lower in PAH-exposed fish (p = 0.069); however, mRNA expression of steroidogenic proteins between control and PAH-exposed toadfish were not significantly different and a significant elevation in total cholesterol concentration in PAH-exposed toadfish compared to controls was measured. Future work is needed to establish whether the slower cortisol secretion rate by isolated kidneys of PAH-exposed fish is detrimental, to determine the potential role of other secretagogues in compensating for the impaired kidney interrenal cell function, and to determine whether there is a reduction in MC2R mRNA expression or an impairment in the function of steroidogenic proteins.
Collapse
Affiliation(s)
- Emily M Milton
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA
| | - Maria C Cartolano
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA.
| |
Collapse
|
13
|
Elson DJ, Kolluri SK. Tumor-Suppressive Functions of the Aryl Hydrocarbon Receptor (AhR) and AhR as a Therapeutic Target in Cancer. BIOLOGY 2023; 12:526. [PMID: 37106727 PMCID: PMC10135996 DOI: 10.3390/biology12040526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in regulating a wide range of biological responses. A diverse array of xenobiotics and endogenous small molecules bind to the receptor and drive unique phenotypic responses. Due in part to its role in mediating toxic responses to environmental pollutants, AhR activation has not been traditionally viewed as a viable therapeutic approach. Nonetheless, the expression and activation of AhR can inhibit the proliferation, migration, and survival of cancer cells, and many clinically approved drugs transcriptionally activate AhR. Identification of novel select modulators of AhR-regulated transcription that promote tumor suppression is an active area of investigation. The development of AhR-targeted anticancer agents requires a thorough understanding of the molecular mechanisms driving tumor suppression. Here, we summarized the tumor-suppressive mechanisms regulated by AhR with an emphasis on the endogenous functions of the receptor in opposing carcinogenesis. In multiple different cancer models, the deletion of AhR promotes increased tumorigenesis, but a precise understanding of the molecular cues and the genetic targets of AhR involved in this process is lacking. The intent of this review was to synthesize the evidence supporting AhR-dependent tumor suppression and distill insights for development of AhR-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
14
|
Cholico GN, Orlowska K, Fling RR, Sink WJ, Zacharewski NA, Fader KA, Nault R, Zacharewski T. Consequences of reprogramming acetyl-CoA metabolism by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse liver. Sci Rep 2023; 13:4138. [PMID: 36914879 PMCID: PMC10011583 DOI: 10.1038/s41598-023-31087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces the progression of steatosis to steatohepatitis with fibrosis in mice. Furthermore, TCDD reprograms hepatic metabolism by redirecting glycolytic intermediates while inhibiting lipid metabolism. Here, we examined the effect of TCDD on hepatic acetyl-coenzyme A (acetyl-CoA) and β-hydroxybutyrate levels as well as protein acetylation and β-hydroxybutyrylation. Acetyl-CoA is not only a central metabolite in multiple anabolic and catabolic pathways, but also a substrate used for posttranslational modification of proteins and a surrogate indicator of cellular energy status. Targeted metabolomic analysis revealed a dose-dependent decrease in hepatic acetyl-CoA levels coincident with the phosphorylation of pyruvate dehydrogenase (E1), and the induction of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphatase, while repressing ATP citrate lyase and short-chain acyl-CoA synthetase gene expression. In addition, TCDD dose-dependently reduced the levels of hepatic β-hydroxybutyrate and repressed ketone body biosynthesis gene expression. Moreover, levels of total hepatic protein acetylation and β-hydroxybutyrylation were reduced. AMPK phosphorylation was induced consistent with acetyl-CoA serving as a cellular energy status surrogate, yet subsequent targets associated with re-establishing energy homeostasis were not activated. Collectively, TCDD reduced hepatic acetyl-CoA and β-hydroxybutyrate levels eliciting starvation-like conditions despite normal levels of food intake.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Karina Orlowska
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Warren J Sink
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas A Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Silva-Parra J, Sandu C, Felder-Schmittbuhl MP, Hernández-Kelly LC, Ortega A. Aryl Hydrocarbon Receptor in Glia Cells: A Plausible Glutamatergic Neurotransmission Orchestrator. Neurotox Res 2023; 41:103-117. [PMID: 36607593 DOI: 10.1007/s12640-022-00623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain. Glutamatergic signaling is involved in most of the central nervous system functions. Its main components, namely receptors, ion channels, and transporters, are tightly regulated at the transcriptional, translational, and post-translational levels through a diverse array of extracellular signals, such as food, light, and neuroactive molecules. An exquisite and well-coordinated glial/neuronal bidirectional communication is required for proper excitatory amino acid signal transactions. Biochemical shuttles such as the glutamate/glutamine and the astrocyte-neuronal lactate represent the fundamental involvement of glial cells in glutamatergic transmission. In fact, the disruption of any of these coordinated biochemical intercellular cascades leads to an excitotoxic insult that underlies some aspects of most of the neurodegenerative diseases characterized thus far. In this contribution, we provide a comprehensive summary of the involvement of the Aryl hydrocarbon receptor, a ligand-dependent transcription factor in the gene expression regulation of glial glutamate transporters. These receptors might serve as potential targets for the development of novel strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México.
| |
Collapse
|
16
|
Gut flora disequilibrium promotes the initiation of liver cancer by modulating tryptophan metabolism and up-regulating SREBP2. Proc Natl Acad Sci U S A 2022; 119:e2203894119. [PMID: 36534812 PMCID: PMC9907126 DOI: 10.1073/pnas.2203894119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota and liver cancer have a complex interaction. However, the role of gut microbiome in liver tumor initiation remains unknown. Herein, liver cancer was induced using hydrodynamic transfection of oncogenes to explore liver tumorigenesis in mice. Gut microbiota depletion promoted liver tumorigenesis but not progression. Elevated sterol regulatory element-binding protein 2 (SREBP2) was observed in mice with gut flora disequilibrium. Pharmacological inhibition of SREBP2 or Srebf2 RNA interference attenuated mouse liver cancer initiation under gut flora disequilibrium. Furthermore, gut microbiota depletion impaired gut tryptophan metabolism to activate aryl hydrocarbon receptor (AhR). AhR agonist Ficz inhibited SREBP2 posttranslationally and reversed the tumorigenesis in mice. And, AhR knockout mice recapitulated the accelerated liver tumorigenesis. Supplementation with Lactobacillus reuteri, which produces tryptophan metabolites, inhibited SREBP2 expression and tumorigenesis in mice with gut flora disequilibrium. Thus, gut flora disequilibrium promotes liver cancer initiation by modulating tryptophan metabolism and up-regulating SREBP2.
Collapse
|
17
|
Mustafa S, Riaz MA, Masoud MS, Qasim M, Riaz A. Impact of dietary inclusion of Chenopodium quinoa on growth performance and survival of Hubbard chicken. PLoS One 2022; 17:e0276524. [PMID: 36264847 PMCID: PMC9584399 DOI: 10.1371/journal.pone.0276524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
The poultry sector is the most vibrant segment of the agriculture system plays a vital role in the supply of healthy meat products. Broiler production effectiveness is greatly associated with feed formulation. Although, broiler exhibits a relatively fast growth rate, the nutritional profile of its meat has been criticized under conventional human dietary regimes. In the current study, the dietary inclusion of quinoa was assessed to improve broiler growth performance, carcass quality, and health by analyzing different growth, hematological and biochemical, immunological parameters. In the present study, the chicken was fed with 50 g/kg, 100 g/kg, and 200 g/kg quinoa enriched diets in two different experimental groups during the growth phase or finisher phase while chicken fed with diet without quinoa were as control. The 50 g/kg quinoa supplemented chicken group revealed a substantial difference in growth performance in comparison with the control group. In addition, the examination of quinoa dietary supplementation on carcass quality exhibited variable behavior. Further, all the study groups fed with quinoa during the growth phase revealed no remarkable difference in the hematological profile in contrast to the control group except for the chicken group fed (50 g/Kg) during the finisher phase for hemoglobin levels. Likewise, all the quinoa enriched diet given chicken groups showed no significant difference in serum biochemical profile in contrast to the control group except for the 50 g/Kg quinoa fed chicken group during the finisher phase for total globulin levels. In addition, the examination of quinoa dietary supplementation on the broiler serum lipid profile was also assessed and birds exhibited variable behavior as the result of quinoa dietary supplementation. Evaluation of short-term immune response after quinoa supplementation assessed and birds exhibited no marked significance on expression outcomes of interleukin/cytokines (IL 1 beta, IL-6, IL-10) assessed by qRT-PCR analysis. In conclusion, the dietary supplementation of broiler fed with quinoa seeds can enhance the growth performance and the carcass quality of broiler.
Collapse
Affiliation(s)
- Samina Mustafa
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Ahsan Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ayesha Riaz
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
18
|
Haimbaugh A, Meyer D, Akemann C, Gurdziel K, Baker TR. Comparative Toxicotranscriptomics of Single Cell RNA-Seq and Conventional RNA-Seq in TCDD-Exposed Testicular Tissue. FRONTIERS IN TOXICOLOGY 2022; 4:821116. [PMID: 35615540 PMCID: PMC9126299 DOI: 10.3389/ftox.2022.821116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
In this report, we compare the outcomes and limitations of two methods of transcriptomic inquiry on adult zebrafish testes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during sexual differentiation: conventional or bulk RNA-seq (bulk-seq) and single cell RNA sequencing (scRNA-seq) data. scRNA-seq has emerged as a valuable tool for uncovering cell type-specific transcriptome dynamics which exist in heterogeneous tissue. Our lab previously showed the toxicological value of the scRNA-seq pipeline to characterize the sequelae of TCDD exposure in testes, demonstrating that loss of spermatids and spermatozoa, but not other cell types, contributed to the pathology of infertility in adult male zebrafish exposed during sexual differentiation. To investigate the potential for technical artifacts in scRNA-seq such as cell dissociation effects and reduced transcriptome coverage, we compared bulk-sequenced and scRNA-seq-paired samples from control and TCDD-exposed samples to understand what is gained and lost in scRNA-seq vs bulk-seq, both transcriptomically and toxicologically. We hypothesized that the testes may be sensitive to tissue disruption as they contain multiple cell types under constant division and/or maturation, and that TCDD exposure may mediate the extent of sensitivity. Thus, we sought to understand the extent to which this dissociation impacts the toxicological value of data returned from scRNA-seq. We confirm that the required dissociation of individual cells from intact tissue has a significant impact on gene expression, affecting gene pathways with the potential to confound toxicogenomics studies on exposures if findings are not well-controlled and well-situated in context. Additionally, a common scRNA-seq method using cDNA amplified from the 3' end of mRNA under-detects low-expressing transcripts including transcription factors. We confirm this, and show TCDD-related genes may be overlooked by scRNA-seq, however, this under-detection effect is not mediated by TCDD exposure. Even so, scRNA-seq generally extracted toxicologically relevant information better than the bulk-seq method in the present study. This report aims to inform future experimental design for transcriptomic investigation in the growing field of toxicogenomics by demonstrating the differential information extracted from sequencing cells-despite being from the same tissue and exposure scheme-is influenced by the specific protocol used, with implications for the interpretation of exposure-induced risk.
Collapse
Affiliation(s)
- Alex Haimbaugh
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Genome Sciences Core, Office of the Vice President for Research, Wayne State University, Detroit, MI, United States
| | - Tracie R. Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
20
|
Yang Y, Trevethan M, Wang S, Zhao L. Beneficial Effects of Citrus Flavanones Naringin and Naringenin and Their Food Sources on Lipid Metabolism: An Update on Bioavailability, Pharmacokinetics, and Mechanisms. J Nutr Biochem 2022; 104:108967. [PMID: 35189328 DOI: 10.1016/j.jnutbio.2022.108967] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Naringin and naringin's aglycone naringenin belong to a subclass of flavonoids called flavanones. While many studies of pure naringenin and naringin and their food sources have shown beneficial health effects, including improved lipid metabolism, in animals and humans, the mechanisms underlying the lipid-lowering effects have not been completely understood. In recent years, multiple studies using various in vitro and rodent models have revealed new mechanisms underlying the hypolipidemic effects of naringin and naringenin, including regulation of lipid digestion, reverse cholesterol transport, and LDL receptor expression. In addition, naringin and naringenin show diverse effects in populations with different health conditions, such as obesity and diabetes. Furthermore, a novel naringin and naringenin enriched food source citrus bergamia (bergamot) and other citrus fruits have recently been studied for lipid-lowering effects in animal models and human clinical trials. In this review, we provide an update on recent advances on naringin and naringenin and their enriched food sources on lipid metabolism and underlying mechanisms. Because absorption, distribution, metabolism, and excretion, particularly in the presence of food matrix, impact the bioavailability, which in turn affects the bioactivities of these flavonoids in vivo, we also summarize new findings from the pharmacokinetics studies and on interplays between naringin and naringenin and gut microbiota.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996
| | - Myah Trevethan
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996.
| |
Collapse
|
21
|
Vidimce J, Pillay J, Ronda O, Boon A, Pennell E, Ashton KJ, Dijk TH, Wagner K, Verkade HJ, Bulmer AC. Sexual Dimorphism: increased sterol excretion leads to hypocholesterolaemia in female hyperbilirubinaemic Gunn rats. J Physiol 2022; 600:1889-1911. [PMID: 35156712 PMCID: PMC9310728 DOI: 10.1113/jp282395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract Circulating bilirubin is associated with reduced serum cholesterol concentrations in humans and in hyperbilirubinaemic Gunn rats. However, mechanisms contributing to hypocholesterolaemia remain unknown. Therefore, this study aimed to investigate cholesterol synthesis, transport and excretion in mutant Gunn rats. Adult Gunn and control rats were assessed for daily faecal sterol excretion using metabolic cages, and water was supplemented with [1‐13C]‐acetate to determine cholesterol synthesis. Bile was collected to measure biliary lipid secretion. Serum and liver were collected for biochemical analysis and for gene/protein expression using RT‐qPCR and western blot, respectively. Additionally, serum was collected and analysed from juvenile rats. A significant interaction of sex, age and phenotype on circulating lipids was found with adult female Gunn rats reporting significantly lower cholesterol and phospholipids. Female Gunn rats also demonstrated elevated cholesterol synthesis, greater biliary lipid secretion and increased total faecal cholesterol and bile acid excretion. Furthermore, they possessed increased hepatic low‐density lipoprotein (LDL) receptor and SREBP2 expression. In contrast, there were no changes to sterol metabolism in adult male Gunn rats. This is the first study to demonstrate elevated faecal sterol excretion in female hyperbilirubinaemic Gunn rats. Increased sterol excretion creates a negative intestinal sterol balance that is compensated for by increased cholesterol synthesis and LDL receptor expression. Therefore, reduced circulating cholesterol is potentially caused by increased hepatic uptake via the LDL receptor. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome). Key points Female adult hyperbilirubinaemic (Gunn) rats demonstrated lower circulating cholesterol, corroborating human studies that report a negative association between bilirubin and cholesterol concentrations. Furthermore, female Gunn rats had elevated sterol excretion creating a negative intestinal sterol balance that was compensated for by elevated cholesterol synthesis and increased hepatic low‐density lipoprotein (LDL) receptor expression. Therefore, elevated LDL receptor expression potentially leads to reduced circulating cholesterol levels in female Gunn rats providing an explanation for the hypocholesterolaemia observed in humans with elevated bilirubin levels. This study also reports a novel interaction of sex with the hyperbilirubinaemic phenotype on sterol metabolism because changes were only reported in females and not in male Gunn rats. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome).
Collapse
Affiliation(s)
- Josif Vidimce
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| | - Johara Pillay
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| | - Onne Ronda
- Pediatric Gastroenterology/Hepatology Dept. Pediatrics University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Ai‐Ching Boon
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| | - Evan Pennell
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| | - Kevin J. Ashton
- Faculty of Health Science and Medicine Bond University Gold Coast Australia
| | - Theo H. Dijk
- University of Groningen, University Medical Center Groningen Department of Laboratory Medicine Groningen The Netherlands
| | - Karl‐Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing University of Vienna Vienna Austria
| | - Henkjan J. Verkade
- Pediatric Gastroenterology/Hepatology Dept. Pediatrics University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Andrew C. Bulmer
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| |
Collapse
|
22
|
Usal M, Veyrenc S, Darracq-Ghitalla-Ciock M, Regnault C, Sroda S, Fini JB, Raveton M, Reynaud S. Exposure to a mixture of benzo[a]pyrene and triclosan induces multi-and transgenerational metabolic disorders associated with decreased female investment in reproduction in Silurana (Xenopus) tropicalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118418. [PMID: 34737028 DOI: 10.1016/j.envpol.2021.118418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Animals must partition limited resources between their own growth and subsequent reproduction. Endocrine disruptors (ED) may cause maternal metabolic disorders that decrease successful reproduction and might be responsible for multi- and transgenerational effects in amphibians. We found that the frog Silurana (Xenopus) tropicalis, exposed to environmentally relevant concentrations of benzo[a]pyrene and triclosan throughout its life cycle, produced F1 females with delayed sexual maturity and decreased size and weight. These F1 females displayed a marked metabolic syndrome associated with decreased fasting plasma cholesterol and triglyceride concentrations and decreased gonadal development. F1 females from F0 exposed animals also had decreased reproductive investment highlighted by a decrease of oocyte lipid reserves associated with significant F2-tadpole mortality. F2 females from F0 exposed animals also displayed a marked metabolic syndrome but were able to correctly direct liver lipid metabolism to the constitution of fat bodies and oocyte yolk stores. In addition, the F2 females produced progeny that had normal mortality levels at 5 days post hatching compared to the controls suggesting a good reproductive investment. Our data confirmed that these ED, at concentrations often found in natural ponds, can induce multi- and transgenerational metabolic disorders in the progeny of amphibians that are not directly exposed. We present a hypothesis to explain the transmission of the metabolic syndrome across generations through modification of egg reserves. However, when high mortality occurred at the tadpole stage, surviving females were able to cope with metabolic costs and produce viable progeny through sufficient investment in the contents of oocyte reserves.
Collapse
Affiliation(s)
- Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | | | - Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sophie Sroda
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005, Paris, France.
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
23
|
Líbalová H, Závodná T, Vrbová K, Sikorová J, Vojtíšek-Lom M, Beránek V, Pechout M, Kléma J, Ciganek M, Machala M, Neča J, Rössner P, Topinka J. Transcription profiles in BEAS-2B cells exposed to organic extracts from particulate emissions produced by a port-fuel injection vehicle, fueled with conventional fossil gasoline and gasoline-ethanol blend. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503414. [PMID: 34798934 DOI: 10.1016/j.mrgentox.2021.503414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Emissions from road traffic are among the major contributors to air pollution worldwide and represent a serious environmental health risk. Although traffic-related pollution has been most commonly associated with diesel engines, increasing evidence suggests that gasoline engines also produce a considerable amount of potentially hazardous particulate matter (PM). The primary objective of this study was to compare the intrinsic toxic properties of the organic components of PM, generated by a conventional gasoline engine fueled with neat gasoline (E0), or gasoline-ethanol blend (15 % ethanol, v/v, E15). Our results showed that while E15 has produced, compared to gasoline and per kg of fuel, comparable particle mass (μg PM/kg fuel) and slightly more particles by number, the organic extract from the particulate matter produced by E15 contained a larger amount of harmful polycyclic aromatic hydrocarbons (PAHs), as determined by the chemical analysis. To examine the toxicity, we monitored genome-wide gene expression changes in human lung BEAS-2B cells, exposed for 4 h and 24 h to a subtoxic dose of each PM extract. After 4 h exposure, numerous dysregulated genes and processes such as oxidative stress, lipid and steroid metabolism, PPARα signaling and immune response, were found to be common for both extract treatments. On the other hand, 24 h exposure resulted in more distinctive gene expression patterns. Although we identified several common modulated processes indicating the metabolism of PAHs and activation of aryl hydrocarbon receptor (AhR), E15 specifically dysregulated a variety of other genes and pathways related to cancer promotion and progression. Overall, our findings suggest that the ethanol addition to gasoline changed the intrinsic properties of PM emissions and increased the PAH content in PM organic extract, thus contributing to a more extensive toxic response particularly after 24 h exposure in BEAS-2B cells.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Kristýna Vrbová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jitka Sikorová
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Michal Vojtíšek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Vít Beránek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences, Kamycka 127, 165 21, Prague, Czech Republic.
| | - Jiří Kléma
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo namesti 13, 121 35, Prague, Czech Republic.
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
24
|
Liang Y, Tang Z, Jiang Y, Ai C, Peng J, Liu Y, Chen J, Xin X, Lei B, Zhang J, Cai Z. Lipid metabolism disorders associated with dioxin exposure in a cohort of Chinese male workers revealed by a comprehensive lipidomics study. ENVIRONMENT INTERNATIONAL 2021; 155:106665. [PMID: 34098336 DOI: 10.1016/j.envint.2021.106665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Dioxins, environmentally stable and ubiquitous, have been found to induce metabolic changes especially in lipids and be related to multiple diseases. However, limited study is available on lipid alternations related to human exposure to dioxins. This study aims to explore the serum lipidomic characterization and to understand the underlying mechanisms of adverse health risks associated with dioxin exposure. A lipidomic study integrating nontargeted lipidomics, and targeted free fatty acid (FFA) and acyl-coenzyme A (acyl-CoA) analyses were conducted to investigate the 94 serum samples from two groups of male workers with remarkably different dioxin concentrations. The obtained results exhibited distinct lipidomic signatures between the high and low exposed groups. A total of 37 lipids were identified with the significant changes. The results revealed that dioxin exposure caused accumulations of triglyceride (TG), ceramide (Cer) and sphingoid (So), remodeling of glycerophospholipid (GP), imbalanced FFA metabolism, as well as upregulation of platelet-activating factor (PAF). These findings implied the associations between dioxin exposure and potential adverse health risks including inflammation, apoptosis, cardiovascular diseases (CVDs), and liver diseases. This study is the first to explain the associations between dioxin exposure and health effects at the level of lipid metabolism.
Collapse
Affiliation(s)
- Yanshan Liang
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chunyan Ai
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinling Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinru Chen
- Songgang Preventive Health Center of Baoan District, Shenzhen, 518105, China
| | - Xiong Xin
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Bo Lei
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Zongwei Cai
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
25
|
Brenes AJ, Vandereyken M, James OJ, Watt H, Hukelmann J, Spinelli L, Dikovskaya D, Lamond AI, Swamy M. Tissue environment, not ontogeny, defines murine intestinal intraepithelial T lymphocytes. eLife 2021; 10:e70055. [PMID: 34473623 PMCID: PMC8463072 DOI: 10.7554/elife.70055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident intestinal intraepithelial T lymphocytes (T-IEL) patrol the gut and have important roles in regulating intestinal homeostasis. T-IEL include both induced T-IEL, derived from systemic antigen-experienced lymphocytes, and natural T-IEL, which are developmentally targeted to the intestine. While the processes driving T-IEL development have been elucidated, the precise roles of the different subsets and the processes driving activation and regulation of these cells remain unclear. To gain functional insights into these enigmatic cells, we used high-resolution, quantitative mass spectrometry to compare the proteomes of induced T-IEL and natural T-IEL subsets, with naive CD8+ T cells from lymph nodes. This data exposes the dominant effect of the gut environment over ontogeny on T-IEL phenotypes. Analyses of protein copy numbers of >7000 proteins in T-IEL reveal skewing of the cell surface repertoire towards epithelial interactions and checkpoint receptors; strong suppression of the metabolic machinery indicating a high energy barrier to functional activation; upregulated cholesterol and lipid metabolic pathways, leading to high cholesterol levels in T-IEL; suppression of T cell antigen receptor signalling and expression of the transcription factor TOX, reminiscent of chronically activated T cells. These novel findings illustrate how T-IEL integrate multiple tissue-specific signals to maintain their homeostasis and potentially function.
Collapse
Affiliation(s)
- Alejandro J Brenes
- Centre for Gene Regulation and Expression, University of DundeeDundeeUnited Kingdom
- Division of Cell Signalling and Immunology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Harriet Watt
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Jens Hukelmann
- Centre for Gene Regulation and Expression, University of DundeeDundeeUnited Kingdom
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Dina Dikovskaya
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, University of DundeeDundeeUnited Kingdom
| | - Mahima Swamy
- Division of Cell Signalling and Immunology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
26
|
Liu Q, Zhang L, Allman EL, Hubbard TD, Murray IA, Hao F, Tian Y, Gui W, Nichols RG, Smith PB, Anitha M, Perdew GH, Patterson AD. The aryl hydrocarbon receptor activates ceramide biosynthesis in mice contributing to hepatic lipogenesis. Toxicology 2021; 458:152831. [PMID: 34097992 DOI: 10.1016/j.tox.2021.152831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
Aryl hydrocarbon receptor (AHR) activation via 2,3,7,8-tetrachlorodibenzofuran (TCDF) induces the accumulation of hepatic lipids. Here we report that AHR activation by TCDF (24 μg/kg body weight given orally for five days) induced significant elevation of hepatic lipids including ceramides in mice, was associated with increased expression of key ceramide biosynthetic genes, and increased activity of their respective enzymes. Results from chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and cell-based reporter luciferase assays indicated that AHR directly activated the serine palmitoyltransferase long chain base subunit 2 (Sptlc2, encodes serine palmitoyltransferase 2 (SPT2)) gene whose product catalyzes the initial rate-limiting step in de novo sphingolipid biosynthesis. Hepatic ceramide accumulation was further confirmed by mass spectrometry-based lipidomics. Taken together, our results revealed that AHR activation results in the up-regulation of Sptlc2, leading to ceramide accumulation, thus promoting lipogenesis, which can induce hepatic lipid accumulation.
Collapse
Affiliation(s)
- Qing Liu
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
| | - Erik L Allman
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Troy D Hubbard
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Iain A Murray
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuan Tian
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wei Gui
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Robert G Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Philip B Smith
- Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Mallappa Anitha
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary H Perdew
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Mohapatra SR, Sadik A, Sharma S, Poschet G, Gegner HM, Lanz TV, Lucarelli P, Klingmüller U, Platten M, Heiland I, Opitz CA. Hypoxia Routes Tryptophan Homeostasis Towards Increased Tryptamine Production. Front Immunol 2021; 12:590532. [PMID: 33679737 PMCID: PMC7933006 DOI: 10.3389/fimmu.2021.590532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is the central hub for processing and maintaining homeostatic levels of dietary nutrients especially essential amino acids such as tryptophan (Trp). Trp is required not only to sustain protein synthesis but also as a precursor for the production of NAD, neurotransmitters and immunosuppressive metabolites. In light of these roles of Trp and its metabolic products, maintaining homeostatic levels of Trp is essential for health and well-being. The liver regulates global Trp supply by the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2), which degrades Trp down the kynurenine pathway (KP). In the current study, we show that isolated primary hepatocytes when exposed to hypoxic environments, extensively rewire their Trp metabolism by reducing constitutive Tdo2 expression and differentially regulating other Trp pathway enzymes and transporters. Mathematical modelling of Trp metabolism in liver cells under hypoxia predicted decreased flux through the KP while metabolic flux through the tryptamine branch significantly increased. In line, the model also revealed an increased accumulation of tryptamines under hypoxia, at the expense of kynurenines. Metabolic measurements in hypoxic hepatocytes confirmed the predicted reduction in KP metabolites as well as accumulation of tryptamine. Tdo2 expression in cultured primary hepatocytes was reduced upon hypoxia inducible factor (HIF) stabilisation by dimethyloxalylglycine (DMOG), demonstrating that HIFs are involved in the hypoxic downregulation of hepatic Tdo2. DMOG abrogated hepatic luciferase signals in Tdo2 reporter mice, indicating that HIF stability also recapitulates hypoxic rewiring of Trp metabolism in vivo. Also in WT mice HIF stabilization drove homeostatic Trp metabolism away from the KP towards enhanced tryptamine production, leading to enhanced levels of tryptamine in liver, serum and brain. As tryptamines are the most potent hallucinogens known, the observed upregulation of tryptamine in response to hypoxic exposure of hepatocytes may be involved in the generation of hallucinations occurring at high altitude. KP metabolites are known to activate the aryl hydrocarbon receptor (AHR). The AHR-activating properties of tryptamines may explain why immunosuppressive AHR activity is maintained under hypoxia despite downregulation of the KP. In summary our results identify hypoxia as an important factor controlling Trp metabolism in the liver with possible implications for immunosuppressive AHR activation and mental disturbances.
Collapse
Affiliation(s)
- Soumya R. Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Suraj Sharma
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Hagen M. Gegner
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Tobias V. Lanz
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Philippe Lucarelli
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Christiane A. Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Rico de Souza A, Traboulsi H, Wang X, Fritz JH, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor Attenuates Acute Cigarette Smoke-Induced Airway Neutrophilia Independent of the Dioxin Response Element. Front Immunol 2021; 12:630427. [PMID: 33659010 PMCID: PMC7917085 DOI: 10.3389/fimmu.2021.630427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a prevalent respiratory toxicant that remains a leading cause of death worldwide. Cigarette smoke induces inflammation in the lungs and airways that contributes to the development of diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). Due to the presence of aryl hydrocarbon receptor (AhR) ligands in cigarette smoke, activation of the AhR has been implicated in driving this inflammatory response. However, we have previously shown that the AhR suppresses cigarette smoke-induced pulmonary inflammation, but the mechanism by which the AhR achieves its anti-inflammatory function is unknown. In this study, we use the AhR antagonist CH-223191 to inhibit AhR activity in mice. After an acute (3-day) cigarette smoke exposure, AhR inhibition was associated with significantly enhanced neutrophilia in the airways in response to cigarette smoke, mimicking the phenotype of AhR-deficient mice. We then used genetically-modified mouse strains which express an AhR that can bind ligand but either cannot translocate to the nucleus or bind its cognate response element, to show that these features of the AhR pathway are not required for the AhR to suppress pulmonary neutrophilia. Finally, using the non-toxic endogenous AhR ligand FICZ, we provide proof-of-concept that activation of pulmonary AhR attenuates smoke-induced inflammation. Collectively, these results support the importance of AhR activity in mediating its anti-inflammatory function in response to cigarette smoke. Further investigation of the precise mechanisms by which the AhR exerts is protective functions may lead to the development of therapeutic agents to treat people with chronic lung diseases that have an inflammatory etiology, but for which few therapeutic options exist.
Collapse
Affiliation(s)
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xinyu Wang
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Western University, London, ON, Canada
| | - Jorg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Usal M, Veyrenc S, Darracq-Ghitalla-Ciock M, Regnault C, Sroda S, Fini JB, Canlet C, Tremblay-Franco M, Raveton M, Reynaud S. Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116109. [PMID: 33234375 DOI: 10.1016/j.envpol.2020.116109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L-1) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2-BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2-BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
Collapse
Affiliation(s)
- Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | | | - Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sophie Sroda
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation Du Vivant, Muséum National D'Histoire Naturelle, 7 Rue Cuvier, 75005, Paris, France.
| | - Cécile Canlet
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Marie Tremblay-Franco
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
30
|
Kumar A, Sundaram K, Mu J, Dryden GW, Sriwastva MK, Lei C, Zhang L, Qiu X, Xu F, Yan J, Zhang X, Park JW, Merchant ML, Bohler HCL, Wang B, Zhang S, Qin C, Xu Z, Han X, McClain CJ, Teng Y, Zhang HG. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun 2021; 12:213. [PMID: 33431899 PMCID: PMC7801461 DOI: 10.1038/s41467-020-20500-w] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) decreases insulin sensitivity. How high-fat diet causes insulin resistance is largely unknown. Here, we show that lean mice become insulin resistant after being administered exosomes isolated from the feces of obese mice fed a HFD or from patients with type II diabetes. HFD altered the lipid composition of exosomes from predominantly phosphatidylethanolamine (PE) in exosomes from lean animals (L-Exo) to phosphatidylcholine (PC) in exosomes from obese animals (H-Exo). Mechanistically, we show that intestinal H-Exo is taken up by macrophages and hepatocytes, leading to inhibition of the insulin signaling pathway. Moreover, exosome-derived PC binds to and activates AhR, leading to inhibition of the expression of genes essential for activation of the insulin signaling pathway, including IRS-2, and its downstream genes PI3K and Akt. Together, our results reveal HFD-induced exosomes as potential contributors to the development of insulin resistance. Intestinal exosomes thus have potential as broad therapeutic targets.
Collapse
Affiliation(s)
- Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Gerald W Dryden
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiaolan Qiu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- KBRIN Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Henry C L Bohler
- Department of Reproductive Endocrinology and Infertility, University of Louisville, Louisville, KY40202, USA
| | - Baomei Wang
- Department of Dermatology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Shuangqin Zhang
- Peeples Cancer Institute, 215 Memorial Drive, Dalton, GA, 30720, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ziying Xu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA.
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA.
| |
Collapse
|
31
|
Girer NG, Tomlinson CR, Elferink CJ. The Aryl Hydrocarbon Receptor in Energy Balance: The Road from Dioxin-Induced Wasting Syndrome to Combating Obesity with Ahr Ligands. Int J Mol Sci 2020; 22:E49. [PMID: 33374508 PMCID: PMC7793057 DOI: 10.3390/ijms22010049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) has been studied for over 40 years, yet our understanding of this ligand-activated transcription factor remains incomplete. Each year, novel findings continually force us to rethink the role of the AHR in mammalian biology. The AHR has historically been studied within the context of potent activation via AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), with a focus on how the AHR mediates TCDD toxicity. Research has subsequently revealed that the AHR is actively involved in distinct physiological processes ranging from the development of the liver and reproductive organs, to immune system function and wound healing. More recently, the AHR was implicated in the regulation of energy metabolism and is currently being investigated as a potential therapeutic target for obesity. In this review, we re-trace the steps through which the early toxicological studies of TCDD led to the conceptual framework for the AHR as a potential therapeutic target in metabolic disease. We additionally discuss the key discoveries that have been made concerning the role of the AHR in energy metabolism, as well as the current and future directions of the field.
Collapse
Affiliation(s)
- Nathaniel G. Girer
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA;
| | - Craig R. Tomlinson
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Dartmouth College, Lebanon, NH 03756, USA;
| | - Cornelis J. Elferink
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA;
| |
Collapse
|
32
|
Guerrina N, Aloufi N, Shi F, Prasade K, Mehrotra C, Traboulsi H, Matthews J, Eidelman DH, Hamid Q, Baglole CJ. The aryl hydrocarbon receptor reduces LC3II expression and controls endoplasmic reticulum stress. Am J Physiol Lung Cell Mol Physiol 2020; 320:L339-L355. [PMID: 33236922 DOI: 10.1152/ajplung.00122.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose physiological function is poorly understood. The AhR is highly expressed in barrier organs such as the skin, intestine, and lung. The lungs are continuously exposed to environmental pollutants such as cigarette smoke (CS) that can induce cell death mechanisms such as apoptosis, autophagy, and endoplasmic reticulum (ER) stress. CS also contains toxicants that are AhR ligands. We have previously shown that the AhR protects against apoptosis, but whether the AhR also protects against autophagy or ER stress is not known. Using cigarette smoke extract (CSE) as our in vitro surrogate of environmental tobacco exposure, we first assessed the conversion of LC3I to LC3II, a classic feature of both autophagic and ER stress-mediated cell death pathways. LC3II was elevated in CSE-exposed lung structural cells [mouse lung fibroblasts (MLFs), MLE12 and A549 cells] when AhR was absent. However, this heightened LC3II expression could not be explained by increased expression of key autophagy genes (Gabarapl1, Becn1, Map1lc3b), upregulation of upstream autophagic machinery (Atg5-12, Atg3), or impaired autophagic flux, suggesting that LC3II may be autophagy independent. This was further supported by the absence of autophagosomes in Ahr-/- lung cells. However, Ahr-/- lung cells had widespread ER dilation, elevated expression of the ER stress markers CHOP and GADD34, and an accumulation of ubiquitinated proteins. These findings collectively illustrate a novel role for the AhR in attenuating ER stress by a mechanism that may be autophagy independent.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Noof Aloufi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Fangyi Shi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Kashmira Prasade
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Caitlin Mehrotra
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Guo J, Zhang S, Fang L, Huang J, Wang Q, Wang C, Chen M. In utero exposure to phenanthrene induces hepatic steatosis in F1 adult female mice. CHEMOSPHERE 2020; 258:127360. [PMID: 32554016 DOI: 10.1016/j.chemosphere.2020.127360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants are thought to be a risk factor for the prevalence of hepatic steatosis. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, and human exposure is inevitable. In the present study, phenanthrene (Phe) was used as a representative PAH to investigate the effects of in utero exposure to PAH on hepatic lipid metabolism and the toxicological mechanism involved. Pregnant mice (C57BL/6J) were orally administered Phe (0, 60, 600 and 6000 μg kg-1 body weight) once every 3 days with 6 doses in total. F1 female mice aged 125 days showed significantly elevated hepatic lipid levels in the liver. The protein expression of hepatic peroxisome proliferator-activated receptors (PPARβ and PPARγ) and retinoid X receptors (RXRs) was upregulated; the transcription of genes related to lipogenesis, such as srebp1 (encoding sterol regulatory element binding proteins), acca (acetyl-CoA carboxylase), fasn (fatty acid synthase) and pcsk9 (proprotein convertase subtilisin/kexin type 9), showed an upregulation, while the mRNA levels of the lipolysis gene lcat (encoding lecithin cholesterol acyl transferase) were downregulated. These results could be responsible for lipid accumulation. The promoter methylation levels of pparγ were reduced and were the lowest in the 600 μg kg-1 group, and the promoter methylation levels of lcat were significantly increased in all the Phe treatments. These changes were matched with the alterations in their mRNA levels, suggesting that prenatal Phe exposure could induce abnormal lipid metabolism in later life via epigenetic modification.
Collapse
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- College of Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen, PR China.
| |
Collapse
|
34
|
Leśków A, Tarnowska M, Rosińczuk J, Dobrzyński M, Kaliszewski K, Majda J, Żybura-Wszol̷a K, Sobolewska S, Diakowska D. Xanthohumol Effect on 2,3,7,8-Tetrachlorodibenzo- p-dioxin-Treated Japanese Quails in Terms of Serum Lipids, Liver Enzymes, Estradiol, and Thyroid Hormones. ACS OMEGA 2020; 5:24445-24452. [PMID: 33015460 PMCID: PMC7528308 DOI: 10.1021/acsomega.0c02896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Dioxins are compounds classified as persistent organic pollutants, from which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic to living organisms. TCDD is considered a carcinogen and has proinflammatory influence on animals and humans, promoting free radicals' formation, and binding with the aryl hydrocarbon receptor (AhR) leads to expression of cytochrome p-450 genes that in turn predisposes to mutations. Natural flavonoids, in this case xanthohumol (XN), have been reported to attenuate TCDD toxicity through inhibition of the transformation of the AhR. Moreover, XN shows antioxidant properties. The aim of the study was to compare the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and XN on lipid, liver enzyme, estradiol, and thyroid enzyme levels in the serum of Japanese quails. Adult, six-month-old, Japanese quails were divided into eight groups according to treatment procedures. Serum levels of total cholesterol (TCh), high-density lipoproteins (HDLs), triglycerides (TGs), estradiol, triiodothyronine, and thyroxine, and activities of alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase were measured. In comparison with the control group, 2,3,7,8-tetrachlorodibenzo-p-dioxin significantly decreased concentrations of serum HDLs and thyroid hormones and significantly increased the serum TCh level. Levels of serum TGs, liver enzymes, and estradiol were not changed after 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment. Based on our data, XN treatment may also increase the levels of thyroid hormones. Moreover, the tested dioxin disrupts the liver function, especially changing lipids' metabolism. Therefore, more studies are needed for better understanding the mechanism of toxic influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin on key metabolic pathways and organs in living organisms.
Collapse
Affiliation(s)
- Anna Leśków
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw 51618, Poland
| | - Mal̷gorzata Tarnowska
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw 51618, Poland
| | - Joanna Rosińczuk
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw 51618, Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Wroclaw 50425, Poland
| | - Krzysztof Kaliszewski
- Department of General, Gastroenterological and Endocrinological
Surgery, Wroclaw Medical University, Wroclaw 50369, Poland
| | - Jacek Majda
- Department of Laboratory Diagnostics,
4th Military Hospital, Wroclaw 50981, Poland
| | | | - Sylwia Sobolewska
- Department
of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, Wroclaw, 51630, Poland
| | - Dorota Diakowska
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw 51618, Poland
| |
Collapse
|
35
|
Fotschki B, Juśkiewicz J, Jurgoński A, Amarowicz R, Opyd P, Bez J, Muranyi I, Lykke Petersen I, Laparra Llopis M. Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats. Nutrients 2020; 12:E2781. [PMID: 32932953 PMCID: PMC7551680 DOI: 10.3390/nu12092781] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, dietary products with quinoa and buckwheat have attracted attention mostly due to the high nutritive value of their protein fraction. However, their dietary effect on intestinal microbiota activity and related systemic responses are still poorly understood. Therefore, a 2 week study of twenty-eight growing male Wistar rats was conducted to investigate the effects of quinoa (QU) and buckwheat (BK) protein-rich flours on the growth parameters, intestinal microbial activity, plasma lipid profile, and inflammatory markers. The biological value of protein and body weight gain were considerably increased in the QU and BK groups compared with those in the soy protein isolate group. Moreover, both flours increased the microbial activity of α-glucosidase, β-glucosidase, and α-galactosidase and the concentration of short-chain fatty acids in the caecum. The studied flours favourably reduced the plasma total cholesterol and LDL cholesterol. In rats fed a diet with QU, elevated levels of plasma interleukin 6 and alanine transaminase were observed. The effect of QU on inflammatory markers may be related to the increased expression of aryl hydrocarbon receptor in the liver and to the decreased level of plasma albumin. In conclusion, quinoa and buckwheat protein-rich flours are valuable sources of proteins that favourably affect growth parameters, gut metabolism, and blood lipid profile in rats; however, only the buckwheat flour has no effect on inflammatory processes.
Collapse
Affiliation(s)
- Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland; (J.J.); (A.J.); (R.A.); (P.O.)
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland; (J.J.); (A.J.); (R.A.); (P.O.)
| | - Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland; (J.J.); (A.J.); (R.A.); (P.O.)
| | - Ryszard Amarowicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland; (J.J.); (A.J.); (R.A.); (P.O.)
| | - Paulina Opyd
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland; (J.J.); (A.J.); (R.A.); (P.O.)
| | - Jürgen Bez
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354 Freising, Germany; (J.B.); (I.M.)
| | - Isabel Muranyi
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354 Freising, Germany; (J.B.); (I.M.)
| | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C., Denmark;
| | - Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA-Food), Ctra. de Canto Blanco n° 8, 28049 Madrid, Spain;
| |
Collapse
|
36
|
Fling RR, Doskey CM, Fader KA, Nault R, Zacharewski TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dysregulates hepatic one carbon metabolism during the progression of steatosis to steatohepatitis with fibrosis in mice. Sci Rep 2020; 10:14831. [PMID: 32908189 PMCID: PMC7481292 DOI: 10.1038/s41598-020-71795-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis that can progress to steatohepatitis with fibrosis, pathologies that parallel stages in the development of non-alcoholic fatty liver disease (NAFLD). Coincidently, one carbon metabolism (OCM) gene expression and metabolites are often altered during NAFLD progression. In this study, the time- and dose-dependent effects of TCDD were examined on hepatic OCM in mice. Despite AhR ChIP-seq enrichment at 2 h, OCM gene expression was not changed within 72 h following a bolus dose of TCDD. Dose-dependent repression of methionine adenosyltransferase 1A (Mat1a), adenosylhomocysteinase (Achy) and betaine-homocysteine S-methyltransferase (Bhmt) mRNA and protein levels following repeated treatments were greater at 28 days compared to 8 days. Accordingly, levels of methionine, betaine, and homocysteic acid were dose-dependently increased, while S-adenosylmethionine, S-adenosylhomocysteine, and cystathionine exhibited non-monotonic dose-dependent responses consistent with regulation by OCM intermediates and repression of glycine N-methyltransferase (Gnmt). However, the dose-dependent effects on SAM-dependent metabolism of polyamines and creatine could not be directly attributed to alterations in SAM levels. Collectively, these results demonstrate persistent AhR activation disrupts hepatic OCM metabolism at the transcript, protein and metabolite levels within context of TCDD-elicited progression of steatosis to steatohepatitis with fibrosis.
Collapse
Affiliation(s)
- Russell R Fling
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Claire M Doskey
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tim R Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
37
|
Zárybnický T, Matoušková P, Skálová L, Boušová I. The Hepatotoxicity of Alantolactone and Germacrone: Their Influence on Cholesterol and Lipid Metabolism in Differentiated HepaRG Cells. Nutrients 2020; 12:nu12061720. [PMID: 32521813 PMCID: PMC7353089 DOI: 10.3390/nu12061720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
The sesquiterpenes alantolactone (ATL) and germacrone (GER) are potential anticancer agents of natural origin. Their toxicity and biological activity have been evaluated using the differentiated HepaRG (dHepaRG) cells, a hepatocyte-like model. The half-maximal inhibitory concentrations of cell viability after 24-h treatment of dHepaRG cells are approximately 60 µM for ATL and 250 µM for GER. However, both sesquiterpenes induce reactive oxygen species (ROS) formation in non-toxic concentrations and significantly dysregulate the mRNA expression of several functional markers of mature hepatocytes. They similarly decrease the protein level of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and their transcription target, intercellular adhesion molecule 1 (ICAM-1). Based on the results of a BATMAN-TCM analysis, the effects of sesquiterpenes on cholesterol and lipid metabolism were studied. Sesquiterpene-mediated dysregulation of both cholesterol and lipid metabolism was observed, during which these compounds influenced the protein expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and sterol regulatory element-binding protein 2 (SREBP-2), as well as the mRNA expression of HMGCR, CYP19A1, PLIN2, FASN, SCD, ACACB, and GPAM genes. In conclusion, the two sesquiterpenes caused ROS induction at non-toxic concentrations and alterations in cholesterol and lipid metabolism at slightly toxic and toxic concentrations, suggesting a risk of liver damage if administered to humans.
Collapse
|
38
|
Park C, Song H, Choi J, Sim S, Kojima H, Park J, Iida M, Lee Y. The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114036. [PMID: 31995776 DOI: 10.1016/j.envpol.2020.114036] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA) is a well-known for endocrine-disrupting chemical (EDC) and is one of the highest amounts of chemicals produced worldwide. Some countries restrict the use of BPA, which is widely used in the production of a variety products. Considering the toxicity and limitations on use of BPA, efforts are needed to find safer alternatives. Increasingly, bisphenol F (BPF) and bisphenol S (BPS) are alternatives of BPA, which is increasing their exposure levels in various environments. There are many ways to assess whether a chemical is an EDC. Here, we evaluated the endocrine-disrupting risks of the bisphenols by investigating their agonist and antagonist activities with the estrogen (ER), androgen (AR), and aryl hydrocarbon (AhR) receptors. Our results showed that BPA, BPS, and BPF (BPs) have estrogen agonist and androgen antagonist activities and decrease the ERα protein level. Interestingly, a mixture of the BPs had ER and anti-AR activity at lower concentrations than BPs alone. The activation of AhR was not a concentration-dependent effect of BPs, although it was increased significantly. In conclusion, BPs have estrogen agonist and androgen antagonist activities, and the effect of exposure to a BPs mixture differs from that of BPs alone.
Collapse
Affiliation(s)
- Choa Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Junyeong Choi
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Seunghye Sim
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan; Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | | | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
39
|
Rojas IY, Moyer BJ, Ringelberg CS, Tomlinson CR. Reversal of obesity and liver steatosis in mice via inhibition of aryl hydrocarbon receptor and altered gene expression of CYP1B1, PPARα, SCD1, and osteopontin. Int J Obes (Lond) 2020; 44:948-963. [PMID: 31911663 PMCID: PMC7103522 DOI: 10.1038/s41366-019-0512-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is a global epidemic and the underlying basis for numerous comorbidities. We report that the aryl hydrocarbon receptor (AHR) plays a key role in the metabolism of obesity. The AHR is a promiscuous, ligand-activated nuclear receptor primarily known for regulating genes involved in xenobiotic metabolism and T cell polarization. The aims of the work reported here were to understand the underlying mechanism of AHR-based obesity and to determine whether inhibition of AHR activity would reverse obesity. METHODS Mice were fed control (low fat) and Western (high fat) diets with and without the AHR antagonist alpha-naphthoflavone (aNF). Gene expression of identified AHR-regulated genes from liver and adipose tissue was characterized. To determine the role of the AHR in obesity reversal, selected mice in control and Western diet regimens were switched at midpoint to the respective control and Western diets containing aNF, and the identified AHR-regulated genes characterized. RESULTS AHR inhibition prevented obesity in mice on a 40-week diet regimen. The likely AHR-regulated and cross-regulated downstream effectors of AHR-based obesity were shown to be CYP1B1, PPARα-target genes, SCD1, and SPP1 (osteopontin). Western diet caused an increase of mRNA and protein expression of the Cyp1b1, Scd1, and Spp1, and PPARα-target genes in the liver, and inhibition of the AHR maintained expression of these genes near control levels. The body weight of obese mice on Western diet switched to Western diet containing aNF decreased to that of mice on control diet concurrently with a reduction in the expression of liver CYP1B1, PPARα-target genes, SCD1, and SPP1. AHR inhibition prevented hypertrophy and hyperplasia in visceral adipose tissue and limited expression levels of CYP1B1 and SPP1 to that of mice on control diet. CONCLUSIONS AHR inhibition prevents and reverses obesity by likely reducing liver expression of the Cyp1b1, Scd1, Spp1, and PPARα-target genes; and the AHR is a potentially potent therapeutic target for the treatment and prevention of obesity and linked diseases.
Collapse
Affiliation(s)
- Itzel Y Rojas
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Tufts University School of Medicine, 711 Washington Street, Boston, MA, 02111, USA
| | - Benjamin J Moyer
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Carol S Ringelberg
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
40
|
Majumder S, Kono M, Lee YT, Byrnes C, Li C, Tuymetova G, Proia RL. A genome-wide CRISPR/Cas9 screen reveals that the aryl hydrocarbon receptor stimulates sphingolipid levels. J Biol Chem 2020; 295:4341-4349. [PMID: 32029474 PMCID: PMC7105297 DOI: 10.1074/jbc.ac119.011170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/28/2020] [Indexed: 01/12/2023] Open
Abstract
Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.
Collapse
Affiliation(s)
- Saurav Majumder
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Mari Kono
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Y Terry Lee
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Colleen Byrnes
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Cuiling Li
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Galina Tuymetova
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard L Proia
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
41
|
Selective Ah receptor modulators attenuate NPC1L1-mediated cholesterol uptake through repression of SREBP-2 transcriptional activity. J Transl Med 2020; 100:250-264. [PMID: 31417158 PMCID: PMC6989381 DOI: 10.1038/s41374-019-0306-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
The ability of the aryl hydrocarbon receptor (AHR) to alter hepatic expression of cholesterol synthesis genes in a DRE-independent manner in mice and humans has been reported. We have examined the influence of functionally distinct classes of AHR ligands on the levels of Niemann-Pick C1-like intracellular cholesterol transporter (NPC1L1) and enzymes involved in the cholesterol synthesis pathway. NPC1L1 is known to mediate the intestinal absorption of dietary cholesterol and is clinically targeted. AHR ligands were capable of attenuating cholesterol uptake through repression of NPC1L1 expression. Through mutagenesis experiments targeting the two DRE sequences present in the promoter region of the NPC1L1 gene, we provide evidence that the repression does not require functional DRE sequences; while knockdown experiments demonstrated that this regulation is dependent on AHR and sterol-regulatory element-binding protein-2 (SREBP-2). Furthermore, upon ligand activation of AHR, the human intestinal Caco-2 cell line revealed coordinate repression of both mRNA and protein levels for a number of the cholesterol biosynthetic enzymes. Transcription of NPC1L1 and genes of the cholesterol synthesis pathway is predominantly regulated by SREBP-2, especially after treatment with a statin. Immunoblot analyses revealed a significant decrease in transcriptionally active SREBP-2 levels upon ligand treatment, whereas the precursor form of SREBP-2 was modestly increased by AHR activation. Mechanistic insights indicate that AHR induces proteolytic degradation of mature SREBP-2 in a calcium-dependent manner, which correlates with the AHR ligand-mediated upregulation of the transient receptor potential cation channel subfamily V member 6 (TRPV6) gene encoding for a membrane calcium channel. These observations emphasize a role for AHR in the systemic homeostatic regulation of cholesterol synthesis and absorption, indicating the potential use of this receptor as a target for the treatment of hyperlipidosis-associated metabolic diseases.
Collapse
|
42
|
Dornbos P, Jurgelewicz A, Fader KA, Williams K, Zacharewski TR, LaPres JJ. Characterizing the Role of HMG-CoA Reductase in Aryl Hydrocarbon Receptor-Mediated Liver Injury in C57BL/6 Mice. Sci Rep 2019; 9:15828. [PMID: 31676775 PMCID: PMC6825130 DOI: 10.1038/s41598-019-52001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. The prototypical ligand of the AHR is an environmental contaminant called 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD exposure is associated with many adverse health outcomes in humans including non-alcoholic fatty liver disease (NAFLD). Previous studies suggest that AHR ligands alter cholesterol homeostasis in mice through repression of genes involved in cholesterol biosynthesis, such as Hmgcr, which encodes the rate-limiting enzyme of cholesterol biosynthesis called 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR). In this study, we sought to characterize the impact of HMGCR repression in TCDD-induced liver injury. C57BL/6 mice were exposed to TCDD in the presence or absence of simvastatin, a competitive inhibitor of HMGCR. Simvastatin exposure decreased TCDD-induced hepatic lipid accumulation in both sexes, but was most prominent in females. Simvastatin and TCDD (S + T) co-treatment increased hepatic AHR-battery gene expression and liver injury in male, but not female, mice. In addition, the S + T co-treatment led to an increase in hepatic glycogen content that coincides with heavier liver in female mice. Results from this study suggest that statins, which are amongst the most prescribed pharmaceuticals, may protect from AHR-mediated steatosis, but alter glycogen metabolism and increase the risk of TCDD-elicited liver damage in a sex-specific manner.
Collapse
Affiliation(s)
- Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amanda Jurgelewicz
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Pharmacology and Toxicology, Michigan State, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kurt Williams
- Department of Pathobiology and Diagnostic Investigation, Michigan State, East Lansing, MI, 48824, USA
| | - Timothy R Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - John J LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
43
|
Muku GE, Blazanin N, Dong F, Smith PB, Thiboutot D, Gowda K, Amin S, Murray IA, Perdew GH. Selective Ah receptor ligands mediate enhanced SREBP1 proteolysis to restrict lipogenesis in sebocytes. Toxicol Sci 2019; 171:146-158. [PMID: 31225620 PMCID: PMC6736396 DOI: 10.1093/toxsci/kfz140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) induced toxicity that can lead to chloracne in humans. A characteristic of chloracne, in contrast to acne vulgaris, is shrinkage or loss of sebaceous glands. Acne vulgaris, on the other hand, is often accompanied by excessive sebum production. Here, we examined the role of AHR in lipid synthesis in human sebocytes using distinct classes of AHR ligands. Modulation of AHR activity attenuated the expression of lipogenic genes and key pro-inflammatory markers in the absence of canonical DRE-driven transcription of the AHR target gene CYP1A1. Furthermore, topical treatment with TCDD, which mediates DRE-dependent activity, and SGA360, which fails to induce DRE-mediated responses, both exhibited a decrease in the size of sebaceous glands and the number of sebocytes within each gland in the skin. To elucidate the mechanism of AHR-mediated repression of lipid synthesis, we demonstrated that selective AHR modulators, SGA360 and SGA315 increased the protein turnover of the mature sterol regulatory element-binding protein (mSREBP-1), the principal transcriptional regulator of the fatty acid synthesis pathway. Interestingly, selective AHR ligand treatment significantly activated the AMPK-dependent kinase (AMPK) in sebocytes. Moreover, we demonstrated an inverse correlation between the active AMPK and the mSREBP-1 protein, which is consistent with the previously reported role of AMPK in inhibiting cleavage of SREBP-1. Overall, our findings indicate a DRE-independent function of selective AHR ligands in modulating lipid synthesis in human sebocytes, which might raise the possibility of using AHR as a therapeutic target for treatment of acne.
Collapse
Affiliation(s)
- Gulsum E Muku
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nicholas Blazanin
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Philip B Smith
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Diane Thiboutot
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Krishne Gowda
- Department of Pharmacology or Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology or Penn State College of Medicine, Hershey, Pennsylvania
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
44
|
Viluksela M, Pohjanvirta R. Multigenerational and Transgenerational Effects of Dioxins. Int J Mol Sci 2019; 20:E2947. [PMID: 31212893 PMCID: PMC6627869 DOI: 10.3390/ijms20122947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Dioxins are ubiquitous and persistent environmental contaminants whose background levels are still reason for concern. There is mounting evidence from both epidemiological and experimental studies that paternal exposure to the most potent congener of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can lower the male/female ratio of offspring. Moreover, in laboratory rodents and zebrafish, TCDD exposure of parent animals has been reported to result in reduced reproductive performance along with other adverse effects in subsequent generations, foremost through the paternal but also via the maternal germline. These impacts have been accompanied by epigenetic alterations in placenta and/or sperm cells, including changes in methylation patterns of imprinted genes. Here, we review recent key studies in this field with an attempt to provide an up-to-date picture of the present state of knowledge to the reader. These studies provide biological plausibility for the potential of dioxin exposure at a critical time-window to induce epigenetic alterations across multiple generations and the significance of aryl hydrocarbon receptor (AHR) in mediating these effects. Currently available data do not allow to accurately estimate the human health implications of these findings, although epidemiological evidence on lowered male/female ratio suggests that this effect may take place at realistic human exposure levels.
Collapse
Affiliation(s)
- Matti Viluksela
- School of Pharmacy and Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
- Environmental Health Unit, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| |
Collapse
|
45
|
Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci 2019; 51:379-395. [DOI: 10.1111/ejn.14361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shelley A. Tischkau
- Department of PharmacologySouthern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
46
|
Fujisawa N, Yoshioka W, Yanagisawa H, Tohyama C. Significance of AHR nuclear translocation sequence in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cPLA 2α activation and hydronephrosis. Arch Toxicol 2019; 93:1255-1264. [PMID: 30790002 DOI: 10.1007/s00204-019-02414-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AHR) plays a major role in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicity phenotypes. TCDD bound to AHR elicits both genomic action in which target genes are transcriptionally upregulated and nongenomic action in which cytosolic phospholipase A2α (cPLA2α) is rapidly activated. However, how either of these actions, separately or in combination, induces toxicity phenotypes is largely unknown. In this study, we used AHRnls/nls mice as a model in which AHR was mutated to lack nuclear translocation sequence (NLS), and AHRd/- mice as the corresponding control. Using this model, we studied TCDD-induced alterations in cPLA2α activation and related factors because of the pivotal roles of cPLA2α both in AHR's nongenomic action and in regulation of causative genes of TCDD-induced hydronephrosis. Dams were orally administered TCDD at a dose of 300 µg/kg body weight on postnatal day 1, and pups subsequently exposed to TCDD via milk were examined for gene expression on PND 7 and for histological changes on PND 14. The activation of the AHR genomic action and hydronephrosis onset were observed in the control group but not in the AHRnls/nls group. An ex vivo experiment using peritoneal macrophages exposed to 100 nM TCDD resulted in rapid activation of cPLA2α, an indicator of the nongenomic action, only in the control group but not in the AHRnls/nls group. These results indicated that an NLS is required for the AHR's genomic and nongenomic actions.
Collapse
Affiliation(s)
- Nozomi Fujisawa
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
47
|
Choudhary M, Safe S, Malek G. Suppression of aberrant choroidal neovascularization through activation of the aryl hydrocarbon receptor. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1583-1595. [PMID: 29481912 PMCID: PMC5880720 DOI: 10.1016/j.bbadis.2018.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand activated transcription factor, initially discovered for its role in regulating xenobiotic metabolism. There is extensive evidence supporting a multi-faceted role for AhR, modulating physiological pathways important in cell health and disease. Recently we demonstrated that the AhR plays a role in the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. We found that loss of AhR exacerbates choroidal neovascular (CNV) lesion formation in a murine model. Herein we tested the therapeutic impact of AhR activation on CNV lesion formation and factors associated with aberrant neovascularization. We screened a panel of synthetic drugs and endogenous AhR ligands, assessed their ability to activate AhR in choroidal endothelial cells, and inhibit angiogenesis in vitro. Drugs with an anti-angiogenic profile were then administered to a murine model of CNV. Two compounds, leflunomide and flutamide, significantly inhibited CNV formation concurrent with positive modifying effects on angiogenesis, inflammation, extracellular matrix remodeling, and fibrosis. These results validate the role of the AhR pathway in regulating CNV pathogenesis, identify mechanisms of AhR-based therapies in the eye, and argue in favor of developing AhR as a drug target for the treatment of neovascular AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Stephen Safe
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
48
|
Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells. Toxicol In Vitro 2018; 48:329-341. [PMID: 29432896 DOI: 10.1016/j.tiv.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/15/2023]
Abstract
Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content.
Collapse
|
49
|
Li Y, Song Y, Zhao M, Guo Y, Yu C, Chen W, Shao S, Xu C, Zhou X, Zhao L, Zhang Z, Bo T, Xia Y, Proud CG, Wang X, Wang L, Zhao J, Gao L. A novel role for CRTC2 in hepatic cholesterol synthesis through SREBP-2. Hepatology 2017; 66:481-497. [PMID: 28395113 PMCID: PMC5575482 DOI: 10.1002/hep.29206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Cholesterol synthesis is regulated by the transcription factor sterol regulatory element binding protein 2 (SREBP-2) and its target gene 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), which is the rate-limiting enzyme in cholesterol synthesis. Cyclic adenosine monophosphate-responsive element (CRE) binding protein-regulated transcription coactivator (CRTC) 2 is the master regulator of glucose metabolism. However, the effect of CRTC2 on cholesterol and its potential molecular mechanism remain unclear. Here, we demonstrated that CRTC2 expression and liver cholesterol content were increased in patients with high serum cholesterol levels who underwent resection of liver hemangiomas, as well as in mice fed a 4% cholesterol diet. Mice with adenovirus-mediated CRTC2 overexpression also showed elevated lipid levels in both serum and liver tissues. Intriguingly, hepatic de novo cholesterol synthesis was markedly increased under these conditions. In contrast, CRTC2 ablation in mice fed a 4% cholesterol diet (18 weeks) showed decreased lipid levels in serum and liver tissues compared with those in littermate wild-type mice. The expression of lipogenic genes (SREBP-2 and HMGCR) was consistent with hepatic CRTC2 levels. In vivo imaging showed enhanced adenovirus-mediated HMGCR-luciferase activity in adenovirus-mediated CRTC2 mouse livers; however, the activity was attenuated after mutation of CRE or sterol regulatory element sequences in the HMGCR reporter construct. The effect of CRTC2 on HMGCR in mouse livers was alleviated upon SREBP-2 knockdown. CRTC2 modulated SREBP-2 transcription by CRE binding protein, which recognizes the half-site CRE sequence in the SREBP-2 promoter. CRTC2 reduced the nuclear protein expression of forkhead box O1 and subsequently increased SREBP-2 transcription by binding insulin response element 1, rather than insulin response element 2, in the SREBP-2 promoter. CONCLUSION CRTC2 regulates the transcription of SREBP-2 by interfering with the recognition of insulin response element 1 in the SREBP-2 promoter by forkhead box O1, thus inducing SREBP-2/HMGCR signaling and subsequently facilitating hepatic cholesterol synthesis. (Hepatology 2017;66:481-497).
Collapse
|
50
|
Hsu SH, Wang LT, Chai CY, Wu CC, Hsi E, Chiou SS, Wang SN. Aryl hydrocarbon receptor promotes hepatocellular carcinoma tumorigenesis by targeting intestine-specific homeobox expression. Mol Carcinog 2017; 56:2167-2177. [PMID: 28398627 DOI: 10.1002/mc.22658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/22/2017] [Accepted: 04/08/2017] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor (AHR), a major chemical sensor, is thought to play a role in various biological contexts, including cell cycle regulation and tumorigenesis. However, its regulatory mechanisms remain unclear. We propose herein a novel mechanism through which AHR promotes tumorigenesis by targeting expression of the oncogene intestine-specific homeobox (ISX) in hepatocellular carcinoma (HCC). Compared to paired tumor-adjacent tissues and non-HCC tumors, HCCs exhibited an increased and hierarchical pattern of AHR expression. Patients exhibiting high AHR expression had a significantly shorter survival duration, compared to those with low and medium expression. Functionally, AHR was found to target the newly discovered proto-oncogene, ISX, resulting in the increased expression of this gene and its downstream targets, CCND1 and E2F1. Ablation of AHR or ISX in hepatoma cells suppressed cell growth, whereas overexpression promoted cell proliferation and led to enhanced tumorigenic activity in vitro and in vivo. These results provide evidence to support a critical role for the AHR/ISX axis in HCC tumorigenesis and suggest its potential utility as a new therapeutic and prognostic target for HCC.
Collapse
Affiliation(s)
- Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Faculty of Medicine, Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Cheng Wu
- Department of Business Management, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shyh-Shin Chiou
- Faculty of Medicine, Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shen-Nien Wang
- Division of Hepatobiliary Surgery, Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|