1
|
Bridge SH, Pagano S, Lodge JK, Shawa IT, Marin-Crespo P, Cramp ME, Sheridan DA, Taylor-Robinson SD, Vuilleumier N, Neely RDG, Bassendine MF. Autoantibodies to apolipoprotein A-I in hepatitis C virus infection: a role in disease progression? Front Immunol 2025; 16:1461041. [PMID: 40181970 PMCID: PMC11965114 DOI: 10.3389/fimmu.2025.1461041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025] Open
Abstract
Background Chronic HCV (CHC) infection is associated with autoimmunity. IgG autoantibodies to apolipoprotein A-I (AAA-I) predict all-cause mortality. We evaluated AAA-I in CHC patients and in those who were not viraemic, either because of spontaneous resolution (SR) of infection or HCV clearance following sustained virological response (SVR) after interferon therapy. We limited the study to HCV genotypes 1 and 3, the dominant HCV genotypes circulating in the UK. Methods Serum samples from 126 CHC patients and 114 nonviraemic individuals (25 SR and 89 SVR) were assayed for AAA-I and lipoproteins. AUC was calculated for AAA-I and HDL-related parameters and used to predict cirrhosis. Fibronectin (FN) and FN-mRNA were measured in human hepatic stellate cells (LX-2) in the presence or absence of AAA-I. Results AAA-I was found in 47% of patients with CHC, 37% of SVR patients, and 16% of SR individuals (CHC vs. SR, p = 0.004). AAA-I levels in CHC patients were higher in those with cirrhosis (p = 0.0003). The AUC for AAA-I, apoA-I, and HDL-C in predicting cirrhosis was 0.72 (p < 0.001), 0.65 (p = 0.01), and 0.64 (p = 0.02). After 48 h in the presence of AAA-I, LX-2 cells showed an 80% increase in FN-mRNA compared to the LX-2/IgG control (p = 0.028) and higher levels of FN (p = 0.0016). Conclusions CHC is often associated with AAA-I, and these can persist after SVR. AAA-I is a robust predictor of cirrhosis in CHC infection. LX-2 cells exposed to AAA-I showed increased FN. Further studies are warranted to define the role of AAA-I in promoting not only viral persistence but also fibrosis.
Collapse
Affiliation(s)
- Simon H. Bridge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - John K. Lodge
- School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Isaac T. Shawa
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
- Department of Biomedical and Forensic Science, University of Derby, Derby, United Kingdom
| | - Paula Marin-Crespo
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Matthew E. Cramp
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
| | - David A. Sheridan
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
| | - Simon D. Taylor-Robinson
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - R. Dermot G. Neely
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundations Trust, Newcastle upon Tyne, United Kingdom
| | - Margaret F. Bassendine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Ogire E, Perrin-Cocon L, Figl M, Kundlacz C, Jacquemin C, Hubert S, Aublin-Gex A, Toesca J, Ramière C, Vidalain PO, Mathieu C, Lotteau V, Diaz O. Dengue Virus dependence on glucokinase activity and glycolysis Confers Sensitivity to NAD(H) biosynthesis inhibitors. Antiviral Res 2024; 228:105939. [PMID: 38909960 DOI: 10.1016/j.antiviral.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.
Collapse
Affiliation(s)
- Eva Ogire
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Marianne Figl
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Cindy Kundlacz
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Sophie Hubert
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Anne Aublin-Gex
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Johan Toesca
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France; Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France; Laboratoire P4-Jean Mérieux, INSERM, Lyon, France
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France.
| |
Collapse
|
3
|
Diaz O, Legrand AF, El-Orch W, Jacolin F, Lotteau V, Ramière C, Vidalain PO, Perrin-Cocon L. [Role of cellular metabolism in the control of chronic viral hepatitis]. Med Sci (Paris) 2023; 39:754-762. [PMID: 37943136 DOI: 10.1051/medsci/2023125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Hepatitis viruses modify the cellular metabolism of hepatocytes by interacting with specific enzymes such as glucokinase. The metabolic changes induced by viruses can have a direct impact on the innate antiviral response. The complex interactions between viral components, innate immunity, and hepatocyte metabolism explain why chronic hepatitis infections lead to liver inflammation, progressing to cirrhosis, fibrosis, and hepatocellular carcinoma. Metabolic regulators could be used in innovative therapies to deprive viruses of key metabolites and induce an antiviral defense.
Collapse
Affiliation(s)
- Olivier Diaz
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Anne-Flore Legrand
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Walid El-Orch
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Florentine Jacolin
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Christophe Ramière
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France - Service de virologie, hospices civils de Lyon, hôpital de la Croix-Rousse, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| |
Collapse
|
4
|
Diaz O, Vidalain PO, Ramière C, Lotteau V, Perrin-Cocon L. What role for cellular metabolism in the control of hepatitis viruses? Front Immunol 2022; 13:1033314. [PMID: 36466918 PMCID: PMC9713817 DOI: 10.3389/fimmu.2022.1033314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B, C and D viruses (HBV, HCV, HDV, respectively) specifically infect human hepatocytes and often establish chronic viral infections of the liver, thus escaping antiviral immunity for years. Like other viruses, hepatitis viruses rely on the cellular machinery to meet their energy and metabolite requirements for replication. Although this was initially considered passive parasitism, studies have shown that hepatitis viruses actively rewire cellular metabolism through molecular interactions with specific enzymes such as glucokinase, the first rate-limiting enzyme of glycolysis. As part of research efforts in the field of immunometabolism, it has also been shown that metabolic changes induced by viruses could have a direct impact on the innate antiviral response. Conversely, detection of viral components by innate immunity receptors not only triggers the activation of the antiviral defense but also induces in-depth metabolic reprogramming that is essential to support immunological functions. Altogether, these complex triangular interactions between viral components, innate immunity and hepatocyte metabolism may explain why chronic hepatitis infections progressively lead to liver inflammation and progression to cirrhosis, fibrosis and hepatocellular carcinoma (HCC). In this manuscript, we first present a global overview of known connections between the innate antiviral response and cellular metabolism. We then report known molecular mechanisms by which hepatitis viruses interfere with cellular metabolism in hepatocytes and discuss potential consequences on the innate immune response. Finally, we present evidence that drugs targeting hepatocyte metabolism could be used as an innovative strategy not only to deprive viruses of key metabolites, but also to restore the innate antiviral response that is necessary to clear infection.
Collapse
Affiliation(s)
- Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team VIRal Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
5
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
6
|
Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes. Int J Mol Sci 2022; 23:ijms23020919. [PMID: 35055105 PMCID: PMC8780509 DOI: 10.3390/ijms23020919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis C virus (HCV) relies on cellular lipid metabolism for its replication, and actively modulates lipogenesis and lipid trafficking in infected hepatocytes. This translates into an intracellular accumulation of triglycerides leading to liver steatosis, cirrhosis and hepatocellular carcinoma, which are hallmarks of HCV pathogenesis. While the interaction of HCV with hepatocyte metabolic pathways is patent, how viral proteins are able to redirect central carbon metabolism towards lipogenesis is unclear. Here, we report that the HCV protein NS5A activates the glucokinase (GCK) isoenzyme of hexokinases through its D2 domain (NS5A-D2). GCK is the first rate-limiting enzyme of glycolysis in normal hepatocytes whose expression is replaced by the hexokinase 2 (HK2) isoenzyme in hepatocellular carcinoma cell lines. We took advantage of a unique cellular model specifically engineered to re-express GCK instead of HK2 in the Huh7 cell line to evaluate the consequences of NS5A-D2 expression on central carbon and lipid metabolism. NS5A-D2 increased glucose consumption but decreased glycogen storage. This was accompanied by an altered mitochondrial respiration, an accumulation of intracellular triglycerides and an increased production of very-low density lipoproteins. Altogether, our results show that NS5A-D2 can reprogram central carbon metabolism towards a more energetic and glycolytic phenotype compatible with HCV needs for replication.
Collapse
|
7
|
Vaillant A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis 2021; 7:1351-1368. [PMID: 33302622 DOI: 10.1021/acsinfecdis.0c00638] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In diverse viral infections, the production of excess viral particles containing only viral glycoproteins (subviral particles or SVP) is commonly observed and is a commonly evolved mechanism for immune evasion. In hepatitis B virus (HBV) infection, spherical particles contain the hepatitis B surface antigen, outnumber infectious virus 10 000-100 000 to 1, and have diverse inhibitory effects on the innate and adaptive immune response, playing a major role in the chronic nature of HBV infection. The current goal of therapies in development for HBV infection is a clinical outcome called functional cure, which signals a persistent and effective immune control of the infection. Although removal of spherical SVP (and the HBsAg they carry) is an important milestone in achieving functional cure, this outcome is rarely achieved with current therapies due to distinct mechanisms for assembly, secretion, and persistence of SVP, which are poorly targeted by direct acting antivirals or immunotherapies. In this Review, the current understanding of the distinct mechanisms involved in the production and persistence of spherical SVP in chronic HBV infection and their immunoinhibitory activity will be reviewed as well as current therapies in development with the goal of clearing spherical SVP and achieving functional cure.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H8Y 3E6, Canada
| |
Collapse
|
8
|
Hepatitis C Virus Uses Host Lipids to Its Own Advantage. Metabolites 2021; 11:metabo11050273. [PMID: 33925362 PMCID: PMC8145847 DOI: 10.3390/metabo11050273] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Lipids and lipoproteins constitute indispensable components for living not only for humans. In the case of hepatitis C virus (HCV), the option of using the products of our lipid metabolism is “to be, or not to be”. On the other hand, HCV infection, which is the main cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma, exerts a profound influence on lipid and lipoprotein metabolism of the host. The consequences of this alternation are frequently observed as hypolipidemia and hepatic steatosis in chronic hepatitis C (CHC) patients. The clinical relevance of these changes reflects the fact that lipids and lipoprotein play a crucial role in all steps of the life cycle of HCV. The virus circulates in the bloodstream as a highly lipidated lipo-viral particle (LVP) that defines HCV hepatotropism. Thus, strict relationships between lipids/lipoproteins and HCV are indispensable for the mechanism of viral entry into hepatocytes, viral replication, viral particles assembly and secretion. The purpose of this review is to summarize the tricks thanks to which HCV utilizes host lipid metabolism to its own advantage.
Collapse
|
9
|
Perrin-Cocon L, Vidalain PO, Jacquemin C, Aublin-Gex A, Olmstead K, Panthu B, Rautureau GJP, André P, Nyczka P, Hütt MT, Amoedo N, Rossignol R, Filipp FV, Lotteau V, Diaz O. A hexokinase isoenzyme switch in human liver cancer cells promotes lipogenesis and enhances innate immunity. Commun Biol 2021; 4:217. [PMID: 33594203 PMCID: PMC7886870 DOI: 10.1038/s42003-021-01749-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
During the cancerous transformation of normal hepatocytes into hepatocellular carcinoma (HCC), the enzyme catalyzing the first rate-limiting step of glycolysis, namely the glucokinase (GCK), is replaced by the higher affinity isoenzyme, hexokinase 2 (HK2). Here, we show that in HCC tumors the highest expression level of HK2 is inversely correlated to GCK expression, and is associated to poor prognosis for patient survival. To further explore functional consequences of the GCK-to-HK2 isoenzyme switch occurring during carcinogenesis, HK2 was knocked-out in the HCC cell line Huh7 and replaced by GCK, to generate the Huh7-GCK+/HK2− cell line. HK2 knockdown and GCK expression rewired central carbon metabolism, stimulated mitochondrial respiration and restored essential metabolic functions of normal hepatocytes such as lipogenesis, VLDL secretion, glycogen storage. It also reactivated innate immune responses and sensitivity to natural killer cells, showing that consequences of the HK switch extend beyond metabolic reprogramming. Many cancers fuel their rapid growth by replacing glucokinase with its higher affinity isoenzyme, hexokinase 2 (HK2), making HK2 an attractive drug target. In this study, Perrin-Cocon and Vidalain et al. use CRISPR/Cas-9 gene editing to reverse this enzymatic switch in human liver cancer cells, and find this restores innate immune function as well as reversing cancer-associated metabolic reprogramming.
Collapse
Affiliation(s)
- Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, Lyon, F-69007, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, Lyon, F-69007, France
| | - Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, Lyon, F-69007, France
| | - Anne Aublin-Gex
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, Lyon, F-69007, France
| | - Keedrian Olmstead
- Cancer Systems Biology, Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstädter Landstraße 1, München, D-85764, Germany
| | - Baptiste Panthu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, Lyon, F-69007, France.,Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Hôpital Lyon Sud, Bâtiment CENS ELI-2D, 165 Chemin du grand Revoyet, Pierre-Bénite, F-69310, France
| | - Gilles Jeans Philippe Rautureau
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), FRE 2034, 5 rue de la Doua, Villeurbanne, F-69100, France
| | - Patrice André
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, Lyon, F-69007, France
| | - Piotr Nyczka
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen, D-28759, Germany
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen, D-28759, Germany
| | - Nivea Amoedo
- CELLOMET, Centre de Génomique Fonctionnelle de Bordeaux, 146 Rue Léo Saignat, Bordeaux, F-33000, France
| | - Rodrigue Rossignol
- CELLOMET, Centre de Génomique Fonctionnelle de Bordeaux, 146 Rue Léo Saignat, Bordeaux, F-33000, France.,Univ. Bordeaux, Inserm U1211, MRGM, Centre hospitalier universitaire Pellegrin, place Amélie Raba Léon, Bordeaux, F-33076, France
| | - Fabian Volker Filipp
- Cancer Systems Biology, Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstädter Landstraße 1, München, D-85764, Germany.,School of Life Sciences Weihenstephan, Technical University München, Maximus-von-Imhof-Forum 3, Freising, D-85354, Germany
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, Lyon, F-69007, France.
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, Lyon, F-69007, France.
| |
Collapse
|
10
|
Alzahrani N, Wu MJ, Shanmugam S, Yi M. Delayed by Design: Role of Suboptimal Signal Peptidase Processing of Viral Structural Protein Precursors in Flaviviridae Virus Assembly. Viruses 2020; 12:v12101090. [PMID: 32993149 PMCID: PMC7601889 DOI: 10.3390/v12101090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Flaviviridae virus family is classified into four different genera, including flavivirus, hepacivirus, pegivirus, and pestivirus, which cause significant morbidity and mortality in humans and other mammals, including ruminants and pigs. These are enveloped, single-stranded RNA viruses sharing a similar genome organization and replication scheme with certain unique features that differentiate them. All viruses in this family express a single polyprotein that encodes structural and nonstructural proteins at the N- and C-terminal regions, respectively. In general, the host signal peptidase cleaves the structural protein junction sites, while virus-encoded proteases process the nonstructural polyprotein region. It is known that signal peptidase processing is a rapid, co-translational event. Interestingly, certain signal peptidase processing site(s) in different Flaviviridae viral structural protein precursors display suboptimal cleavage kinetics. This review focuses on the recent progress regarding the Flaviviridae virus genus-specific mechanisms to downregulate signal peptidase-mediated processing at particular viral polyprotein junction sites and the role of delayed processing at these sites in infectious virus particle assembly.
Collapse
|
11
|
Syntenin regulates hepatitis C virus sensitivity to neutralizing antibody by promoting E2 secretion through exosomes. J Hepatol 2019; 71:52-61. [PMID: 30880226 DOI: 10.1016/j.jhep.2019.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Assembly of infectious hepatitis C virus (HCV) particles is known to involve host lipoproteins, giving rise to unique lipo-viro-particles (LVPs), but proteome studies now suggest that additional cellular proteins are associated with HCV virions or other particles containing the viral envelope glycoprotein E2. Many of these host cell proteins are common markers of exosomes, most notably the intracellular adaptor protein syntenin, which is required for exosome biogenesis. We aimed to elucidate the role of syntenin/E2 in HCV infection. METHODS Using cell culture-derived HCV, we studied the biogenesis and function of E2-coated exosomes in both hepatoma cells and primary human hepatocytes (PHHs). RESULTS Knockout of syntenin had a negligible impact on HCV replication and virus production, whereas ectopic expression of syntenin at physiological levels reduced intracellular E2 abundance, while concomitantly increasing the secretion of E2-coated exosomes. Importantly, cells expressing syntenin and HCV structural proteins efficiently released exosomes containing E2 but lacking the core protein. Furthermore, infectivity of HCV released from syntenin-expressing hepatoma cells and PHHs was more resistant to neutralization by E2-specific antibodies and chronic-phase patient serum. We also found that high E2/syntenin levels in sera correlate with lower serum neutralization capability. CONCLUSIONS E2- and syntenin-containing exosomes are a major type of particle released from cells expressing high levels of syntenin. Efficient production of E2-coated exosomes renders HCV infectivity less susceptible to antibody neutralization in hepatoma cells and PHHs. LAY SUMMARY This study identifies a key role for syntenin in the regulation of E2 secretion via exosomes. Efficient production of E2-coated exosomes was shown to make hepatitis C virus less sensitive to antibody neutralization. These results may have implications for the development of a hepatitis C virus vaccine.
Collapse
|
12
|
Collett S, Torresi J, Earnest-Silveira L, Christiansen D, Elbourne A, Ramsland PA. Probing and pressing surfaces of hepatitis C virus-like particles. J Colloid Interface Sci 2019; 545:259-268. [DOI: 10.1016/j.jcis.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 02/09/2023]
|
13
|
Perez-Vargas J, Amirache F, Boson B, Mialon C, Freitas N, Sureau C, Fusil F, Cosset FL. Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat Commun 2019; 10:2098. [PMID: 31068585 PMCID: PMC6506506 DOI: 10.1038/s41467-019-10117-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) doesn't encode envelope proteins for packaging of its ribonucleoprotein (RNP) and typically relies on the surface glycoproteins (GPs) from hepatitis B virus (HBV) for virion assembly, envelopment and cellular transmission. HDV RNA genome can efficiently replicate in different tissues and species, raising the possibility that it evolved, and/or is still able to transmit, independently of HBV. Here we show that alternative, HBV-unrelated viruses can act as helper viruses for HDV. In vitro, envelope GPs from several virus genera, including vesiculovirus, flavivirus and hepacivirus, can package HDV RNPs, allowing efficient egress of HDV particles in the extracellular milieu of co-infected cells and subsequent entry into cells expressing the relevant receptors. Furthermore, HCV can propagate HDV infection in the liver of co-infected humanized mice for several months. Further work is necessary to evaluate whether HDV is currently transmitted by HBV-unrelated viruses in humans.
Collapse
Affiliation(s)
- Jimena Perez-Vargas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Fouzia Amirache
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Chloé Mialon
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Natalia Freitas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS Inserm U1134, 6 rue Alexandre Cabanel, F-75739, Paris, France
| | - Floriane Fusil
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France.
| |
Collapse
|
14
|
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, Cosset FL. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathog 2017; 13:e1006774. [PMID: 29253880 PMCID: PMC5749900 DOI: 10.1371/journal.ppat.1006774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/02/2018] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Chloé Mialon
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, Saint Etienne, France
| | - Fouzia Amirache
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François Penin
- IBCP—Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Univ Lyon, Lyon, France
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Bertrand Boson
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
15
|
Eng FJ, El-Shamy A, Doyle EH, Klepper A, Muerhoff AS, Branch AD. Newly discovered hepatitis C virus minicores circulate in human blood. Hepatol Commun 2017; 2:21-28. [PMID: 29404509 PMCID: PMC5776872 DOI: 10.1002/hep4.1125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) is one of the most prevalent causes of chronic blood‐borne infections worldwide. Despite developments of highly effective treatments, most infected individuals are unaware of their infection. Approximately 75% of infections are in low‐ and middle‐income countries; therefore, continuing research in HCV molecular virology and the development of vaccines and affordable diagnostics is required to reduce the global burden. Various intracellular forms of the HCV nucleocapsid (core) protein are produced in cell culture; these comprise the conventional p21 core and the newly discovered shorter isoforms (minicores). Minicores lack the N‐terminus of p21 core. This study was conducted to determine if minicores are secreted in cell culture and more importantly if they circulate in the blood of individuals infected with HCV. We also developed a new monoclonal antibody that detects minicores targeting a C‐terminal region common to p21 core and minicores. Direct evidence of minicores requires western blot analysis to distinguish the detection of p21 core from minicores. However, the sensitivity for western blot detection of HCV proteins from blood is nil without their prior purification/enrichment from blood. Therefore, we developed a purification method based on a heparin/Mn+2 precipitation of apolipoprotein B‐containing lipoproteins because HCV is thought to circulate as a hybrid lipoviral particle. Minicores are secreted in culture when cells are grown in the presence of human serum. The heparin/Mn+2 precipitate from HCV‐infected cell culture supernatants and from the blood of 4 patients with high‐titer genotype‐1 HCV contained minicores. Conclusion: Minicores are major newly discovered HCV proteins that are secreted and circulate in blood during natural infections. Minicore proteins have translational potential as targets in diagnostic assays and in vaccine development. (Hepatology Communications 2018;2:21–28)
Collapse
Affiliation(s)
- Francis J Eng
- Division of Liver Diseases, Department of Medicine Icahn School of Medicine at Mount Sinai New York NY
| | - Ahmed El-Shamy
- Division of Liver Diseases, Department of Medicine Icahn School of Medicine at Mount Sinai New York NY
| | - Erin H Doyle
- Division of Liver Diseases, Department of Medicine Icahn School of Medicine at Mount Sinai New York NY
| | - Arielle Klepper
- Division of Liver Diseases, Department of Medicine Icahn School of Medicine at Mount Sinai New York NY
| | - A Scott Muerhoff
- Abbott Diagnostics, Biologics Discovery and Design Abbott Laboratories Abbott Park IL
| | - Andrea D Branch
- Division of Liver Diseases, Department of Medicine Icahn School of Medicine at Mount Sinai New York NY
| |
Collapse
|
16
|
Budkowska A. Heterogeneity of Hepatitis C Virus Particles and Their Evolution During Infection. Cell Mol Gastroenterol Hepatol 2017; 4:443-444. [PMID: 29062879 PMCID: PMC5650629 DOI: 10.1016/j.jcmgh.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Agata Budkowska
- Department of International Affairs, Institut Pasteur, Paris, France
| |
Collapse
|
17
|
Piver E, Bull A, Roingeard P, Meunier JC. Hépatite C : le serial killer photographié plus de 25 ans après sa mise en examen. Med Sci (Paris) 2017; 33:720-723. [DOI: 10.1051/medsci/20173308011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Budkowska A. Intriguing structure of the HCV particle. Gut 2017; 66:1351-1352. [PMID: 28057691 DOI: 10.1136/gutjnl-2016-313184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/08/2022]
|
19
|
Piver E, Boyer A, Gaillard J, Bull A, Beaumont E, Roingeard P, Meunier JC. Ultrastructural organisation of HCV from the bloodstream of infected patients revealed by electron microscopy after specific immunocapture. Gut 2017; 66:1487-1495. [PMID: 27729393 DOI: 10.1136/gutjnl-2016-311726] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 01/27/2023]
Abstract
OBJECTIVE HCV particles are associated with very low-density lipoprotein components in chronically infected patients. These hybrid particles, or 'lipo-viro particles' (LVPs), are rich in triglycerides, and contain the viral RNA, the capsid protein, E1E2 envelope glycoproteins and apolipoproteins B and E. However, their specific ultrastructural organisation has yet to be determined. We developed a strategy for the preparation of any viral sample that preserves the native structure of the LVPs, facilitating their precise morphological characterisation. DESIGN Using a strategy based on the direct specific immunocapture of particles on transmission electron microscopy (TEM) grids, we characterised the precise morphology of the viral particle by TEM. RESULTS The LVP consists of a broad nucleocapsid surrounding an electron-dense centre, presumably containing the HCV genome. The nucleocapsid is surrounded by an irregular, detergent-sensitive crescent probably composed of lipids. Lipid content may determine particle size. These particles carry HCV E1E2, ApoB and ApoE, as shown in our immuno-EM analysis. Our results also suggest that these putative LVPs circulate in the serum of patients as part of a mixed population, including lipoprotein-like particles and complete viral particles. CONCLUSIONS Twenty-five years after the discovery of HCV, this study finally provides information about the precise morphological organisation of viral particles. It is truly remarkable that our TEM images fully confirm the ultrastructure of LVPs predicted by several authors, almost exclusively from the results of molecular biology studies.
Collapse
Affiliation(s)
- Eric Piver
- INSERM U966, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France.,Biochimie & Biologie Moléculaire, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Audrey Boyer
- INSERM U966, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France.,Liang Laboratory, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Julien Gaillard
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Anne Bull
- INSERM U966, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| | - Elodie Beaumont
- INSERM U966, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- INSERM U966, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France.,Plate-Forme IBiSA des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Jean-Christophe Meunier
- INSERM U966, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| |
Collapse
|
20
|
Russelli G, Pizzillo P, Iannolo G, Barbera F, Tuzzolino F, Liotta R, Traina M, Vizzini G, Gridelli B, Badami E, Conaldi PG. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation. PLoS One 2017; 12:e0181683. [PMID: 28750044 PMCID: PMC5531480 DOI: 10.1371/journal.pone.0181683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Hepatitis C virus (HCV) predominantly infects hepatocytes, although it is known that receptors for viral entry are distributed on a wide array of target cells. Chronic HCV infection is indeed characterized by multiple non-liver manifestations, suggesting a more complex HCV tropism extended to extrahepatic tissues and remains to be fully elucidated. In this study, we investigated the gastrointestinal mucosa (GIM) as a potential extrahepatic viral replication site and its contribution to HCV recurrence. METHODS We analyzed GIM biopsies from a cohort of 76 patients, 11 of which were HCV-negative and 65 HCV-positive. Of these, 54 biopsies were from liver-transplanted patients. In 29 cases, we were able to investigate gastrointestinal biopsies from the same patient before and after transplant. To evaluate the presence of HCV, we looked for viral antigens and genome RNA, whilst to assess viral replicative activity, we searched for the replicative intermediate minus-strand RNA. We studied the genetic diversity and the phylogenetic relationship of HCV quasispecies from plasma, liver and gastrointestinal mucosa of HCV-liver-transplanted patients in order to assess HCV compartmentalization and possible contribution of gastrointestinal variants to liver re-infection after transplantation. RESULTS Here we show that HCV infects and replicates in the cells of the GIM and that the favorite hosts were mostly enteroendocrine cells. Interestingly, we observed compartmentalization of the HCV quasispecies present in the gastrointestinal mucosa compared to other tissues of the same patient. Moreover, the phylogenetic analysis revealed a high similarity between HCV variants detected in gastrointestinal mucosa and those present in the re-infected graft. CONCLUSIONS Our results demonstrated that the gastrointestinal mucosa might be considered as an extrahepatic reservoir of HCV and that could contribute to viral recurrence. Moreover, the finding that HCV infects and replicates in neuroendocrine cells opens new perspectives on the role of these cells in the natural history of HCV infection.
Collapse
Affiliation(s)
- Giovanna Russelli
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Pizzillo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Floriana Barbera
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Rosa Liotta
- Pathology Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Mario Traina
- Endoscopy Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Giovanni Vizzini
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Bruno Gridelli
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | | | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Fondazione Ri.MED, Palermo, Italy
| |
Collapse
|
21
|
Elsemman IE, Mardinoglu A, Shoaie S, Soliman TH, Nielsen J. Systems biology analysis of hepatitis C virus infection reveals the role of copy number increases in regions of chromosome 1q in hepatocellular carcinoma metabolism. MOLECULAR BIOSYSTEMS 2017; 12:1496-506. [PMID: 27040643 DOI: 10.1039/c5mb00827a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is a worldwide healthcare problem; however, traditional treatment methods have failed to cure all patients, and HCV has developed resistance to new drugs. Systems biology-based analyses could play an important role in the holistic analysis of the impact of HCV on hepatocellular metabolism. Here, we integrated HCV assembly reactions with a genome-scale hepatocyte metabolic model to identify metabolic targets for HCV assembly and metabolic alterations that occur between different HCV progression states (cirrhosis, dysplastic nodule, and early and advanced hepatocellular carcinoma (HCC)) and healthy liver tissue. We found that diacylglycerolipids were essential for HCV assembly. In addition, the metabolism of keratan sulfate and chondroitin sulfate was significantly changed in the cirrhosis stage, whereas the metabolism of acyl-carnitine was significantly changed in the dysplastic nodule and early HCC stages. Our results explained the role of the upregulated expression of BCAT1, PLOD3 and six other methyltransferase genes involved in carnitine biosynthesis and S-adenosylmethionine metabolism in the early and advanced HCC stages. Moreover, GNPAT and BCAP31 expression was upregulated in the early and advanced HCC stages and could lead to increased acyl-CoA consumption. By integrating our results with copy number variation analyses, we observed that GNPAT, PPOX and five of the methyltransferase genes (ASH1L, METTL13, SMYD2, TARBP1 and SMYD3), which are all located on chromosome 1q, had increased copy numbers in the cancer samples relative to the normal samples. Finally, we confirmed our predictions with the results of metabolomics studies and proposed that inhibiting the identified targets has the potential to provide an effective treatment strategy for HCV-associated liver disorders.
Collapse
Affiliation(s)
- Ibrahim E Elsemman
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. and Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt and The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Adil Mardinoglu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. and Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Taysir H Soliman
- Information Systems Department, Faculty of Computers and Information, Assiut University, Assiut, Egypt
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. and Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
22
|
Andreo U, de Jong YP, Scull MA, Xiao JW, Vercauteren K, Quirk C, Mommersteeg MC, Bergaya S, Menon A, Fisher EA, Rice CM. Analysis of Hepatitis C Virus Particle Heterogeneity in Immunodeficient Human Liver Chimeric fah-/- Mice. Cell Mol Gastroenterol Hepatol 2017; 4:405-417. [PMID: 28936471 PMCID: PMC5602752 DOI: 10.1016/j.jcmgh.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is a leading cause of chronic liver diseases and the most common indication for liver transplantation in the United States. HCV particles in the blood of infected patients are characterized by heterogeneous buoyant densities, likely owing to HCV association with lipoproteins. However, clinical isolates are not infectious in vitro and the relative infectivity of the particles with respect to their buoyant density therefore cannot be determined, pointing to the need for better in vivo model systems. METHODS To analyze the evolution of the buoyant density of in vivo-derived infectious HCV particles over time, we infected immunodeficient human liver chimeric fumaryl acetoacetate hydrolase-/- mice with J6/JFH1 and performed ultracentrifugation of infectious mouse sera on isopicnic iodixanol gradients. We also evaluated the impact of a high sucrose diet, which has been shown to increase very-low-density lipoprotein secretion by the liver in rodents, on lipoprotein and HCV particle characteristics. RESULTS Similar to the severe combined immunodeficiency disease/Albumin-urokinase plasminogen activator human liver chimeric mouse model, density fractionation of infectious mouse serum showed higher infectivity in the low-density fractions early after infection. However, over the course of the infection, viral particle heterogeneity increased and the overall in vitro infectivity diminished without loss of the human liver graft over time. In mice provided with a sucrose-rich diet we observed a minor shift in HCV infectivity toward lower density that correlated with a redistribution of triglycerides and cholesterol among lipoproteins. CONCLUSIONS Our work indicates that the heterogeneity in buoyant density of infectious HCV particles evolves over the course of infection and can be influenced by diet.
Collapse
Key Words
- Alb-uPA, Albumin-urokinase plasminogen activator
- CETP, cholesterol ester transfer protein
- FAH, fumaryl acetoacetate hydrolase
- FNRG, absence of fumaryl acetoacetate hydrolase on a immunodeficient NOD Rag gamma IL2 deficient mouse background
- FPLC, fast-performance liquid chromatography
- HCV
- HCV, hepatitis C virus
- HCVcc, cell culture–derived hepatitis C virus
- HDL, high-density lipoprotein
- Human Liver Chimeric Mice
- LVP, lipoviroparticle
- Lipoprotein
- Mouse Model
- NRG, nod rag γ
- NTBC, nitisinone
- PBS, phosphate-buffered saline
- SCID, severe combined immunodeficiency disease
- VLDL, very low density lipoprotein
- apo, apolipoprotein
Collapse
Affiliation(s)
- Ursula Andreo
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
- Correspondence Address correspondence to: Ursula Andreo, PhD, Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, Box 64, New York, New York 10065. fax: (212) 327-7048.Center for the Study of Hepatitis CThe Rockefeller University1230 York AvenueBox 64New YorkNew York 10065
| | - Ype P. de Jong
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
- Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, New York
| | - Margaret A. Scull
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Jing W. Xiao
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Koen Vercauteren
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Corrine Quirk
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | | | - Sonia Bergaya
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Arjun Menon
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Charles M. Rice
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| |
Collapse
|
23
|
Pène V, Lemasson M, Harper F, Pierron G, Rosenberg AR. Role of cleavage at the core-E1 junction of hepatitis C virus polyprotein in viral morphogenesis. PLoS One 2017; 12:e0175810. [PMID: 28437468 PMCID: PMC5402940 DOI: 10.1371/journal.pone.0175810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
In hepatitis C virus (HCV) polyprotein sequence, core protein terminates with E1 envelope signal peptide. Cleavage by signal peptidase (SP) separates E1 from the complete form of core protein, anchored in the endoplasmic reticulum (ER) membrane by the signal peptide. Subsequent cleavage of the signal peptide by signal-peptide peptidase (SPP) releases the mature form of core protein, which preferentially relocates to lipid droplets. Both of these cleavages are required for the HCV infectious cycle, supporting the idea that HCV assembly begins at the surface of lipid droplets, yet SPP-catalyzed cleavage is dispensable for initiation of budding in the ER. Here we have addressed at what step(s) of the HCV infectious cycle SP-catalyzed cleavage at the core-E1 junction is required. Taking advantage of the sole system that has allowed visualization of HCV budding events in the ER lumen of mammalian cells, we showed that, unexpectedly, mutations abolishing this cleavage did not prevent but instead tended to promote the initiation of viral budding. Moreover, even though no viral particles were released from Huh-7 cells transfected with a full-length HCV genome bearing these mutations, intracellular viral particles containing core protein protected by a membrane envelope were formed. These were visualized by electron microscopy as capsid-containing particles with a diameter of about 70 nm and 40 nm before and after delipidation, respectively, comparable to intracellular wild-type particle precursors except that they were non-infectious. Thus, our results show that SP-catalyzed cleavage is dispensable for HCV budding per se, but is required for the viral particles to acquire their infectivity and secretion. These data support the idea that HCV assembly occurs in concert with budding at the ER membrane. Furthermore, capsid-containing particles did not accumulate in the absence of SP-catalyzed cleavage, suggesting the quality of newly formed viral particles is controlled before secretion.
Collapse
Affiliation(s)
- Véronique Pène
- Université Paris Descartes, EA 4474 “Virologie de l’Hépatite C”, Paris, France
| | - Matthieu Lemasson
- Université Paris Descartes, EA 4474 “Virologie de l’Hépatite C”, Paris, France
| | - Francis Harper
- CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
| | - Gérard Pierron
- CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
| | - Arielle R. Rosenberg
- Université Paris Descartes, EA 4474 “Virologie de l’Hépatite C”, Paris, France
- AP-HP, Hôpital Cochin, Service de Virologie, Paris, France
| |
Collapse
|
24
|
Hepatitis C virus and atherosclerosis: A legacy after virologic cure? Clin Res Hepatol Gastroenterol 2017; 41:25-30. [PMID: 27840032 DOI: 10.1016/j.clinre.2016.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a major pathogen with approximately 3% of the world's population (over 170 million) infected. Epidemiological studies have shown HCV is associated with an increased risk of cardiovascular and cerebrovascular mortality as well as peripheral arterial disease. This is despite HCV inducing an ostensibly favourable lipid profile with accompanying low classical risk score for atherosclerosis (AS). We discuss possible factors involved in the aetiopathogenesis of atherosclerosis in chronic HCV and hypothesise that an important mechanism underlying the development of AS is the presence of circulating low-density immune complexes that induce an inflammatory response. We suggest that HCV particles may be inducing an antibody response to lipoproteins present in the lipoviral particles and sub-viral particles - a concept similar to the more general 'autoantibody' response to modified LDL. After virologic cure some AS risk factors will recede but an increase in serum cholesterol could result in progression of early atherosclerotic lesions, leaving a legacy from persistent HCV infection that has clinical and therapeutic implications.
Collapse
|
25
|
Sheridan DA, Hajarizadeh B, Fenwick FI, Matthews GV, Applegate T, Douglas M, Neely D, Askew B, Dore GJ, Lloyd AR, George J, Bassendine MF, Grebely J. Maximum levels of hepatitis C virus lipoviral particles are associated with early and persistent infection. Liver Int 2016; 36:1774-1782. [PMID: 27224844 DOI: 10.1111/liv.13176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/21/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is bound to plasma lipoproteins and circulates as an infectious lipoviral particle (LVP). Experimental evidence indicates that LVPs have decreased susceptibility to antibody-mediated neutralisation and higher infectivity. This study tested the hypothesis that LVPs are required to establish persistent infection, and conversely, low levels of LVP in recent HCV infection increase the probability of spontaneous HCV clearance. METHODS LVP in non-fasting plasma was measured using the concentration of HCV RNA bound to large >100 nm sized lipoproteins after ex vivo addition of a lipid emulsion, that represented the maximum concentration of LVP (maxi-LVP). This method correlated with LVP in fasting plasma measured using iodixanol density gradient ultracentrifugation. Maxi-LVP was measured in a cohort of 180 HCV participants with recent HCV infection and detectable HCV RNA from the Australian Trial in Acute Hepatitis C (ATAHC) and Hepatitis C Incidence and Transmission Study in prison (HITS-p) cohorts. RESULTS Spontaneous clearance occurred in 15% (27 of 180) of individuals. In adjusted analyses, low plasma maxi-LVP level was independently associated with spontaneous HCV clearance (≤827 IU/ml; adjusted odds ratio 3.98, 95% CI: 1.02, 15.51, P = 0.047), after adjusting for interferon lambda-3 rs8099917 genotype, estimated duration of HCV infection and total HCV RNA level. CONCLUSIONS Maxi-LVP is a biomarker for the maximum concentration of LVP in non-fasting samples. Low maxi-LVP level is an independent predictor of spontaneous clearance of acute HCV.
Collapse
Affiliation(s)
- David A Sheridan
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine & Dentistry, Plymouth, UK
| | | | - Fiona I Fenwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Gail V Matthews
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Tanya Applegate
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Mark Douglas
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Dermot Neely
- Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bev Askew
- HB Innovations Ltd, Newcastle upon Tyne, UK
| | - Gregory J Dore
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Andrew R Lloyd
- Inflammation and Infection Research Centre, School of Medical Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Margaret F Bassendine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Medicine, Imperial College London, London, UK
| | - Jason Grebely
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| |
Collapse
|
26
|
Mauss S, Berger F, Wehmeyer MH, Ingiliz P, Hueppe D, Lutz T, Simon KG, Schewe K, Rockstroh JK, Baumgarten A, Christensen S. Effect of antiviral therapy for HCV on lipid levels. Antivir Ther 2016; 21:81-88. [PMID: 27685337 DOI: 10.3851/imp3094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND HCV has complex interactions with human lipid metabolism leading to down regulation of cholesterol levels. Interferon (IFN) therapy has been shown to decrease cholesterol even further. With the availability of second-generation direct-acting antiviral agents (DAA) the effect of suppressing and eliminating HCV on lipid metabolism warrants reevaluation. METHODS Prospective German multicentre cohort on HCV- and HIV-HCV-infected patients treated with direct-antiviral agents (GECCO). Lipids were assessed at baseline, during and after therapy. Wilcoxon test corrected for multiple testing was used. RESULTS For the analysis, 520 patients with chronic hepatitis C were available. Patients with chronic hepatitis C were treated as follows: sofosbuvir (SOF)/pegylated IFN (PEG-IFN)/ribavirin (RBV; HCV=34, HIV-HCV=36), SOF/RBV (HCV=47, HIV-HCV=16), SOF/simeprevir (HCV=9, HCV-HIV=2), SOF/daclatasvir +/- RBV (HCV=27, HIV-HCV=47), SOF/ledipasvir +/- RBV (HCV=147, HCV-HIV=100) and ombitasvir/paritaprevir/ritonavir +/- dasabuvir +/- RBV (2D, HCV=2, HCV-HIV=6; 3D, HCV=39, HCV-HIV=8). On treatment there was a statistically significant increase in total cholesterol for any IFN-free DAA regimen, which was maintained after end of therapy. Changes of total cholesterol were driven by changes in low-density lipoprotein cholesterol, whereas high-density lipoprotein cholesterol remained unchanged. In contrast, total cholesterol decreased on SOF/PEG-IFN/RBV and increased after end of therapy above baseline levels. Triglycerides increased during treatment with SOF/PEG-IFN/RBV, but not on DAA-only regimens. CONCLUSIONS Suppressing and eliminating HCV with IFN-free DAA regimens increased cholesterol levels, but had no effect on triglycerides. In contrast IFN-based therapy decreased cholesterol and increased triglycerides during treatment and led to increases in cholesterol after achieving sustained virological response.
Collapse
Affiliation(s)
- Stefan Mauss
- Center for HIV and Hepatogastroenterology, Duesseldorf, Germany
| | - Florian Berger
- Center for HIV and Hepatogastroenterology, Duesseldorf, Germany
| | - Malte H Wehmeyer
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Karl G Simon
- Practice for Gastroenterology, Leverkusen, Germany
| | - Knud Schewe
- Infektionsmedizinisches Centrum Hamburg, Hamburg, Germany
| | | | | | | |
Collapse
|
27
|
Callens N, Brügger B, Bonnafous P, Drobecq H, Gerl MJ, Krey T, Roman-Sosa G, Rümenapf T, Lambert O, Dubuisson J, Rouillé Y. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope. PLoS Pathog 2016; 12:e1005476. [PMID: 26939061 PMCID: PMC4777508 DOI: 10.1371/journal.ppat.1005476] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/07/2016] [Indexed: 11/17/2022] Open
Abstract
The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV), a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family. Bovine viral diarrhea virus (BVDV) is the etiologic agent of mucosal disease and bovine viral diarrhea, two economically important diseases of the livestock. BVDV is a member of the Pestivirus genus in the Flaviviridae family, which also includes Hepacivirus and Flavivirus genera. Members of this family share similar genome organization and replication strategies, but differ about their mode of transmission and particle structure. Whereas most studies have been so far performed on viruses of the Hepacivirus and Flavivirus genera, little is known about infectious particles of pestiviruses. In this study, we set up a novel purification method of BVDV infectious particles and analyzed their morphology by cryo-electron microscopy and their molecular composition by mass spectrometry. Our results provide new insights into the structure and biochemical composition of a pestivirus infectious particle, and have implications for research on molecular mechanisms of their morphogenesis and entry.
Collapse
Affiliation(s)
- Nathalie Callens
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Britta Brügger
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Pierre Bonnafous
- Institut de Chimie et Biologie des Membranes et des Nano-objets, CNRS UMR-5248, Université de Bordeaux, Pessac, France
| | - Hervé Drobecq
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Target Therapies, Lille, France
| | - Mathias J Gerl
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Thomas Krey
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France.,CNRS UMR 3569, 25-28 Rue du Docteur Roux, Paris Cedex 15, France
| | - Gleyder Roman-Sosa
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany
| | - Till Rümenapf
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria
| | - Olivier Lambert
- Institut de Chimie et Biologie des Membranes et des Nano-objets, CNRS UMR-5248, Université de Bordeaux, Pessac, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Yves Rouillé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
28
|
Satoh K, Nagano T, Seki N, Tomita Y, Aida Y, Sugita T, Itagaki M, Sutoh S, Abe H, Aizawa Y. High level of serum cholesteryl ester transfer protein in active hepatitis C virus infection. World J Hepatol 2016; 8:291-300. [PMID: 26925203 PMCID: PMC4757652 DOI: 10.4254/wjh.v8.i5.291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/30/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the significance of cholesteryl ester transfer protein (CETP) in lipoprotein abnormalities in chronic hepatitis C virus (HCV) infection. METHODS We evaluated the significance of the serum concentration of CETP in 110 Japanese patients with chronic HCV infection. Fifty-five patients had active HCV infection, and HCV eradication had been achieved in 55. The role of CETP in serum lipoprotein abnormalities, specifically, in triglyceride (TG) concentrations in the four major classes of lipoproteins, was investigated using Pearson correlations in conjunction with multiple regression analysis and compared them between those with active HCV infection and those in whom eradication had been achieved. RESULTS The serum CETP levels of patients with active HCV infection were significantly higher than those of patients in whom HCV eradication was achieved (mean ± SD, 2.84 ± 0.69 μg/mL vs 2.40 ± 1.00 μg/mL, P = 0.008). In multiple regression analysis, HCV infection status (active or eradicated) was an independent factor significantly associated with the serum CETP level. TG concentrations in low-density lipoprotein (mean ± SD, 36.25 ± 15.28 μg/mL vs 28.14 ± 9.94 μg/mL, P = 0.001) and high-density lipoprotein (HDL) (mean ± SD, 25.9 ± 7.34 μg/mL vs 17.17 ± 4.82 μg/mL, P < 0.001) were significantly higher in patients with active HCV infection than in those in whom HCV eradication was achieved. The CETP level was strongly correlated with HDL-TG in patients with active HCV infection (R = 0.557, P < 0.001), whereas CETP was not correlated with HDL-TG in patients in whom HCV eradication was achieved (R = -0.079, P = 0.56). CONCLUSION Our results indicate that CETP plays a role in abnormalities of lipoprotein metabolism in patients with chronic HCV infection.
Collapse
Affiliation(s)
- Kenichi Satoh
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Tomohisa Nagano
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Nobuyoshi Seki
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Yoichi Tomita
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Yuta Aida
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Tomonori Sugita
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Munenori Itagaki
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Satoshi Sutoh
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Hiroshi Abe
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Yoshio Aizawa
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| |
Collapse
|
29
|
Aizawa Y, Seki N, Nagano T, Abe H. Chronic hepatitis C virus infection and lipoprotein metabolism. World J Gastroenterol 2015; 21:10299-10313. [PMID: 26420957 PMCID: PMC4579877 DOI: 10.3748/wjg.v21.i36.10299] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/11/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a hepatotrophic virus and a major cause of chronic liver disease, including hepatocellular carcinoma, worldwide. The life cycle of HCV is closely associated with the metabolism of lipids and lipoproteins. The main function of lipoproteins is transporting lipids throughout the body. Triglycerides, free cholesterol, cholesteryl esters, and phospholipids are the major components of the transported lipids. The pathway of HCV assembly and secretion is closely linked to lipoprotein production and secretion, and the infectivity of HCV particles largely depends on the interaction of lipoproteins. Moreover, HCV entry into hepatocytes is strongly influenced by lipoproteins. The key lipoprotein molecules mediating these interactions are apolipoproteins. Apolipoproteins are amphipathic proteins on the surface of a lipoprotein particle, which help stabilize lipoprotein structure. They perform a key role in lipoprotein metabolism by serving as receptor ligands, enzyme co-factors, and lipid transport carriers. Understanding the association between the life cycle of HCV and lipoprotein metabolism is important because each step of the life cycle of HCV that is associated with lipoprotein metabolism is a potential target for anti-HCV therapy. In this article, we first concisely review the nature of lipoprotein and its metabolism to better understand the complicated interaction of HCV with lipoprotein. Then, we review the outline of the processes of HCV assembly, secretion, and entry into hepatocytes, focusing on the association with lipoproteins. Finally, we discuss the clinical aspects of disturbed lipid/lipoprotein metabolism and the significance of dyslipoproteinemia in chronic HCV infection with regard to abnormal apolipoproteins.
Collapse
|
30
|
Abstract
The past decade has witnessed steady and rapid progress in HCV research, which has led to the recent breakthrough in therapies against this significant human pathogen. Yet a deeper understanding of the life cycle of the virus is required to develop more affordable treatments and to advance vaccine design. HCV entry presents both a challenge for scientific research and an opportunity for alternative intervention approaches, owning to its highly complex nature and the myriad of players involved. More than half a dozen cellular proteins are implicated in HCV entry; and a more definitive picture regarding the structures of the glycoproteins is emerging. A role of apolipoproteins in HCV entry has also been established. Still, major questions remain, and the answers to these, which we summarize in this review, will hopefully close the gaps in our understanding and complete the puzzle that is HCV entry.
Collapse
Affiliation(s)
- Sarah C Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA ; Institute of Health Sciences, Anhui University, Hefei, 230601, PR China
| |
Collapse
|
31
|
Read SA, Tay E, Shahidi M, George J, Douglas MW. Hepatitis C virus infection mediates cholesteryl ester synthesis to facilitate infectious particle production. J Gen Virol 2014; 95:1900-1910. [PMID: 24859394 DOI: 10.1099/vir.0.065300-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Cholesterol is a critical component of the hepatitis C virus (HCV) life cycle, as demonstrated by its accumulation within infected hepatocytes and lipoviral particles. To cope with excess cholesterol, hepatic enzymes ACAT1 and ACAT2 produce cholesteryl esters (CEs), which are destined for storage in lipid droplets or for secretion as apolipoproteins. Here we demonstrate in vitro that cholesterol accumulation following HCV infection induces upregulation of the ACAT genes and increases CE synthesis. Analysis of human liver biopsy tissue showed increased ACAT2 mRNA expression in liver infected with HCV genotype 3, compared with genotype 1. Inhibiting cholesterol esterification using the potent ACAT inhibitor TMP-153 significantly reduced production of infectious virus, but did not inhibit virus RNA replication. Density gradient analysis showed that TMP-153 treatment caused a significant increase in lipoviral particle density, suggesting reduced lipidation. These data suggest that cholesterol accumulation following HCV infection stimulates the production of CE, a major component of lipoviral particles. Inhibition of CE synthesis reduces HCV particle density and infectivity, suggesting that CEs are required for optimal infection of hepatocytes.
Collapse
Affiliation(s)
- Scott A Read
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Enoch Tay
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Mahsa Shahidi
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Mark W Douglas
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Sydney, Australia
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| |
Collapse
|
32
|
Van Thiel DH, George M, Attar BM, Ramadori G, Ion-Nedelcu N. Plasma triglyceride levels may modulate hepatitis C viral replication. Dig Dis Sci 2014; 59:881-5. [PMID: 24563239 DOI: 10.1007/s10620-014-3079-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Plasma and hepatic lipid abnormalities are frequent in hepatitis C infected individuals. METHODS Plasma lipid and medical records profiles were prospectively obtained in 130 consecutive individuals seen by a single hepatologist in a university liver disease clinic. The relationships between viral load, genotype, plasma lipid fractions, HDL, LDL particle number and particle size were examined. RESULTS Of 130 individuals studied, 74 had hepatitis C while 15 had NAFLD/NASH and 30 had alcohol related liver disease. The LDL particle number and LDL-C levels did not differ between those with and without hepatitis C although the number of small LDL particles was greater in those with hepatitis C infection. The HDL-C and total cholesterol levels were greater in those without hepatitis C than those with hepatitis C (P = 0.009). In contrast, the serum triglyceride level was greater in the hepatitis C viral group (P = 0.013). Importantly, the hepatitis C viral load regardless of the genotype correlated directly with the triglyceride and VLDL levels with r values of 0.73 and 0.84, respectively. CONCLUSIONS There are: (1) important differences in lipid classes, number and the size of lipid particles exist between hepatitis C virus infected and noninfected liver disease groups, (2) the serum total triglyceride and the LDL levels correlate significantly with the hepatitis C viral load and, (3) Serum triglyceride level may play an important role in viral replication. These data further suggest that therapies directed at lowering plasma triglyceride levels may enhance the efficacy of current antiviral treatment regimens.
Collapse
|
33
|
Minutolo A, Conti B, Grelli S, Viscomi C, Labbadia G, Balsano C. Lymphocytes as liver damage mirror of HCV related adipogenesis deregulation. PLoS One 2014; 9:e92343. [PMID: 24658135 PMCID: PMC3962393 DOI: 10.1371/journal.pone.0092343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
Hepatitis C virus infection leads to a wide spectrum of liver diseases ranging from mild chronic hepatitis to end-stage cirrhosis and hepatocellular carcinoma. An intriguing aspect of the HCV infection is its close connection with lipid metabolism playing an important role in the HCV life cycle and in its pathogenesis. HCV is known to be a hepatotropic virus; however, it can also infect peripheral blood mononuclear cells (PBMCs). The goal of the current investigation is to compare the adipogenesis profile of liver tissues to lymphocytes of HCV infected patients, in order to understand if PBMCs may reflect the alterations of intracellular pathways occurring during HCV-related liver steatosis. Using the Human Adipogenesis PCR Array, gene expression was analyzed in liver samples and PBMCs of chronic HCV+, HBV+ and Healthy Donors (HDs) patients. We observed a similar modulation of lipid metabolism in HCV+ and HBV+liver tissues and lymphoid, cells suggesting that PBMCs reflect the liver adipogenesis deregulation related to infection, even if the two viruses have a different impact in the regulation of the adipogenesis mechanisms. In particular, some genes involved in lipid metabolism and inflammation, as well as in cell transformation, were up-regulated, in a similar way, in both HCV models analyzed. Interestingly, these genes were positively correlated to virological and hepatic functional parameters of HCV+ patients. On the contrary, HBV+ patients displayed a completely different profile. PBMCs of HCV+ patients seem to be useful model to study how HCV-related lipid metabolism deregulation occurs in liver. The obtained data suggest some molecules as new possible biomarkers of HCV-related liver damage progression.
Collapse
Affiliation(s)
- Antonella Minutolo
- Laboratory of Molecular Virology and Oncology, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy
| | - Beatrice Conti
- Laboratory of Molecular Virology and Oncology, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy
| | - Sandro Grelli
- U.O.C. Clinical Microbiology, Tor Vergata Hospital, Rome, Italy
| | - Carmela Viscomi
- Laboratory of Molecular Virology and Oncology, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy
| | - Giancarlo Labbadia
- Department of Clinical and Medical Therapy, “Sapienza” University of Rome - Umberto I Hospital, Rome, Italy
| | - Clara Balsano
- Laboratory of Molecular Virology and Oncology, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy
- Institute of Biology and Molecular Pathology (IBPM) – CNR (National Research Council), Rome, Italy
| |
Collapse
|
34
|
Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses 2014; 6:1149-87. [PMID: 24618856 PMCID: PMC3970144 DOI: 10.3390/v6031149] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response.
Collapse
|
35
|
Lohmann V, Bartenschlager R. On the History of Hepatitis C Virus Cell Culture Systems. J Med Chem 2013; 57:1627-42. [DOI: 10.1021/jm401401n] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Volker Lohmann
- Department of Infectious
Diseases, Molecular Virology, Heidelberg University, Heidelberg, 69120, Germany
| | - Ralf Bartenschlager
- Department of Infectious
Diseases, Molecular Virology, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
36
|
Hepatitis C virus, cholesterol and lipoproteins--impact for the viral life cycle and pathogenesis of liver disease. Viruses 2013; 5:1292-324. [PMID: 23698400 PMCID: PMC3712309 DOI: 10.3390/v5051292] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/10/2013] [Accepted: 04/27/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects.
Collapse
|
37
|
Aizawa Y, Shimada N, Abe H, Seki N, Aida Y, Ishiguro H, Ika M, Kato K, Tsubota A. Serum lipoprotein profiles and response to pegylated interferon plus ribavirin combination therapy in patients with chronic HCV genotype 1b infection. HEPATITIS MONTHLY 2013; 13:e8988. [PMID: 23967025 PMCID: PMC3743300 DOI: 10.5812/hepatmon.8988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/07/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Abnormal serum lipid profiles have been noted in patients with chronic hepatitis C virus (HCV) infection. Moreover, many reports suggest that serum lipoprotein profiles are more profoundly distorted in patients with HCV G1b infection who have an unfavorable response to pegylated interferon (peg-IFN) plus ribavirin (RBV) combination therapy. However, after the discovery of single nucleotide polymorphisms near the IL28B gene (rs8099917 and rs12979860) as potent predictive factors affecting the response to peg-IFN plus RBV, lipid factors are thought to be confounding factors. OBJECTIVES To re-examine the significance of lipoprotein profiles on virological response to peg-IFN plus RBV combination therapy in patients with chronic HCV G1b infection, we examined cholesterol and triglyceride concentrations in each lipoprotein fraction separated by high performance liquid chromatography. PATIENTS AND METHODS Lipoprotein profiles were examined using fasting sera from 108 patients infected with HCV G1b who had chronic hepatitis, as determined by liver biopsy. Results of lipoprotein profiles and clinical data, including IL28B genotype and amino acid substitution at aa70 of HCV G1b, were compared between patients with a sustained virological response (SVR) and non-SVR or a non-virological response (NVR) and virological responses other than NVR (non-NVR). In addition, significant predictive factors independently associated with virological response to peg-IFNα-2b plus RBV were determined by logistic regression analysis. RESULTS An increased ratio of cholesterol/triglyceride in very low-density lipoprotein (odds ratio (OR) 3.03; 95% confidence interval (CI) 1.01-9.44) along with a major genotype of rs8099917 (OR 9.09; 95% CI 2.94-33.33), were independent predictive factors for SVR. In contrast, lipid factors were not elucidated as independent predictive factors for NVR. CONCLUSIONS Examination of the fasting lipid profile has clinical importance in predicting the efficacy of peg-IFN-α-2b plus RBV combination therapy for patients with HCV G1b even after the discovery of the IL28 genotype as a potent predictive factor.
Collapse
Affiliation(s)
- Yoshio Aizawa
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Noritomo Shimada
- Department of Gastroenterology and Hepatology, Shinmatsudo Chuo General Hospital, Chiba, Japan
| | - Hiroshi Abe
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Seki
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuta Aida
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Haruya Ishiguro
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Makiko Ika
- Department of Gastroenterology and Hepatology, Shinmatsudo Chuo General Hospital, Chiba, Japan
| | - Keizo Kato
- Department of Gastroenterology and Hepatology, Shinmatsudo Chuo General Hospital, Chiba, Japan
| | - Akihito Tsubota
- Institute of Clinical Medicine and Research, Jikei University Kashiwa Hospital, Chiba, Japan
| |
Collapse
|
38
|
Caldwell S, Hoehn KL, Hahn YS. The strange and critical intersection of hepatitis C and lipoprotein metabolism: "C-zing" the oil. Hepatology 2013; 57:1684-7. [PMID: 23055122 PMCID: PMC4437565 DOI: 10.1002/hep.26091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/24/2011] [Indexed: 12/19/2022]
Affiliation(s)
- Stephen Caldwell
- The Division of Gastroenterology and Hepatology, University of
Virginia Charlottesville, VA
| | - Kyle L. Hoehn
- Department of Pharmacology, University of Virginia Charlottesville,
VA
| | - Young S. Hahn
- Beirne Carter Immunology Center, University of Virginia
Charlottesville, VA
| |
Collapse
|
39
|
Very-low-density lipoprotein (VLDL)-producing and hepatitis C virus-replicating HepG2 cells secrete no more lipoviroparticles than VLDL-deficient Huh7.5 cells. J Virol 2013; 87:5065-80. [PMID: 23427158 DOI: 10.1128/jvi.01405-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs.
Collapse
|
40
|
Sheridan DA, Neely RDG, Bassendine MF. Hepatitis C virus and lipids in the era of direct acting antivirals (DAAs). Clin Res Hepatol Gastroenterol 2013; 37:10-6. [PMID: 22959093 DOI: 10.1016/j.clinre.2012.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
The six different HCV-genotypes have marked differences in response to therapy with pegylated interferon-α and ribavirin. The introduction of the direct acting antiviral (DAA) protease inhibitors, telaprevir and boceprevir in combination with pegylated interferon-α and ribavirin has become the new standard of care for genotype 1 infection. Several host factors associated with response to pegylated interferon-α and ribavirin are not as important in predicting response to triple therapy, and yet low-density lipoprotein cholesterol (LDLC) and statin use remain important associations of outcome with DAAs. This review focuses on the clinical associations between lipids and treatment response to interferon based antiviral treatments. We consider how understanding the interactions of HCV and host lipid metabolism remains relevant in the era of DAAs for genotype 1 infection and for treatment of non-genotype 1 chronic hepatitis C.
Collapse
Affiliation(s)
- David A Sheridan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
41
|
Pécheur EI. Lipoprotein receptors and lipid enzymes in hepatitis C virus entry and early steps of infection. SCIENTIFICA 2012; 2012:709853. [PMID: 24278733 PMCID: PMC3820461 DOI: 10.6064/2012/709853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 06/02/2023]
Abstract
Viruses are obligate intracellular agents that depend on host cells for successful propagation, hijacking cellular machineries to their own profit. The molecular interplay between host factors and invading viruses is a continuous coevolutionary process that determines viral host range and pathogenesis. The hepatitis C virus (HCV) is a strictly human pathogen, causing chronic liver injuries accompanied by lipid disorders. Upon infection, in addition to protein-protein and protein-RNA interactions usual for such a positive-strand RNA virus, HCV relies on protein-lipid interactions at multiple steps of its life cycle to establish persistent infection, making use of hepatic lipid pathways. This paper focuses on lipoproteins in HCV entry and on receptors and enzymes involved in lipid metabolism that HCV exploits to enter hepatocytes.
Collapse
Affiliation(s)
- Eve-Isabelle Pécheur
- Department of Mechanisms of Chronic Hepatitis B and C, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
- Inserm U1052/CNRS UMR 5286, CRCL, Université de Lyon, 151 Cours Albert Thomas, 69424 Lyon Cedex 03, France
| |
Collapse
|
42
|
|
43
|
Perrin-Cocon L, Diaz O, André P, Lotteau V. Modified lipoproteins provide lipids that modulate dendritic cell immune function. Biochimie 2012; 95:103-8. [PMID: 22959067 DOI: 10.1016/j.biochi.2012.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
Abstract
Both physiological and pathological situations can result in biochemical changes of low-density lipoproteins (LDL). Because they can deliver signals to dendritic cells (DC), these modified lipoproteins now appear as regulators of the immune response. Among these modified lipoproteins, oxidized LDL (oxLDL) that accumulate during inflammatory conditions have been extensively studied. Numerous studies have shown that oxLDL induce the maturation of DC, enhancing their ability to activate IFNγ secretion by T cells. LDL treated by secreted phospholipase A(2) also promote DC maturation. Among the bioactive lipids generated by oxidation or phospholipase treatment of LDL, lysophosphatidylcholine (LPC) and some saturated fatty acids induce DC maturation whereas some unsaturated fatty acids or oxidized derivatives have opposite effects. Among other factors, the nuclear receptor peroxisome-proliferator activated receptor γ (PPARγ) plays a crucial role in this regulation. Non-modified lipoproteins also contribute to the regulation of DC function, suggesting that the balance between native and modified lipoproteins, as well as the biochemical nature of the LDL modifications, can regulate the activation threshold of DC. Here we discuss two pathological situations in which the impact of LDL modifications on inflammation and immunity could play an important role. During atherosclerosis, modified LDL accumulating in the arterial intima may interfere with DC maturation and function, promoting a Th1 immune response and a local inflammation favoring the development of the pathology. In patients chronically infected, the hepatitis C virus (HCV) interferes with lipoprotein metabolism resulting in the production of infectious modified lipoproteins. These lipo-viral-particles (LVP) are modified low-density lipoproteins containing viral material that can alter DC maturation and affect specific toll-like receptor signaling. In conclusion, lipoprotein modifications play an important role in the regulation of immunity by delivering signals of danger to DC and modulating their function.
Collapse
|
44
|
Blaising J, Pécheur EI. Lipids: a key for hepatitis C virus entry and a potential target for antiviral strategies. Biochimie 2012; 95:96-102. [PMID: 22884392 DOI: 10.1016/j.biochi.2012.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/20/2012] [Indexed: 12/30/2022]
Abstract
Viruses have evolved to complex relationship with their host cells. Many viruses modulate the lipid composition, lipid synthesis and signaling of their host cell. Lipids are also an essential part of the life cycle of the hepatitis C virus (HCV). HCV is a major human pathogen, persistently infecting 170 million people worldwide, with no currently effective treatment available for all patients. HCV appears to make use of the host lipid metabolism and one common feature of chronic hepatitis C is the steatosis, characterized by excessive accumulation of triglycerides and lipid content in the liver. Thus, HCV lifecycle appears to be closely connected to host cell lipid metabolism, from cell entry, through viral RNA replication to viral particle production and formation/assembly. HCV particles have a unique lipid composition, certainly distinct from other viruses. In the blood of chronically-infected patients, viral particles are bound to serum lipoproteins and are thus called lipo-viro-particles. The density of these circulating viral particles is heterogeneous. Specific infectivity and fusion of low density particles are greater than those of high density particles. Lipids and association to lipoproteins therefore play a key role in HCV life cycle. The purpose of this review is to make a state of the art on recent findings on the contribution of lipids in cell entry and membrane fusion of HCV. The influence of lipids as chemically-defined entities will be analyzed, as well as the role played by cholesterol transporters and lipoprotein receptors in HCV entry and fusion. Since viral entry would constitute a key target for antiviral strategies, inhibitor molecules interacting with viral and/or cellular membranes or interfering with the function of lipid metabolism regulators of HCV entry could offer strong antiviral potential. This will be lastly discussed in this review.
Collapse
Affiliation(s)
- Julie Blaising
- UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon cedex, France
| | | |
Collapse
|