1
|
Wang S, Zhang J, Li J, Wang J, Liu W, Zhang Z, Yu H. Label-free quantitative proteomics reveals the potential mechanisms of insoluble dietary fiber from okara in improving hepatic lipid metabolism of high-fat diet-induced mice. J Proteomics 2023; 287:104980. [PMID: 37499746 DOI: 10.1016/j.jprot.2023.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The high purity insoluble dietary fiber (IDF) from okara is a natural component with a potentially positive effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, although its regulatory mechanism remains unclear. This study aims to elucidate the potential pathways and key proteins of IDF for the amelioration of hepatic lipid metabolism in mice fed with HFD. Here, we used label-free quantitative proteomics technology to quantity and identify differentially expressed proteins in the liver that are associated with IDF treatment. The differentially expressed proteins were assessed by GO annotation and KEGG pathways. Western blot and qRT-PCR analyses were conducted to validate the potential targets regulated by IDF. In total, 73 differentially expressed proteins were identified, of which 27 were up-regulated (FC > 1.5) and 46 were down-regulated (FC < 0.667). GO analysis suggested that differentially expressed proteins were mainly located in the cell and organelles, regulated biological processes, and were associated with enzyme activity and molecular binding. The KEGG pathway enrichment analysis further demonstrated glycolysis/gluconeogenesis, pyruvate metabolism, TCA cycle, arginine biosynthesis, alanine, aspartate and glutamate metabolism, and retinol metabolism were affected. The combination of proteomics, Western blot, and qRT-PCR suggested that ACS, ACLY, GOT1, GLS2, NAGS, CYP4A10, CYP3A25, and CYP2A5 in these pathways might be key proteins for IDF intervention. Taken together, our findings elucidate new mechanisms involved in how IDF affects hepatic metabolism, provide important information for the functional food industries, and improve the added value of okara. SIGNIFICANCE: Okara is evidenced as a high-quality by-product with several nutritional components, especially dietary fiber (50-60%) labeled as "The Seventh Nutrient". Previous studies have shown that IDF has a positive potential effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, but its molecular mechanism remains unclear. To elucidate the therapeutic mechanism of IDF at the protein level, a label-free quantitative proteomic analysis was used to identify the dynamic changes of the liver proteome between HIDF and HFD groups in this study. These results provide a new perspective for exploring the therapeutic mechanism of IDF at the protein level and enlightenment for promoting the comprehensive utilization of okara.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, 32004, Spain
| | - Junyao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Wenhao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Zhao Zhang
- Shandong Sinoglory Health Food Co., Ltd., Liaocheng, Shandong 252000, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China.
| |
Collapse
|
2
|
Gethings LA, Gray N, Plumb RS, Wilson ID. Proteomic consequences of the deletion of cytochrome P450 (CYP450) reductase in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122803. [PMID: 34218094 DOI: 10.1016/j.jchromb.2021.122803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Microsomal cytochrome P450 (CYP450) reductase enzymes play a major role in drug and xenobiotic metabolism. Mice which are deficient in hepatic CYP450 reductase serve as excellent models in understanding CYP450 drug metabolism and alterations in the underlying biology and function of these enzymes. A reversed-phase nano-bore UPLC-MS-based proteomic analysis, using an untargeted data independent approach (DIA), has been utilized for liver tissue extracts to evaluate differences between the proteomes of C57Bl6 wild type (WT) and hepatic P450 reductase mice (HRN™). Statistically curated, differentially expressed protein groups highlighted a variety of molecular and biological functions, including binding and catalytic related activities. Thus, elevations were seen for a number of CYP450 enzymes (Cyp2a5; Cyp2b10; Cyp2b19; Cyp2d26; Cyp2a5, Cyp2e1) in the liver extracts of HRN animals. In addition, the major urinary protein 2 (Mup2) was found to be present only in the livers of the HRN group, whilst enoyl-CoA hydratase domain-containing protein 2 (Echdc2) was similarly unique to the the WT livers. Pathway enrichment analysis of the WT liver data indicated perturbations of lipid and energy related pathways, which included bile acid biosynthesis, fatty acid omega oxidation and tricarboxylic acid (TCA) cycle as examples.
Collapse
Affiliation(s)
- Lee A Gethings
- Waters Corporation, Wilmslow, UK; Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Division of Computational and Systems Medicine, Dept. of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, UK
| | | | - Ian D Wilson
- Division of Computational and Systems Medicine, Dept. of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
3
|
Diederen K, Li JV, Donachie GE, de Meij TG, de Waart DR, Hakvoort TBM, Kindermann A, Wagner J, Auyeung V, Te Velde AA, Heinsbroek SEM, Benninga MA, Kinross J, Walker AW, de Jonge WJ, Seppen J. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn's disease. Sci Rep 2020; 10:18879. [PMID: 33144591 PMCID: PMC7609694 DOI: 10.1038/s41598-020-75306-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
A nutritional intervention, exclusive enteral nutrition (EEN) can induce remission in patients with pediatric Crohn's disease (CD). We characterized changes in the fecal microbiota and metabolome to identify the mechanism of EEN. Feces of 43 children were collected prior, during and after EEN. Microbiota and metabolites were analyzed by 16S rRNA gene amplicon sequencing and NMR. Selected metabolites were evaluated in relevant model systems. Microbiota and metabolome of patients with CD and controls were different at all time points. Amino acids, primary bile salts, trimethylamine and cadaverine were elevated in patients with CD. Microbiota and metabolome differed between responders and non-responders prior to EEN. EEN decreased microbiota diversity and reduced amino acids, trimethylamine and cadaverine towards control levels. Patients with CD had reduced microbial metabolism of bile acids that partially normalized during EEN. Trimethylamine and cadaverine inhibited intestinal cell growth. TMA and cadaverine inhibited LPS-stimulated TNF-alpha and IL-6 secretion by primary human monocytes. A diet rich in free amino acids worsened inflammation in the DSS model of intestinal inflammation. Trimethylamine, cadaverine, bile salts and amino acids could play a role in the mechanism by which EEN induces remission. Prior to EEN, microbiota and metabolome are different between responders and non-responders.
Collapse
Affiliation(s)
- Kay Diederen
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Location AMC & VUmc, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Tim G de Meij
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Location AMC & VUmc, Amsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Angelika Kindermann
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Location AMC & VUmc, Amsterdam, The Netherlands
| | - Josef Wagner
- Pathogen Genomics Group, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Victoria Auyeung
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Marc A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Location AMC & VUmc, Amsterdam, The Netherlands
| | - James Kinross
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alan W Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Gray N, Gethings LA, Plumb RS, Wilson ID. UHPLC-MS-Based Lipidomic and Metabonomic Investigation of the Metabolic Phenotypes of Wild Type and Hepatic CYP Reductase Null (HRN) Mice. J Pharm Biomed Anal 2020; 186:113318. [DOI: 10.1016/j.jpba.2020.113318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/05/2023]
|
5
|
Hohenester S, Kanitz V, Kremer AE, Paulusma CC, Wimmer R, Kuehn H, Denk G, Horst D, Oude Elferink R, Beuers U. Glycochenodeoxycholate Promotes Liver Fibrosis in Mice with Hepatocellular Cholestasis. Cells 2020; 9:cells9020281. [PMID: 31979271 PMCID: PMC7072501 DOI: 10.3390/cells9020281] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hydrophobic bile salts are considered to promote liver fibrosis in cholestasis. However, evidence for this widely accepted hypothesis remains scarce. In established animal models of cholestasis, e.g., by Mdr2 knockout, cholestasis and fibrosis are both secondary to biliary damage. Therefore, to test the specific contribution of accumulating bile salts to liver fibrosis in cholestatic disease, we applied the unique model of inducible hepatocellular cholestasis in cholate-fed Atp8b1G308V/G308V mice. Glycochenodeoxycholate (GCDCA) was supplemented to humanize the murine bile salt pool, as confirmed by HPLC. Biomarkers of cholestasis and liver fibrosis were quantified. Hepatic stellate cells (HSC) isolated from wild-type mice were stimulated with bile salts. Proliferation, cell accumulation, and collagen deposition of HSC were determined. In cholestatic Atp8b1G308V/G308V mice, increased hepatic expression of αSMA and collagen1a mRNA and excess hepatic collagen deposition indicated development of liver fibrosis only upon GCDCA supplementation. In vitro, numbers of myofibroblasts and deposition of collagen were increased after incubation with hydrophobic but not hydrophilic bile salts, and associated with EGFR and MEK1/2 activation. We concluded that chronic hepatocellular cholestasis alone, independently of biliary damage, induces liver fibrosis in mice in presence of the human bile salt GCDCA. Bile salts may have direct pro-fibrotic effects on HSC, putatively involving EGFR and MEK1/2 signaling.
Collapse
Affiliation(s)
- Simon Hohenester
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (R.W.); (G.D.)
- Correspondence:
| | - Veronika Kanitz
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany;
| | - Andreas E. Kremer
- Department of Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.E.K.); (H.K.)
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, 1018 TV Amsterdam, The Netherlands; (C.C.P.); (R.O.E.); (U.B.)
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (R.W.); (G.D.)
| | - Helen Kuehn
- Department of Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.E.K.); (H.K.)
| | - Gerald Denk
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (R.W.); (G.D.)
| | - David Horst
- Department of Pathology, Charité—Universitätsmedizin, 10117 Berlin, Germany;
| | - Ronald Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, 1018 TV Amsterdam, The Netherlands; (C.C.P.); (R.O.E.); (U.B.)
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, 1018 TV Amsterdam, The Netherlands; (C.C.P.); (R.O.E.); (U.B.)
| |
Collapse
|
6
|
Honda A, Miyazaki T, Iwamoto J, Hirayama T, Morishita Y, Monma T, Ueda H, Mizuno S, Sugiyama F, Takahashi S, Ikegami T. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J Lipid Res 2019; 61:54-69. [PMID: 31645370 DOI: 10.1194/jlr.ra119000395] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
The bile acid (BA) composition in mice is substantially different from that in humans. Chenodeoxycholic acid (CDCA) is an end product in the human liver; however, mouse Cyp2c70 metabolizes CDCA to hydrophilic muricholic acids (MCAs). Moreover, in humans, the gut microbiota converts the primary BAs, cholic acid and CDCA, into deoxycholic acid (DCA) and lithocholic acid (LCA), respectively. In contrast, the mouse Cyp2a12 reverts this action and converts these secondary BAs to primary BAs. Here, we generated Cyp2a12 KO, Cyp2c70 KO, and Cyp2a12/Cyp2c70 double KO (DKO) mice using the CRISPR-Cas9 system to study the regulation of BA metabolism under hydrophobic BA composition. Cyp2a12 KO mice showed the accumulation of DCAs, whereas Cyp2c70 KO mice lacked MCAs and exhibited markedly increased hepatobiliary proportions of CDCA. In DKO mice, not only DCAs or CDCAs but also DCAs, CDCAs, and LCAs were all elevated. In Cyp2c70 KO and DKO mice, chronic liver inflammation was observed depending on the hepatic unconjugated CDCA concentrations. The BA pool was markedly reduced in Cyp2c70 KO and DKO mice, but the FXR was not activated. It was suggested that the cytokine/c-Jun N-terminal kinase signaling pathway and the pregnane X receptor-mediated pathway are the predominant mechanisms, preferred over the FXR/small heterodimer partner and FXR/fibroblast growth factor 15 pathways, for controlling BA synthesis under hydrophobic BA composition. From our results, we hypothesize that these KO mice can be novel and useful models for investigating the roles of hydrophobic BAs in various human diseases.
Collapse
Affiliation(s)
- Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Junichi Iwamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Takeshi Hirayama
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tadakuni Monma
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Hajime Ueda
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Tadashi Ikegami
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
7
|
Straub D, Oude Elferink RPJ, Jansen PLM, Bergman JJGHM, Parikh K, Krishnadath KK. Glyco-conjugated bile acids drive the initial metaplastic gland formation from multi-layered glands through crypt-fission in a murine model. PLoS One 2019; 14:e0220050. [PMID: 31348796 PMCID: PMC6660124 DOI: 10.1371/journal.pone.0220050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Bile acid reflux is known to be associated with the development of Barrett’s esophagus and esophageal adenocarcinoma (EAC), yet the role of specific bile acids and the mechanism behind the metaplastic changes is unclear. Here, we demonstrate that multi-layered glandular structures at the squamo-columnar junction in mice contain multiple cell lineages, which resemble the human esophageal submucosal gland ducts. Exposing mice to patient’s refluxates induced expansion of multi-layered glandular structures and development of columnar metaplasia at the squamo-columnar junction. The glycine conjugated bile acids induced an intestinal type of metaplasia more typical for Barrett’s esophagus. Through lineage tracing, we excluded the involvement of K5+, DCLK1+, and LGR5+ progenitor cells as the primary source in the development of the glandular metaplastic epithelium. We show that the mechanism behind development of metaplasia involves crypt fission and may be independent of stem cell proliferation. Our findings support the hypothesis that in humans, BE arises from non-squamous cells residing in submucosal gland ducts and that induction of intestinal type of metaplasia is most effectively induced by glycine-conjugated bile acids. These novel insights may lead to more effective strategies to prevent development of Barrett’s esophagus and esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Danielle Straub
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands
| | | | - Peter L. M. Jansen
- Department of Gastrointestinal and Liver Disease, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Kaushal Parikh
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kausilia K. Krishnadath
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands
- Department of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:895-911. [PMID: 29782919 DOI: 10.1016/j.bbadis.2018.05.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
The use of animal models, particularly genetically modified mice, continues to play a critical role in studying the relationship between bile acid metabolism and human liver disease. Over the past 20 years, these studies have been instrumental in elucidating the major pathways responsible for bile acid biosynthesis and enterohepatic cycling, and the molecular mechanisms regulating those pathways. This work also revealed bile acid differences between species, particularly in the composition, physicochemical properties, and signaling potential of the bile acid pool. These species differences may limit the ability to translate findings regarding bile acid-related disease processes from mice to humans. In this review, we focus primarily on mouse models and also briefly discuss dietary or surgical models commonly used to study the basic mechanisms underlying bile acid metabolism. Important phenotypic species differences in bile acid metabolism between mice and humans are highlighted.
Collapse
Affiliation(s)
- Jianing Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
9
|
Hofmann AF, Herdt T, Ames NK, Chen Z, Hagey LR. Bile Acids and the Microbiome in the Cow: Lack of Deoxycholic Acid Hydroxylation. Lipids 2018; 53:269-270. [PMID: 29668048 DOI: 10.1002/lipd.12036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Alan F Hofmann
- Department of Medicine, University of California, 9500 Gilman Drive, San Diego, CA, 92093-8200, USA
| | - Thomas Herdt
- Nutrition Section, Diagnostic Center for Population and Animal Health, Michigan State University, 784 Wilson Road, Lansing, MI, 48910, USA
| | - Norman Kent Ames
- Nutrition Section, Diagnostic Center for Population and Animal Health, Michigan State University, 784 Wilson Road, Lansing, MI, 48910, USA
| | - Zhouji Chen
- Nutrition Section, Diagnostic Center for Population and Animal Health, Michigan State University, 784 Wilson Road, Lansing, MI, 48910, USA
| | - Lee R Hagey
- Department of Medicine, University of California, 9500 Gilman Drive, San Diego, CA, 92093-8200, USA
| |
Collapse
|
10
|
van Golen RF, Olthof PB, de Haan LR, Coelen RJ, Pechlivanis A, de Keijzer MJ, Weijer R, de Waart DR, van Kuilenburg ABP, Roelofsen J, Gilijamse PW, Maas MA, Lewis MR, Nicholson JK, Verheij J, Heger M. The pathophysiology of human obstructive cholestasis is mimicked in cholestatic Gold Syrian hamsters. Biochim Biophys Acta Mol Basis Dis 2017; 1864:942-951. [PMID: 29196240 DOI: 10.1016/j.bbadis.2017.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Obstructive cholestasis causes liver injury via accumulation of toxic bile acids (BAs). Therapeutic options for cholestatic liver disease are limited, partially because the available murine disease models lack translational value. Profiling of time-related changes following bile duct ligation (BDL) in Gold Syrian hamsters revealed a biochemical response similar to cholestatic patients in terms of BA pool composition, alterations in hepatocyte BA transport and signaling, suppression of BA production, and adapted BA metabolism. Hamsters tolerated cholestasis well for up to 28days and progressed relatively slowly to fibrotic liver injury. Hepatocellular necrosis was absent, which coincided with preserved intrahepatic energy levels and only mild oxidative stress. The histological response to cholestasis in hamsters was similar to the changes seen in 17 patients with prolonged obstructive cholestasis caused by cholangiocarcinoma. Hamsters moreover upregulated hepatic fibroblast growth factor 15 (Fgf15) expression in response to BDL, which is a cytoprotective adaptation to cholestasis that hitherto had only been documented in cholestatic human livers. Hamster models should therefore be added to the repertoire of animal models used to study the pathophysiology of cholestatic liver disease.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pim B Olthof
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lianne R de Haan
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert J Coelen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandros Pechlivanis
- Division of Computational, Systems and Digestive Medicine, Department of Surgery and Cancer, South Kensington Campus, London, SW7 2AZ, UK
| | - Mark J de Keijzer
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruud Weijer
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Laboratory Genetic Metabolic Disorders, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Roelofsen
- Laboratory Genetic Metabolic Disorders, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pim W Gilijamse
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martinus A Maas
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthew R Lewis
- Division of Computational, Systems and Digestive Medicine, Department of Surgery and Cancer, South Kensington Campus, London, SW7 2AZ, UK; MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Jeremy K Nicholson
- Division of Computational, Systems and Digestive Medicine, Department of Surgery and Cancer, South Kensington Campus, London, SW7 2AZ, UK; MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Maroni L, Hohenester SD, van de Graaf SFJ, Tolenaars D, van Lienden K, Verheij J, Marzioni M, Karlsen TH, Oude Elferink RPJ, Beuers U. Knockout of the primary sclerosing cholangitis-risk gene Fut2 causes liver disease in mice. Hepatology 2017; 66:542-554. [PMID: 28056490 DOI: 10.1002/hep.29029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/14/2023]
Abstract
The etiopathogenesis of primary sclerosing cholangitis is unknown. Genetic variants of fucosyltransferase 2 (FUT2) have been identified in genome-wide association studies as risk factors for primary sclerosing cholangitis. We investigated the role of Fut2 in murine liver pathophysiology by studying Fut2-/- mice. Fut2-/- mice were viable and fertile, had lower body weight than wild-type (wt) littermates and gray fur. Half of the Fut2-/- mice showed serum bile salt levels 40 times higher than wt (Fut2-/-high ), whereas the remainder were normocholanemic (Fut2-/-low ). Fut2-/- mice showed normal serum liver tests, bile flow, biliary bile salt secretion, fecal bile salt loss, and expression of major hepatocellular bile salt transporters and cytochrome P450 7a1, the key regulator of bile salt synthesis, indicating that elevated serum bile salts in Fut2-/-high mice were not explained by cholestasis. Fut2-/-high mice, but not Fut2-/-low mice, were sensitive to hydrophobic bile salt feeding (0.3% glycochenodeoxycholate); they rapidly lost weight and showed elevation of serum liver tests (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase) and areas of liver parenchymal necrosis. Histomorphological evaluation revealed the presence of paraportal shunting vessels, increased numbers of portal vascular structures, wall thickening of some portal arteries, and periductal fibrosis in Fut2-/-high mice more than Fut2-/-low mice and not wt mice. Unconjugated bilirubin and ammonia were or tended to be elevated in Fut2-/-high mice only. Portosystemic shunting was demonstrated by portal angiography, which disclosed virtually complete portosystemic shunting in Fut2-/-high mice, discrete portosystemic shunting in Fut2-/-low mice, and no shunting in wt littermates. CONCLUSION Liver pathology in Fut2-/- mice is dominated by consequences of portosystemic shunting resulting in microcirculatory disturbances, mild (secondary) periductal fibrosis, and sensitivity toward human bile salt toxicity. (Hepatology 2017;66:542-554).
Collapse
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Simon D Hohenester
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medicine II, University of Munich (LMU), Munich, Germany
| | - Stan F J van de Graaf
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dagmar Tolenaars
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Krijn van Lienden
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Tom H Karlsen
- Norwegian PSC Research Center and Section for Gastroenterology, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ronald P J Oude Elferink
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Prolonged fibroblast growth factor 19 response in patients with primary sclerosing cholangitis after an oral chenodeoxycholic acid challenge. Hepatol Int 2016; 11:132-140. [PMID: 27696157 PMCID: PMC5233735 DOI: 10.1007/s12072-016-9769-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/25/2016] [Indexed: 02/08/2023]
Abstract
Background Bile salts likely contribute to liver injury in patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC). Fibroblast growth factor 19 (FGF19) is a bile salt-induced enterokine with hepatoprotective potential as it suppresses de novo bile salt synthesis. Here, we evaluated the bile salt receptor FXR/FGF19 gut–liver axis in PSC and PBC patients. Methods Fasted patients with PSC (n = 12) and PBC (n = 10), and healthy controls (HC; n = 10) were orally challenged with the natural FXR agonist chenodeoxycholic acid (CDCA 15 mg/kg). Blood was sampled hourly until 8 h afterwards. Serum FGF19 and bile salt excursions were determined. Serum levels of 7α-hydroxy-4-cholesten-3-one (C4), reflecting bile salt synthesis, were measured as a biomarker of FGF19 response. Results Baseline serum FGF19 levels were comparable between groups, while fasted bile salt levels in PSC patients were elevated. Upon CDCA challenge, HC and PBC patients showed a serum FGF19 peak after 4 h followed by a decline. PSC patients showed a prolonged and elevated serum FGF19 response up to 8 h, combined with a sustained serum elevation of CDCA and other bile salts. In general, C4 levels declined following FGF19 elevation. In PSC patients with less favorable prognosis, baseline C4 levels were drastically suppressed and did not further decline. Conclusion Following an oral CDCA challenge, PSC patients showed an impaired clearance of CDCA and a prolonged serum FGF19 response. FXR agonist therapy in PSC could cause prolonged exposure to elevated levels of FGF19, and we propose careful monitoring for detrimental side effects in patient studies. Electronic supplementary material The online version of this article (doi:10.1007/s12072-016-9769-7) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Zweers SJ, Shiryaev A, Komuta M, Vesterhus M, Hov JR, Perugorria MJ, de Waart DR, Chang JC, Tol S, Te Velde AA, de Jonge WJ, Banales JM, Roskams T, Beuers U, Karlsen TH, Jansen PL, Schaap FG. Elevated interleukin-8 in bile of patients with primary sclerosing cholangitis. Liver Int 2016; 36:1370-7. [PMID: 26866350 DOI: 10.1111/liv.13092] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/30/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS To better understand the pathogenesis of primary sclerosing cholangitis, anti- and pro-inflammatory factors were studied in bile. METHODS Ductal bile of PSC patients (n = 36) and controls (n = 20) was collected by endoscopic retrograde cholangiography. Gallbladder bile was collected at liver transplantation. Bile samples were analysed for cytokines, FGF19 and biliary lipids. Hepatobiliary tissues of PSC and non-PSC patients (n = 8-11 per patient group) were collected at transplantation and were analysed for IL8 and FGF19 mRNA expression and IL8 localization. The effect of IL8 on proliferation of primary human cholangiocytes and expression of pro-fibrotic genes was studied. RESULTS In PSC patients, median IL8 in ductal bile was 6.6 ng/ml vs. 0.24 ng/ml in controls. Median IL8 in gallbladder bile was 7.6 ng/ml in PSC vs. 2.2 and 0.3 ng/ml in two control groups. IL8 mRNA in PSC gallbladder was increased and bile ducts stained positive for IL8. In vitro, IL8 induced proliferation of primary human cholangiocytes and increased the expression of pro-fibrotic genes. CONCLUSION Elevation of IL8 in bile of PSC patients, collected at different stages of disease, indicates an ongoing inflammatory stimulus that drives IL8 production. This challenges the idea that advanced PSC is a burned-out disease, and calls for reconsideration of anti-inflammatory therapy in PSC.
Collapse
Affiliation(s)
- Serge J Zweers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Alexey Shiryaev
- Division of Cancer Medicine, Surgery and Transplantation, Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Surgery and Transplantation, Research Institute of Internal Medicine, K.G. Jebsen Inflammation Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mina Komuta
- Morphology and Molecular Pathology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Mette Vesterhus
- Division of Cancer Medicine, Surgery and Transplantation, Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway.,National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Johannes R Hov
- Division of Cancer Medicine, Surgery and Transplantation, Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Surgery and Transplantation, Research Institute of Internal Medicine, K.G. Jebsen Inflammation Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - María J Perugorria
- Department of Liver and Department of Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - D Rudi de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Jung-Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Shanna Tol
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Jesus M Banales
- Department of Liver and Department of Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Tania Roskams
- Morphology and Molecular Pathology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Tom H Karlsen
- Division of Cancer Medicine, Surgery and Transplantation, Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Surgery and Transplantation, Research Institute of Internal Medicine, K.G. Jebsen Inflammation Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Peter L Jansen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frank G Schaap
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.,Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
14
|
Simple steatosis sensitizes cholestatic rats to liver injury and dysregulates bile salt synthesis and transport. Sci Rep 2016; 6:31829. [PMID: 27535001 PMCID: PMC4989137 DOI: 10.1038/srep31829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet. We found that plasma liver enzymes were higher and hepatic neutrophil influx, inflammation, and fibrosis were more pronounced in animals with combined steatosis and cholestasis compared to cholestasis alone. Circulating bile salt levels were markedly increased and hepatic bile salt composition shifted from hydrophilic tauro-β-muricholate to hydrophobic taurocholate. This shift was cytotoxic for HepG2 hepatoma cells. Gene expression analysis revealed induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), and modulation of the hepatic bile salt transport system. In conclusion, simple steatosis sensitizes the liver to cholestatic injury, inflammation, and fibrosis in part due to a cytotoxic shift in bile salt composition. Plasma bile salt levels were elevated, linked to dysregulation of bile salt synthesis and enhanced trafficking of bile salts from the liver to the systemic circulation.
Collapse
|
15
|
de Waart DR, Naik J, Utsunomiya KS, Duijst S, Ho-Mok K, Bolier AR, Hiralall J, Bull LN, Bosma PJ, Oude Elferink RP, Paulusma CC. ATP11C targets basolateral bile salt transporter proteins in mouse central hepatocytes. Hepatology 2016; 64:161-74. [PMID: 26926206 PMCID: PMC5266587 DOI: 10.1002/hep.28522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/25/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED ATP11C is a homolog of ATP8B1, both of which catalyze the transport of phospholipids in biological membranes. Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type1 in humans, which is characterized by a canalicular cholestasis. Mice deficient in ATP11C are characterized by a conjugated hyperbilirubinemia and an unconjugated hypercholanemia. Here, we have studied the hypothesis that ATP11C deficiency interferes with basolateral uptake of unconjugated bile salts, a process mediated by organic anion-transporting polypeptide (OATP) 1B2. ATP11C localized to the basolateral membrane of central hepatocytes in the liver lobule of control mice. In ATP11C-deficient mice, plasma total bilirubin levels were 6-fold increased, compared to control, of which ∼65% was conjugated and ∼35% unconjugated. Plasma total bile salts were 10-fold increased and were mostly present as unconjugated species. Functional studies in ATP11C-deficient mice indicated that hepatic uptake of unconjugated bile salts was strongly impaired whereas uptake of conjugated bile salts was unaffected. Western blotting and immunofluorescence analysis demonstrated near absence of basolateral bile salt uptake transporters OATP1B2, OATP1A1, OATP1A4, and Na(+) -taurocholate-cotransporting polypeptide only in central hepatocytes of ATP11C-deficient liver. In vivo application of the proteasome inhibitor, bortezomib, partially restored expression of these proteins, but not their localization. Furthermore, we observed post-translational down-regulation of ATP11C protein in livers from cholestatic mice, which coincided with reduced OATP1B2 levels. CONCLUSIONS ATP11C is essential for basolateral membrane localization of multiple bile salt transport proteins in central hepatocytes and may act as a gatekeeper to prevent hepatic bile salt overload. Conjugated hyperbilirubinemia and unconjugated hypercholanemia and loss of OATP expression in ATP11C-deficient liver strongly resemble the characteristics of Rotor syndrome, suggesting that mutations in ATP11C can predispose to Rotor syndrome. (Hepatology 2016;64:161-174).
Collapse
Affiliation(s)
- Dirk R. de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Jyoti Naik
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Kam Ho-Mok
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - A. Ruth Bolier
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan Hiralall
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Laura N. Bull
- Liver Center Laboratory, Department of Medicine, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA
| | - Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Bolier R, Tolenaars D, Kremer AE, Saris J, Parés A, Verheij J, Bosma PJ, Beuers U, Oude Elferink RP. Enteroendocrine cells are a potential source of serum autotaxin in men. Biochim Biophys Acta Mol Basis Dis 2016; 1862:696-704. [DOI: 10.1016/j.bbadis.2016.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/22/2015] [Accepted: 01/12/2016] [Indexed: 12/26/2022]
|
17
|
Arlt VM, Henderson CJ, Wolf CR, Stiborová M, Phillips DH. The Hepatic Reductase Null (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00116h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This review describes the applicability of the Hepatic Reductase Null (HRN) and Reductase Conditional Null (RCN) mouse models to study carcinogen metabolism.
Collapse
Affiliation(s)
- Volker M. Arlt
- Analytical and Environmental Sciences Division
- MRC-PHE Centre for Environment and Health
- King's College London
- London SE1 9NH
- UK
| | - Colin J. Henderson
- Division of Cancer Research
- Medical Research Institute
- Jacqui Wood Cancer Centre
- University of Dundee
- Dundee DD1 9SY
| | - C. Roland Wolf
- Division of Cancer Research
- Medical Research Institute
- Jacqui Wood Cancer Centre
- University of Dundee
- Dundee DD1 9SY
| | - Marie Stiborová
- Department of Biochemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - David H. Phillips
- Analytical and Environmental Sciences Division
- MRC-PHE Centre for Environment and Health
- King's College London
- London SE1 9NH
- UK
| |
Collapse
|
18
|
Kunne C, de Graaff M, Duijst S, de Waart DR, Oude Elferink RPJ, Paulusma CC. Hepatic cytochrome P450 deficiency in mouse models for intrahepatic cholestasis predispose to bile salt-induced cholestasis. J Transl Med 2014; 94:1103-13. [PMID: 25068656 DOI: 10.1038/labinvest.2014.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/19/2014] [Accepted: 06/29/2014] [Indexed: 11/09/2022] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) types 1 and 3 are severe cholestatic liver diseases caused by deficiency of ATB8B1 and ABCB4, respectively. Mouse models for PFIC display mild phenotypes compared with human patients, and this can be explained by the difference in bile salt pool composition. Mice, unlike humans, have the ability to detoxify hydrophobic bile salts by cytochrome P450-mediated (re)hydroxylation and thus have a less toxic bile salt pool. We have crossed mouse models for PFIC1 and PFIC3 with Hrn mice that have a reduced capacity to (re)hydroxylate bile salts. Double transgenes were obtained by backcrossing Atp8b1(G308V/G308V) and Abcb4(-/-) mice with Hrn mice that have a liver-specific disruption of the cytochrome P450 reductase gene and therefore have markedly reduced P450 activity. In these mice, a more hydrophobic bile salt pool was instilled by cholic acid supplementation of the diet, and bile formation and liver pathology was studied. As opposed to single transgenes, Atp8b1(G308V/G308V)/Hrn and Abcb4(-/-)/Hrn mice rapidly developed strong cholestasis that was evidenced by increased plasma bilirubin and bile salt levels. The bile salt pool was more toxic in both models; Atp8b1(G308V/G308V)/Hrn mice had a more hydrophobic plasma pool compared with the single transgene, whereas Abcb4(-/-)/Hrn mice had a more hydrophobic biliary pool compared with the single transgene. In line with these findings, liver damage was not aggravated in Atp8b1(G308V/G308V)/Hrn but was more severe in Abcb4(-/-)/Hrn mice. These data indicate that bile salt pool composition is a critical determinant in the initiation and progression of cholestasis and liver pathology in PFIC1 and PFIC3. Most importantly, our data suggest that the hydrophobicity of the plasma bile salt pool is an important determinant of the severity of cholestasis, whereas the hydrophobicity of the biliary bile salt pool is an important determinant of the severity of liver pathology.
Collapse
Affiliation(s)
- Cindy Kunne
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Marijke de Graaff
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
van der Mark VA, de Waart DR, Ho-Mok KS, Tabbers MM, Voogt HW, Oude Elferink RPJ, Knisely AS, Paulusma CC. The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2378-86. [PMID: 25239307 DOI: 10.1016/j.bbadis.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Deficiency of the phospholipid flippase ATPase, aminophospholipid transporter, class I, type 8B, member 1 (ATP8B1) causes progressive familial intrahepatic cholestasis type 1 (PFIC1) and benign recurrent intrahepatic cholestasis type 1 (BRIC1). Apart from cholestasis, many patients also suffer from diarrhea of yet unknown etiology. Here we have studied the hypothesis that intestinal ATP8B1 deficiency results in bile salt malabsorption as a possible cause of PFIC1/BRIC1 diarrhea. Bile salt transport was studied in ATP8B1-depleted intestinal Caco-2 cells. Apical membrane localization was studied by a biotinylation approach. Fecal bile salt and electrolyte contents were analyzed in stool samples of PFIC1 patients, of whom some had undergone biliary diversion or liver transplantation. Bile salt uptake by the apical sodium-dependent bile salt transporter solute carrier family 10 (sodium/bile acid cotransporter), member 2 (SLC10A2) was strongly impaired in ATP8B1-depleted Caco-2 cells. The reduced SLC10A2 activity coincided with strongly reduced apical membrane localization, which was caused by impaired apical membrane insertion of SLC10A2. Moreover, we show that endogenous ATP8B1 exists in a functional heterodimer with transmembrane protein 30A (CDC50A) in Caco-2 cells. Analyses of stool samples of post-transplant PFIC1 patients demonstrated that bile salt content was not changed, whereas sodium and chloride concentrations were elevated and potassium levels were decreased. The ATP8B1-CDC50A heterodimer is essential for the apical localization of SLC10A2 in Caco-2 cells. Diarrhea in PFIC1/BRIC1 patients has a secretory origin to which SLC10A2 deficiency may contribute. This results in elevated luminal bile salt concentrations and consequent enhanced electrolyte secretion and/or reduced electrolyte resorption.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | - D Rudi de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Kam S Ho-Mok
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Merit M Tabbers
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Heleen W Voogt
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - A S Knisely
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2014; 56:1085-99. [PMID: 25210150 DOI: 10.1194/jlr.r054114] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322
| | - Saul J Karpen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322
| |
Collapse
|
21
|
Kunne C, Acco A, Duijst S, de Waart DR, Paulusma CC, Gaemers I, Oude Elferink RPJ. FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model. Biochim Biophys Acta Mol Basis Dis 2014; 1842:739-46. [PMID: 24548803 DOI: 10.1016/j.bbadis.2014.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 12/14/2022]
Abstract
It has been established that bile salts play a role in the regulation of hepatic lipid metabolism. Accordingly, overt signs of steatosis have been observed in mice with reduced bile salt synthesis. The aim of this study was to identify the mechanism of hepatic steatosis in mice with bile salt deficiency due to a liver specific disruption of cytochrome P450 reductase. In this study mice lacking hepatic cytochrome P450 reductase (Hrn) or wild type (WT) mice were fed a diet supplemented with or without either 0.1% cholic acid (CA) or 0.025% obeticholic acid, a specific FXR-agonist. Feeding a CA-supplemented diet resulted in a significant decrease of plasma ALT in Hrn mice. Histologically, hepatic steatosis ameliorated after CA feeding and this was confirmed by reduced hepatic triglyceride content (115.5±7.3mg/g liver and 47.9±4.6mg/g liver in control- and CA-fed Hrn mice, respectively). The target genes of FXR-signaling were restored to normal levels in Hrn mice when fed cholic acid. VLDL secretion in both control and CA-fed Hrn mice was reduced by 25% compared to that in WT mice. In order to gain insight in the mechanism behind these bile salt effects, the FXR agonist also was administered for 3weeks. This resulted in a similar decrease in liver triglycerides, indicating that the effect seen in bile salt fed Hrn animals is FXR dependent. In conclusion, steatosis in Hrn mice is ameliorated when mice are fed bile salts. This effect is FXR dependent. Triglyceride accumulation in Hrn liver may partly involve impaired VLDL secretion.
Collapse
Affiliation(s)
- Cindy Kunne
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Alexandra Acco
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands; Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Ingrid Gaemers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|