1
|
Zhang K, Wang T, Huang X, Wu P, Shen L, Yang Y, Wan W, Sun S, Zhang Z. Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases. ULTRASONICS SONOCHEMISTRY 2025; 114:107270. [PMID: 39961217 PMCID: PMC11875835 DOI: 10.1016/j.ultsonch.2025.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, PR China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, PR China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China.
| | - Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, PR China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
2
|
谢 李, 杜 哲, 彭 秋, 张 坤, 方 超. [Classification and Application of Ultrasound-Responsive Nanomaterials in Anti-Inflammatory Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:793-799. [PMID: 39169999 PMCID: PMC11334277 DOI: 10.12182/20240760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 08/23/2024]
Abstract
Ultrasound, a high-frequency mechanical wave with excellent tissue penetration, has been widely applied in medical diagnostic imaging. Furthermore, it has been reported that ultrasound has broad prospects for extensive applications in the field of disease treatment in recent years due to its non-invasiveness and high efficiency. Ultrasound-responsive nanomaterials have the unique advantages of a small size and a high reactivity. Such materials have the capability for precision control of drug release under ultrasound stimulation, which provides a new approach to enhancing the efficiency of drug therapy. Therefore, these materials have attracted the attention of a wide range of scholars. Inflammation is a defensive response produced by organisms to deal with injuries. However, excessive inflammatory response may lead to various tissue damages in organisms and even endanger patients' lives. Many studies have demonstrated that limiting the inflammatory response using ultrasound-responsive nanomaterials is a viable way of treating diseases. Currently, there are still challenges in the application of ultrasound-responsive nanomaterials in anti-inflammatory therapy. The design and synthesis process of nanomaterials is complicated, and further verification of the biocompatibility and safety of these materials is needed. Therefore, in this review, we summarized and classified common ultrasound-responsive nanomaterials in the field of anti-inflammation and systematically introduced the properties of different nanomaterials. In addition, the anti-inflammatory applications of ultrasound-responsive nanomaterials in various diseases, such as bone diseases, skin and muscle diseases, autoimmune diseases, and respiratory diseases, are also described in detail. It is expected that this review will provide insights for further research and clinical applications in the realms of precision treatment, targeted drug delivery, and clinical trial validation of ultrasound-responsive nanomaterials used in anti-inflammatory therapies.
Collapse
Affiliation(s)
- 李欣 谢
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 哲菲 杜
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 秋霞 彭
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 坤 张
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 超 方
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| |
Collapse
|
3
|
A multi-pulse ultrasound technique for imaging of thick-shelled microbubbles demonstrated in vitro and in vivo. PLoS One 2022; 17:e0276292. [PMID: 36327225 PMCID: PMC9632906 DOI: 10.1371/journal.pone.0276292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Contrast enhanced ultrasound is a powerful diagnostic tool and ultrasound contrast media are based on microbubbles (MBs). The use of MBs in drug delivery applications and molecular imaging is a relatively new field of research which has gained significant interest during the last decade. MBs available for clinical use are fragile with short circulation half-lives due to the use of a thin encapsulating shell for stabilization of the gas core. Thick-shelled MBs can have improved circulation half-lives, incorporate larger amounts of drugs for enhanced drug delivery or facilitate targeting for use in molecular ultrasound imaging. However, methods for robust imaging of thick-shelled MBs are currently not available. We propose a simple multi-pulse imaging technique which is able to visualize thick-shelled polymeric MBs with a superior contrast-to-tissue ratio (CTR) compared to commercially available harmonic techniques. The method is implemented on a high-end ultrasound scanner and in-vitro imaging in a tissue mimicking flow phantom results in a CTR of up to 23 dB. A proof-of-concept study of molecular ultrasound imaging in a soft tissue inflammation model in rabbit is then presented where the new imaging technique showed an enhanced accumulation of targeted MBs in the inflamed tissue region compared to non-targeted MBs and a mean CTR of 13.3 dB for stationary MBs. The presence of fluorescently labelled MBs was verified by confocal microscopy imaging of tissue sections post-mortem.
Collapse
|
4
|
Omata D, Munakata L, Maruyama K, Suzuki R. Ultrasound and microbubble-mediated drug delivery and immunotherapy. J Med Ultrason (2001) 2022:10.1007/s10396-022-01201-x. [PMID: 35403931 DOI: 10.1007/s10396-022-01201-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Ultrasound induces the oscillation and collapse of microbubbles such as those of an ultrasound contrast agent, where these behaviors generate mechanical and thermal effects on cells and tissues. These, in turn, induce biological responses in cells and tissues, such as cellular signaling, endocytosis, or cell death. These physiological effects have been used for therapeutic purposes. Most pharmaceutical agents need to pass through the blood vessel walls and reach the parenchyma cells to produce therapeutic effects in drug delivery. Therefore, the blood vessel walls act as an obstacle to drug delivery. The combination of ultrasound and microbubbles is a promising strategy to enhance vascular permeability, improving drug transport from blood to tissues. This combination has also been applied to gene and protein delivery, such as cytokines and antigens for immunotherapy. Immunotherapy, in particular, is an attractive technique for cancer treatment as it induces a cancer cell-specific response. However, sufficient anti-tumor effects have not been achieved with the conventional cancer immunotherapy. Recently, new therapies based on immunomodulation with immune checkpoint inhibitors have been reported. Immunomodulation can be regarded as a new strategy for cancer immunotherapy. It was also reported that mechanical and thermal effects induced by the combination of ultrasound and microbubbles could suppress tumor growth by promoting the cancer-immunity cycle via immunomodulation in the tumor microenvironment. In this review, we provide an overview of the application of ultrasound and microbubble combination for drug delivery and activation of the immune system in the microenvironment of tumor tissue.
Collapse
Affiliation(s)
- Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuo Maruyama
- Department of Theranostics, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan.
| |
Collapse
|
5
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
6
|
Ferreira-Silva M, Faria-Silva C, Baptista PV, Fernandes E, Fernandes AR, Corvo ML. Drug delivery nanosystems targeted to hepatic ischemia and reperfusion injury. Drug Deliv Transl Res 2021; 11:397-410. [PMID: 33660214 DOI: 10.1007/s13346-021-00915-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia and reperfusion injury (IRI) is an acute inflammatory process that results from surgical interventions, such as liver resection surgery or transplantation, or hemorrhagic shock. This pathology has become a severe clinical issue, due to the increasing incidence of hepatic cancer and the high number of liver transplants. So far, an effective treatment has not been implemented in the clinic. Despite its importance, hepatic IRI has not attracted much interest as an inflammatory disease, and only a few reviews addressed it from a therapeutic perspective with drug delivery nanosystems. In the last decades, drug delivery nanosystems have proved to be a major asset in therapy because of their ability to optimize drug delivery, either by passive or active targeting. Passive targeting is achieved through the enhanced permeability and retention (EPR) effect, a main feature in inflammation that allows the accumulation of the nanocarriers in inflammation sites, enabling a higher efficacy of treatment than conventional therapies. These systems also can be actively targeted to specific compounds, such as inflammatory markers and overexpressed receptors in immune system intermediaries, allowing an even more specialized therapy that have already showed encouraging results. In this manuscript, we review drug delivery nanosystems designed for hepatic IRI treatment, addressing their current state in clinical trials, discussing the main hurdles that hinder their successful translation to the market and providing some suggestions that could potentially advance their clinical translation.
Collapse
Affiliation(s)
- Margarida Ferreira-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Faria-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Alexandra Ramos Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Maria Luísa Corvo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
7
|
Yan H, Zhong M, Yang J, Guo J, Yu J, Yang Y, Ma Z, Zhao B, Zhang Y, Wang J, Wu C, Dittmer U, Yang D, Lu M, Zhang E, Yan H. TLR5 activation in hepatocytes alleviates the functional suppression of intrahepatic CD8 + T cells. Immunology 2020; 161:325-344. [PMID: 32852795 DOI: 10.1111/imm.13251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is an immune-privileged organ with a tolerogenic environment for maintaining liver homeostasis. This hepatic tolerance limits the intrahepatic CD8+ T-cell response for eliminating infections. The tolerant microenvironment in the liver is orchestrated by liver-specific immunoregulatory cells that can be functionally regulated by pathogen-associated molecular patterns (PAMPs). Here, we report that flagellin, a key PAMP of gut bacteria, modulates the intrahepatic CD8+ T-cell response by activating the TLR5 signalling pathway of hepatocytes. We found that mice treated with Salmonella-derived recombinant flagellin (SF) by hydrodynamic injection had a significantly elevated IFN-γ production by the intrahepatic lymphocytes in 7 days after injection. This was correlated with a reduced immune suppressive effect of primary mouse hepatocytes (PMHs) in comparison with that of PMHs from mock-injected control mice. In vitro co-culture of SF-treated PMHs with splenocytes revealed that hepatocyte-induced immune suppression is alleviated through activation of the TLR5 but not the NLRC4 signalling pathway, leading to improved activation and function of CD8+ T cells during anti-CD3 stimulation or antigen-specific activation. In an acute HBV replication mouse model established by co-administration of SF together with an HBV-replicating plasmid by hydrodynamic injection, SF significantly enhanced the intrahepatic HBV-specific CD8+ T-cell response against HBV surface antigen. Our results clearly showed that flagellin plays a role in modulating the intrahepatic CD8+ T-cell response by activating the TLR5 pathway in PMHs, which suggests a potential role for gut bacteria in regulating liver immunity.
Collapse
Affiliation(s)
- Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingyi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiabao Guo
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Ma
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bali Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Yoshikawa N, Fumoto S, Yoshikawa K, Hu D, Okami K, Kato R, Nakashima M, Miyamoto H, Nishida K. Interaction of Lipoplex with Albumin Enhances Gene Expression in Hepatitis Mice. Pharmaceutics 2020; 12:E341. [PMID: 32290201 PMCID: PMC7238045 DOI: 10.3390/pharmaceutics12040341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding the in vivo fate of lipoplex, which is composed of cationic liposomes and DNA, is an important issue toward gene therapy. In disease conditions, the fate of lipoplex might change compared with the normal condition. Here, we examined the contribution of interaction with serum components to in vivo transfection using lipoplex in hepatitis mice. Prior to administration, lipoplex was incubated with serum or albumin. In the liver, the interaction with albumin enhanced gene expression in hepatitis mice, while in the lung, the interaction with serum or albumin enhanced it. In normal mice, the interaction with albumin did not enhance hepatic and pulmonary gene expression. Furthermore, hepatic and pulmonary gene expression levels of albumin-interacted lipoplex were correlated with serum transaminases in hepatitis mice. The albumin interaction increased the hepatic accumulation of lipoplex and serum tumor necrosis factor-α level. We suggest that the interaction with albumin enhanced the inflammation level after the administration of lipoplex in hepatitis mice. Consequently, the enhancement of the inflammation level might enhance the gene expression level. Information obtained in the current study will be valuable toward future clinical application of the lipoplex.
Collapse
Affiliation(s)
- Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Keiko Yoshikawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Die Hu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Kazuya Okami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Riku Kato
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| |
Collapse
|
9
|
Wang X, Liang Q, Mao Y, Zhang R, Deng Q, Chen Y, Zhu R, Duan S, Yin L. Bioreducible, branched poly(β-amino ester)s mediate anti-inflammatory ICAM-1 siRNA delivery against myocardial ischemia reperfusion (IR) injury. Biomater Sci 2020; 8:3856-3870. [DOI: 10.1039/d0bm00631a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ICAM-1 siRNA delivery mediated by bioreducible, branched BPAE-SS toward the anti-inflammatory treatment of myocardial IR injury.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Collaborative Innovation Center of Suzhou Nano Science & Technology
- Soochow University
- Suzhou 215123
| | - Qiujun Liang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Collaborative Innovation Center of Suzhou Nano Science & Technology
- Soochow University
- Suzhou 215123
| | - Yiming Mao
- Department of Cardiothoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 214804
- China
- Department of Thoracic Surgery
| | - Rujing Zhang
- Department of Micro- and Nanotechnology
- DTU Nanotech
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Qiurong Deng
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Collaborative Innovation Center of Suzhou Nano Science & Technology
- Soochow University
- Suzhou 215123
| | - Yongbing Chen
- Department of Cardiothoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 214804
- China
| | - Rongying Zhu
- Department of Cardiothoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 214804
- China
| | - Shanzhou Duan
- Department of Cardiothoracic Surgery
- the Second Affiliated Hospital of Soochow University
- Suzhou 214804
- China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Collaborative Innovation Center of Suzhou Nano Science & Technology
- Soochow University
- Suzhou 215123
| |
Collapse
|
10
|
Omata D, Maruyama T, Unga J, Hagiwara F, Munakata L, Kageyama S, Shima T, Suzuki Y, Maruyama K, Suzuki R. Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery. J Control Release 2019; 311-312:65-73. [DOI: 10.1016/j.jconrel.2019.08.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022]
|
11
|
Hattori Y, Hattori K, Suzuki T, Palikhe S, Matsuda N. Nucleic-acid based gene therapy approaches for sepsis. Eur J Pharmacol 2018; 833:403-410. [PMID: 29935173 DOI: 10.1016/j.ejphar.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Despite advances in overall medical care, sepsis and its sequelae continue to be an embarrassing clinical entity with an unacceptably high mortality rate. The central reason for high morbidity and high mortality of sepsis and its sequelae is the lack of an effective treatment. Previous clinical trials have largely failed to identify an effective therapeutic target to improve clinical outcomes in sepsis. Thus, the key goal favoring the outcome of septic patients is to devise innovative and evolutionary therapeutic strategies. Gene therapy can be considered as one of the most promising novel therapeutic approaches for nasty disorders. Since a number of transcription factors, such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), play a pivotal role in the pathophysiology of sepsis that can be characterized by the induction of multiple genes and their products, sepsis may be regarded as a gene-related disorder and gene therapy may be considered a promising novel therapeutic approach for treatment of sepsis. In this review article, we provide an up-to-date summary of the gene-targeting approaches, which have been developed in animal models of sepsis. Our review sheds light on the molecular basis of sepsis pathology for the development of novel gene therapy approaches and leads to the conclusion that future research efforts may fully take into account gene therapy for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
12
|
Zhang XJ, Cheng X, Yan ZZ, Fang J, Wang X, Wang W, Liu ZY, Shen LJ, Zhang P, Wang PX, Liao R, Ji YX, Wang JY, Tian S, Zhu XY, Zhang Y, Tian RF, Wang L, Ma XL, Huang Z, She ZG, Li H. An ALOX12-12-HETE-GPR31 signaling axis is a key mediator of hepatic ischemia-reperfusion injury. Nat Med 2018; 24:73-83. [PMID: 29227475 DOI: 10.1038/nm.4451] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
Hepatic ischemia-reperfusion (IR) injury is a common clinical issue lacking effective therapy and validated pharmacological targets. Here, using integrative 'omics' analysis, we identified an arachidonate 12-lipoxygenase (ALOX12)-12-hydroxyeicosatetraenoic acid (12-HETE)-G-protein-coupled receptor 31 (GPR31) signaling axis as a key determinant of the hepatic IR process. We found that ALOX12 was markedly upregulated in hepatocytes during ischemia to promote 12-HETE accumulation and that 12-HETE then directly binds to GPR31, triggering an inflammatory response that exacerbates liver damage. Notably, blocking 12-HETE production inhibits IR-induced liver dysfunction, inflammation and cell death in mice and pigs. Furthermore, we established a nonhuman primate hepatic IR model that closely recapitulates clinical liver dysfunction following liver resection. Most strikingly, blocking 12-HETE accumulation effectively attenuated all pathologies of hepatic IR in this model. Collectively, this study has revealed previously uncharacterized metabolic reprogramming involving an ALOX12-12-HETE-GPR31 axis that functionally determines hepatic IR procession. We have also provided proof of concept that blocking 12-HETE production is a promising strategy for preventing and treating IR-induced liver damage.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/antagonists & inhibitors
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/biosynthesis
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Animals
- Arachidonate 12-Lipoxygenase/metabolism
- Disease Models, Animal
- Disease Progression
- Humans
- Lipid Metabolism
- Liver/blood supply
- Mice
- Receptors, G-Protein-Coupled/metabolism
- Reperfusion Injury/metabolism
- Reperfusion Injury/parasitology
- Signal Transduction
- Swine
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xu Cheng
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhen-Zhen Yan
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Fang
- Division of Cardiothoracic and Vascular Surgery, Key Laboratory of Organ Transplantation, Ministry of Education and Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Liu
- Institute of Model Animals of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun-Yong Wang
- Institute of Model Animals of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Rui-Feng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Lin Wang
- Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Miura Y, Fuchigami Y, Hagimori M, Sato H, Ogawa K, Munakata C, Wada M, Maruyama K, Kawakami S. Evaluation of the targeted delivery of 5-fluorouracil and ascorbic acid into the brain with ultrasound-responsive nanobubbles. J Drug Target 2017; 26:684-691. [DOI: 10.1080/1061186x.2017.1419354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yusuke Miura
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroki Sato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chie Munakata
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuhiro Wada
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuo Maruyama
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
14
|
Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis. Acta Pharm Sin B 2017; 7:447-452. [PMID: 28752029 PMCID: PMC5518641 DOI: 10.1016/j.apsb.2017.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/03/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM) and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble–mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.
Collapse
|
15
|
Suyavaran A, Thirunavukkarasu C. Preconditioning methods in the management of hepatic ischemia reperfusion- induced injury: Update on molecular and future perspectives. Hepatol Res 2017; 47:31-48. [PMID: 26990696 DOI: 10.1111/hepr.12706] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/12/2016] [Accepted: 03/11/2016] [Indexed: 12/14/2022]
Abstract
Hepatic IR (ischemia reperfusion) injury is a commonly encountered obstacle in the post-operative management of hepatic surgery. Hepatic IR occurs during 'Pringle maneuver' for reduction of blood loss or during a brief period of cold storage followed by reperfusion of liver grafts. The stress induced during hepatic IR, triggers a spectrum of cellular responses leading to the varying degrees of hepatic complications which in turn affect the post operative care. Different preconditioning methods either activate or subdue different sets of molecular signals, resulting in varied levels of protection against hepatic IR injury. Yet, there is a serious lacuna in the knowledge regarding the choice of preconditioning methods and the resulting molecular changes in order to assess the efficiency and choice of these methods correctly. This review provides an update on the various preconditioning approaches such as surgical/ischemic, antioxidant, pharmaceutical and genetic preconditioning strategies published during last six years (2009-2015). Further, we discuss the attenuation or inhibition of specific inflammatory, apoptotic and necrotic markers in the various experimental models of liver IR subjected to different preconditioning strategies. While enlisting the controversies in the ischemic preconditioning strategy, we bring out the uncertainties in the existing molecular targets and their reliability in the attenuation of hepatic IR injury. Future research studies would include the novel preconditioning strategies employ i) the targeted gene silencing of key molecular targets inducing IR, ii) hyper expression of beneficial molecular signals against IR via gene transfer techniques. The above studies would see the combination of these latest techniques with the established preconditioning strategies for better post-operative hepatic management.
Collapse
Affiliation(s)
- Arumugam Suyavaran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
16
|
Hagimori M, Fuchigami Y, Kawakami S. Peptide-Based Cancer-Targeted DDS and Molecular Imaging. Chem Pharm Bull (Tokyo) 2017; 65:618-624. [DOI: 10.1248/cpb.c17-00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masayori Hagimori
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
17
|
Fumoto S, Nishida K. Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines. Chem Pharm Bull (Tokyo) 2017; 65:642-648. [DOI: 10.1248/cpb.c17-00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
18
|
He H, Zheng N, Song Z, Kim KH, Yao C, Zhang R, Zhang C, Huang Y, Uckun FM, Cheng J, Zhang Y, Yin L. Suppression of Hepatic Inflammation via Systemic siRNA Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide Hybrid Nanoparticles. ACS NANO 2016; 10:1859-70. [PMID: 26811880 DOI: 10.1021/acsnano.5b05470] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Treatment of inflammatory diseases represents one of the biggest clinical challenges. RNA interference (RNAi) against TNF-α provides a promising modality toward anti-inflammation therapy, but its therapeutic potential is greatly hampered by the by the lack of efficient siRNA delivery vehicles in vivo. Herein, we report a hybrid nanoparticulate (HNP) system based on a cationic helical polypeptide PPABLG for the efficient delivery of TNF-α siRNA. The helical structure of PPABLG features pore formation on cellular and endosomal membranes to facilitate the direct translocation as well as endosomal escape of TNF-α siRNA in macrophages, representing a unique superiority to a majority of the existing polycation-based gene vectors that experience severe endosomal entrapment and lysosomal degradation. As such, HNPs containing TNF-α siRNA afforded effective systemic TNF-α knockdown following systemic administration at a low dose of 50 μg of siRNA/kg and thus demonstrated a potent anti-inflammatory effect to rescue animals from LPS/d-GalN-induced hepatic sepsis. This study therefore verifies that the bioactive secondary structure of polypeptides significantly dominates the in vivo siRNA delivery efficiency, and the unique properties of PPABLG HNPs render remarkable potentials for anti-inflammation therapies.
Collapse
Affiliation(s)
- Hua He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou 215123, China
| | - Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Kyung Hoon Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Catherine Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Rujing Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Chenglin Zhang
- The Cyrus Tang Hematology Center, The Collaborative Innovation Center of Hematology, Soochow University , Suzhou 215123, China
| | - Yuhui Huang
- The Cyrus Tang Hematology Center, The Collaborative Innovation Center of Hematology, Soochow University , Suzhou 215123, China
| | - Fatih M Uckun
- Division of Hematology-Oncology, Systems Immunobiology Laboratory, Children's Center for Cancer and Blood Diseases, Children's Hospital , Los Angeles, California 90027, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University , Xi'an 710049, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
19
|
Chen C, Zheng P, Cao Z, Ma Y, Li J, Qian H, Tao W, Yang X. PEGylated hyperbranched polyphosphoester based nanocarriers for redox-responsive delivery of doxorubicin. Biomater Sci 2016; 4:412-7. [DOI: 10.1039/c5bm00440c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A PEGylated hyperbranched polyphosphoester containing multiple disulfide bonds (ss-hbPPE) was used and evaluated as a redox-responsive delivery system.
Collapse
Affiliation(s)
- Chao Chen
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Pan Zheng
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Ziyang Cao
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Yinchu Ma
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Jie Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Haisheng Qian
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Wei Tao
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Xianzhu Yang
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| |
Collapse
|
20
|
Suzuki R, Omata D, Oda Y, Unga J, Negishi Y, Maruyama K. Cancer Therapy with Nanotechnology-Based Drug Delivery Systems: Applications and Challenges of Liposome Technologies for Advanced Cancer Therapy. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Suzuki R, Klibanov AL. Co-administration of Microbubbles and Drugs in Ultrasound-Assisted Drug Delivery: Comparison with Drug-Carrying Particles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:205-20. [PMID: 26486340 DOI: 10.1007/978-3-319-22536-4_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two alternative approaches to ultrasound-assisted drug delivery. First, the drug can be entrapped into or attached onto the ultrasound-responsive particles and administered in the vasculature, to achieve ultrasound-triggered drug release from the particles and localized tissue deposition in response to ultrasound treatment of the target zone. Second, the drug can be co-administered with the microbubbles or other sonosensitive particles. In this case, the action of ultrasound on the particles (which act as cavitation nuclei) results in the transient improvement of permeability of the physiological barriers, so that the circulating drug can exit the bloodstream and get into the target tissues and cells. We discuss and compare both of these approaches, their characteristic advantages and disadvantages for the specific drug delivery scenarios. Clearly, the system based on the off-label use of the existing approved microbubbles and drugs (or drug carriers) will have a chance of getting to clinical trials faster and with lesser resources spent. However, if a superior curative potential of a sonosensitive drug carrier is proven, and formulation stability problems are addressed properly, this approach may find its way to practical use, especially for nucleic acid delivery scenarios.
Collapse
Affiliation(s)
- Ryo Suzuki
- Cardiovascular Division, Robert M Berne Cardiovascular Research Center, University of Virginia, 801394, Charlottesville, VA, 22908, USA.,Department of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Alexander L Klibanov
- Cardiovascular Division, Robert M Berne Cardiovascular Research Center, University of Virginia, 801394, Charlottesville, VA, 22908, USA.
| |
Collapse
|
22
|
Ishida R, Kami D, Kusaba T, Kirita Y, Kishida T, Mazda O, Adachi T, Gojo S. Kidney-specific Sonoporation-mediated Gene Transfer. Mol Ther 2015; 24:125-34. [PMID: 26419704 PMCID: PMC4754547 DOI: 10.1038/mt.2015.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sonoporation can deliver agents to target local organs by systemic administration, while decreasing the associated risk of adverse effects. Sonoporation has been used for a variety of materials and in a variety of organs. Herein, we demonstrated that local sonoporation to the kidney can offer highly efficient transfer of oligonucleotides, which were systemically administrated to the tubular epithelium with high specificity. Ultrasonic wave irradiation to the kidney collapsed the microbubbles and transiently affected the glomerular filtration barrier and increased glomerular permeability. Oligonucleotides were passed through the barrier all at once and were absorbed throughout the tubular epithelium. Tumor necrosis factor alpha (TNFα), which plays a central role in renal ischemia-reperfusion injury, was targeted using small interfering RNA (siRNA) with renal sonoporation in a murine model. The reduction of TNFα expression after single gene transfer significantly inhibited the expression of kidney injury markers, suggesting that systemic administration of siRNA under temporary and local sonoporation could be applicable in the clinical setting of ischemic acute kidney injury.
Collapse
Affiliation(s)
- Ryo Ishida
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Kusaba
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuhei Kirita
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaomi Adachi
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
|
24
|
Chettab K, Roux S, Mathé D, Cros-Perrial E, Lafond M, Lafon C, Dumontet C, Mestas JL. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents. PLoS One 2015; 10:e0134247. [PMID: 26274324 PMCID: PMC4537239 DOI: 10.1371/journal.pone.0134247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.
Collapse
Affiliation(s)
- Kamel Chettab
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- * E-mail:
| | - Stéphanie Roux
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Doriane Mathé
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Emeline Cros-Perrial
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Maxime Lafond
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| | - Cyril Lafon
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| | - Charles Dumontet
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Jean-Louis Mestas
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| |
Collapse
|
25
|
Abdalkader R, Kawakami S, Unga J, Suzuki R, Maruyama K, Yamashita F, Hashida M. Evaluation of the potential of doxorubicin loaded microbubbles as a theranostic modality using a murine tumor model. Acta Biomater 2015; 19:112-8. [PMID: 25795624 DOI: 10.1016/j.actbio.2015.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/31/2015] [Accepted: 03/11/2015] [Indexed: 02/06/2023]
Abstract
In this study, a novel phospholipid-based microbubble formulation containing doxorubicin and perfluoropropane gas (DLMB) was developed. The DLMBs were prepared by mechanical agitation of a phospholipid dispersion in the presence of perfluoropropane (PFP) gas. An anionic phospholipid, distearoyl phosphatidylglycerol (DSPG) was selected to load doxorubicin in the microbubbles by means of electrostatic interaction. The particle size, zeta potential, echogenicity and stability of the DLMBs were measured. Drug loading was ⩾ 92%. The potential of the DLMBs for use as a theranostic modality was evaluated in tumor bearing mice. Gas chromatography analysis of PFP showed significant enhancement of PFP retention when doxorubicin was used at concentrations of 10-82% equivalent to DSPG. The inhibitory effects on the proliferation of B16BL6 melanoma murine cells in vitro were enhanced using a combination of ultrasound (US) irradiation and DLMBs. Moreover, in vivo DLMBs in combination with (US) irradiation significantly inhibited the growth of B16BL6 melanoma tumor in mice. Additionally, US echo imaging showed high contrast enhancement of the DLMBs in the tumor vasculature. These results suggest that DLMBs could serve as US triggered carriers of doxorubicin as well as tumor imaging agents in cancer therapy.
Collapse
|
26
|
Abstract
As the impact of ischemia reperfusion injury on graft outcome is now well defined, efforts are made towards decreasing these lesions, typically through the improvement of preservation techniques. The use of pharmacological supplements which could be compatible with any preservation solution used by the transplant center and target specific pathways of IR is an interesting strategy to improve graft quality. However, the extensive number of studies showing the benefits a molecule in an animal model of IR without thorough mechanistic determination of the effects of this agent make it difficult to opt for specific pharmaceutical intervention. Herein we expose studies which demonstrate the benefits of several molecules relying on a thorough mechanical analysis of the events occurring during preservation, both at the cellular and the systemic levels. We believe this approach is the most appropriate to truly understand the potential benefits of a molecule and particularly to design a comprehensive pharmaceutical regiment, with several agents acting synergistically against IR, to improve organ preservation and graft outcome.
Collapse
Affiliation(s)
- T Saint Yves
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France; Service d'Urologie, CHU La Miletrie, 86000 Poitiers, France
| | - P-O Delpech
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France; Service d'Urologie, CHU La Miletrie, 86000 Poitiers, France
| | - S Giraud
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France
| | - R Thuillier
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France.
| | - T Hauet
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France
| |
Collapse
|
27
|
Glycosylation-mediated targeting of carriers. J Control Release 2014; 190:542-55. [DOI: 10.1016/j.jconrel.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/24/2022]
|
28
|
Kono Y, Kawakami S, Higuchi Y, Maruyama K, Yamashita F, Hashida M. Antitumor effect of nuclear factor-κB decoy transfer by mannose-modified bubble lipoplex into macrophages in mouse malignant ascites. Cancer Sci 2014; 105:1049-55. [PMID: 24850474 PMCID: PMC4317846 DOI: 10.1111/cas.12452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Patients with malignant ascites (MAs) display several symptoms, such as dyspnea, nausea, pain, and abdominal tenderness, resulting in a significant reduction in their quality of life. Tumor-associated macrophages (TAMs) play a crucial role in MA progression. Because TAMs have a tumor-promoting M2 phenotype, conversion of the M2 phenotypic function of TAMs would be promising for MA treatment. Nuclear factor-κB (NF-κB) is a master regulator of macrophage polarization. Here, we developed targeted transfer of a NF-κB decoy into TAMs by ultrasound (US)-responsive, mannose-modified liposome/NF-κB decoy complexes (Man-PEG bubble lipoplexes) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. In addition, we investigated the effects of NF-κB decoy transfection into TAMs on MA progression and mouse survival rates. Intraperitoneal injection of Man-PEG bubble lipoplexes and US exposure transferred the NF-κB decoy into TAMs effectively. When the NF-κB decoy was delivered into TAMs by this method in the mouse peritoneal dissemination model, mRNA expression of the Th2 cytokine interleukin (IL)-10 in TAMs was decreased significantly. In contrast, mRNA levels of Th1 cytokines (IL-12, tumor necrosis factor-α, and IL-6) were increased significantly. Moreover, the expression level of vascular endothelial growth factor in ascites was suppressed significantly, and peritoneal angiogenesis showed a reduction. Furthermore, NF-κB decoy transfer into TAMs significantly decreased the ascitic volume and number of Ehrlich ascites carcinoma cells in ascites, and prolonged mouse survival. In conclusion, we transferred a NF-κB decoy efficiently by Man-PEG bubble lipoplexes with US exposure into TAMs, which may be a novel approach for MA treatment.
Collapse
Affiliation(s)
- Yusuke Kono
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond) 2014; 127:351-65. [PMID: 24895056 DOI: 10.1042/cs20140005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulation of miRNA expression has been associated with many cardiovascular diseases in animal models, as well as in patients. In the present review, we summarize recent findings on the role of miRNAs in cardiovascular diseases and discuss the opportunities, possibilities and challenges of using miRNAs as future therapeutic targets. Furthermore, we focus on the different approaches that can be used to deliver these newly developed miRNA therapeutics to their sites of action. Since siRNAs are structurally homologous with the miRNA therapeutics, important lessons learned from siRNA delivery strategies are discussed that might be applicable to targeted delivery of miRNA therapeutics, thereby reducing costs and potential side effects, and improving efficacy.
Collapse
|
30
|
Ueki A, Un K, Mino Y, Yoshida M, Kawakami S, Ando H, Ishida H, Yamashita F, Hashida M, Kiso M. Synthesis and evaluation of glyco-coated liposomes as drug carriers for active targeting in drug delivery systems. Carbohydr Res 2014; 405:78-86. [PMID: 25500195 DOI: 10.1016/j.carres.2014.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023]
Abstract
Novel sugar-conjugated cholesterols, β-Gal-, α-Man-, β-Man-, α-Fuc-, and β-Man-6P-S-β-Ala-Chol, were synthesized and incorporated into liposomes. In vitro experiments using the glyco-coated liposomes showed that the glyco-coated liposomes are efficiently taken up by cells expressing carbohydrate-binding receptors selectively. Glyco-coated liposomes are promising candidates for drug delivery vehicles.
Collapse
Affiliation(s)
- Akiharu Ueki
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Science (WPI program), Kyoto University, Yoshida-ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keita Un
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Yuka Mino
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Mitsuru Yoshida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Hiromune Ando
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Science (WPI program), Kyoto University, Yoshida-ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Mitsuru Hashida
- Institute for Integrated Cell-Material Science (WPI program), Kyoto University, Yoshida-ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan.
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Science (WPI program), Kyoto University, Yoshida-ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
31
|
Kurosaki T, Kawakami S, Higuchi Y, Suzuki R, Maruyama K, Sasaki H, Yamashita F, Hashida M. Kidney-selective gene transfection using anionic bubble lipopolyplexes with renal ultrasound irradiation in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1829-38. [PMID: 24954382 DOI: 10.1016/j.nano.2014.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/08/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED This study assessed the ability of a new ultrasound (US) responsive gene delivery carrier, bubble lipopolyplexes, to deliver genes to the kidneys. The bubble lipopolyplexes showed highly selective gene expression in kidney tubules, but only after renal irradiation with US. These bubble lipopolyplexes, however, did not increase the expression of biomarkers of kidney injury, including blood urea nitrogen, serum creatinine, kidney injury molecule-1 mRNA, and clusterin mRNA, or induce any histopathological abnormalities in the kidney. Furthermore, pDNA containing CMV early enhancer/chicken beta-actin promoter prolonged gene expression by the bubble lipopolyplexes in the kidney for 42 days. This novel renal gene delivery method, in which transfection of bubble lipopolyplexes was followed by US irradiation of the kidneys, resulting in cell-selective, high, and long-term gene expression without renal injury in mice, may have future applications in patient treatment. FROM THE CLINICAL EDITOR This study demonstrates a novel gene delivery method to the kidneys, utilizing bubble resulting in highly selective gene expression in renal tubules after ultrasound irradiation. In the studied rodent model, there was no evidence for renal damage using this novel delivery system.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ryo Suzuki
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Institute of Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan.
| |
Collapse
|
32
|
Yoshida M, Kawakami S, Un K, Kono Y, Higuchi Y, Yamashita F, Hashida M. Evaluation of inflammatory responses due to small interfering RNA transfer using unmodified- and mannose-modified bubble lipoplexes with ultrasound exposure in primary cultured macrophages. J Drug Target 2014; 22:732-8. [PMID: 24830302 DOI: 10.3109/1061186x.2014.916710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Development of an efficient small interfering RNA (siRNA) delivery method using non-viral carriers is necessary to determine potent therapeutic effects of RNA interference. Inflammatory responses induced by siRNA interaction with Toll-like receptors and retinoic-acid-inducible gene I protein/melanoma differentiation-associated gene 5 (RIG-I/MDA-5) are obstacles to the application of siRNAs in clinically. Here, we evaluated the effects on inflammatory responses by our siRNA delivery method using bubble lipoplexes with ultrasound (US) exposure in cultured macrophages. The effective gene suppression effects were obtained under low-toxic conditions in this siRNA transfer method. The interferon (IFN)-α after siRNA transfer using lipoplexes/bubble lipoplexes with US exposure was not detected. However, low levels of type I IFN mRNA production were induced through interaction of siRNA and cytoplasmic RIG-I/MDA-5, but not Toll-like receptors. Our findings indicate that it is possible to develop a safe and efficient siRNA delivery technique using mannosylated bubble lipoplexes and US exposure.
Collapse
Affiliation(s)
- Mitsuru Yoshida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto , Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Kono Y, Kawakami S, Higuchi Y, Maruyama K, Yamashita F, Hashida M. Tumour-associated macrophages targeted transfection with NF-κB decoy/mannose-modified bubble lipoplexes inhibits tumour growth in tumour-bearing mice. J Drug Target 2014; 22:439-49. [PMID: 24579693 DOI: 10.3109/1061186x.2014.880443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumour-associated macrophages (TAM) exhibit an M2 phenotype that promotes tumour progression, and conversion of M2 TAM toward a tumouricidal M1 phenotype is a promising anti-cancer therapy. As NF-κB is a key regulator of macrophage polarization, we developed an in vivo TAM-targeting delivery system that combines mannose-modified bubble liposomes/NF-κB decoy complexes (Man-PEG bubble lipoplexes) and ultrasound (US) exposure. We investigated the effects of NF-κB decoy transfection on TAM phenotype in solid tumour-bearing mice. Post-transfection tumour growth and survival rates were also recorded. Th2 cytokine (IL-10) level in TAM was significantly lower by NF-κB decoy transfection using Man-PEG bubble lipoplexes and US exposure, while Th1 cytokine levels (IL-1β, TNF-α and IL-6) were significantly higher when compared with controls. In addition, mRNA levels of vascular endothelial growth factor, matrix metalloproteinase-9 and arginase were significantly lower in TAM post-NF-κB decoy transfection. Importantly, TAM-targeted NF-κB decoy transfection inhibited tumour growth and prolonged survival rates in mice. Therefore, TAM-targeted NF-κB decoy transfection using Man-PEG bubble lipoplexes and US exposure may be an effective approach for anti-cancer therapy based on TAM phenotypic conversion from M2 toward M1.
Collapse
Affiliation(s)
- Yusuke Kono
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto , Japan
| | | | | | | | | | | |
Collapse
|
34
|
Development of anionic bubble lipopolyplexes for efficient and safe gene transfection with ultrasound exposure in mice. J Control Release 2014; 176:24-34. [DOI: 10.1016/j.jconrel.2013.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/06/2013] [Accepted: 12/19/2013] [Indexed: 02/02/2023]
|
35
|
Fumoto S, Kawakami S. Combination of Nanoparticles with Physical Stimuli toward Cancer Therapy. Biol Pharm Bull 2014; 37:212-6. [DOI: 10.1248/bpb.b13-00703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Yin L, Song Z, Qu Q, Kim KH, Zheng N, Yao C, Chaudhury I, Tang H, Gabrielson NP, Uckun FM, Cheng J. Supramolecular self-assembled nanoparticles mediate oral delivery of therapeutic TNF-α siRNA against systemic inflammation. Angew Chem Int Ed Engl 2013; 52:5757-61. [PMID: 23610013 DOI: 10.1002/anie.201209991] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Lichen Yin
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yin L, Song Z, Qu Q, Kim KH, Zheng N, Yao C, Chaudhury I, Tang H, Gabrielson NP, Uckun FM, Cheng J. Supramolecular Self-Assembled Nanoparticles Mediate Oral Delivery of Therapeutic TNF-α siRNA against Systemic Inflammation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Takakura Y. Professor Mitsuru Hashida: his outstanding achievements in drug delivery research. J Drug Target 2012; 20:722-3. [PMID: 23009312 DOI: 10.3109/1061186x.2012.724861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|