1
|
Dutta A, Chakraborty S, Bhattacharya A, Basak U, Pati S, Mukherjee S, Guha D, Banerjee S, Chaudhuri NR, Sarkar D, Jana K, Sa G, Dastidar SG, Das T. hsa-miR-5688 inhibits FOXC1-OCT4/SOX2 feedforward loop that drives chemoresistance in breast cancer stem cells. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200982. [PMID: 40330903 PMCID: PMC12051596 DOI: 10.1016/j.omton.2025.200982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/15/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Inherently chemotherapy-resistant breast cancer stem cells (CSCs) are responsible for tumor initiation, metastasis, and relapse. CSCs "acquire" more resistance and stemness upon chemotherapy, thereby making relapse-free survival extremely challenging. Here, we describe a novel role of FOXC1 in "acquired resistance" of breast CSCs during chemotherapy. Putative binding sites of pluripotency factors OCT4 and SOX2, but not NANOG, on FOXC1 promoter, were demonstrated by JASPAR and validated by a docking experiment. Significant decline in FOXC1 expression was noticed after OCT4 or SOX2 ablation in breast CSCs. Contrastingly, presence of putative FOXC1 binding sites on the promoters of stemness genes and drug-resistance marker ABCG2, along with downregulation of OCT4 and SOX2 in FOXC1-ablated CSCs, indicated the existence of a feedforward FOXC1-OCT4/SOX2 transactivation loop in CSCs. Chemotherapy-induced upregulation of FOXC1, stemness, as well as drug resistance in CSCs, and downregulation of the same by prior FOXC1-ablation in in-vitro and in-vivo models, endorsed the contribution of this loop in chemo-induced acquisition of stemness and drug resistance. Finally, over-expression of hsa-miR-5688 sensitized CSCs toward chemotherapy and decelerated recurrence. Accordingly, we demonstrate a hitherto unknown mechanism underpinning chemotherapy-induced resistance in breast CSCs, causing relapse and identified hsa-miR-5688 as a potential therapeutic candidate for relapse-free survival of breast cancer patients.
Collapse
Affiliation(s)
- Apratim Dutta
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sourio Chakraborty
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Apoorva Bhattacharya
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Udit Basak
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Subhadip Pati
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumon Mukherjee
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Deblina Guha
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Shruti Banerjee
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Nibedita Ray Chaudhuri
- Unified Academic Campus, Bose Institute, HCGJ+4X5, EN Block, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Diptendra Sarkar
- Department of Surgery, IPGMER and SSKM Hospital, Kolkata 700020, India
| | - Kuladip Jana
- Unified Academic Campus, Bose Institute, HCGJ+4X5, EN Block, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Gaurisankar Sa
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Shubhra Ghosh Dastidar
- Unified Academic Campus, Bose Institute, HCGJ+4X5, EN Block, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Tanya Das
- Centenary Building, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| |
Collapse
|
2
|
Li Z, Hao L, Chen S, Fu W, Zhang H, Yin Z, Wang Y, Wang J. Forkhead box C1 promotes the pathology of osteoarthritis in subchondral bone osteoblasts via the Piezo1/YAP axis. Cell Signal 2024; 124:111463. [PMID: 39396563 DOI: 10.1016/j.cellsig.2024.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Subchondral bone sclerosis is a key characteristic of osteoarthritis (OA). Prior research has shown that Forkhead box C1 (FoxC1) plays a role in the synovial inflammation of OA, but its specific role in the subchondral bone of OA has not been explored. Our research revealed elevated expression levels of FoxC1 and Piezo1 in OA subchondral bone tissues. Further experiments on OA subchondral bone osteoblasts with FoxC1 or Piezo1 overexpression showed increased cell proliferation activity, expression of Yes-associated Protein 1 (YAP) and osteogenic markers, and secretion of proinflammatory factors. Mechanistically, the overexpression of FoxC1 through Piezo1 activation, in combination with downstream YAP signaling, led to increased levels of alkaline phosphatase (ALP), collagen type 1 (COL1) A1, RUNX2, Osteocalcin, matrix metalloproteinase (MMP) 3, and MMP9 expression. Notably, inhibition of Piezo1 reversed the regulatory function of FoxC1. The binding of FoxC1 to the targeted area (ATATTTATTTA, residues +612 to +622) and the activation of Piezo1 transcription were verified by the dual luciferase assays. Additionally, Reduced subchondral osteosclerosis and microangiogenesis were observed in knee joints from FoxC1-conditional knockout (CKO) and Piezo1-CKO mice, indicating reduced lesions. Collectively, our study reveals the significant involvement of FoxC1 in the pathologic process of OA subchondral bone via the Piezo1/YAP signaling pathway, potentially establishing a novel therapeutic target.
Collapse
Affiliation(s)
- Zhengyuan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Lin Hao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Shenghong Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| | - Yin Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, China; Anhui Public Health Clinical Center, Anhui, China.
| | - Jun Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
3
|
Firoozi Z, Shahi A, Mohammadisoleimani E, Afzali S, Mansoori B, Bahmanyar M, Mohaghegh P, Dastsooz H, Pezeshki B, Nikfar G, Kouhpayeh SA, Mansoori Y. CircRNA-associated ceRNA networks (circCeNETs) in chronic obstructive pulmonary disease (COPD). Life Sci 2024; 349:122715. [PMID: 38740326 DOI: 10.1016/j.lfs.2024.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a chronic airway disorder, which is mostly brought on by cigarette smoke extract (CSE), is a leading cause of death which has a high frequency. In COPD patients, smoking cigarette could also trigger the epithelial-mesenchymal transition (EMT) of airway remodeling. One of the most significant elements of environmental contaminants that is linked to pulmonary damage is fine particulate matter (PM2.5). However, the basic processes of lung injury brought on by environmental contaminants and cigarette smoke are poorly understood, particularly the molecular pathways involved in inflammation. For the clinical management of COPD, investigating the molecular process and identifying workable biomarkers will be important. According to newly available research, circular RNAs (circRNAs) are aberrantly produced and serve as important regulators in the pathological processes of COPD. This class of non-coding RNAs (ncRNAs) functions as microRNA (miRNA) sponges to control the levels of gene expression, changing cellular phenotypes and advancing disease. These findings led us to concentrate our attention in this review on new studies about the regulatory mechanism and potential roles of circRNA-associated ceRNA networks (circCeNETs) in COPD.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Mohammadisoleimani
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hassan Dastsooz
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Candiolo, C/o IRCCS, IIGM-Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer (IT), FPO-IRCCS, Candiolo Cancer Institute, Turin, Italy
| | - Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghasem Nikfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
Shan Y, Yu M, Dai H, Zhu X, Wang F, You Y, Cao H, Sheng L, Zhao J, Tang L, Shi J, Sheng M. The role of macrophage-derived Exosomes in reversing peritoneal fibrosis: Insights from Astragaloside IV. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155683. [PMID: 38701543 DOI: 10.1016/j.phymed.2024.155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Peritoneal dialysis (PD) is a successful renal replacement therapy for end-stage renal disease. Long-term PD causes mesothelial-mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs), leading to peritoneal fibrosis (PF), which reduces the efficiency of PD. Macrophages are thought to play a role in the onset and perpetuation of peritoneal injury. However, the mechanisms by which macrophages-PMCs communication regulates peritoneal fibrosis are not fully understood resulting in a lack of disease-modifying drugs. Astragaloside IV (AS-IV) possessed anti-fibrotic effect towards PF in PD whereas the mechanistic effect of AS-IV in PD is unknown. METHODS The primary macrophages were extracted and treated with LPS or AS-IV, then co-cultured with primary PMCs in transwell plates. The macrophage-derived exosomes were extracted and purified by differential centrifugation, then co-cultured with primary PMCs. Small RNA-seq was used to detect differential miRNAs in exosomes, and then KEGG analysis and q-PCR were performed for validation. In vivo PD rat models were established by inducing with high-glucose peritoneal dialysis fluid and different concentrations of AS-IV and exosomes were intraperitoneal injection. Through qRT-PCR, western blotting, and luciferase reporting, candidate proteins and pathways were validated in vivo and in vitro. The functions of the validated pathways were further investigated using the mimic or inhibition strategy. PF and inflammatory situations were assessed. RESULTS We found AS-IV reversed the MMT of PMCs caused by LPS-stimulated macrophages and the improving effect was mediated by macrophage-derived exosomes in vitro. We also demonstrated that AS-IV significantly reduced the MMT of PMCs in vitro or PF in a rat PD model via regulating exosome-contained miR-204-5p which targets Foxc1/β-catenin signaling pathway. CONCLUSION AS-IV attenuates macrophage-derived exosomes induced fibrosis in PD through the miR-204-5p/Foxc1 pathway.
Collapse
Affiliation(s)
- Yun Shan
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Manshu Yu
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Huibo Dai
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolin Zhu
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Funing Wang
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongqing You
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimin Cao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Sheng
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junyi Zhao
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Tang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Shi
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meixiao Sheng
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,.
| |
Collapse
|
5
|
Yang X, Chen X, Wang W, Qu S, Lai B, Zhang J, Chen J, Han C, Tian Y, Xiao Y, Gao W, Wu Y. Transcriptional profile of human thymus reveals IGFBP5 is correlated with age-related thymic involution. Front Immunol 2024; 15:1322214. [PMID: 38318192 PMCID: PMC10839013 DOI: 10.3389/fimmu.2024.1322214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Thymus is the main immune organ which is responsible for the production of self-tolerant and functional T cells, but it shrinks rapidly with age after birth. Although studies have researched thymus development and involution in mouse, the critical regulators that arise with age in human thymus remain unclear. We collected public human single-cell transcriptomic sequencing (scRNA-seq) datasets containing 350,678 cells from 36 samples, integrated them as a cell atlas of human thymus. Clinical samples were collected and experiments were performed for validation. We found early thymocyte-specific signaling and regulons which played roles in thymocyte migration, proliferation, apoptosis and differentiation. Nevertheless, signaling patterns including number, strength and path completely changed during aging, Transcription factors (FOXC1, MXI1, KLF9, NFIL3) and their target gene, IGFBP5, were resolved and up-regulated in aging thymus and involved in promoting epithelial-mesenchymal transition (EMT), responding to steroid and adipogenesis process of thymic epithelial cell (TECs). Furthermore, we validated that IGFBP5 protein increased at TECs and Hassall's corpuscle in both human and mouse aging thymus and knockdown of IGFBP5 significantly increased the expression of proliferation-related genes in thymocytes. Collectively, we systematically explored cell-cell communications and regulons of early thymocytes as well as age-related differences in human thymus by using both bioinformatic and experimental verification, indicating IGFBP5 as a functional marker of thymic involution and providing new insights into the mechanisms of thymus involution.
Collapse
Affiliation(s)
- Xiaojing Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Xichan Chen
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Wang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Siming Qu
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Binbin Lai
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ji Zhang
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Chen
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Han
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Tian
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weiwu Gao
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuzhang Wu
- College of Bioengineering, Chongqing University, Chongqing, China
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
6
|
Jurkiewicz M, Szczepaniak A, Zielińska M. Long non-coding RNAs - SNHG6 emerge as potential marker in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189056. [PMID: 38104909 DOI: 10.1016/j.bbcan.2023.189056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Colorectal cancer (CRC) ranks among the leading cancers in terms of incidence and mortality in the Western world. Currently, there are no sufficient diagnostic markers that would enable an early diagnosis and efficient therapy. Unfortunately, a significant number of new CRC cases is detected in late stages, with distant metastases, therefore, new therapeutic approaches, which would alleviate the prognosis for advanced stages of CRC, are highly in demand. SNHG6 belongs to the group of long non-coding RNAs, which are a larger entity of RNAs consisting of >200 nucleotides. SNHG6 is expressed mainly in the cell cytoplasm, where it acts as a regulator of numerous processes: modulation of crucial protein hubs; sponging miRNAs and upregulating the expression of their target mRNAs; and interacting with various cellular pathways including TGF-β/Smad and Wnt/β-catenin. SNHG6 is an oncogene, substantially overexpressed in CRC tissues and cancerous cell lines as compared to healthy samples. Its overexpression is associated with higher grade, lymphovascular invasion and tumor size. Taking into consideration the role of SNHG6 in the colorectal tumorigenesis, invasion and metastasis, we summarized its role in CRC and conclude that it could serve as a potential biomarker in CRC diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Michalina Jurkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adrian Szczepaniak
- Department of NeuroOncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
7
|
Wang XQ, Zhong NN, Man QW, Xu GC, Yan SC, Peng LW, Wang YG, Liu B, Bu LL, Li L. Single-cell RNA sequencing reveals tumor heterogeneity within salivary gland pleomorphic adenoma: A preliminary study. J Oral Pathol Med 2023; 52:766-776. [PMID: 37549038 DOI: 10.1111/jop.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Salivary gland pleomorphic adenoma (SPA) is a common neoplasm of salivary glands that displays remarkable histological diversity. Previous studies have demonstrated the involvement of gene rearrangements and cytoskeleton-remodeling-related myoepithelial cells in SPA tumorigenesis. Cytoskeleton remodeling is necessary for epithelial-mesenchymal transition (EMT), a key process in tumor progression. However, the heterogeneity of tumor cells and cytoskeleton remodeling in SPA has not been extensively investigated. METHODS An analysis of single-cell RNA sequencing (scRNA-seq) was performed on 27 810 cells from two donors with SPA. Bioinformatic tools were used to assess differentially expressed genes, cell trajectories, and intercellular communications. Immunohistochemistry and double immunofluorescence staining were used to demonstrate FOXC1 and MYLK expression in SPA tissues. RESULTS Our analysis revealed five distinct cell subtypes within the tumor cells of SPA, indicating a high level of intra-lesional heterogeneity. Cytoskeleton-remodeling-related genes were highly enriched in subtype 3 of the tumor cells, which showed a close interaction with mesenchymal cells. We found that tumoral FOXC1 expression was closely related to MYLK expression in the tumor cells of SPA. CONCLUSION Tumor cells enriched with cytoskeleton-remodeling-related genes play a crucial role in SPA development, and FOXC1 may partially regulate this process.
Collapse
Affiliation(s)
- Xi-Qian Wang
- Department of Oral and Maxillofacial Head Neck Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guang-Cai Xu
- Department of Oral and Maxillofacial Head Neck Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Si-Chen Yan
- Department of Oral and Maxillofacial Head Neck Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Li-Wei Peng
- Department of Oral and Maxillofacial Head Neck Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yong-Gong Wang
- Department of Oral and Maxillofacial Head Neck Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Li
- Department of Clinical Single-Cell Biomedicine Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Wang F, Liao R, Wang X, Xiong G, Zhang B, Li J, Wu D, Chen Y, Zhou X, Gu X, Qi Q, Li C. N-3, a novel synthetic derivative of bifendate, inhibits metastasis of triple-negative breast cancer via decreasing p38-regulated FOXC1 protein stability. Biochem Pharmacol 2023; 215:115729. [PMID: 37558004 DOI: 10.1016/j.bcp.2023.115729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high invasiveness, metastatic potential, and poor prognosis. Epithelial-mesenchymal transition (EMT) is pivotal in TNBC progression, becoming a promising target for TNBC treatment. Our study evaluated N-3, a novel synthetic bifendate derivative, which inhibited the EMT-associated migration and invasion of MDA-MB-231 and 4T1 TNBC cells. The results were consistent with the suppression of FOXC1 expression and transcriptional activity. Additional studies indicated that N-3 reduced the protein stability of FOXC1 by enhancing ubiquitination and degradation. Moreover, N-3 downregulated p-p38 expression and FOXC1 interaction, decreasing the stability of p38-regulated FOXC1. Further, N-3 blocked TNBC metastasis with an artificial lung metastasis model in vivo, related to FOXC1 suppression and EMT. These results highlight the potential of N-3 as a TNBC metastasis treatment. Therefore, FOXC1 regulation could be a novel targeted therapeutic strategy for TNBC metastasis.
Collapse
Affiliation(s)
- Fan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rong Liao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Pharmacy, Xuzhou City Hospital of TCM, Xuzhou 221010, Jiangsu, China
| | - Guixiang Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Juan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dengpan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yan Chen
- Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Deng Y, Jin H, Ning J, Cui D, Zhang M, Yang H. Elevated galectin-3 levels detected in women with hyperglycemia during early and mid-pregnancy antagonizes high glucose - induced trophoblast cells apoptosis via galectin-3/foxc1 pathway. Mol Med 2023; 29:115. [PMID: 37626284 PMCID: PMC10463409 DOI: 10.1186/s10020-023-00707-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE This study was to evaluate plasma galectin-3 levels from early pregnancy to delivery and explore the effects of galectin-3 on the function of trophoblast cells under high glucose exposure. METHODS The plasma galectin-3 levels were quantified by enzyme-linked immunosorbent assay (ELISA) in the China National Birth Cohort (CNBC) at Peking University First Hospital, and the underlying signaling pathway was identified by protein-protein interaction (PPI) analysis, gene set enrichment analysis (GSEA), quantitative PCR (qPCR), western blotting, small interfering RNA (siRNA) transfections, and flow cytometry. RESULTS Significantly higher galectin-3 levels were found in patients with gestational diabetes mellitus (GDM group; n = 77) during the first and second trimesters than that in healthy pregnant women (HP group; n = 113) (P < 0.05). No significant differences in plasma galectin-3 levels were detected between GDM and HP groups in maternal third-trimester blood and cord blood. PPI analysis suggested potential interactions between galectin-3 and foxc1. The findings of GSEA showed that galectin-3 was involved in the cytochrome P450-related and complement-related pathways, and foxc1 was associated with type I diabetes mellitus. Additionally, high glucose (25 mM) significantly increased the expression levels of galectin-3 and foxc1 and induced apoptosis in HTR-8/SVneo cells. Further in vitro experiments showed that galectin-3/foxc1 pathway could protect HTR-8/SVneo cells against high glucose - induced apoptosis. CONCLUSION Future studies were required to validate whether plasma galectin-3 might become a potential biomarker for hyperglycemia during pregnancy. Elevated galectin-3 levels might be a vital protective mechanism among those exposed to hyperglycemia during pregnancy.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Hongyan Jin
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Jie Ning
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Dong Cui
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Muqiu Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China.
| |
Collapse
|
10
|
Ibrahim MT, Lee J, Tao P. Homology modeling of Forkhead box protein C2: identification of potential inhibitors using ligand and structure-based virtual screening. Mol Divers 2023; 27:1661-1674. [PMID: 36048303 PMCID: PMC9975119 DOI: 10.1007/s11030-022-10519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
Abstract
Overexpression of Forkhead box protein C2 (FOXC2) has been associated with different types of carcinomas. FOXC2 plays an important role in the initiation and maintenance of the epithelial-mesenchymal transition (EMT) process, which is essential for the development of higher-grade tumors with an enhanced ability for metastasis. Thus, FOXC2 has become a therapeutic target for the development of anticancer drugs. MC-1-F2, the only identified experimental inhibitor of FOXC2, interacts with the full length of FOXC2. However, only the DNA-binding domain (DBD) of FOXC2 has resolved crystal structure. In this work, a three-dimensional (3D) structure of the full-length FOXC2 using homology modeling was developed and used for structure-based drug design (SBDD). The quality of this 3D model of the full-length FOXC2 was evaluated using MolProbity, ERRAT, and ProSA modules. Molecular dynamics (MD) simulation was also carried out to verify its stability. Ligand-based drug design (LBDD) was carried out to identify similar analogues for MC-1-F2 against 15 million compounds from ChEMBL and ZINC databases. 792 molecules were retrieved from this similarity search. De novo SBDD was performed against the full-length 3D structure of FOXC2 through homology modeling to identify novel inhibitors. The combination of LBDD and SBDD helped in gaining a better insight into the binding of MC-1-F2 and its analogues against the full length of the FOXC2. The binding free energy of the top hits was further investigated using MD simulations and MM/GBSA calculations to result in eight promising hits as lead compounds targeting FOXC2.
Collapse
Affiliation(s)
- Mayar Tarek Ibrahim
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
11
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
12
|
Liu P, Kong L, Liu Y, Li G, Xie J, Lu X. A key driver to promote HCC: Cellular crosstalk in tumor microenvironment. Front Oncol 2023; 13:1135122. [PMID: 37007125 PMCID: PMC10050394 DOI: 10.3389/fonc.2023.1135122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Liver cancer is the third greatest cause of cancer-related mortality, which of the major pathological type is hepatocellular carcinoma (HCC) accounting for more than 90%. HCC is characterized by high mortality and is predisposed to metastasis and relapse, leading to a low five-year survival rate and poor clinical prognosis. Numerous crosstalk among tumor parenchymal cells, anti-tumor cells, stroma cells, and immunosuppressive cells contributes to the immunosuppressive tumor microenvironment (TME), in which the function and frequency of anti-tumor cells are reduced with that of associated pro-tumor cells increasing, accordingly resulting in tumor malignant progression. Indeed, sorting out and understanding the signaling pathways and molecular mechanisms of cellular crosstalk in TME is crucial to discover more key targets and specific biomarkers, so that develop more efficient methods for early diagnosis and individualized treatment of liver cancer. This piece of writing offers insight into the recent advances in HCC-TME and reviews various mechanisms that promote HCC malignant progression from the perspective of mutual crosstalk among different types of cells in TME, aiming to assist in identifying the possible research directions and methods in the future for discovering new targets that could prevent HCC malignant progression.
Collapse
Affiliation(s)
- Pengyue Liu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Lingyu Kong
- Department of Traditional Chinese Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Ying Liu
- Department of Clinical Skills Training Center, Tangshan Gongren Hospital, Tangshan, China
| | - Gang Li
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Jianjia Xie
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Xin Lu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| |
Collapse
|
13
|
Zheng C, Zhang J, Jiang F, Li D, Huang C, Guo X, Zhu X, Tan S. Clinical Significance of TUBGCP4 Expression in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2022; 2022:9307468. [PMID: 36530949 PMCID: PMC9754849 DOI: 10.1155/2022/9307468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2025] Open
Abstract
We aim to investigate the expression and clinical significance of the tubulin gamma complex-associated protein 4 (TUBGCP4) in hepatocellular carcinoma (HCC). The mRNA expression of TUBGCP4 in HCC tissues was analyzed using The Cancer Genome Atlas (TCGA) database. Paired HCC and adjacent nontumor tissues were obtained from HCC patients to measure the protein expression of TUBGCP4 by immunohistochemistry (IHC) and to analyze the relationship between TUBGCP4 protein expression and the clinicopathological characteristics and the prognosis of HCC patients. We found that TUBGCP4 mRNA expression was upregulated in HCC tissues from TCGA database. IHC analysis showed that TUBGCP4 was positively expressed in 61.25% (49/80) of HCC tissues and 77.5% (62/80) of adjacent nontumor tissues. The Chi-square analysis indicated that the positive rate of TUBGCP4 expression between HCC tissues and the adjacent nontumor tissues was statistically different (P < 0.05). Furthermore, we found that TUBGCP4 protein expression was correlated with carbohydrate antigen (CA-199) levels of HCC patients (P < 0.05). Further, survival analysis showed that the overall survival time and tumor-free survival time in the TUBGCP4 positive group were significantly higher than those of the negative group (P < 0.05), indicating that the positive expression of TUBGCP4 was related to a better prognosis of HCC patients. COX model showed that TUBGCP4 was an independent prognostic factor for HCC patients. Our study indicates that TUBGCP4 protein expression is downregulated in HCC tissues and has a relationship with the prognosis of HCC patients.
Collapse
Affiliation(s)
- Chuanjun Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Jiaxi Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Fusheng Jiang
- Guilin Center for Disease Control and Prevention, Guilin, 541001 Guangxi, China
| | - Di Li
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Caimei Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Xuefeng Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Xiaonian Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Shengkui Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha 410005, China
| |
Collapse
|
14
|
Im S, Cho YK, Kang D, Shin GY, Jung ES, Song KY, Lee SH, Park JM. Combined high NEDD9 expression and E-cadherin loss correlate with poor clinical outcome in gastric cancer. J Gastroenterol Hepatol 2022; 37:2255-2263. [PMID: 36203318 DOI: 10.1111/jgh.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a member of the Cas family. Previous studies have revealed that NEDD9 coordinates the focal adhesion kinase and Src signaling cascades that are involved in integrin-dependent adhesion and migration, invasion, cell apoptosis and life cycle, and survival, which may play a role in epithelial-mesenchymal transformation. The aim of this study was to analyze the expression of NEDD9 and E-cadherin in gastric cancer (GC) and evaluate their clinical significance. METHODS NEDD9 and E-cadherin expression was analyzed with immunohistochemistry using tissue microarray technique in 435 GC patients who underwent gastrectomy. The NEDD9 expression level was defined by the combination score, which was determined by multiplying the staining intensity score and the proportion score (≥5; NEDD9-high, <5; NEDD9-low). E-cadherin loss was defined as a total loss of staining. The clinicopathologic parameters, overall survival, and disease-free survival rates were analyzed according to the NEDD9 and E-cadherin expression status. RESULTS The combined NEDD9 and E-cadherin expression status correlated with lymphatic invasion (P = 0.001), vascular invasion (P = 0.020), and T stage (P = 0.001). Combined high NEDD9 expression and loss of E-cadherin expression status had a worse overall survival rate (P < 0.001) and served as a poor prognostic factor (Hazard ratio 2.49, 95% CI 1.25-5, P = 0.01). CONCLUSIONS Immunohistochemical staining for NEDD9 and E-cadherin may function as a candidate prognostic marker for gastric cancer in everyday practice, especially when applied in combination.
Collapse
Affiliation(s)
- Soyoung Im
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yu Kyung Cho
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Donghoon Kang
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ga-Yeong Shin
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyo Young Song
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Myung Park
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
15
|
Kashyap A, Tripathi G, Tripathi A, Rao R, Kashyap M, Bhat A, Kumar D, Rajhans A, Kumar P, Chandrashekar DS, Mahmood R, Husain A, Zayed H, Bharti AC, Kashyap MK. RNA splicing: a dual-edged sword for hepatocellular carcinoma. Med Oncol 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
Affiliation(s)
- Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Manju Kashyap
- Facultad de Ingeniería Y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Deepak Kumar
- ThermoFisher Scientific, Carlsbad, CA, 92008, USA
| | - Anjali Rajhans
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | | | - Riaz Mahmood
- Department of Biotechnology and Bioinformatics, Kuvempu University, Shankaragatta (Shimoga), Jnanasahyadri, Karnataka, 577451, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India.
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
16
|
Sun Y, Lin C, Ding Q, Dai Y. Overexpression of FOXC1 Promotes Tumor Metastasis by Activating the Wnt/β-Catenin Signaling Pathway in Gastric Cancer. Dig Dis Sci 2022; 67:3742-3752. [PMID: 34427817 DOI: 10.1007/s10620-021-07226-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/12/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Forkhead box protein C1 (FOXC1) is a transcription factor overexpressed in multiple cancers and is associated with poor prognosis. However, the function of FOXC1 in gastric cancer remains largely unknown. AIM This study aims to explore the role of FOXC1 in promoting gastric cancer metastasis. METHODS FOXC1 expression in gastric cancer patients was measured using real-time PCR and western blot. The association of FOXC1 with patient survival was assessed using public dataset. Gastric cancer cells with FOXC1 overexpression or knockdown were established. Cell metastatic ability was assessed by the expression of epithelial-mesenchymal transition (EMT)-related genes (E-cadherin, N-cadherin, vimentin) and matrix metalloproteinase-9 (MMP-9) as well as by migration and invasion assays. Chromatin immunoprecipitation was used to evaluate the interaction between FOXC1 and β-catenin. The in vivo effect of FOXC1 and β-catenin was assessed in metastatic animal models. RESULTS FOXC1 is overexpressed in gastric cancer and is associated with disease progression and poor patient survival. FOXC1 overexpression leads to the down-regulation of epithelial marker (E-cadherin) and the up-regulation of mesenchymal makers (N-cadherin, vimentin) and MMP-9, consistent with enhanced EMT. Moreover, cell migration and invasion are also activated, indicating increased metastatic ability. Notably, FOXC1 binds to the promoter region of β-catenin and transactivates β-catenin expression, which is responsible for the activation of EMT and metastasis in cells overexpressing FOXC1, while β-catenin knockdown can suppress the metastasis-induced by FOXC1. CONCLUSIONS FOXC1 promotes gastric cancer metastasis by activating Wnt/β-catenin signaling pathway, which may serve as a promising therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Yang'an Sun
- Abdominal Surgery Department, Affiliated Tumor Hospital of Nanchang University, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Chao Lin
- Abdominal Surgery Department, Affiliated Tumor Hospital of Nanchang University, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Qunhua Ding
- Abdominal Surgery Department, Affiliated Tumor Hospital of Nanchang University, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Ying Dai
- The Third Hepatology Department, Nanchang No. 9 Hospital, Nanchang Liverish Hospital, 167 Hongdu Middle Ave, Qingshanhu District, Nanchang, 330002, Jiangxi, China.
| |
Collapse
|
17
|
Immune-related biomarkers shared by inflammatory bowel disease and liver cancer. PLoS One 2022; 17:e0267358. [PMID: 35452485 PMCID: PMC9032416 DOI: 10.1371/journal.pone.0267358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
It has been indicated that there is an association between inflammatory bowel disease (IBD) and hepatocellular carcinoma (HCC). However, the molecular mechanism underlying the risk of developing HCC among patients with IBD is not well understood. The current study aimed to identify shared genes and potential pathways and regulators between IBD and HCC using a system biology approach. By performing the different gene expression analyses, we identified 871 common differentially expressed genes (DEGs) between IBD and HCC. Of these, 112 genes overlapped with immune genes were subjected to subsequent bioinformatics analyses. The results revealed four hub genes (CXCL2, MMP9, SPP1 and SRC) and several other key regulators including six transcription factors (FOXC1, FOXL1, GATA2, YY1, ZNF354C and TP53) and five microRNAs (miR-124-3p, miR-34a-5p, miR-1-3p, miR-7-5p and miR-99b-5p) for these disease networks. Protein-drug interaction analysis discovered the interaction of the hub genes with 46 SRC-related and 11 MMP9- related drugs that may have a therapeutic effect on IBD and HCC. In conclusion, this study sheds light on the potential connecting mechanisms of HCC and IBD.
Collapse
|
18
|
Oka S, Tsuzuki T, Hidaka M, Ohno M, Nakatsu Y, Sekiguchi M. Endogenous ROS production in early differentiation state suppresses endoderm differentiation via transient FOXC1 expression. Cell Death Dis 2022; 8:150. [PMID: 35365611 PMCID: PMC8976013 DOI: 10.1038/s41420-022-00961-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
Oxidative stress plays a pivotal role in the differentiation and proliferation of cells and programmed cell death. However, studies on the role of oxidative stress in differentiation have mainly employed the detection of reactive oxygen species (ROS) during differentiation or generated by ROS inducers. Therefore, it is difficult to clarify the significance of endogenous ROS production in the differentiation of human cells. We developed a system to control the intracellular level of ROS in the initial stage of differentiation in human iPS cells. By introducing a specific substitution (I69E) into the SDHC protein, a component of the mitochondrial respiratory chain complex, the endogenous ROS level increased. This caused impaired endoderm differentiation of iPS cells, and this impairment was reversed by overproduction of mitochondrial-targeted catalase, an anti-oxidant enzyme. Expression of tumor-related FOXC1 transcription factor increased transiently as early as 4 h after ROS-overproduction in the initial stage of differentiation. Knockdown of FOXC1 markedly improved impaired endoderm differentiation, suggesting that endogenous ROS production in the early differentiation state suppresses endoderm differentiation via transient FOXC1 expression.
Collapse
Affiliation(s)
- Sugako Oka
- Frontier Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan. .,Department of Medical Biophysics and Radiation Biology, Faculty of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka, 812-8582, Japan.
| | - Teruhisa Tsuzuki
- Frontier Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan.,Department of Medical Biophysics and Radiation Biology, Faculty of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka, 812-8582, Japan
| | - Masumi Hidaka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 819-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 819-0193, Japan
| | - Mizuki Ohno
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka, 812-8582, Japan
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka, 812-8582, Japan
| | - Mutsuo Sekiguchi
- Frontier Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| |
Collapse
|
19
|
A comprehensive analysis of FOX family in HCC and experimental evidence to support the oncogenic role of FOXH1. Aging (Albany NY) 2022; 14:2268-2286. [PMID: 35255005 PMCID: PMC8954963 DOI: 10.18632/aging.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) remains the second leading cause of cancer related deaths worldwide. Understanding about the molecular biology of HCC and development of targeted therapies are still the main focuses of this type of disease. Here, by connecting the expression levels of FOX proteins with their associated clinical characteristics using TCGA LIHC dataset, we found that 27/40 FOX proteins were highly expressed in HCC tumors compared to normal liver tissues and their expression levels were tightly associated with HCC tumor stage, tumor grade and overall survival. Our experimental results also confirmed that FOXH1 indeed played an oncogenic role in HCC development by promoting cell growth and cell migration/invasion. Mechanistic dissection demonstrated that FOXH1-induced cell growth and cell migration/invasion relied on mTOR signaling because inhibition of mTOR signaling by rapamycin could attenuate FOXH1-mediated phenotypic alterations of HCC cells. The results from orthotopic mouse model also validated that FOXH1 promoted HA22T tumor growth via triggering mTOR activation. Overall, this study not only comprehensively examines the clinical values of FOX proteins in HCC but also provides experimental evidence to support the role of FOXH1 in HCC development, building rationale to develop more effective therapies to treat HCC patients.
Collapse
|
20
|
Abstract
With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.
Collapse
|
21
|
The role of FOXC1/FOXCUT/DANCR axis in triple negative breast cancer: a bioinformatics and experimental approach. Mol Biol Rep 2022; 49:2821-2829. [PMID: 35066769 DOI: 10.1007/s11033-021-07093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer and does not benefit from the existing targeted therapies. In the present study, we used bioinformatics and experimental approaches to assess the genes that are somehow involved in the epithelial-mesenchymal transition (EMT) pathway which may explain the invasive features of TNBC. METHOD AND RESULTS We analyzed five GEO datasets consisting of 657 breast tumors by GEO2R online software to achieve common differentially expressed genes (DEGs) between TNBC and non-TNBC tumors. The expression of the selected coding and non-coding genes was validated in 100 breast tumors, including fifty TNBC and fifty non-TNBC samples, using quantitative Real-Time PCR (qRT-PCR). The bioinformatics approach resulted in a final DEG list consisting of ten upregulated and seventeen downregulated genes (logFC ≥|1| and P < 0.05). Co-expression network construction indicated the FOXC1 transcription factor as a central hub node. Considering the notable role of FOXC1 in EMT, the expression levels of FOXC1-related lncRNAs, lnc-FOXCUT and lnc-DANCR, were also evaluated in the studied tumors. The results of qRT-PCR confirmed notable upregulation of FOXC1, lnc-FOXCUT, and lnc-DANCR in TNBC tissues compared to non-TNBC samples (P < 0.0001, P = 0.0005, and P = 0.0008, respectively). Moreover, ROC curve analysis revealed the potential biomarker role of FOXC1 in TNBC samples. CONCLUSION Present study suggested that the deregulation of FOXC1/lnc-FOXCUT/lnc-DANCR axis may contribute to the aggressive features of triple-negative breast tumors. Therefore, this axis may be considered as a new probable therapeutic target in the treatment of TNBC.
Collapse
|
22
|
Exosome-Mediated miR-4792 Transfer Promotes Bladder Cancer Cell Proliferation via Enhanced FOXC1/c-Myc Signaling and Warburg Effect. JOURNAL OF ONCOLOGY 2022; 2022:5680353. [PMID: 35096062 PMCID: PMC8791735 DOI: 10.1155/2022/5680353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022]
Abstract
Bladder cancer is the second-most common malignancy in the urogenital system and the most common in men. However, our understanding of the driving mechanisms of bladder cancer remains incomplete. The forkhead box (FOX) family of transcription factors is implicated in urogenital development and bladder malignancies. Many exosomal microRNAs have been identified as regulators and mediators of the expression of FOX, including the expression of FOXC1. miR-4792 has been known as a tumor miRNA suppressor. However, the function of miR-4792/FOXC1 signaling in bladder cancer development remains unknown. Here, we studied the role of miR-4792/FOXC1 signaling in bladder cancer by using multiple bladder cancer cell lines and bladder cancer mouse models through in vitro and in vivo approaches. We showed that FOXC1 is highly expressed in multiple bladder cancer cell lines and bladder tumor tissues. The knockdown of FOXC1 expression in bladder cancer cell lines decreases c-Myc expression levels, retards cell growth, and reduces aerobic glycolysis (also known as the Warburg effect) and lactic acid content. By contrast, the overexpression of FOXC1 elicits the opposite effects. FOXC1-downregulated bladder cancer cells form significantly smaller tumors in vivo. The inhibition of c-Myc reverses the effects of FOXC1 overexpression and leads to reduced cell proliferation, aerobic glycolysis, and lactic acid content. miR-4792 expression is downregulated in bladder tumor tissues. miR-4792 exposure to bladder cancer cells reduces the expression levels of FOXC1 and c-Myc, slows down cell growth, and decreases aerobic glycolysis and lactic acid content. However, the enhanced miR-4792 expression elicits opposite effects. These findings provided the first evidence that the exosome-mediated delivery of miR-4792 could play an important role in bladder cancer development through the downregulation of FOXC1 and c-Myc, which further inhibited aerobic glycolysis and lactic acid content.
Collapse
|
23
|
Xu D, Wang Y, Wu J, Lin S, Chen Y, Zheng J. Identification and clinical validation of EMT-associated prognostic features based on hepatocellular carcinoma. Cancer Cell Int 2021; 21:621. [PMID: 34819088 PMCID: PMC8613962 DOI: 10.1186/s12935-021-02326-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The aim of this study was to construct a model based on the prognostic features associated with epithelial-mesenchymal transition (EMT) to explore the various mechanisms and therapeutic strategies available for the treatment of metastasis and invasion by hepatocellular carcinoma (HCC) cells. METHODS EMT-associated genes were identified, and their molecular subtypes were determined by consistent clustering analysis. The differentially expressed genes (DEGs) among the molecular subtypes were ascertained using the limma package and they were subjected to functional enrichment analysis. The immune cell scores of the molecular subtypes were evaluated using ESTIMATE, MCPcounter, and GSCA packages of R. A multi-gene prognostic model was constructed using lasso regression, and the immunotherapeutic effects of the model were analyzed using the Imvigor210 cohort. In addition, immunohistochemical analysis was performed on a cohort of HCC tissue to validate gene expression. RESULTS Based on the 59 EMT-associated genes identified, the 365-liver hepatocellular carcinoma (LIHC) samples were divided into two subtypes, C1 and C2. The C1 subtype mostly showed poor prognosis, had higher immune scores compared to the C2 subtype, and showed greater correlation with pathways of tumor progression. A four-gene signature construct was fabricated based on the 1130 DEGs among the subtypes. The construct was highly robust and showed stable predictive efficacy when validated using datasets from different platforms (HCCDB18 and GSE14520). Additionally, compared to currently existing models, our model demonstrated better performance. The results of the immunotherapy cohort showed that patients in the low-risk group have a better immune response, leading to a better patient's prognosis. Immunohistochemical analysis revealed that the expression levels of the FTCD, PON1, and TMEM45A were significantly over-expressed in 41 normal samples compared to HCC samples, while that of the G6PD was significantly over-expressed in cancerous tissues. CONCLUSIONS The four-gene signature construct fabricated based on the EMT-associated genes provides valuable information to further study the pathogenesis and clinical management of HCC.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shixun Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yonghai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
24
|
Ray T, Ryusaki T, Ray PS. Therapeutically Targeting Cancers That Overexpress FOXC1: A Transcriptional Driver of Cell Plasticity, Partial EMT, and Cancer Metastasis. Front Oncol 2021; 11:721959. [PMID: 34540690 PMCID: PMC8446626 DOI: 10.3389/fonc.2021.721959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022] Open
Abstract
Metastasis accounts for more than 90% of cancer related mortality, thus the most pressing need in the field of oncology today is the ability to accurately predict future onset of metastatic disease, ideally at the time of initial diagnosis. As opposed to current practice, what would be desirable is that prognostic, biomarker-based detection of metastatic propensity and heightened risk of cancer recurrence be performed long before overt metastasis has set in. Without such timely information it will be impossible to formulate a rational therapeutic treatment plan to favorably alter the trajectory of disease progression. In order to help inform rational selection of targeted therapeutics, any recurrence/metastasis risk prediction strategy must occur with the paired identification of novel prognostic biomarkers and their underlying molecular regulatory mechanisms that help drive cancer recurrence/metastasis (i.e. recurrence biomarkers). Traditional clinical factors alone (such as TNM staging criteria) are no longer adequately prognostic for this purpose in the current molecular era. FOXC1 is a pivotal transcription factor that has been functionally implicated to drive cancer metastasis and has been demonstrated to be an independent predictor of heightened metastatic risk, at the time of initial diagnosis. In this review, we present our viewpoints on the master regulatory role that FOXC1 plays in mediating cancer stem cell traits that include cellular plasticity, partial EMT, treatment resistance, cancer invasion and cancer migration during cancer progression and metastasis. We also highlight potential therapeutic strategies to target cancers that are, or have evolved to become, “transcriptionally addicted” to FOXC1. The potential role of FOXC1 expression status in predicting the efficacy of these identified therapeutic approaches merits evaluation in clinical trials.
Collapse
Affiliation(s)
- Tania Ray
- R&D Division, Onconostic Technologies (OT), Inc., Champaign, IL, United States
| | | | - Partha S Ray
- R&D Division, Onconostic Technologies (OT), Inc., Champaign, IL, United States
| |
Collapse
|
25
|
Luo HL, Luo T, Liu JJ, Wu FX, Bai T, Ou C, Chen J, Li LQ, Zhong JH. Macrophage polarization-associated lnc-Ma301 interacts with caprin-1 to inhibit hepatocellular carcinoma metastasis through the Akt/Erk1 pathway. Cancer Cell Int 2021; 21:422. [PMID: 34376192 PMCID: PMC8353734 DOI: 10.1186/s12935-021-02133-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/03/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) promotes migration, invasion, and metastasis of hepatocellular carcinoma (HCC) cells. The molecular mechanisms behind EMT and metastasis in HCC remain unclear. METHODS Microarray analysis was used to identify lncRNAs expression during polarization of U937 macrophages from M2 to M1 phenotype. The expression of the identified lncRNA was compared between clinical samples of HCC tissues or adjacent normal tissues, as well as between HCC and normal liver cell lines. lnc-Ma301 was overexpressed or knocked-down in HCC cell lines, and the effects were assessed in vitro and in vivo. Interactions among lnc-Ma301 and its potential downstream targets caprin-1 were investigated in HCC cell lines. Effects of lnc-Ma301 over- and underexpression on the Akt/Erk1 signaling pathways were examined. RESULTS Microarray analyses identified lnc-Ma301 as one of the most overexpressed long non-coding RNAs during polarization of U937 macrophages from M2 to M1 phenotype. Lnc-Ma301 showed lower expression in HCC tissues than in adjacent normal tissues, and lower expression was associated with worse prognosis. Activation of lnc-Ma301 inhibited cell proliferation, migration and EMT in HCC cell cultures, and it inhibited lung metastasis of HCC tumors in mice. Mechanistic studies suggested that lnc-Ma301 interacts with caprin-1 to inhibit HCC metastasis and EMT through Akt/Erk1 pathway. CONCLUSIONS Lnc-Ma301 may help regulate onset and metastasis of HCC.
Collapse
Affiliation(s)
- Hong-Lin Luo
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, He Di Rd 71, Nanning, 530021, People's Republic of China
- Key Laboratory of High-Incidence Tumor Early Prevention and Treatment, Ministry of Education, Nanning, 530021, People's Republic of China
| | - Tao Luo
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, He Di Rd 71, Nanning, 530021, People's Republic of China
| | - Jun-Jie Liu
- Department of Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Fei-Xiang Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, He Di Rd 71, Nanning, 530021, People's Republic of China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, He Di Rd 71, Nanning, 530021, People's Republic of China
| | - Chao Ou
- Department of Clinical Laboratory Medicine, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, He Di Rd 71, Nanning, 530021, People's Republic of China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, He Di Rd 71, Nanning, 530021, People's Republic of China.
- Key Laboratory of High-Incidence Tumor Early Prevention and Treatment, Ministry of Education, Nanning, 530021, People's Republic of China.
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, He Di Rd 71, Nanning, 530021, People's Republic of China.
| |
Collapse
|
26
|
Zheng XJ, Li W, Yi J, Liu JY, Ren LW, Zhu XM, Liu SW, Wang JH, Du GH. EZH2 regulates expression of FOXC1 by mediating H3K27me3 in breast cancers. Acta Pharmacol Sin 2021; 42:1171-1179. [PMID: 33057161 DOI: 10.1038/s41401-020-00543-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by low expression of human epidermal growth factor receptor-2 (HER2), estrogen receptor (ER), and progesterone receptor (PR), which is the most aggressive subtype with poor outcome among breast cancers. The underlying mechanisms of TNBC remain unclear and there is a lack of biomarkers. In this study we conducted an in silico assay and found that FOXC1 was highly expressed in ER-/PR-/HER2- breast cancers, which was confirmed by qRT-PCR, immunohistochemistry, and Western blot analysis. FOXC1 was more highly expressed in TNBCs than the other breast cancers. Kaplan-Meier plotter revealed that expression of FOXC1 was associated with overall survival (OS) of patients with breast cancers. Expression of FOXC1 was reversely associated with level of H3K27me3, which was methylated by EZH2. In MCF-7 and T47D cells, inhibition of EZH2 by DZNeP or GSK343 concentration- and time-dependently increased expression of FOXC1. Finally, we demonstrated that the expression of FOXC1 was associated with resistance of doxorubicin treatment of breast cancer cells. In conclusion, these results suggest that FOXC1 may be a potential biomarker or drug target for TNBCs, and that downregulation of FOXC1 could have therapeutic value in treatment of TNBCs.
Collapse
|
27
|
Wang J, Huang R, Huang Y, Chen Y, Chen F. Overexpression of NOP58 as a Prognostic Marker in Hepatocellular Carcinoma: A TCGA Data-Based Analysis. Adv Ther 2021; 38:3342-3361. [PMID: 34014550 DOI: 10.1007/s12325-021-01762-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION NOP58 ribonucleoprotein, a core component of box C/D small nucleolar ribonucleoproteins, is involved in various cell physiological processes. However, its role in hepatocellular carcinoma (HCC) remains very unclear. We aim to investigate NOP58 expression and its probable prognostic value in patients with HCC based on The Cancer Genome Atlas (TCGA) database. METHODS RNA sequencing data and clinicopathological characteristics of patients with HCC were collected from TCGA database. Expression of NOP58 in HCC tissues and normal tissues was analyzed by Wilcoxon rank-sum test. Patients were divided into high and low subgroups according to median expression of NOP58. Logistic regression, gene set enrichment analysis (GSEA), and single-sample gene set enrichment analysis (ssGSEA) were conducted to annotate biological function and immune infiltration of NOP58. RESULTS NOP58 was significantly overexpressed in HCC tissues and correlated with significantly high tumor stage [odds ratio (OR) 10.01, 95% confidence interval (CI) 10.01-10.03; P = 0.003], advanced pathologic stage (OR 10.02, 95% CI 10.01-10.03; P < 0.001), advanced histologic stage (OR 10.03, 95% CI 10.02-10.04; P < 0.001), vascular invasion (OR 10.02, 95% CI 10.01-10.03; P = 0.003), poor performance status (OR 10.01, 95% CI 10.01-10.03; P = 0.003), and Mut-TP53 status (OR 10.02, 95% CI 10.01-10.03; P < 0.001). Elevated NOP58 expression had poor disease-specific survival (DSS; P < 0.001), progression-free interval (P = 0.006), and overall survival (OS; P < 0.001). NOP58 expression was independently correlated with OS (HR 1.731, 95% CI 10.037-2.890; P = 0.036). GSEA demonstrated that various cell cycle pathways along with RB-1 pathway, interleukin-10 signaling, regulation of TP53 activity, and P53 downstream pathway were differentially enriched in NOP58 high expression phenotype. NOP58 expression was positively correlated with infiltrating the levels of T helper type 2 (Th2) cells. CONCLUSIONS Overexpression of NOP58 is negatively correlated with overall survival in patients with HCC and might be a potential biomarker for prognosis of HCC.
Collapse
|
28
|
Unfried JP, Sangro P, Prats-Mari L, Sangro B, Fortes P. The Landscape of lncRNAs in Hepatocellular Carcinoma: A Translational Perspective. Cancers (Basel) 2021; 13:2651. [PMID: 34071216 PMCID: PMC8197910 DOI: 10.3390/cancers13112651] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
LncRNAs are emerging as relevant regulators of multiple cellular processes involved in cell physiology as well as in the development and progression of human diseases, most notably, cancer. Hepatocellular carcinoma (HCC) is a prominent cause of cancer-related death worldwide due to the high prevalence of causative factors, usual cirrhotic status of the tumor-harboring livers and the suboptimal benefit of locoregional and systemic therapies. Despite huge progress in the molecular characterization of HCC, no oncogenic loop addiction has been identified and most genetic alterations remain non-druggable, underscoring the importance of advancing research in novel approaches for HCC treatment. In this context, long non-coding RNAs (lncRNAs) appear as potentially useful targets as they often exhibit high tumor- and tissue-specific expression and many studies have reported an outstanding dysregulation of lncRNAs in HCC. However, there is a limited perspective of the potential role that deregulated lncRNAs may play in HCC progression and aggressiveness or the mechanisms and therapeutic implications behind such effects. In this review, we offer a clarifying landscape of current efforts to evaluate lncRNA potential as therapeutic targets in HCC using evidence from preclinical models as well as from recent studies on novel oncogenic pathways that show lncRNA-dependency.
Collapse
Affiliation(s)
- Juan Pablo Unfried
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), 31008 Pamplona, Spain; (L.P.-M.); (P.F.)
| | - Paloma Sangro
- Liver Unit, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain;
| | - Laura Prats-Mari
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), 31008 Pamplona, Spain; (L.P.-M.); (P.F.)
| | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), 31008 Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), 31008 Pamplona, Spain; (L.P.-M.); (P.F.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), 31008 Pamplona, Spain
| |
Collapse
|
29
|
Wang C, Deng S, Chen J, Xu X, Hu X, Kong D, Liang G, Yuan X, Li Y, Wang X. The Synergistic Effects of Pyrotinib Combined With Adriamycin on HER2-Positive Breast Cancer. Front Oncol 2021; 11:616443. [PMID: 34094901 PMCID: PMC8177085 DOI: 10.3389/fonc.2021.616443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Pyrotinib (PYR) is a pan-HER kinase inhibitor that inhibits signaling via the RAS/RAF/MEK/MAPK and PI3K/AKT pathways. In this study, we aimed to investigate the antitumor efficacy of pyrotinib combined with adriamycin (ADM) and explore its mechanisms on HER2+ breast cancer. We investigated the effects of PYR and ADM on breast cancer in vitro and in vivo. MTT assay, Wound-healing, and transwell invasion assays were used to determine the effects of PYR, ADM or PYR combined with ADM on cell proliferation, migration, and invasion of SK-BR-3 and AU565 cells in vitro. Cell apoptosis and cycle were detected through flow cytometry. In vivo, xenograft models were established to test the effect of PYR, ADM, or the combined therapy on the nude mice. Western blotting was performed to assess the expression of Akt, p-Akt, p-65, p-p65, and FOXC1. The results indicated that PYR and ADM significantly inhibited the proliferation, migration, and invasion of SK-BR-3 and AU565 cells, and the inhibitory rate of the combination group was higher than each monotherapy group. PYR induced G1 phase cell-cycle arrest, while ADM induced G2 phase arrest, while the combination group induced G2 phase arrest. The combined treatment showed synergistic anticancer activities. Moreover, PYR significantly downregulated the expression of p-Akt, p-p65, and FOXC1. In clinical settings, PYR also exerts satisfactory efficacy against breast cancer. These findings suggest that the combination of PYR and ADM shows synergistic effects both in vitro and in vivo. PYR suppresses the proliferation, migration, and invasion of breast cancers through down-regulation of the Akt/p65/FOXC1 pathway.
Collapse
Affiliation(s)
- Chaokun Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shuzhen Deng
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Jing Chen
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xiangyun Xu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xiaochen Hu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Dejiu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yuanpei Li
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, United States
| | - Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
30
|
Lin Z, Huang W, He Q, Li D, Wang Z, Feng Y, Liu D, Zhang T, Wang Y, Xie M, Ji X, Sun M, Tian D, Xia L. FOXC1 promotes HCC proliferation and metastasis by Upregulating DNMT3B to induce DNA Hypermethylation of CTH promoter. J Exp Clin Cancer Res 2021; 40:50. [PMID: 33522955 PMCID: PMC7852227 DOI: 10.1186/s13046-021-01829-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Forkhead box C1 (FOXC1), as a member of the FOX family, is important for promote HCC invasion and metastasis. FOX family protein lays a pivotal role in metabolism. ROS is involved in tumor progression and is associated with the expression of lots of transcription factors. We next explored the mechanism underlying FOXC1 modulating the metabolism and ROS hemostasis in HCC. METHODS We used amino acids arrays to verify which metabolism is involved in FOXC1-induced HCC. The kits were used to detect the ROS levels in HCC cells with over-expression or down-expression of FOXC1. After identified the downstream target genes and candidate pathway which regulated by FOXC1 during HCC progression in vitro and in vivo, we used western blot, immunohistochemistry, bisulfite genomic sequencing, methylation-specific PCR, chromatin immunoprecipitation analysis and luciferase reporter assays to explore the relationship of FOXC1 and downstream genes. Moreover, the correlation between FOXC1 and target genes and the correlation between target genes and the recurrence and overall survival were analyzed in two independent human HCC cohorts. RESULTS Here, we reported that FOXC1 could inhibit the cysteine metabolism and increase reactive oxygen species (ROS) levels by regulating cysteine metabolism-related genes, cystathionine γ-lyase (CTH). Overexpression of CTH significantly suppressed FOXC1-induced HCC proliferation, invasion and metastasis, while the reduction in cell proliferation, invasion and metastasis caused by the inhibition of FOXC1 could be reversed by knockdown of CTH. Meanwhile, FOXC1 upregulated de novo DNA methylase 3B (DNMT3B) expression to induce DNA hypermethylation of CTH promoter, which resulted in low expression of CTH in HCC cells. Moreover, low levels of ROS induced by N-acetylcysteine (NAC) which is an antioxidant inhibited the cell proliferation, migration, and invasion abilities mediated by FOXC1 overexpression, whereas high levels of ROS induced by L-Buthionine-sulfoximine (BSO) rescued the suppression results mediated by FOXC1 knockdown. Our study demonstrated that the overexpression of FOXC1 that was induced by the ROS dependent on the extracellular regulated protein kinases 1 and 2 (ERK1/2)- phospho-ETS Transcription Factor 1 (p-ELK1) pathway. In human HCC tissues, FOXC1 expression was positively correlated with oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), p-ELK1 and DNMT3B expression, but negatively correlated with CTH expression. HCC patients with positive co-expression of 8-OHdG/FOXC1 or p-ELK1/FOXC1 or FOXC1/DNMT3B had the worst prognosis, whereas HCC patients who had positive FOXC1 and negative CTH expression exhibited the worst prognosis. CONCLUSION In a word, we clarify that the positive feedback loop of ROS-FOXC1-cysteine metabolism-ROS is important for promoting liver cancer proliferation and metastasis, and this pathway may provide a prospective clinical treatment approach for HCC.
Collapse
Affiliation(s)
- Zhuoying Lin
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Qin He
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dongxiao Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhihui Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yangyang Feng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
31
|
Le J, Fu Y, Han Q, Ma Y, Ji H, Wei X, Chen Y, Sun Y, Gao Y, Wu H. Transcriptome Analysis of the Inhibitory Effect of Sennoside A on the Metastasis of Hepatocellular Carcinoma Cells. Front Pharmacol 2021; 11:566099. [PMID: 33708105 PMCID: PMC7942274 DOI: 10.3389/fphar.2020.566099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Sennoside A (SA) is a bioactive component of Rheum officinale Baill. with an activity of irritant laxative, which has been reported to possess therapeutic potential in various diseases or conditions including obesity, insulin resistance, liver steatosis, prostate cancer and pancreatic cancer progression. However, whether SA has therapeutic potential in hepatocellular carcinoma (HCC) treatment remains elusive. In this study, we treated two HCC cell lines, HepG2 and SMMC-7721 with SA and found that SA selectively inhibited the growth of HCC cells by proliferation assay. SA has a good inhibitory effect on proliferation of HepG2 cells in a concentration dependent manner, but there was no effect on SMMC-7721 cells. Then we conducted transwell assays and transcriptome analysis in HCC cells and examined the effects of SA on HCC in vivo. The results showed that SA significantly inhibited the migration and invasion of HCC. Comparison of RNA-seq transcriptome profiles from control groups and SA-treated groups identified 171 and 264 differentially expressed genes (DEGs) in HepG2 and SMMC-7721 cells respectively, in which includes 2 overlapping up-regulated DEGs and 12 overlapping down-regulated DEGs between HepG2 and SMMC-7721 cells. The qPCR were applied to investigate the transcriptional level of 9 overlapping down-regulated DEGs related to cancer metastasis, and the results were consistent with RNA-seq data. The dominate pathways including Wnt signaling pathway, TNF signaling pathway, VEGF signaling pathway, and NF-κB signaling pathway were strongly inhibited by SA, which are involved in regulating cancer metastasis. Finally, we confirmed that the downregulation of KRT7 and KRT81 could inhibit HCC metastasis. This study has provided new insight into the understanding of the inhibitory effects and potential targets of SA on the metastasis of HCC.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yongning Sun
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
32
|
Ma H, Lu L, Xia H, Xiang Q, Sun J, Xue J, Xiao T, Cheng C, Liu Q, Shi A. Circ0061052 regulation of FoxC1/Snail pathway via miR-515-5p is involved in the epithelial-mesenchymal transition of epithelial cells during cigarette smoke-induced airway remodeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141181. [PMID: 32768781 DOI: 10.1016/j.scitotenv.2020.141181] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Circular RNA (circRNA) has been shown to be widely involved in a variety of lung diseases. Cigarette smoke (CS) may induce epithelial-mesenchymal transition (EMT) of airway remodeling in chronic obstructive pulmonary disease (COPD), however, in which the roles and mechanisms of circRNA have not been elucidated. In this study, we aimed to determine whether circ0061052 is involved in the EMT of human bronchial epithelial (HBE) cells and its potential mechanism for playing a biological role. Cigarette smoke extract (CSE) caused elevated EMT indicators and the increases of circ0061052 in HBE cells. Circ0061052 has a ring structure and is mainly present in the cytoplasm of HBE cells. We analyzed the regulatory relationship between circ0061052 and miR-515-5p using bioinformatics, a luciferase reporter gene, and qRT-PCR. We found that circ0061052 is mainly distributed in the cytoplasm and competitively binds to miR-515-5p, acting as a sponge for miR-515-5p. The luciferase reporter gene showed that miR-515-5p binds to the 3'UTR region of FoxC1 mRNA to inhibit its transcription. For HBE cells, overexpression of miR-515-5p antagonized the CSE-induced EMT. In addition, circ0061052 acts by binding miR-515-5p competitively to regulate the expression of FoxC1/Snail. When circ0061052 siRNA and miR-515-5p inhibitor were co-transfected into HBE cells, the inhibitor reversed the effect of circ0061052 siRNA on reducing EMT. Chronic exposure of mice to CS induced increases of circ0061052 levels, decreases of miR-515-5p levels, and the EMT in lung tissue, which caused dysfunction and airway obstruction. Overall, the results show that, by regulating miR-515-5p through a FoxC1/Snail regulatory axis, circ0061052 is involved in the CS-induced EMT and airway remodeling in COPD.
Collapse
Affiliation(s)
- Huimin Ma
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Quanyong Xiang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jing Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Aimin Shi
- The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
33
|
Long noncoding RNA FAM83A-AS1 facilitates hepatocellular carcinoma progression by binding with NOP58 to enhance the mRNA stability of FAM83A. Biosci Rep 2020; 39:220808. [PMID: 31696213 PMCID: PMC6851519 DOI: 10.1042/bsr20192550] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as one of the commonest cancers globally, is a primary malignancy in human liver with a characteristic of high mortality rate. Long noncoding RNAs (lncRNAs) are confirmed to be implicated with multiple cancers including HCC. LncRNA FAM83A-AS1 has also been validated as an oncogene in lung cancer, but its mechanism in HCC is poorly understood. Our research is intended to investigate the underlying mechanism of FAM83A-AS1 in HCC. In the present study, we found the abundantly increased expression level of FAM83A-AS1 in HCC tissues and cells. FAM83A-AS1 inhibition hampered cell proliferation, migration and elevated cell apoptosis in HCC. Moreover, FAM83A-AS1 could positively regulate FAM83A, and FAM83A could also promote the progression of HCC. In addition, FAM83A-AS1 and FAM83A were both verified to bind with NOP58, and FAM83A-AS1 enhanced the mRNA stability of FAM83A by binding with NOP58. In rescue assays, the suppressed influence of down-regulated FAM83A-AS1#1 on cell proliferation, migration as well as the accelerated influence of FAM83A-AS1#1 knockdown on cell apoptosis could be partially recovered by overexpression of FAM83A. In conclusion, FAM83A-AS1 facilitated HCC progression by binding with NOP58 to enhance the stability of FAM83A. These findings offer a novel biological insight into HCC treatment.
Collapse
|
34
|
Xu D, Liu X, Wu J, Wang Y, Zhou K, Chen W, Chen J, Chen C, Chen L. LncRNA WWOX-AS1 sponges miR-20b-5p in hepatocellular carcinoma and represses its progression by upregulating WWOX. Cancer Biol Ther 2020; 21:927-936. [PMID: 32931356 DOI: 10.1080/15384047.2020.1806689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increasing evidence has revealed that long noncoding RNAs (lncRNAs) emerge as pivotal regulators in diverse cancers, including hepatocellular carcinoma (HCC). This study was conducted to investigate the role of lncRNA WWOX antisense RNA 1 (WWOX-AS1) in HCC progression. Our present study illustrated that WWOX-AS1 was lowly expressed in HCC tissues and cell lines. High WWOX-AS1 expression was further confirmed to predict a favorable prognosis in HCC patients. Through functional assays, we observed that upregulated WWOX-AS1 was correlated with decreased cell proliferation, migration, epithelial to mesenchymal transition (EMT) process and increased cell apoptosis, suggesting that WWOX-AS1 exerted anti-carcinogenic role in the development of HCC. Moreover, WWOX, the nearby gene of WWOX-AS1, was found at a low level in HCC tissues and cell lines. Furthermore, there was a positive relationship between WWOX-AS1 and WWOX. Additionally, WWOX overexpression hampered cell proliferation, migration, EMT process and induced cell apoptosis in HCC. Mechanically, WWOX-AS1 was identified as a cytoplasmic RNA in HCC cells and sponged miR-20b-5p to regulate WWOX expression. Rescue assays further indicated that WWOX knockdown counteracted WWOX-AS1 overexpression-mediated suppressive function on HCC progression. Collectively, WWOX-AS1/miR-20b-5p/WWOX axis suppresses HCC tumorigenesis, hinting a potential molecular mechanism for the therapy of HCC patients.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Medical University , Haikou, China
| | - Xiangmei Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Medical University , Haikou, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Medical University , Haikou, China
| | - Yu Wang
- Geriatrics Center, Hainan General Hospital, Hainan Medical University , Haikou, China
| | - Kailun Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Medical University , Haikou, China
| | - Wenmei Chen
- Gastroenterology Department, Hainan General Hospital, Hainan Medical University , Haikou, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Medical University , Haikou, China
| | - Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Medical University , Haikou, China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Medical University , Haikou, China
| |
Collapse
|
35
|
Yu Y, Han S, Li M, Song Y, Qi F. Circ_0004913 sponges miR-1290 and regulates FOXC1 to inhibit the proliferation of hepatocellular carcinoma. Cancer Cell Int 2020. [DOI: 10.1186/s12935-020-01521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Circular RNA (circRNA), an novel type of non-coding RNA, could interact with miRNA and protein molecules to regulate the occurrence and progression of hepatocellular carcinoma (HCC). However, little is known about the pathogenesis of circ_0004913 in HCC.
Materials
Through the GEO (Gene Expression Omnibus database) to find dysfunctional circRNAs in HCC, and circ_0004913 was selected as the research object. Quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression level of circ_0067934 in HCC tissues and cells. CCK-8, Edu and flow cytometry assays were used to determine the malignant behavior of transfected HCC cells. Mechanistically, RNA immunoprecipitation and dual-luciferase reporter gene assay were performed to explore the relation between circ_0067934, miR-1290 and FOXC1 (Forkhead box C1) in HCC.
Results
The expression of circ_0004913 was down-regulated in HCC tissues and cell lines, while the overexpression of circ_0004913 attenuates the malignant behavior of HCC cells. Bioinformatics predicted that circ_0004913 interacts with miR-1290, which targeted FOXC1 mRNA. In fact, miR-1290 promoted the malignant behavior of HCC cells, while FOXC1 had the opposite effect. In addition, circ_0004913 overexpression enhanced FOXC1 expression by reducing miR-1290 expression, thereby inhibiting the proliferation of HCC cells.
Conclusions
Circ_0004913 / miR-1290 / FOXC1 regulatory axis could inhibit the progress of HCC. Our findings may provide potential new targets for the diagnosis and treatment of HCC.
Collapse
|
36
|
Abstract
Forkhead box O (FOXO) transcription factors regulate diverse biological processes, affecting development, metabolism, stem cell maintenance and longevity. They have also been increasingly recognised as tumour suppressors through their ability to regulate genes essential for cell proliferation, cell death, senescence, angiogenesis, cell migration and metastasis. Mechanistically, FOXO proteins serve as key connection points to allow diverse proliferative, nutrient and stress signals to converge and integrate with distinct gene networks to control cell fate, metabolism and cancer development. In consequence, deregulation of FOXO expression and function can promote genetic disorders, metabolic diseases, deregulated ageing and cancer. Metastasis is the process by which cancer cells spread from the primary tumour often via the bloodstream or the lymphatic system and is the major cause of cancer death. The regulation and deregulation of FOXO transcription factors occur predominantly at the post-transcriptional and post-translational levels mediated by regulatory non-coding RNAs, their interactions with other protein partners and co-factors and a combination of post-translational modifications (PTMs), including phosphorylation, acetylation, methylation and ubiquitination. This review discusses the role and regulation of FOXO proteins in tumour initiation and progression, with a particular emphasis on cancer metastasis. An understanding of how signalling networks integrate with the FOXO transcription factors to modulate their developmental, metabolic and tumour-suppressive functions in normal tissues and in cancer will offer a new perspective on tumorigenesis and metastasis, and open up therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
37
|
Mahboobeh Z, Pegah M, Fatemeh S, Elham K, Hanieh A, Milad R, Mohammad S. lncRNA ZEB2‐AS1
: A promising biomarker in human cancers. IUBMB Life 2020; 72:1891-1899. [PMID: 32687675 DOI: 10.1002/iub.2338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zarei Mahboobeh
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Mousavi Pegah
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Sadri Fatemeh
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Karimi Elham
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Azari Hanieh
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Rafat Milad
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Shekari Mohammad
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| |
Collapse
|
38
|
Zhao S, Ma D, Xiao Y, Li XM, Ma JL, Zhang H, Xu XL, Lv H, Jiang WH, Yang WT, Jiang YZ, Zhang QY, Shao ZM. Molecular Subtyping of Triple-Negative Breast Cancers by Immunohistochemistry: Molecular Basis and Clinical Relevance. Oncologist 2020; 25:e1481-e1491. [PMID: 32406563 DOI: 10.1634/theoncologist.2019-0982] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Molecular subtyping of triple-negative breast cancers (TNBCs) via gene expression profiling is essential for understanding the molecular essence of this heterogeneous disease and for guiding individualized treatment. We aim to devise a clinically practical method based on immunohistochemistry (IHC) for the molecular subtyping of TNBCs. MATERIALS AND METHODS By analyzing the RNA sequencing data on TNBCs from Fudan University Shanghai Cancer Center (FUSCC) (n = 360) and The Cancer Genome Atlas data set (n = 158), we determined markers that can identify specific molecular subtypes. We performed immunohistochemical staining on tumor sections of 210 TNBCs from FUSCC, established an IHC-based classifier, and applied it to another two cohorts (n = 183 and 214). RESULTS We selected androgen receptor (AR), CD8, FOXC1, and DCLK1 as immunohistochemical markers and classified TNBCs into five subtypes based on the staining results: (a) IHC-based luminal androgen receptor (IHC-LAR; AR-positive [+]), (b) IHC-based immunomodulatory (IHC-IM; AR-negative [-], CD8+), (c) IHC-based basal-like immune-suppressed (IHC-BLIS; AR-, CD8-, FOXC1+), (d) IHC-based mesenchymal (IHC-MES; AR-, CD8-, FOXC1-, DCLK1+), and (e) IHC-based unclassifiable (AR-, CD8-, FOXC1-, DCLK1-). The κ statistic indicated substantial agreement between the IHC-based classification and mRNA-based classification. Multivariate survival analysis suggested that our IHC-based classification was an independent prognostic factor for relapse-free survival. Transcriptomic data and pathological observations implied potential treatment strategies for different subtypes. The IHC-LAR subtype showed relative activation of HER2 pathway. The IHC-IM subtype tended to exhibit an immune-inflamed phenotype characterized by the infiltration of CD8+ T cells into tumor parenchyma. The IHC-BLIS subtype showed high expression of a VEGF signature. The IHC-MES subtype displayed activation of JAK/STAT3 signaling pathway. CONCLUSION We developed an IHC-based approach to classify TNBCs into molecular subtypes. This IHC-based classification can provide additional information for prognostic evaluation. It allows for subgrouping of TNBC patients in clinical trials and evaluating the efficacy of targeted therapies within certain subtypes. IMPLICATIONS FOR PRACTICE An immunohistochemistry (IHC)-based classification approach was developed for triple-negative breast cancer (TNBC), which exhibited substantial agreement with the mRNA expression-based classification. This IHC-based classification (a) allows for subgrouping of TNBC patients in large clinical trials and evaluating the efficacy of targeted therapies within certain subtypes, (b) will contribute to the practical application of subtype-specific treatment for patients with TNBC, and (c) can provide additional information beyond traditional prognostic factors in relapse prediction.
Collapse
Affiliation(s)
- Shen Zhao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Xiao-Mei Li
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Jian-Li Ma
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Xiao-Li Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Wen-Hua Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Qing-Yuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Xie Y, Wang Y, Gong R, Lin J, Li X, Ma J, Huo L. SNHG7 Facilitates Hepatocellular Carcinoma Occurrence by Sequestering miR-9-5p to Upregulate CNNM1 Expression. Cancer Biother Radiopharm 2020; 35:731-740. [PMID: 32397799 DOI: 10.1089/cbr.2019.2996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC), the fourth leading cause of cancer-related deaths worldwide, has increased public concern. Data from previous work have validated that long noncoding RNAs are active participators in the malignant processes of a host of cancers. Small nucleolar RNA host gene 7 (SNHG7) has been revealed to act as a tumor promoter in several cancers and SNHG7 inhibition was revealed to suppress cell invasion in HCC. Nevertheless, the specific role of SNHG7 in HCC deserves deeper exploration. Aim of the Study: This work aimed to uncover the role and the regulatory mechanisms of SNHG7 in HCC. Materials and Methods: The expression of SNHG7 and cyclin mediator 1 (CNNM1) in HCC cells were analyzed by quantitative real-time polymerase chain reaction. The influences of SNHG7 on HCC occurrence were studied by cell counting kit-8 (CCK-8), colony formation, flow cytometry analysis, and Western blot assays. Luciferase reporter assay or RNA immunoprecipitation assay was conducted to confirm the relationship between miR-9-5p and SNHG7 (or CNNM1). Results: SNHG7 was overexpressed in HCC tissues and cell lines. SNHG7 facilitated cell proliferation, while suppressed cell apoptosis in HCC. Moreover, miR-9-5p expression was negatively modulated by SNHG7 and therefore was downregulated in HCC cells. We also found that CNNM1 existed in miR-9-5p induced RNA-induced silencing complex and a series of assays verified that CNNM1 acted as the target gene of miR-9-5p. Consequently, the messenger RNA and protein level of CNNM1 were detected to be inversely regulated by miR-9-5p. Moreover, rescue assays demonstrated that CNNM1 overexpression could countervail the SNHG7 depletion-mediated cellular functions of HCC cells. Conclusions: SNHG7 sponges miR-9-5p to upregulate CNNM1 in promoting HCC progression.
Collapse
Affiliation(s)
- Yanting Xie
- Fourth Department of Hepatic Surgery, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yizhou Wang
- Fourth Department of Hepatic Surgery, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Renyan Gong
- Fourth Department of Hepatic Surgery, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jianbo Lin
- Fourth Department of Hepatic Surgery, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xifeng Li
- Fourth Department of Hepatic Surgery, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Junyong Ma
- Fourth Department of Hepatic Surgery, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lei Huo
- Fourth Department of Hepatic Surgery, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
40
|
Prognostic Significance of FOXC1 in Various Cancers: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2020; 23:695-706. [PMID: 31372939 DOI: 10.1007/s40291-019-00416-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Forkhead box C1 (FOXC1), a member of the Forkhead box (Fox) transcription factor family, plays an essential role in lymphatic vessel formation, angiogenesis and metastasis. Observational studies examining the relationship between the protein biomarker FOXC1 and breast cancer prognosis have reported conflicting findings. This systematic review and meta-analysis evaluates the prognostic value of the FOXC1 expression in association with patient survival in breast cancer and other types of cancers in order to identify the overall prognostic effectiveness of FOXC1. METHODS This study followed the guidelines established in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We conducted a broad search on the online bibliographic databases EMBASE, PubMed, Science Direct and Scopus, limiting search to publications from 2010 to 2018. The prognostic value was demonstrated by a random effects model meta-analysis using the hazard ratio (HR) with 95% confidence interval (CI) for overall survival (OS) in various cancer patients. The heterogeneity was measured by the I2 statistic. Publication bias and quality assessment for the selected articles was performed. Subgroup analysis was conducted based on the data available from the selected articles. RESULTS A total of 16 studies met the predefined selection criteria established for our systematic review and meta-analysis, with multiple studies using diverse methodologies and reported on differing clinical outcomes, falling under a common banner of FOXC1 expression and survival in cancer. Overall, we observed a statistically non-significant association between FOXC1 protein expression and patients survival (HR: 1.186 and 95% CI 1.122-1.255, p = 0.000, I2 = 88.83%). CONCLUSION In summary, FOXC1 protein expression indicated poor survival outcome in various carcinomas, especially in patients with breast cancer, suggesting it as a possible biomarker for the prognosis in multiple carcinomas. Further clinical evaluation and large-scale cohort studies are required to accurately identify its possible clinical utility.
Collapse
|
41
|
Xia W, Zhu J, Wang X, Tang Y, Zhou P, Wei X, Chang B, Zheng X, Zhu W, Hou M, Li S. Overexpression of Foxc1 regenerates crushed rat facial nerves by promoting Schwann cells migration via the Wnt/β-catenin signaling pathway. J Cell Physiol 2020; 235:9609-9622. [PMID: 32391604 PMCID: PMC7586989 DOI: 10.1002/jcp.29772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
Facial paralysis can result in severe implications for patients. A good prognosis depends on the degree of nerve regeneration. Schwann cells (SCs) play an important role in facial nerve development and regeneration through migration. Forkhead box C1 (Foxc1), a member of the forkhead transcription factor family, is implicated in cell migration. However, the role of Foxc1 in the progression after facial nerve crush remains unknown. Our aim was to evaluate the effect of Foxc1 overexpression on SC migration and recovery of facial nerves after crush injury. The rat facial nerve crush injury model was established through the use of unilateral surgery. The results showed that the expression of Foxc1 was increased in the surgery group compared to that of the control group. SCs were isolated from the sciatic nerves and cultured. Foxc1, delivered by an adeno‐associated virus in vivo, or adenovirus in vitro, both induced overexpression of Foxc1, and increased the expression of CXCL12 and β‐catenin. After the transfection of Foxc1, the migration of SC was increased both in vitro and in vivo, was reduced by the inhibition of CXCL12 or β‐catenin. The facial nerve function and the nerve axon remyelination of the rats transfected with Foxc1 were significantly improved after nerve crush injury. Overall, the results demonstrated that overexpression of Foxc1 promoted SC migration by regulating CXCL12 via the Wnt/β‐catenin pathway, thus contributing to improved facial nerve function after crush injury.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Yinda Tang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Zhou
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Wei
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Chang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Zheng
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Wanchun Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Lan S, Zheng X, Hu P, Xing X, Ke K, Wang F, Cheng N, Zhuang Q, Liu X, Liu J, Zhao B, Wang Y. Moesin facilitates metastasis of hepatocellular carcinoma cells by improving invadopodia formation and activating β-catenin/MMP9 axis. Biochem Biophys Res Commun 2020; 524:861-868. [PMID: 32057364 DOI: 10.1016/j.bbrc.2020.01.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 01/04/2023]
Abstract
Moesin has been proved to be implicated in invasiveness and metastasis in many other cancers, but unclear in HCC. Thus, this study was performed to investigate the clinical significance of moesin and its biological functions in HCC. The results showed that moesin was significantly up-regulated in HCC tissues and was an independent prognostic factor for predicting the recurrence of HCC patients, postoperatively. Furthermore, we also demonstrated that moesin promoted the migration and invasion of HCC cells in vitro and in vivo. And the mechanism studies indicated that moesin overexpression increased the formation of invadopodia and improved the activation of β-catenin/MMP9 axis. Taken together, our findings revealed that moesin acted as an important onco-protein participating in the metastasis of HCC.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred NOD
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Podosomes/metabolism
- Podosomes/pathology
- Podosomes/ultrastructure
- Signal Transduction
- Survival Analysis
- Tumor Burden
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Shubing Lan
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Ping Hu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Kun Ke
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China.
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China.
| |
Collapse
|
43
|
Wang J, Wang Y, Zhang H, Chang J, Lu M, Gao W, Liu W, Li Y, Yin L, Wang X, Wang Y, Gao M, Yin Z. Identification of a novel microRNA-141-3p/Forkhead box C1/β-catenin axis associated with rheumatoid arthritis synovial fibroblast function in vivo and in vitro. Theranostics 2020; 10:5412-5434. [PMID: 32373221 PMCID: PMC7196314 DOI: 10.7150/thno.45214] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Rheumatoid arthritis (RA) is a prototype of inflammatory arthritis in which synovial fibroblasts (SFs) play key roles in cartilage and bone destruction through tumor-like proliferation, migration, invasion and inflammation. This study aimed to research forkhead box protein C1 (FoxC1) and microRNA (miR)-141-3p, which modulate pathological changes in the synovial membrane, to find possible strategies for treating RA. Methods: FoxC1, β-catenin and miR-141-3p gene expression in synovial tissues and SFs was quantified by real-time PCR; FoxC1 and β-catenin protein levels were evaluated by immunohistochemistry, immunofluorescence, and Western blotting. We transiently transfected human SFs with FoxC1 and β-catenin overexpression and silencing vectors and assessed proliferation, migration, invasion and inflammation by cell function and enzyme-linked immunosorbent assays. We also assessed downstream signaling activation using immunofluorescence, real-time PCR and Western blotting. Double luciferase, coimmunoprecipitation and chromatin immunoprecipitation assays were used to verify miR-141-3p, FoxC1 and β-catenin gene and protein combinations. Finally, the therapeutic effects of FoxC1 silencing and miR-141-3p overexpression were evaluated in type II collagen-induced arthritis (CIA) rats. Results: We found that FoxC1 expression was significantly upregulated in synovium and SFs in both RA patients and rats with collagen-induced arthritis (CIA). FoxC1 overexpression increased β-catenin messenger RNA (mRNA) and protein levels and upregulated cyclin D1, c-Myc, fibronectin and matrix metalloproteinase 3 (MMP3) mRNA and protein expression in RA SFs (RASFs). In contrast, FoxC1 knockdown reduced β-catenin mRNA and protein levels as well as cyclin D1, c-Myc, and fibronectin mRNA and protein levels in RASFs. Furthermore, altering FoxC1 expression did not significantly change GSK3β and pGSK3β levels. FoxC1 overexpression promoted proliferation, migration, invasion and proinflammatory cytokine (interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)) production and reduced anti-inflammatory cytokine (IL-10) levels in RASFs. FoxC1 bound to the β-catenin promoter, and β-catenin mediated the FoxC1-induced pathological changes. We also observed downregulated microRNA (miR)-141-3p expression in SFs from both RA patients and CIA rats and further found that miR-141-3p bound to the FoxC1 3′UTR and suppressed FoxC1 expression. Intra-ankle miR-141-3p agomir or FoxC1-specific siRNA injection hindered CIA development in rats. Conclusions: FoxC1 and miR-141-3p participate in RA pathogenesis by mediating inflammation and SF proliferation, migration, and invasion and thus could be novel targets for RA therapy as a nonimmunosuppressive approach.
Collapse
|
44
|
Shang R, Wang M, Dai B, Du J, Wang J, Liu Z, Qu S, Yang X, Liu J, Xia C, Wang L, Wang D, Li Y. Long noncoding RNA SLC2A1-AS1 regulates aerobic glycolysis and progression in hepatocellular carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway. Mol Oncol 2020; 14:1381-1396. [PMID: 32174012 PMCID: PMC7266282 DOI: 10.1002/1878-0261.12666] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant diseases worldwide. Despite advances in the diagnosis and treatment of HCC, its overall prognosis remains poor. Recent studies have shown that long noncoding RNAs (lncRNAs) play crucial roles in various pathophysiological processes, including liver cancer. In the current study, we report that lncRNA SLC2A1-AS1 is frequently downregulated in HCC samples, as shown by quantitative real-time polymerase chain reaction analysis. SLC2A1-AS1 deletion is significantly associated with recurrence-free survival in HCC. By performing glucose uptake, lactate production and ATP detection assays, we found that SLC2A1-AS1-mediated glucose transporter 1 (GLUT1) downregulation significantly suppressed glycolysis of HCC. In vitro Cell Counting Kit-8, colony formation, transwell assays as well as in vivo tumorigenesis and metastasis assays showed that SLC2A1-AS1 overexpression significantly suppressed proliferation and metastasis in HCC through the transcriptional inhibition of GLUT1. Results from fluorescence in situ hybridization, ChIP and luciferase reporter assays demonstrated that SLC2A1-AS1 exerts its regulatory role on GLUT1 by competitively binding to transketolase and signal transducer and activator of transcription 3 (STAT3) and inhibits the transactivation of Forkhead box M1 (FOXM1) via STAT3, thus resulting in inactivation of the FOXM1/GLUT1 axis in HCC cells. Our findings will be helpful for understanding the function and mechanism of lncRNA in HCC. These data also highlight the crucial role of SLC2A1-AS1 in HCC aerobic glycolysis and progression and pave the way for further research regarding the potential of SLC2A1-AS1 as a valuable predictive biomarker for HCC recurrence.
Collapse
Affiliation(s)
- Runze Shang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Miao Wang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Bin Dai
- Department of General Surgery, General Hospital of the Central Theater Command of the People's Liberation Army, Wuhan, China
| | - Jianbing Du
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Zekun Liu
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Jingjing Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Congcong Xia
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Desheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yu Li
- School of Life Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
45
|
Wang F, Zhang B, Xu X, Zhu L, Zhu X. TRIP6 promotes tumorigenic capability through regulating FOXC1 in hepatocellular carcinoma. Pathol Res Pract 2020; 216:152850. [PMID: 32046874 DOI: 10.1016/j.prp.2020.152850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive malignant tumor with poor prognosis that is characterized by high rates of postoperative recurrence and mortality. Understanding the molecular mechanism of this malignancy is of great significance for the development of new and effective strategies for the treatment of hepatocellular carcinoma. Thyroid hormone receptor-interacting protein 6 (TRIP6), also known as zyxin-related protein-1 or ZRP-1, is an adaptor protein that belongs to the zyxin family of LIM proteins. Recent studies showed that TRIP6 is involved in carcinogenesis. But the functional role of TRIP6 in HCC has not been reported to date. METHODS TRIP6 expression level in HCC cell lines and normal cell line was measured by qPCR. The roles of TRIP6 on HCC cell proliferation, colony formation, and invasion were examined by MTT assay, colony formation assay, and transwell invasion assay, respectively. The effect of TRIP6 on the overall survival of HCC patients was further analyzed. ChIP assay and western blot were performed to validate whether FOXC1 was involved in the regulation of TRIP6 expression. RESULTS Western blot and immunohistochemical analyses showed that TRIP6 expression was up-regulated in HCC tissues compared with adjacent non-tumor tissues. Kaplan-Meier survival analysis indicated that upregulation of TRIP6 was dramatically associated with poor overall survival. TRIP6 knockdown significantly inhibited cell migration, invasion, and proliferation, and its effect on cell proliferation was mediated by the modulation of cell cycle progression. FOXC1 also played a vital role in TRIP6 regulation. TRIP6 mediated the FOXC1-regulated proliferation, invasion, and migration in vitro and tumor growth in vivo. CONCLUSIONS These results suggest that TRIP6 may contribute to the invasiveness and metastasis of HCC cells, and provide new insight into the crucial role of TRIP6 in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo Zhang
- Medical College of Nantong University, Nantong, Jiangsu, China
| | - Xiaodong Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, Yanchen, Jiangsu, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaochao Zhu
- Department of General Surgery, Suqian First People's Hospital, Suqian, Jiangsu, China.
| |
Collapse
|
46
|
Jiang W, Cheng X, Wang T, Song X, Zheng Y, Wang L. LINC00467 promotes cell proliferation and metastasis by binding with IGF2BP3 to enhance the mRNA stability of TRAF5 in hepatocellular carcinoma. J Gene Med 2020; 22:e3134. [PMID: 31656043 DOI: 10.1002/jgm.3134] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Wenjin Jiang
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Xueling Cheng
- Operation departmentThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Tao Wang
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Xuepeng Song
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Yanbo Zheng
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Ligang Wang
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| |
Collapse
|
47
|
Paliogiannis P, Scano V, Mangoni AA, Cossu A, Palmieri G. Long Noncoding RNAs in Non-Small Cell Lung Cancer: State of the Art. RNA TECHNOLOGIES 2020:305-325. [DOI: 10.1007/978-3-030-44743-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Bai X, Shao J, Zhou S, Zhao Z, Li F, Xiang R, Zhao AZ, Pan J. Inhibition of lung cancer growth and metastasis by DHA and its metabolite, RvD1, through miR-138-5p/FOXC1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:479. [PMID: 31783879 PMCID: PMC6884860 DOI: 10.1186/s13046-019-1478-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Non small cell lung cancer (NSCLC) is one of the most common cancers in the world. DHA is known to be capable of suppressing NSCLC cell proliferation and metastasis. However, the mechanisms by which DHA exhibits its antitumor effects are unknown. Here we aimed to identify the effects and mechanisms of DHA and its metabolites on lung cancer cell growth and invasion. METHODS As measures of cell proliferation and invasion ability, the cell viability and transwell assays were used in vitro. Transgenic mfat-1 mice, which convert ω-6 PUFAs to ω-3 PUFAs, were used to detect the effect of endogenous DHA on tumor transplantation. An LC - MS/MS analysis identified the elevation of several eicosanoid metabolites of DHA. By using qPCR miRNA microarray, online prediction software, luciferase reporter assays and Western blot analysis, we further elucidated the mechanisms. RESULTS Addition of exogenous DHA inhibited the growth and invasion in NSCLC cells in vitro. Endogenously produced DHA attenuated LLC-derived tumor growth and metastasis in the transgenic mfat-1 mice. Among the elevation of DHA metabolites, resolvin D1 (RvD1) significantly contributed to the inhibition in cell growth and invasion. MiRNA microarray revealed that the level of miR-138-5p was significantly increased after RvD1 treatment. MiR-138-5p mimics decreased cell viability and invasion; while miR-138-5p inhibitor abolished RvD1-mediated suppression of cell viability and invasion. The expression of FOXC1 was significantly reduced upon overexpression of miR-138-5p while luciferase reporter assay showed that FOXC1 was a direct target of miR-138-5p. In vivo, endogenous DHA by the mfat-1 transgene enhanced miR-138-5p expression and decreased FOXC1 expression. Furthermore, overexpression of FOXC1 reversed the inhibition in cell viability and invasion induced by RvD1 treatment. CONCLUSIONS These data identified the RvD1/miR-138-5p/FOXC1 pathway as a novel mechanism by DHA and its metabolite, RvD1, and the potential of targeting such pathway as a therapeutic strategy in treating NSCLC.
Collapse
Affiliation(s)
- Xiaoming Bai
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jiaofang Shao
- Department of Bioinformatics, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Rong Xiang
- Department of Pathology, The Second People's Hospital of Nantong, Nantong, 226000, People's Republic of China
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jinshun Pan
- Department of Biotherapy, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, People's Republic of China.
| |
Collapse
|
49
|
Zhang Y, Liao Y, Chen C, Sun W, Sun X, Liu Y, Xu E, Lai M, Zhang H. p38-regulated FOXC1 stability is required for colorectal cancer metastasis. J Pathol 2019; 250:217-230. [PMID: 31650548 DOI: 10.1002/path.5362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
Aberrant expression of forkhead box C1 (FOXC1) promotes tumor metastasis in multiple human malignant tumors. However, the upstream modulating mode and downstream molecular mechanism of FOXC1 in metastasis of colorectal cancer (CRC) remain unclear. Herein we describe a systematic analysis of FOXC1 expression and prognosis in CRC performed on our clinical data and public databases, which indicated that FOXC1 upregulation in CRC samples was significantly associated with poor prognosis. FOXC1 knockdown inhibited migration and invasion, whereas FOXC1 overexpression caused the opposite phenotype in vitro and in vivo. Furthermore, MMP10, SOX4 and SOX13 were verified as the target genes of FOXC1 for promoting CRC metastasis. MMP10 was demonstrated as the direct target and mediator of FOXC1. Interestingly, Ser241 and Ser272 of FOXC1 were identified as the key sites to interact with p38 and phosphorylation, which were critically required for maintaining the stability of FOXC1 protein. Moreover, FOXC1 was dephosphorylated by protein phosphatase 2A and phosphorylated by p38, which maintained FOXC1 protein stability through inhibiting ubiquitination. Expression of p38 was correlated with FOXC1 and MMP10 expression, indirectly indicating that FOXC1 was regulated by p38 MAPK. Therefore, FOXC1 is strongly suggested as a pro-metastatic gene in CRC by transcriptionally activating MMP10, SOX4 and SOX13; p38 interacts with and phosphorylates the Ser241 and ser272 sites of FOXC1 to maintain its stability by inhibiting ubiquitination and degradation. In conclusion, the protein stability of FOXC1 mediated by p38 contributes to the metastatic effect in CRC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Yan Liao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Chaoyi Chen
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Wenjie Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Zhejiang, PR China
| | - Yuan Liu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| |
Collapse
|
50
|
Gong R, Lin W, Gao A, Liu Y, Li J, Sun M, Chen X, Han S, Men C, Sun Y, Liu J. Forkhead box C1 promotes metastasis and invasion of non-small cell lung cancer by binding directly to the lysyl oxidase promoter. Cancer Sci 2019; 110:3663-3676. [PMID: 31597217 PMCID: PMC6890438 DOI: 10.1111/cas.14213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that human forkhead box C1 (FOXC1) plays important roles in tumor development and metastasis. However, the underlying molecular mechanism of FOXC1 in non–small cell lung cancer (NSCLC) metastasis remains unclear. Here, we identified FOXC1 as an independent prognostic factor in NSCLC and showed clear biological implications in invasion and metastasis. FOXC1 overexpression enhanced the proliferation, migration and invasion of NSCLC cells, whereas FOXC1 silencing impaired the effects both in vitro and in vivo. Importantly, we found a positive correlation between FOXC1 expression and lysyl oxidase (LOX) expression in NSCLC cells and patient samples. Downregulation of LOX or LOX activity inhibition in NSCLC cells inhibited the FOXC1‐driven effects on cellular migration and invasion. Xenograft models showed that inhibition of LOX activity by β‐aminopropionitrile monofumarate decreased the number of lung metastases. Mechanistically, we demonstrated a novel FOXC1‐LOX mechanism that was involved in the invasion and metastasis of NSCLC. Dual‐luciferase assay and ChIP identified that FOXC1 bound directly in the LOX promoter region and activated its transcription. Collectively, the present study offered new insight into FOXC1 in the mediation of NSCLC metastasis through interaction with the LOX promoter and further revealed that targeted inhibition of LOX protein activity could prevent lung metastasis in murine xenograft models. These data implicated FOXC1 as a potential therapeutic strategy for the treatment of NSCLC metastasis.
Collapse
Affiliation(s)
- Rumei Gong
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanli Liu
- Provincial Key Laboratory of Radio-Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Juan Li
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaozheng Chen
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuyi Han
- Genetic and Molecular Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Chengsong Men
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|