1
|
Jiang QR, Zeng DW. Gut microbiota shifts in hepatitis B-related portal hypertension after transjugular intrahepatic portosystemic shunt: Mechanistic and clinical implications. World J Gastroenterol 2025; 31:100752. [PMID: 39839897 PMCID: PMC11684156 DOI: 10.3748/wjg.v31.i3.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
In this article, we provide commentary on the recent article by Zhao et al. We focus on the shifts in the gut microbiota of patients with hepatitis B virus (HBV)-associated cirrhosis/portal hypertension (PH) following transjugular intrahepatic portosystemic shunt (TIPS) and the implications for understanding the mechanisms, diagnosis, and treatment. By comparing the gut microbiota composition and dynamic changes before and after TIPS in patients with and without hepatic encephalopathy, the authors found an increase in non-probiotic bacteria in those who developed hepatic encephalopathy post-TIPS, with Morganella species present only in the hepatic encephalopathy group. The gut microbiota changes post-TIPS among patients without the occurrence of hepatic encephalopathy suggest potential therapeutic benefits through prophylactic microbiome therapies. Furthermore, the specific gut microbiota alterations may hold promise to predict the risk of hepatic encephalopathy in individuals undergoing TIPS for HBV-related PH. Despite these promising findings, future studies are needed to address limitations, including a small sample size, a relatively short evaluation period for gut microbiota alterations, the absence of data on dynamic alterations in gut microbiota post-TIPS and their correlation with blood ammonia levels, and the lack of validation in animal models. In conclusion, Zhao et al's study has shed new light on the link of gut microbiota with post-TIPS hepatic encephalopathy, potentially through the intricate gut-liver axis, and has important clinical implications for improving the management of patients with HBV-related PH.
Collapse
Affiliation(s)
- Qi-Rong Jiang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Da-Wu Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, Fujian Province, China
| |
Collapse
|
2
|
Padilha MDM, Melo FTDV, Laurentino RV, da Silva ANMR, Feitosa RNM. Dysregulation in the microbiota by HBV and HCV infection induces an altered cytokine profile in the pathobiome of infection. Braz J Infect Dis 2025; 29:104468. [PMID: 39608222 PMCID: PMC11636304 DOI: 10.1016/j.bjid.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/30/2024] Open
Abstract
Viral hepatitis is a public health problem, about 1 million people die due to complications of this viral disease, the etiological agents responsible for inducing cirrhosis and cellular hepatocarcinoma are HBV and HCV, both hepatotropic viruses that cause asymptomatic infection in most cases. The regulation of the microbiota performs many physiological functions, which can induce normal intestinal function and produce essential nutrients for the human body. Metabolites derived from gut microbiota or direct regulation of host immunity and metabolism have been reported to profoundly affect tumorigenesis in liver disease. If the microbiota is unbalanced, both exogenous and symbiotic microorganisms can affect a pathological process. It is well understood that the microbiota plays a role in viral diseases and infections, specifically the hepatic portal pathway has been linked to the gut-liver axis. In HBV and HCV infections, the altered bacterial representatives undergo a state of dysbiosis, with subsequent establishment of the pathobiome with overexpression of taxons such as Bacteroides, Clostridium, Lactobacillus, Enterobacter, and Enterococcus. This dysregulated microbiome induces a microenvironment conducive to the development of hepatic complications in patients with acute and chronic HBV and HCV infection, with subsequent dysregulation of cytokines IFN-α/β, TNF-α, IL-1β, TGF-β, IL-6 and IL-10, which alter the dysfunction and damage of the hepatic portal system. In view of the above, this review aimed to correlate the pathophysiological mechanisms in HBV and HCV infection, the dysregulation of the microbiome in patients infected with HBV and HCV, the most altered cytokines in the microbiome, and the most altered bacterial representatives in the pathobiome of infection.
Collapse
Affiliation(s)
- Marcos Daniel Mendes Padilha
- Universidade Federal do Pará (UFPA), Instituto de Ciências Biológicas, Laboratório de Virologia, Belém, PA, Brazil.
| | | | - Rogério Valois Laurentino
- Universidade Federal do Pará (UFPA), Instituto de Ciências da Saúde, Health Sciences, Belém, PA, Brazil
| | | | | |
Collapse
|
3
|
Mady EA, Osuga H, Toyama H, El-Husseiny HM, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Relationship between the components of mare breast milk and foal gut microbiome: shaping gut microbiome development after birth. Vet Q 2024; 44:1-9. [PMID: 38733121 PMCID: PMC11089936 DOI: 10.1080/01652176.2024.2349948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.
Collapse
Affiliation(s)
- Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Haruna Osuga
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Wang K, Liu X, Huang H, Suo M, Wang J, Liu X, Zhang J, Chen X, Li Z. A new target for treating intervertebral disk degeneration: gut microbes. Front Microbiol 2024; 15:1452774. [PMID: 39678913 PMCID: PMC11638241 DOI: 10.3389/fmicb.2024.1452774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Intervertebral disk degeneration (IDD) is a common clinical spinal disease and one of the main causes of low back pain (LBP). Generally speaking, IDD is considered a natural degenerative process with age. However, with the deepening of research, people have discovered that IDD is not only related to age, but also has many factors that can induce and accelerate its progression. In addition, the pathogenesis of IDD remains unclear, resulting in limited traditional treatment methods that cannot effectively prevent and treat IDD. Conservative treatment may lead to patients' dependence on drugs, and the pain relief effect is not obvious. Similarly, surgical treatment is highly invasive, with a longer recovery time and a higher recurrence rate. With the deepening of exploration, people have discovered that intestinal microorganisms are an important symbiotic microbial community in the human body and are closely related to the occurrence and development of various diseases. Changes in intestinal microorganisms and their metabolites may affect the body's inflammatory response, immune regulation, and metabolic processes, thereby affecting the health of the intervertebral disk. In this context, the gut microbiota has received considerable attention as a potential target for delaying or treating IDD. This article first introduces the impact of gut microbes on common distal organs, and then focuses on three potential mechanisms by which gut microbes and their metabolites influence IDD. Finally, we also summarized the methods of delaying or treating IDD by interfering with intestinal microorganisms and their metabolites. Further understanding of the potential mechanisms between intestinal microorganisms and IDD will help to formulate reasonable IDD treatment strategies to achieve ideal therapeutic effects.
Collapse
Affiliation(s)
- Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China
| |
Collapse
|
5
|
Ahmadi Badi S, Malek A, Seyedi SA, Bereimipour A, Irian S, Shojaie S, Sohouli MH, Rohani P, Masotti A, Khatami S, Siadat SD. Direct and macrophage stimulation mediated effects of active, inactive, and cell-free supernatant forms of Akkermansia muciniphila and Faecalibacterium duncaniae on hepcidin gene expression in HepG2 cells. Arch Microbiol 2024; 206:287. [PMID: 38833010 DOI: 10.1007/s00203-024-04007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Amin Malek
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Saeed Irian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
7
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
8
|
Huang S, Xiao X, Wu H, Zhou F, Fu C. MicroRNA-582-3p knockdown alleviates non-alcoholic steatohepatitis by altering the gut microbiota composition and moderating TMBIM1. Ir J Med Sci 2024; 193:909-916. [PMID: 37823951 DOI: 10.1007/s11845-023-03529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The gut dysbiosis correlates with non-alcoholic steatohepatitis (NASH), involving the moderation of miRNAs. AIMS This study was aimed to investigate the correlation between gut microbiota and miR-582-3p in patients with non-alcoholic steatohepatitis (NASH) and to explore the possible regulation of miR-582-3p in the function of the activated hepatic stellate cells (HSCs). METHODS GSE69670 and GSE14435 datasets were analyzed by GEO2R. Plasma and fecal samples were obtained from the subjects, non-steatosis (n = 35), simple steatosis (n = 35), and NASH (n = 35). The variations in intestinal microbiota in the non-steatosis and NASH groups were analyzed using 16S rRNA sequencing. The expression of miR-582-3p among the groups was detected using RT-qPCR. Correlations between top-changed intestinal microbiota and miR-582-3p expression were analyzed using the Pearson correlation coefficient. Target gene identification was performed by prediction and dual-luciferase reporter assay. The effect of miR-582-3p on the cell function of TGF-β1-induced HSCs was assessed in vitro. RESULTS miR-582-3p was the common differentially expressed miRNA between GSE69670 and GSE14435. miR-582-3p was upregulated in NASH patients' plasma, as well as in TGF-β1-induced LX-2 cells. The non-steatosis and NASH groups showed significantly different intestinal microbiota distribution. miR-582-3p was positively correlated with specific microbiota populations. TMBIM1 was a target gene for miR-582-3p. Knockdown of miR-582-3p suppressed HSC proliferation and myofibroblast markers' expression but induced cell apoptosis, via TMBIM1. CONCLUSIONS This present study suggests that miR-582-3p promotes the progression of NASH. Knockdown of miR-582-3p may alleviate NASH by altering the gut microbiota composition and moderating TMBIM1.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Internal Medicine, Hunan Maternal and Child Health Hospital, Changsha, Hunan, 410013, China
| | - Xia Xiao
- Department of Internal Medicine, Hunan Maternal and Child Health Hospital, Changsha, Hunan, 410013, China
| | - Hongman Wu
- Department of Infection Control Center, Xiangya Hospital of Central South University, NO.87, Xiangya Road, Changsha, Hunan, 410008, China
| | - Feng Zhou
- Department of Infection Control Center, Xiangya Hospital of Central South University, NO.87, Xiangya Road, Changsha, Hunan, 410008, China
| | - Chenchao Fu
- Department of Infection Control Center, Xiangya Hospital of Central South University, NO.87, Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Dawoud A, Elmasri RA, Mohamed AH, Mahmoud A, Rostom MM, Youness RA. Involvement of CircRNAs in regulating The "New Generation of Cancer Hallmarks": A Special Depiction on Hepatocellular Carcinoma. Crit Rev Oncol Hematol 2024; 196:104312. [PMID: 38428701 DOI: 10.1016/j.critrevonc.2024.104312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
The concept of 'Hallmarks of Cancer' is an approach of reducing the enormous complexity of cancer to a set of guiding principles. As the underlying mechanism of cancer are portrayed, we find that we gain insight and additional aspects of the disease arise. The understanding of the tumor microenvironment (TME) brought a new dimension and led to the discovery of novel hallmarks such as senescent cells, non-mutational epigenetic reprogramming, polymorphic microbiomes and unlocked phenotypic plasticity. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across all species. Recent studies on the circRNAs have highlighted their crucial function in regulating the formation of human malignancies through a range of biological processes. The primary goal of this review is to clarify the role of circRNAs in the most common form of liver cancer, hepatocellular carcinoma (HCC). This review also addressed the topic of how circRNAs affect HCC hallmarks, including the new generation hallmarks. Finally, the enormous applications that these rapidly expanding ncRNA molecules serve in the functional and molecular development of effective HCC diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- A Dawoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; School of Medicine, University of North California, Chapel Hill, NC 27599, USA
| | - R A Elmasri
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt
| | - A H Mohamed
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - A Mahmoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Biotechnology School, Nile University, Giza 12677, Egypt
| | - M M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt.
| |
Collapse
|
10
|
Shalhoub H, Gonzalez P, Dos Santos A, Guillermet-Guibert J, Moniaux N, Dupont N, Faivre J. Simultaneous activation and blockade of autophagy to fight hepatocellular carcinoma. AUTOPHAGY REPORTS 2024; 3:2326241. [PMID: 40395533 PMCID: PMC11864649 DOI: 10.1080/27694127.2024.2326241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 05/22/2025]
Abstract
Autophagy is considered a target for cancer treatment, although few compounds manipulating this process have been added to the anticancer arsenal in humans. Pharmacological manipulation of autophagy has therefore been considered in the treatment and chemosensitization of hepatocellular carcinoma (HCC), a heterogeneous malignancy that remains difficult to treat (limited impact of genomic discoveries for the implementation of personalized precision medicine). We analyzed the autophagy marker proteins p62 and LC3 in paired tumor and adjacent cirrhotic non-tumor tissues of human HCC. We show strong variability in p62 and LC3-II levels between tumor parts of different HCC patients and between tumor and non-tumor HCC in the same patient, suggesting heterogeneity in autophagy flux. This diversity in flux led us to consider a non-personalized method of autophagy targeting, combining simultaneous activation and blockade of autophagy, which could, in theory, benefit a substantial number of HCC patients, irrespective of tumor autophagic flux. We show that the combination of sodium butyrate (NaB, autophagy inducer) and chloroquine (CQ, autophagy blocker) has a marked and synergistic cytotoxic effect in vitro on all human liver cancer cell lines studied, compared with the cellular effect of each product separately, and with no deleterious effect on normal hepatocytes in culture. Cancer cell death was associated with accumulation of autophagosomes, induction of lysosome membrane permeabilization and increased oxidative stress. Our results suggest that simultaneous activation and blockade of autophagy may be a valuable approach against HCC, and that microbiota-derived products improve the sensitivity of HCC cells to antitumor agents. Abbreviations AV: annexin V; CI: combination index; CTSB: Cathepsin B; CTSD: Cathepsin D; CTSF: Cathepsin F; CQ: chloroquine; DEN: N-diethylnitrosamine; DMEM: Dulbecco's modified eagle medium; FBS: fetal bovine serum; FSC: forward scatter; GNS: N-acetylglucosamine-6-sulfatase; HCC: hepatocellular carcinoma; HDACi: histone deacetylase inhibitor; HCQ: hydroxychloroquine; LMP: lysosomal membrane permeabilization; LAMP1: lysosome-associated membrane protein; LIPA: Lysosomal acid lipase; LSR: Lysosomal staining cells; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; NaB: sodium butyrate; NASH: non-alcoholic steatohepatitis; NRF2: nuclear factor erythroid 2-related factor 2; PI: propidium iodide; PMSF: phenylmethanesulfonyl fluoride; ROS: reactive oxygen species; SCARB2: Scavenger receptor class B member 2; SQSTM1/p62: sequestosome 1; SMPD1: Sphingomyelin phosphodiesterase 1; SSC: side scatter; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Hala Shalhoub
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS, Université Toulouse III, Toulouse, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University. Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
11
|
Hong S, Chen L, Zhou X, Huang Y, Tian Y, Hu H, Yu B, Wu H, Yang C, Lv Z, Lv L. Genetically predicted causal effects of gut microbiota on spinal pain: a two-sample Mendelian randomization analysis. Front Microbiol 2024; 15:1357303. [PMID: 38591041 PMCID: PMC10999687 DOI: 10.3389/fmicb.2024.1357303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Background Observational studies have hinted at a correlation between the gut microbiota and spinal pain (SP). However, the impact of the gut microbiota on SP remains inconclusive. Methods In this study, we employed a two-sample Mendelian randomization (MR) analysis to explore the causal relationship between the gut microbiota and SP, encompassing neck pain (NP), thoracic spine pain (TSP), low back pain (LBP), and back pain (BP). The compiled gut microbiota data originated from a genome-wide association study (GWAS) conducted by the MiBioGen consortium (n = 18,340). Summary data for NP were sourced from the UK Biobank, TSP from the FinnGen Biobank, and LBP from both the UK Biobank and FinnGen Biobank. Summary data for BP were obtained from the UK Biobank. The primary analytical approach for assessing causal relationships was the Inverse Variance Weighted (IVW) method, supplemented by various sensitivity analyses to ensure result robustness. Results The IVW analysis unveiled 37 bacterial genera with a potential causal relationship to SP. After Benjamini-Hochberg corrected test, four bacterial genera emerged with a strong causal relationship to SP. Specifically, Oxalobacter (OR: 1.143, 95% CI 1.061-1.232, P = 0.0004) and Tyzzerella 3 (OR: 1.145, 95% CI 1.059-1.238, P = 0.0007) were identified as risk factors for LBP, while Ruminococcaceae UCG011 (OR: 0.859, 95% CI 0.791-0.932, P = 0.0003) was marked as a protective factor for LBP, and Olsenella (OR: 0.893, 95% CI 0.839-0.951, P = 0.0004) was recognized as a protective factor for low back pain or/and sciatica. No significant heterogeneity or horizontal pleiotropy was observed through alternative testing methods. Conclusion This study establishes a causal relationship between the gut microbiota and SP, shedding light on the "gut-spine" axis. These findings offer novel perspectives for understanding the etiology of SP and provide a theoretical foundation for potential interventions targeting the gut microbiota to prevent and treat SP.
Collapse
Affiliation(s)
- Shuangwei Hong
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Longhao Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xingchen Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanshen Huang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu Tian
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huijie Hu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bei Yu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongjiao Wu
- Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao Yang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
| | - Zhizhen Lv
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lijiang Lv
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Mishra Y, Ranjan A, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Hromić-Jahjefendić A, Uversky VN, Tambuwala MM. The role of the gut microbiome in gastrointestinal cancers. Cell Signal 2024; 115:111013. [PMID: 38113978 DOI: 10.1016/j.cellsig.2023.111013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The gut microbiota present in the human digestive system is incredibly varied and is home to trillions of microorganisms. The gut microbiome is shaped at birth, while numerous genetic, dietary, and environmental variables primarily influence the microbiome composition. The importance of gut microbiota on host health is becoming more widely acknowledged. Digestion, intestinal permeability, and immunological and metabolism responses can all be affected by changes in the composition and function of the gut microbiota. There is mounting evidence that the microbial population's complex traits are important biomarkers and indicators of patient outcomes in cancer and its therapies. Numerous studies have demonstrated that changed commensal gut microorganisms contribute to the development and spread of cancer through various routes. Despite the ongoing controversy surrounding the gut microbiome and gastrointestinal cancer, accumulating evidence points to a potentially far more intricate connection than a simple cause-and-effect relationship. SIMPLE SUMMARY: Due to their high frequency and fatality rate, gastrointestinal cancers are regarded as a severe public health issue with complex medical and economic burdens. The gut microbiota may directly or indirectly interact with existing therapies like immunotherapy and chemotherapy, affecting how well a treatment works. The gut microbiome influences the immune response's activity, function, and development. Generally, certain gut bacteria impact the antitumor actions during cancer by creating particular metabolites or triggering T-cell responses. Yet, certain bacterial species have been found to promote cellular proliferation and metastasis in cancer, and comprehending these interactions in the context of cancer may help identify possible treatment targets. Notwithstanding the improvements in the field, additional research is still required to comprehend the underlying processes, examine the effects on existing therapies, and pinpoint certain bacteria and immune cells that can cause this interaction.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Alkhama Medical and Health Sciences University, United Arab Emirates
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, England, United Kingdom.
| |
Collapse
|
13
|
Song J, Zhao X, Bo J, Lv Z, Li G, Chen Y, Liang J, Zhang C, Jin X, Liu C, Chang J. A polysaccharide from Alhagi honey protects the intestinal barrier and regulates the Nrf2/HO-1-TLR4/MAPK signaling pathway to treat alcoholic liver disease in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117552. [PMID: 38072293 DOI: 10.1016/j.jep.2023.117552] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory of traditional Chinese medicine, the main factors related to alcoholic liver disease (ALD) are qi stagnation and blood stasis of the five viscera. Previously, we showed that the bioactive components of Alhagi honey have various pharmacological effects in treating liver diseases, but the influence of Alhagi honey on ALD (and its mechanism of action) is not known. AIM OF THE STUDY To determine the efficacy of the main active component of Alhagi honey, the polysaccharide AHPN80, in ALD and to explore the potential mechanism of action. MATERIALS AND METHODS AHPN80 was isolated from dried Alhagi honey and identified by transmission electron microscopy, Fourier-transform infrared spectroscopy, and gas chromatography. Venous blood, liver tissue, and colon tissue were collected in a mouse model of alcohol-induced acute liver injury. Histology, staining (Oil Red O, Alcian Blue-Periodic Acid Schiff) and measurement of reactive oxygen species (ROS) levels were used to detect histopathologic and lipid-accumulation changes in the liver and colon. Lipopolysaccharide (LPS) levels and the content of proinflammatory cytokines in serum were measured by enzyme-linked immunosorbent assays. Commercial kits were employed to detect biochemistry parameters in serum and the liver. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining kit was used to identify hepatocyte apoptosis. Expression of tight junction-associated proteins in colon tissues and nuclear factor erythroid 2-related factor 2/heme oxygenase-1/toll-like receptor-4/mitogen-activated protein kinase (Nrf2/HO-1/TLR4/MAPK) pathway-related proteins in liver tissues and HepG2 cells were analyzed by immunofluorescence or western blotting. RESULTS In a mouse model of alcohol-induced acute liver injury, AHPN80 therapy: significantly improved liver parameters (cytochrome P450 2E1, alcohol dehydrogenase, aldehyde dehydrogenase, superoxide dismutase, malondialdehyde, glutathione peroxidase, catalase, total cholesterol, triglycerides, alanine transaminase, aspartate transaminase); reduced serum levels of LPS, interleukin (IL)-1β, IL-6, and tumor necrosis faction-α; increased levels of IL-10 and interferon-gamma. AHPN80 reduced ALD-induced lipid accumulation and ROS production, improved alcohol-induced inflammatory damage to hepatocytes, and inhibited hepatocyte apoptosis. Immunofluorescence staining and western blotting suggested that AHPN80 might eliminate hepatic oxidative stress by activating the Nrf2/HO-1 signaling pathway, repair the intestinal barrier, inhibit the LPS/TLR4/MAPK signaling pathway, and reduce liver inflammation. CONCLUSIONS AHPN80 may activate the Nrf2/HO-1 pathway to eliminate oxidative stress, protect the intestinal barrier, and regulate the TLR4/MAPK pathway to treat ALD in mice. AHPN80 could be a functional food and natural medicine to prevent ALD and its complications.
Collapse
Affiliation(s)
- Jianzhong Song
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Department of Pharmacy, The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi, 830011, China
| | - Xin Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Jiaqiang Bo
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiyuan Lv
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Gairu Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yingying Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Jiaqi Liang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chunyu Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoyan Jin
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Junmin Chang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
14
|
Yang J, Gao H, Zhang T, Fan Y, Wu Y, Zhao X, Li Y, Wu L, Zhao H, Yang L, Zhong H, Li L, Xie X, Wu Q. In Vitro Lactic Acid Bacteria Anti-Hepatitis B Virus (HBV) Effect and Modulation of the Intestinal Microbiota in Fecal Cultures from HBV-Associated Hepatocellular Carcinoma Patients. Nutrients 2024; 16:600. [PMID: 38474727 DOI: 10.3390/nu16050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC), being ranked as the top fifth most prevalent cancer globally, poses a significant health challenge, with a considerable mortality rate. Hepatitis B virus (HBV) infection stands as the primary factor contributing to HCC, presenting substantial challenges in its treatment. This study aimed to identify lactic acid bacteria (LAB) with anti-HBV properties and evaluate their impact on the intestinal flora in HBV-associated HCC. Initially, two LAB strains, Levilactobacillus brevis SR52-2 (L. brevis SR52-2) and LeviLactobacillus delbrueckii subsp. bulgaicus Q80 (L. delbrueckii Q80), exhibiting anti-HBV effects, were screened in vitro from a pool of 498 LAB strains through cell experiments, with extracellular expression levels of 0.58 ± 0.05 and 0.65 ± 0.03, respectively. These strains exhibited the capability of inhibiting the expression of HBeAg and HBsAg. Subsequent in vitro fermentation, conducted under simulated anaerobic conditions mimicking the colon environment, revealed a decrease in pH levels in both the health control (HC) and HCC groups influenced by LAB, with a more pronounced effect observed in the HC group. Additionally, the density of total short-chain fatty acids (SCFAs) significantly increased (p < 0.05) in the HCC group. Analysis of 16S rRNA highlighted differences in the gut microbiota (GM) community structure in cultures treated with L. brevis SR52-2 and L. delbrueckii Q80. Fecal microflora in normal samples exhibited greater diversity compared to HBV-HCC samples. The HCC group treated with LAB showed a significant increase in the abundance of the phyla Firmicutes, Bacteroidetes and Actinobacteria, while Proteobacteria significantly decreased compared to the untreated HCC group after 48 h. In conclusion, the findings indicate that LAB, specifically L. brevis SR52-2 and L. delbrueckii Q80, possessing antiviral properties, contribute to an improvement in gastrointestinal health.
Collapse
Affiliation(s)
- Juan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - He Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tiantian Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yong Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- Guangdong Huankai Microbial Co., Ltd., Zhaoqing 526238, China
| | - Xinyu Zhao
- Guangdong Huankai Microbial Co., Ltd., Zhaoqing 526238, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haojie Zhong
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longyan Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
15
|
Wei J, Luo J, Yang F, Dai W, Pan X, Luo M. Identification of commensal gut bacterial strains with lipogenic effects contributing to NAFLD in children. iScience 2024; 27:108861. [PMID: 38313052 PMCID: PMC10835367 DOI: 10.1016/j.isci.2024.108861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Gut microbiota is known to have a significant impact on nonalcoholic fatty liver disease (NAFLD), particularly in children with obesity. However, the specific functions of microbiota at the strain level in this population have not been fully elucidated. In this study, we successfully isolated and identified several commensal gut bacterial strains that were dominant in children with obesity and NAFLD. Among these, four novel isolates were found to have significant lipogenic effects in vitro. These strains exhibited a potential link to hepatocyte steatosis by regulating the expression of genes involved in lipid metabolism and inflammation. Moreover, a larger cohort analysis confirmed that these identified bacterial strains were enriched in the NAFLD group. The integrated analysis of these strains effectively distinguished NASH from NAFL. These four strains might serve as potential biomarkers in children with NAFLD. These findings provided new insights into the exploration of therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, Hunan, China
| | - Wen Dai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Xiongfeng Pan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
16
|
Silva-Caso W, Carrillo-Ng H, Aguilar-Luis MA, Tarazona-Castro Y, Valle LJD, Tinco-Valdez C, Palomares-Reyes C, Urteaga N, Bazán-Mayra J, del Valle-Mendoza J. Parasitosis by Fasciola hepatica and Variations in Gut Microbiota in School-Aged Children from Peru. Microorganisms 2024; 12:371. [PMID: 38399775 PMCID: PMC10891680 DOI: 10.3390/microorganisms12020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Human fascioliasis is considered an endemic and hyper-endemic disease in the Peruvian Andean valleys. Our objective was to determine variations in the composition of the gut microbiota among children with Fasciola hepatica and children who do not have this parasitosis. (2) Method: A secondary analysis was performed using fecal samples stored in our biobank. The samples were collected as part of an epidemiological Fasciola hepatica cross-sectional study in children from 4 through 14 years old from a community in Cajamarca, Peru. (3) Results: In a comparison of the bacterial genera that make up the intestinal microbiota between the F. hepatica positive and negative groups, it was found that there are significant differences in the determination of Lactobacillus (p = 0.010, CI: 8.5-61.4), Bacteroides (p = 0.020, CI: 18.5-61.4), Clostridium (p < 0.001, CI: 3.5-36.0), and Bifidobacterium (p = 0.018, CI: 1.1-28.3), with each of these genera being less frequent in children parasitized with F. hepatica. (4) Conclusions: These results show that F. hepatica may be associated with direct or indirect changes in the bacterial population of the intestinal microbiota, particularly affecting three bacterial genera.
Collapse
Affiliation(s)
- Wilmer Silva-Caso
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Hugo Carrillo-Ng
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Miguel Angel Aguilar-Luis
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Yordi Tarazona-Castro
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Luis J. Del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain;
| | - Carmen Tinco-Valdez
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
| | - Carlos Palomares-Reyes
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Numan Urteaga
- Puesto de Salud Callancas, Dirección Regional de Salud Cajamarca (DIRESA), Cajamarca 60101, Peru;
| | - Jorge Bazán-Mayra
- Laboratorio Regional de Cajamarca, Dirección Regional de Salud de Cajamarca (DIRESA), Cajamarca 60101, Peru;
| | - Juana del Valle-Mendoza
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| |
Collapse
|
17
|
Balouei F, Stefanon B, Martello E, Atuahene D, Sandri M, Meineri G. Supplementation with Silybum marianum Extract, Synbiotics, Omega-3 Fatty Acids, Vitamins, and Minerals: Impact on Biochemical Markers and Fecal Microbiome in Overweight Dogs. Animals (Basel) 2024; 14:579. [PMID: 38396547 PMCID: PMC10886211 DOI: 10.3390/ani14040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Overweight and obese dogs can develop metabolic dysfunction, characterized by an inflammatory response and involvement of liver functions. If a modulation of the gut microbiome and its interaction with the gut-liver axis is implicated in the development of metabolic dysfunction, exploration becomes necessary. Over the past decade, diverse therapeutic approaches have emerged to target pathogenic factors involved in metabolic dysfunction. This study investigated the impact of a supplement with hepatoprotective activity, containing extracts of Silybum marianum, prebiotics, probiotics, n-3 polyunsaturated fatty acids, vitamins, and minerals on hematological markers of liver functions and inflammation, as well as on the intestinal microbiota of 10 overweight adult dogs over a 35-day time span. Animals underwent clinical and laboratory evaluations every 7 days, both before the administration of the supplement (T0) and after 7, 14, 21, 28, and 35 days (T1, T2, T3, T4, and T5). In comparison to T0, a significant (p < 0.05) decrease in ALP, glucose, direct bilirubin, and CRP was observed from T3 to T5. The alpha diversity of the fecal microbiota significantly decreased (p < 0.05) only at T1, with high variability observed between dogs. Total short-chain fatty acid and lactic acid were also lower at T1 (p < 0.05) compared to the other times of sampling. The beta diversity of the fecal microbiota failed to show a clear pattern in relation to the sampling times. These results of blood parameters in overweight dogs show a reduction of the inflammation and an improvement of metabolic status during the study period, but the effective contribution of the supplement in this clinical outcome deserves further investigation. Furthermore, the considerable individual variability observed in the microbiome hinders the confident detection of supplement effects.
Collapse
Affiliation(s)
- Fatemeh Balouei
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham City Hospital Campus, Nottingham NG5 1PB, UK;
| | - David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, 10095 Turin, Italy; (D.A.); (G.M.)
| | - Misa Sandri
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, 10095 Turin, Italy; (D.A.); (G.M.)
| |
Collapse
|
18
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
19
|
Li J, Liu Y, Li Y, Sun T, Xiang H, He Z. The Role of Gut Microbiota and Circadian Rhythm Oscillation of Hepatic Ischemia-Reperfusion Injury in Diabetic Mice. Biomedicines 2023; 12:54. [PMID: 38255161 PMCID: PMC10813792 DOI: 10.3390/biomedicines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm oscillation and the gut microbiota play important roles in several physiological functions and pathology regulations. In this study, we aimed to elucidate the characteristics of diabetic hepatic ischemia-reperfusion injury (HIRI) and the role of the intestinal microbiota in diabetic mice with HIRI. Hepatic ischemia-reperfusion injury surgery was performed at ZT0 or ZT12. The liver pathological score and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed to evaluate liver injury. We conducted an FMT experiment to examine the role of intestinal microbiota in diabetic mice with HIRI. The 16S rRNA gene sequencing of fecal samples was performed for microbial analysis. Our results showed that hyperglycemia aggravated HIRI in diabetic mice, but there was no diurnal variation seen in diabetic HIRI. We also demonstrated that there were significant alterations in the gut microbiota composition between the diabetic and control mice and that gut microbiota transplantation from diabetic mice had obvious harmful effects on HIRI. These findings provide some useful information for the future research of diabetic mice with HIRI.
Collapse
Affiliation(s)
| | | | | | | | - Hongbing Xiang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Y.L.); (Y.L.); (T.S.)
| | - Zhigang He
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Y.L.); (Y.L.); (T.S.)
| |
Collapse
|
20
|
Yuan F, Xia GQ, Cai JN, Lv X, Dai M. Hesperitin attenuates alcoholic steatohepatitis by regulating TLR4/NF-κB signaling in mice. Anal Biochem 2023; 682:115339. [PMID: 37805041 DOI: 10.1016/j.ab.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
In the peel of citrus (Rutaceae) fruit, hesperitin (Hesp), a flavanone glycoside chemical, is found naturally. Hesp has been found to have a wide range of pharmacological actions, including anti-inflammatory, antioxidant, antiviral, and anticancer properties, according to earlier research. However, nothing is known regarding its function in alcoholic liver steatosis and inflammation. In this study, we employed a network pharmacology approach to identify the TLR4 signaling pathway as a primary target of Hesp for the treatment of alcoholic steatohepatitis (ASH). Molecular docking results showed that Hesp bound to the representative target TLR4 and exhibited good affinity. In addition, Hesp inhibits the TLR4 target and consequently the NF-κB signaling pathway, which in turn slows the evolution of alcoholic steatohepatitis, according to further in vitro and in vivo tests. The results of this study preliminarily indicate that Hesp is an ideal drug candidate for the treatment of ASH.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Pharmacy, Anhui Provincial Cancer Hospital, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guo-Qing Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Jun-Nan Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| | - Meng Dai
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
21
|
Boicean A, Birlutiu V, Ichim C, Brusnic O, Onișor DM. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023; 11:2930. [PMID: 38001930 PMCID: PMC10668969 DOI: 10.3390/biomedicines11112930] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The human gastrointestinal tract houses a diverse array of probiotic and pathogenic bacteria and any alterations in this microbial composition can exert a significant influence on an individual's well-being. It is well-established that imbalances in the gut microbiota play a pivotal role in the development of liver diseases. In light of this, a new adjuvant therapy for liver diseases could be regulating the intestinal microbiota. Through fecal microbiota transplantation, patients whose microbiomes are compromised are treated with stool from healthy donors in an attempt to restore a normal microbiome and alleviate their symptoms. A review of cross-sectional studies and case reports suggests that fecal microbiota transplants may offer effective treatment for chronic liver diseases. Adding to the potential of this emerging therapy, recent research has indicated that fecal microbiota transplantation holds promise as a therapeutic approach specifically for liver cirrhosis. By introducing a diverse range of beneficial microorganisms into the gut, this innovative treatment aims to address the microbial imbalances often observed in cirrhotic patients. While further validation is still required, these preliminary findings highlight the potential impact of fecal microbiota transplantation as a novel and targeted method for managing liver cirrhosis. We aimed to summarize the current state of understanding regarding this procedure, as a new therapeutic method for liver cirrhosis, as well as to explain its clinical application and future potential.
Collapse
Affiliation(s)
- Adrian Boicean
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Victoria Birlutiu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Danusia Maria Onișor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
22
|
Zhang X, Wan Z, Lin M, Li Y, Wu X, Jiang J, Lin S, Chi X. Immunoglobulin A and complement C4 are involved in the progression of liver fibrosis in patients with chronic hepatitis B. Int Immunopharmacol 2023; 122:110604. [PMID: 37451022 DOI: 10.1016/j.intimp.2023.110604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To explore the relationship between immunoglobulin A (IgA), complement C4, and liver fibrosis (L.F.) progression (LFP) in patients with chronic hepatitis B (CHB). METHODS This is a retrospective cohort study of CHB patients who received liver biopsies. Relevant data, including demographics, clinical serum markers, and immunological results obtained during liver biopsies, were collected and analyzed to assess and verify the relationship between IgA, C4, and LFP. RESULTS This study included 1,938 CHB patients, of whom 132 received two liver biopsies (group 1). Thirty (22.7%) of these patients were diagnosed with LFP (increase in L.F. stage (Scheuer score F ≥ 1)). IgA (C-IgA) and C4 (C-C4) change values between the first and second biopsies were independent risk factors for LFP. IgA levels increased, and C4 levels decreased during the second liver puncture. The remaining 1,806 patients received one liver puncture (group 2). They were divided into the following subgroups: A (F ≤ 1), B (1 < F ≤ 3), and C (F > 3) to verify whether the same trend was observed by cross-sectional study. IgA levels were highest, and C4 levels were lowest in group C (IgA: C > B > A, p < 0.05; C4: C < B < A, p < 0.05). CONCLUSIONS The findings of this study suggest that serum IgA and C4 levels are independent risk factors for LFP that could serve as future targets for L.F. management and treatment.
Collapse
Affiliation(s)
- Xiujuan Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China; Department of Hepatology Diseases, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China
| | - Zemin Wan
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China
| | - Ming Lin
- Department of Hepatology Diseases, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China
| | - Yingxian Li
- Department of Medical Education, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China
| | - Xiaoju Wu
- Department of Hepatology Diseases, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China
| | - Junmin Jiang
- Department of Hepatology Diseases, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China
| | - Shanshan Lin
- Department of Hepatology Diseases, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China
| | - Xiaoling Chi
- Department of Hepatology Diseases, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, PR China.
| |
Collapse
|
23
|
Wan J, Zhang Q, Hao Y, Tao Z, Song W, Chen S, Qin L, Song W, Shan Y. Infiltrated IL-17A-producing gamma delta T cells play a protective role in sepsis-induced liver injury and are regulated by CCR6 and gut commensal microbes. Front Cell Infect Microbiol 2023; 13:1149506. [PMID: 37475963 PMCID: PMC10354519 DOI: 10.3389/fcimb.2023.1149506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Sepsis is a common but serious disease in intensive care units, which may induce multiple organ dysfunctions such as liver injury. Previous studies have demonstrated that gamma delta (γδ) T cells play a protective role in sepsis. However, the function and mechanism of γδ T cells in sepsis-induced liver injury have not been fully elucidated. IL-17A-producing γδ T cells are a newly identified cell subtype. Methods We utilized IL-17A-deficient mice to investigate the role of IL-17A-producing γδ T cells in sepsis using the cecum ligation and puncture (CLP) model. Results Our findings suggested that these cells were the major source of IL-17A and protected against sepsis-induced liver injury. Flow cytometry analysis revealed that these γδ T cells expressed Vγ4 TCR and migrated into liver from peripheral post CLP, in a CCR6-dependent manner. When CLP mice were treated with anti-CCR6 antibody to block CCR6-CCL20 axis, the recruitment of Vγ4+ γδ T cells was abolished, indicating a CCR6-dependent manner of migration. Interestingly, pseudo germ-free CLP mice treated with antibiotics showed that hepatic IL-17A+ γδ T cells were regulated by gut commensal microbes. E. coli alone were able to restore the protective effect in pseudo germ-free mice by rescuing hepatic IL-17A+ γδ T cell population. Conclusion Our research has shown that Vγ4+ IL-17A+ γδ T cells infiltrating into the liver play a crucial role in protecting against sepsis-induced liver injury. This protection was contingent upon the recruitment of CCR6 and regulated by gut commensal microbes.
Collapse
Affiliation(s)
- Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Qian Zhang
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yilong Hao
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Zhang Tao
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Wei Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Song Chen
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Long Qin
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Weidong Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yi Shan
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
24
|
Lin MJ, Su TH, Chen CC, Wu WK, Hsu SJ, Tseng TC, Liao SH, Hong CM, Yang HC, Liu CJ, Wu MS, Kao JH. Diversity and composition of gut microbiota in healthy individuals and patients at different stages of hepatitis B virus-related liver disease. Gut Pathog 2023; 15:24. [PMID: 37218009 DOI: 10.1186/s13099-023-00549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) causes chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma. The evolution of human gut microbiota during the progression of HBV-related liver diseases remains unclear. Therefore, we prospectively enrolled patients with HBV-related liver diseases and healthy individuals. Through 16S ribosomal RNA amplicon sequencing, we characterized the gut microbiota of the participants and predicted the functions of microbial communities. RESULTS We analyzed the gut microbiota of 56 healthy controls and 106 patients with HBV-related liver disease [14 with resolved HBV infection, 58 with CHB, and 34 with advanced liver disease (15 with liver cirrhosis and 19 with hepatocellular carcinoma)]. Patients with HBV-related liver disease exhibited a higher degree of bacterial richness (all P < 0.05) than did healthy controls. Beta diversity analyses revealed a distinct clustering pattern between healthy controls and patients with HBV-related liver disease (all P < 0.05). The composition of bacteria (from the phylum level to the genus level) varied across the stages of liver disease. Linear discriminant analysis effect size revealed multiple taxa that differ significantly in abundance between healthy controls and patients with HBV-related liver disease; however, fewer differences were observed among patients with resolved HBV infection, those with CHB, and those with advanced liver disease. The ratio of Firmicutes to Bacteroidetes was increased in all three patient groups compared with the ratio in healthy controls (all P < 0.001). The analysis of the sequencing data by using PICRUSt2 revealed the changes in microbial functions with disease progression. CONCLUSIONS The diversity and composition of gut microbiota appear to vary significantly between healthy controls and patients at different stages of HBV-related liver disease. The understanding of gut microbiota may provide novel therapeutic options in these patients.
Collapse
Affiliation(s)
- Meng-Ju Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tung-Hung Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, 1 Chang-Te Street, Taipei, 10048, Taiwan.
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, 1 Chang-Te Street, Taipei, 10048, Taiwan
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jer Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, 1 Chang-Te Street, Taipei, 10048, Taiwan
| | - Tai-Chung Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, 1 Chang-Te Street, Taipei, 10048, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Sih-Han Liao
- Section of Gastroenterology, Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Ming Hong
- Division of Hospital Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Chih Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, 1 Chang-Te Street, Taipei, 10048, Taiwan
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, 1 Chang-Te Street, Taipei, 10048, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, 1 Chang-Te Street, Taipei, 10048, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, 1 Chang-Te Street, Taipei, 10048, Taiwan
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, 1 Chang-Te Street, Taipei, 10048, Taiwan.
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, 1 Chang-Te Street, Taipei, 10048, Taiwan.
| |
Collapse
|
25
|
Zhang W, Xu X, Cai L, Cai X. Dysbiosis of the gut microbiome in elderly patients with hepatocellular carcinoma. Sci Rep 2023; 13:7797. [PMID: 37179446 PMCID: PMC10182990 DOI: 10.1038/s41598-023-34765-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Fecal samples from participants aged 60-80 were collected and sequenced by a high-throughput second-generation sequencer to explore the structural composition of gut microbiota in elderly patients with hepatocellular carcinoma(HCC). Comparison of gut microbiota between patients with hepatocellular carcinoma and healthy controls, α diversity and β diversity were statistically different. At the genus level, compared with the normal group, the abundance of A Blautia, Fusicatenibacter, Anaerostipes, Lachnospiraceae_ND3007_group, CAG-56, Eggerthella, Lachnospiraceae_FCS020_group and Olsenella were decreased significantly in the LC group. In contrast, the abundance of Escherichia-Shigella, Fusobacterium, Megasphaera, Veillonella, Tyzzerella_4, Prevotella_2 and Cronobacter increased significantly. The KEGG and COG pathway analyses showed that the dysbiosis of gut bacteria in primary liver carcinoma is associated with several pathways, including amino acid metabolism, replication and repair, nucleotide metabolism, cell motility, cell growth and death, and transcription. Age is negatively associated with the abundance of Bifidobacterium. Lachnospiraceae_ ND3007_ group, [Eubacterium]_hallii_group, Blautia, Fuscatenibacter and Anaerostipes are negatively correlated with ALT, AST and GGT levels (p < 0.05), respectively. Alpha-fetoprotein (AFP) is positively associated with the abundance of Erysipelatoclostridium, Magasphaera, Prevotella 2, Escherichia-Shigella, Streptococcus and [Eubacterium]_eligens_group (p < 0.05), respectively. A random forest model showed that the genera Eggerthella, Anaerostipes, and Lachnospiraceae_ ND3007_ group demonstrated the best predictive capacity. The area under the Receiver Operating Characteristic Curve of Eggerthella, Anaerostipes and Lachnospiraceae_ ND3007_ group are 0.791, 0.766 and 0.730, respectively. These data are derived from the first known gut microbiome study in elderly patients with hepatocellular carcinoma. Potentially, specific microbiota can be used as a characteristic index for screening, diagnosis, and prognosis of gut microbiota changes in elderly patients with hepatocellular carcinoma and even as a therapeutic clinical target.
Collapse
Affiliation(s)
- Weizheng Zhang
- Clinical Laboratory, Guangzhou Cadre Health Management Center, Guangzhou No. 11 People's Hospital, Guangzhou, China
| | - Xiaosong Xu
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Cai
- Department of Basic Nursing, Guangdong Province Chaozhou Health School, Chaozhou, China
| | - Xiangsheng Cai
- Clinical Laboratory, Guangzhou Cadre Health Management Center, Guangzhou No. 11 People's Hospital, Guangzhou, China.
- Institute of Translational Medicine, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
26
|
Zhang H, Wu J, Liu Y, Zeng Y, Jiang Z, Yan H, Lin J, Zhou W, Ou Q, Ao L. Identification reproducible microbiota biomarkers for the diagnosis of cirrhosis and hepatocellular carcinoma. AMB Express 2023; 13:35. [PMID: 36943499 PMCID: PMC10030758 DOI: 10.1186/s13568-023-01539-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence in China, which is mainly related to chronic hepatitis B (CHB) and liver cirrhosis (LC) caused by hepatitis B virus (HBV) infection. This study aimed to identify reproducible gut microbial biomarkers across Chinese population for LC and HCC diagnosis. In this study, a group of 21 CHB, 25 LC, 21 HCC and 15 healthy control (HC) were examined, and used as the training data. Four published faecal datasets from different regions of China were collected, totally including 121 CHB, 33 LC, 70 HCC and 96 HC. Beta diversity showed that the distribution of community structure in CHB, LC, HCC was significantly different from HC. Correspondingly, 14 and 10 reproducible differential genera across datasets were identified in LC and HCC, respectively, defined as LC-associated and HCC-associated genera. Two random forest (RF) models based on these reproducible genera distinguished LC or HCC from HC with an area under the curve (AUC) of 0.824 and 0.902 in the training dataset, respectively, and achieved cross-region validations. Moreover, AUCs were greatly improved when clinical factors were added. A reconstructed random forest model on eight genera with significant changes between HCC and non-HCC can accurately distinguished HCC from LC. Conclusively, two RF models based on 14 reproducible LC-associated and 10 reproducible HCC-associated genera were constructed for LC and HCC diagnosis, which is of great significance to assist clinical early diagnosis.
Collapse
Affiliation(s)
- Huarong Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Yijuan Liu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhiyu Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Haidan Yan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Jie Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Weixin Zhou
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Lu Ao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China.
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
27
|
Muto H, Honda T, Tanaka T, Yokoyama S, Yamamoto K, Ito T, Imai N, Ishizu Y, Maeda K, Ishikawa T, Adachi S, Sato C, Tsuji NM, Ishigami M, Fujishiro M, Kawashima H. Proteomic Analysis Reveals Changes in Tight Junctions in the Small Intestinal Epithelium of Mice Fed a High-Fat Diet. Nutrients 2023; 15:1473. [PMID: 36986203 PMCID: PMC10056729 DOI: 10.3390/nu15061473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The impact of a high-fat diet (HFD) on intestinal permeability has been well established. When bacteria and their metabolites from the intestinal tract flow into the portal vein, inflammation in the liver is triggered. However, the exact mechanism behind the development of a leaky gut caused by an HFD is unclear. In this study, we investigated the mechanism underlying the leaky gut related to an HFD. C57BL/6J mice were fed an HFD or control diet for 24 weeks, and their small intestine epithelial cells (IECs) were analyzed using deep quantitative proteomics. A significant increase in fat accumulation in the liver and a trend toward increased intestinal permeability were observed in the HFD group compared to the control group. Proteomics analysis of the upper small intestine epithelial cells identified 3684 proteins, of which 1032 were differentially expressed proteins (DEPs). Functional analysis of DEPs showed significant enrichment of proteins related to endocytosis, protein transport, and tight junctions (TJ). Expression of Cldn7 was inversely correlated with intestinal barrier function and strongly correlated with that of Epcam. This study will make important foundational contributions by providing a comprehensive depiction of protein expression in IECs affected by HFD, including an indication that the Epcam/Cldn7 complex plays a role in leaky gut.
Collapse
Affiliation(s)
- Hisanori Muto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Taku Tanaka
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Yokoyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Maeda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shungo Adachi
- Biological Systems Control Team, Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Chikara Sato
- School of Integrative and Global Majors (SIGMA), Tsukuba University, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuou-ku, Sagamihara 252-5258, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8560, Japan
| | - Noriko M. Tsuji
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8560, Japan
- Microbiology and Immunology, School of Dentistry at Matsudo, Nihon University, 22-870-1 Sakae-cho-nishi, Tokyo 271-8587, Japan
- Department of Food Science, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
28
|
Giuffrè M, Moretti R, Tiribelli C. Gut Microbes Meet Machine Learning: The Next Step towards Advancing Our Understanding of the Gut Microbiome in Health and Disease. Int J Mol Sci 2023; 24:5229. [PMID: 36982303 PMCID: PMC10049444 DOI: 10.3390/ijms24065229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
The human gut microbiome plays a crucial role in human health and has been a focus of increasing research in recent years. Omics-based methods, such as metagenomics, metatranscriptomics, and metabolomics, are commonly used to study the gut microbiome because they provide high-throughput and high-resolution data. The vast amount of data generated by these methods has led to the development of computational methods for data processing and analysis, with machine learning becoming a powerful and widely used tool in this field. Despite the promising results of machine learning-based approaches for analyzing the association between microbiota and disease, there are several unmet challenges. Small sample sizes, disproportionate label distribution, inconsistent experimental protocols, or a lack of access to relevant metadata can all contribute to a lack of reproducibility and translational application into everyday clinical practice. These pitfalls can lead to false models, resulting in misinterpretation biases for microbe-disease correlations. Recent efforts to address these challenges include the construction of human gut microbiota data repositories, improved data transparency guidelines, and more accessible machine learning frameworks; implementation of these efforts has facilitated a shift in the field from observational association studies to experimental causal inference and clinical intervention.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Fondazione Italiana Fegato-Onlus, The Liver-Brain Unit “Rita Moretti”, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, The Liver-Brain Unit “Rita Moretti”, 34149 Trieste, Italy
| |
Collapse
|
29
|
The Role of Microbiota in Liver Transplantation and Liver Transplantation-Related Biliary Complications. Int J Mol Sci 2023; 24:ijms24054841. [PMID: 36902269 PMCID: PMC10003075 DOI: 10.3390/ijms24054841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver transplantation as a treatment option for end-stage liver diseases is associated with a relevant risk for complications. On the one hand, immunological factors and associated chronic graft rejection are major causes of morbidity and carry an increased risk of mortality due to liver graft failure. On the other hand, infectious complications have a major impact on patient outcomes. In addition, abdominal or pulmonary infections, and biliary complications, including cholangitis, are common complications in patients after liver transplantation and can also be associated with a risk for mortality. Thereby, these patients already suffer from gut dysbiosis at the time of liver transplantation due to their severe underlying disease, causing end-stage liver failure. Despite an impaired gut-liver axis, repeated antibiotic therapies can cause major changes in the gut microbiome. Due to repeated biliary interventions, the biliary tract is often colonized by several bacteria with a high risk for multi-drug resistant germs causing local and systemic infections before and after liver transplantation. Growing evidence about the role of gut microbiota in the perioperative course and their impact on patient outcomes in liver transplantation is available. However, data about biliary microbiota and their impact on infectious and biliary complications are still sparse. In this comprehensive review, we compile the current evidence for the role of microbiome research in liver transplantation with a focus on biliary complications and infections due to multi-drug resistant germs.
Collapse
|
30
|
Deng Z, Zhu H, Du W, Zhang H. Abdominal infection combined with pneumoperitoneum after renal transplantation: A case report. Medicine (Baltimore) 2023; 102:e32836. [PMID: 36749270 PMCID: PMC9901997 DOI: 10.1097/md.0000000000032836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Abdominal infection combined with pneumoperitoneum after renal transplantation is rare, clinically confusing, and easily misdiagnosed by physicians as gastrointestinal perforation. PATIENT CONCERNS A 54-year-old man experienced abdominal pain and distension together with signs of peritoneal irritation after cadaveric renal transplantation. CT and standing abdominal plain film showed a large pneumoperitoneum in the abdominal cavity and the patient underwent an exploratory laparotomy but no gastrointestinal perforation was found. DIAGNOSIS No gastrointestinal perforation was found during the operation. In the search for the infectious agent, ascites culture was negative while next-generation sequencing was positive, suggesting the presence of intestinal flora ectopic to abdominal infection with anaerobic respiration fermentation leading to large amounts of gas. INTERVENTIONS The patient underwent exploratory laparotomy without gastrointestinal perforation, and then underwent abdominal lavage, placed abdominal drainage tube, and conducted culture and next-generation sequencing examination of ascites. OUTCOMES Postoperative symptoms were relieved and intestinal function recovered. After 3 months of outpatient follow-up, the patient had stable transplanted kidney function and was in good spirits and sleeping well, with a good appetite, soft and regular stools, no abdominal pain and distension, and no fever. CONCLUSION Patients after kidney transplantation should be wary of abdominal infection being misdiagnosed as gastrointestinal perforation.
Collapse
Affiliation(s)
- Zhiming Deng
- Organ Transplantation Department, The First People’s Hospital of Changde City, Changde, China
| | - Huachen Zhu
- Organ Transplantation Department, The First People’s Hospital of Changde City, Changde, China
| | - Wei Du
- Organ Transplantation Department, The First People’s Hospital of Changde City, Changde, China
| | - Hongwei Zhang
- Organ Transplantation Department, The First People’s Hospital of Changde City, Changde, China
- *Correspondence: Hongwei Zhang, Organ Transplantation Department, The First People’s Hospital of Changde City, # 818 Renmin Middle Road, Changde, Hunan 415003, China (e-mail: )
| |
Collapse
|
31
|
Deng Q, Wang W, Zhang L, Chen L, Zhang Q, Zhang Y, He S, Li J. Gougunao tea polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. Food Funct 2023; 14:703-719. [PMID: 36511170 DOI: 10.1039/d2fo01828d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Many natural polysaccharides have been proven to have ameliorative effects on high-fat diet-induced hyperlipidemia with fewer side effects. However, similar data on Gougunao tea polysaccharides remain obscure. In this study, we aimed to investigate the role of Gougunao tea polysaccharides (GTP40) in the alleviation of hyperlipidemia and regulation of gut microbiota in C57BL/6J mice induced by a high-fat diet. The results indicated that GTP40 intervention inhibited the abnormal growth of body weight and the excessive accumulation of lipid droplets in the livers and ameliorated the biochemical parameters of serum/liver related to lipid metabolism in hyperlipidemia mice. The elevated levels of antioxidant enzyme and anti-inflammation cytokine in serum, as well as the up-regulating anti-inflammation gene in the liver, reflected that GTP40 might mitigate the oxidative and inflammatory stress induced by a high-fat diet. In addition, GTP40 could modulate the composition, abundance, and diversity of gut microbiota in hyperlipidemia mice. Besides, Spearman's correlation analysis implied that GTP40 intervention could enrich beneficial bacteria (e.g., Akkermansia, Bacteroides, Roseburia, and Alistipes), and decrease harmful bacteria (e.g., Blautia, Faecalibaculum, Streptococcus, and norank_f_Desulfovibrionaceae), which were correlated with the lipid metabolic parameters associated with hyperlipidemia. Moreover, it also indicated that there was a significant correlation between gut microbiota and SCFAs. Thus, GTP40 may be a novel strategy against fat accumulation, oxidative stress, and inflammation, as well as restoring the normal microbial balance of the gut in hyperlipidemia mice.
Collapse
Affiliation(s)
- Qihuan Deng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lieyuan Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. .,Technical Center of Nanchang Customs, Nanchang 330038, China
| | - Lingli Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Qingfeng Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Ying Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sichen He
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jingen Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
32
|
Zheng C, Zheng Y, Chen X, Zhong X, Zheng X, Yang S, Zheng Z. α-NETA down-regulates CMKLR1 mRNA expression in ileum and prevents body weight gains collaborating with ERK inhibitor PD98059 in turn to alleviate hepatic steatosis in HFD-induced obese mice but no impact on ileal mucosal integrity and steatohepatitis progression. BMC Endocr Disord 2023; 23:9. [PMID: 36624417 PMCID: PMC9830776 DOI: 10.1186/s12902-023-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Studies on chemerin/chemokine-like receptor-1 have mainly focused on adipose and liver with the intestinal tissues largely overlooked. In this study conducted on obese mice, we have explored: 1) CMKLR1 expression in the ileums; 2) CMKLR1 inhibitor α-NETA on body weight and intestinal mucosa integrity hence the impact on hepatic steatosis and pathway involved. METHODS Nineteen male C57BL/6 mice were randomly divided into five groups: normal diet group (ND), high-fat diet group (HFD), HFD + α-NETA group (NETA), HFD + PD98059 group (PD) and HFD + α-NETA + PD98059 group (NETA + PD). Mice were fed either with a chow diet or HFD for 12 weeks. At 12th week, mice of ND were put on the diet as before; mice of NETA received daily treatments of α-NETA (30 mg/kg) via gavage; mice of PD received daily treatment of PD98059 via tail vein injection; mice of NETA + PD received daily treatment of α-NETA + PD98059, all for another 4 weeks. At the time intervention ended, mice were sacrificed. The body weight, the liver pathologies were assessed. Ileal CMKLR1 mRNA was evaluated by rtPCR; ZO-1, ERK1/2 protein expression of ileal tissues by western blotting; liver TNF-α and serum endotoxin by Elisa. RESULTS More weight gains in mice of HFD than ND (37.90 ± 3.00 g) vs (24.47 ± 0.50 g), P = 0.002; α-NETA reduced the body weight (33.22 ± 1.90 g) vs (37.90 ± 3.00 g), P = 0.033; and further reduced by NETA + PD98059: (31.20 ± 1.74 g) vs (37.30 ± 4.05 g), P = 0.032. CMKLR1 mRNA expression was up-regulated in ileum in group HFD compared with ND and down-regulated by α-NETA. Steatosis was only alleviated in group PD + NETA with less weight gain. No impact of α-NETA on ileal ZO-1 or pERK with western blotting, and no endotoxin level changes were detected. TNF-α was higher in group HFD than in group ND, while no significant difference between other groups. CONCLUSIONS CMKLR1 mRNA was up-regulated in the ileum of obese mice and down-regulated by α-NETA along with a body weight control collaborating with ERK inhibitor PD98059. Steatosis was alleviated in a weight dependent way. α-NETA has no influence on intestinal mucosal integrity and no impact on steatohepatitis progression.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, Guangdong, China
| | - Yongping Zheng
- Department of Gastroenterology, Shantou Central Hospital, 114 Waima Road, Shantou, 515031, Guangdong, China.
| | - Xi Chen
- Department of Clinical Medicine Research Center, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xianyang Zhong
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xiaobin Zheng
- Department of Gastroenterology, Shantou Central Hospital, 114 Waima Road, Shantou, 515031, Guangdong, China
| | - Shuhui Yang
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, Guangdong, China
| | - Zihui Zheng
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, Guangdong, China
| |
Collapse
|
33
|
Chen N, Zhang J, Wang Z. Effects of middle-aged and elderly people's self-efficacy on health promotion behaviors: Mediating effects of sports participation. Front Psychol 2023; 13:889063. [PMID: 36687818 PMCID: PMC9845723 DOI: 10.3389/fpsyg.2022.889063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Objective This study explores the relationship between self-efficacy, sports participation, and health promotion behavior for middle-aged and elderly people. Therefore, it provides a theoretical reference for improving the quality of life for middle-aged and elderly adults and promoting a healthy lifestyle for the elderly. Methods A total of 591 (men: 36.2%; women: 63.8%; age: above 50 years) middle-aged and elderly adults from five cities of Henan Province were selected as the research objects by convenient sampling. The self-efficacy, sports participation, and health promotion behavior scales were used for the questionnaire survey. Amos24.0 was used to test the structural equation model, intermediary function test, and bootstrap analysis. Results: The self-efficacy of middle-aged and elderly people positively impacted health promotion behavior. The path coefficient was 0.439. Sports participation played a partial intermediary role between self-efficacy and health promotion behavior (χ 2/df = 1.785, root mean square error of approximation = 0.036, root mean square residual = 0.021, goodness-of-fit index = 0.967, comparative fit index = 0.976, Tucker-Lewis Index = 0.971) The proportion of intermediary effect was 26.34% (0.100, 0.225). Conclusion (1) Self-efficacy can significantly and positively affect health promotion behavior for middle-aged and elderly people; (2) sports participation plays a partial intermediary role between self-efficacy and health promotion behavior. From this point of view, we can enhance the self-efficacy of middle-aged and elderly people and improve their healthy life behavior by advancing sports participation. Thus, it provides theoretical support and practical guidance for promoting national health.
Collapse
Affiliation(s)
- Nan Chen
- School of Physical Education, Anyang Institute of Technology, Anyang, China
| | - Jia Zhang
- School of Physical Education, Chongqing University, Chongqing, China
| | - Zhiyong Wang
- Pain Department, Anyang City Third People’s Hospital, Anyang, China
| |
Collapse
|
34
|
Protective Effects of Clinacanthus nutans (Burm.f.) Lindau Aqueous Extract on HBV Mouse Model by Modulating Gut Microbiota and Liver Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5625222. [PMID: 36636608 PMCID: PMC9831714 DOI: 10.1155/2023/5625222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Background Clinacanthus nutans (Burm.f.) Lindau (C. nutans) has been used in the therapy of hepatitis B (HB) and is effective; however, the mechanism of action has not been elucidated. Objective To investigate the protective effects of C. nutans aqueous extract on the hepatitis B virus (HBV) mouse model based on correlation analysis between gut microbiota and liver metabolomics. Materials and Methods We firstly constructed the animal model by high-pressure injection of pcDNA3.1(+)/HBV plasmid into the tail vein and treated it with C. nutans. The biomarkers and inflammatory cytokines of HB were detected by enzyme-linked immunosorbent assay and quantitative PCR; the Illumina-MiSeq platform was used for investigating gut microbiota; the LC-MS/MS method was utilized on screening liver tissue metabolites; multiomics joint analysis was performed using the R program. Results Compared with the modeling group, C. nutans significantly decreased the expression levels of HBsAg, IL-1β, TNF-α(P < 0.05) in the serum, and cccDNA (P < 0.05) in the liver tissues of mice. C. nutans dramatically reduced the ratio of Firmicutes and Bacteroidetes (P < 0.05) and significantly declined the proportion of Lactobacillaceae and Lactobacillus(P < 0.05), dramatically increasing the relative abundance of Bacteroidales_S24-7_group, Rikenellaceae, and Alistipes(P < 0.05); LC-MS/MS analysis results showed that C. nutans dramatically upregulate hippuric acid, L-histidine, trehalose, D-threitol, and stachyose and downregulate uridine 5'-diphosphate, cholic acid, trimethylamine N-oxide, CDP-ethanolamine, and phosphorylcholine (P < 0.05). The correlation analysis revealed that C. nutans affects the related metabolite levels of hippuric acid and cholic acid through the modulation of crucial bacteria (Alistipes) (P < 0.01), exerting specific anti-inflammatory effects. Conclusion These results suggest that C. nutans exerts protective effects in HBV model mice, showing the therapeutic potential for anti-HBV infection.
Collapse
|
35
|
Shim JA, Ryu JH, Jo Y, Hong C. The role of gut microbiota in T cell immunity and immune mediated disorders. Int J Biol Sci 2023; 19:1178-1191. [PMID: 36923929 PMCID: PMC10008692 DOI: 10.7150/ijbs.79430] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies revealed that the microbiome play a critical role in both physiological and pathological immune system. The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic inflammations. We also discuss the limitations of current experimental animal models, cutting-edge developments and current challenges to overcome in the field, and the possibility of considering gut microbiome in the development of new drug.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Ha Ryu
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
36
|
Yoon SJ, Yu JS, Min BH, Gupta H, Won SM, Park HJ, Han SH, Kim BY, Kim KH, Kim BK, Joung HC, Park TS, Ham YL, Lee DY, Suk KT. Bifidobacterium-derived short-chain fatty acids and indole compounds attenuate nonalcoholic fatty liver disease by modulating gut-liver axis. Front Microbiol 2023; 14:1129904. [PMID: 36937300 PMCID: PMC10014915 DOI: 10.3389/fmicb.2023.1129904] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 03/05/2023] Open
Abstract
Emerging evidences about gut-microbial modulation have been accumulated in the treatment of nonalcoholic fatty liver disease (NAFLD). We evaluated the effect of Bifidobacterium breve and Bifidobacterium longum on the NAFLD pathology and explore the molecular mechanisms based on multi-omics approaches. Human stool analysis [healthy subjects (n = 25) and NAFLD patients (n = 32)] was performed to select NAFLD-associated microbiota. Six-week-old male C57BL/6 J mice were fed a normal chow diet (NC), Western diet (WD), and WD with B. breve (BB) or B. longum (BL; 109 CFU/g) for 8 weeks. Liver/body weight ratio, histopathology, serum/tool analysis, 16S rRNA-sequencing, and metabolites were examined and compared. The BB and BL groups showed improved liver histology and function based on liver/body ratios (WD 7.07 ± 0.75, BB 5.27 ± 0.47, and BL 4.86 ± 0.57) and NAFLD activity scores (WD 5.00 ± 0.10, BB 1.89 ± 1.45, and BL 1.90 ± 0.99; p < 0.05). Strain treatment showed ameliorative effects on gut barrier function. Metagenomic analysis showed treatment-specific changes in taxonomic composition. The community was mainly characterized by the significantly higher composition of the Bacteroidetes phylum among the NC and probiotic-feeding groups. Similarly, the gut metabolome was modulated by probiotics treatment. In particular, short-chain fatty acids and tryptophan metabolites were reverted to normal levels by probiotics, whereas bile acids were partially normalized to those of the NC group. The analysis of gene expression related to lipid and glucose metabolism as well as the immune response indicated the coordinative regulation of β-oxidation, lipogenesis, and systemic inflammation by probiotic treatment. BB and BL attenuate NAFLD by improving microbiome-associated factors of the gut-liver axis.
Collapse
Affiliation(s)
- Sang Jun Yoon
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Jeong Seok Yu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Byung-Yong Kim
- Chong Kun Dang Healthcare Institute, Seoul, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute, Gyeonggi-do, Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, Gyeonggi-do, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, Gyeonggi-do, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jecheon-si, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- *Correspondence: Do Yup Lee,
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
- Ki Tae Su,
| |
Collapse
|
37
|
Xu MY, Guo CC, Li MY, Lou YH, Chen ZR, Liu BW, Lan L. Brain-gut-liver axis: Chronic psychological stress promotes liver injury and fibrosis via gut in rats. Front Cell Infect Microbiol 2022; 12:1040749. [PMID: 36579341 PMCID: PMC9791198 DOI: 10.3389/fcimb.2022.1040749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background The effect of chronic psychological stress on hepatitis and liver fibrosis is concerned. However, its mechanism remains unclear. We investigated the effect and mechanism of chronic psychological stress in promoting liver injury and fibrosis through gut. Methods Sixty male SD rats were randomly assigned to 6 groups. Rat models of chronic psychological stress (4 weeks) and liver fibrosis (8 weeks) were established. The diversity of gut microbiota in intestinal feces, permeability of intestinal mucosa, pathologies of intestinal and liver tissues, collagen fibers, protein expressions of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa β (NF-κβ), tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) in liver tissue, liver function and coagulation function in blood and lipopolysaccharide (LPS) in portal vein blood were detected and analyzed. Results The diversities and abundances of gut microbiota were significant differences in rats among each group. The pathological lesions of intestinal and liver tissues, decreased expression of occludin protein in intestinal mucosa, deposition of collagen fibers and increased protein expression of TLR4, MyD88, NF-κβ, TNF-α and IL-1 in liver tissue, increased LPS level in portal vein blood, and abnormalities of liver function and coagulation function, were observed in rats exposed to chronic psychological stress or liver fibrosis. There were significant differences with normal rats. When the dual intervention factors of chronic psychological stress and liver fibrosis were superimposed, the above indicators were further aggravated. Conclusion Chronic psychological stress promotes liver injury and fibrosis, depending on changes in the diversity of gut microbiota and increased intestinal permeability caused by psychological stress, LPS that enters liver and acts on TLR4, and active LPS-TLR4 pathway depend on MyD88. It demonstrates the possibility of existence of brain-gut-liver axis.
Collapse
Affiliation(s)
- Meng-Yang Xu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Henan University, Kaifeng, China
| | - Can-Can Guo
- Department of Infectious Diseases, Jining No.1 People′s Hospital, Jining, China
| | - Meng-Ying Li
- Department of Gastroenterology and Hepatology, Kaifeng Central Hospital, Kaifeng, China
| | - Yu-Han Lou
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhuo-Ran Chen
- Department of Gastroenterology and Hepatology, Henan No.3 Provincial People’s Hospital, Zhengzhou, China
| | - Bo-Wei Liu
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Ling Lan
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China,*Correspondence: Ling Lan,
| |
Collapse
|
38
|
Das BK. Altered gut microbiota in hepatocellular carcinoma: Insights into the pathogenic mechanism and preclinical to clinical findings. APMIS 2022; 130:719-740. [PMID: 36321381 DOI: 10.1111/apm.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. It is usually the result of pre-existing liver damage caused by hepatitis B and/or C virus infection, alcohol consumption, nonalcoholic steatohepatitis (NASH), aflatoxin exposure, liver cirrhosis, obesity, and diabetes. A growing body of evidence suggests that gut microbes have a role in cancer genesis. More research into the microbiome gut-liver axis has recently contributed to understanding how the gut microbiome facilitates liver disease or even HCC progression. This review focuses on the preclinical results of gut-related hepatocarcinogenesis and probiotics, prebiotics, and antibiotics as therapeutic interventions to maintain gut microbial flora and minimize HCC-associated symptoms. Understanding the mechanistic link between the gut microbiota, host, and cancer progression could aid us in elucidating the cancer-related pathways and drive us toward preventing HCC-associated gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Bhrigu Kumar Das
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science (Assam Science and Technology University), Guwahati, Assam, India
| |
Collapse
|
39
|
Polysaccharide from Salviae miltiorrhizae Radix et Rhizoma Attenuates the Progress of Obesity-Induced Non-Alcoholic Fatty Liver Disease through Modulating Intestinal Microbiota-Related Gut–Liver Axis. Int J Mol Sci 2022; 23:ijms231810620. [PMID: 36142520 PMCID: PMC9505563 DOI: 10.3390/ijms231810620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, thus treatments for it have attracted lots of interest. In this study, the Salviae miltiorrhizae Radix et Rhizoma (SMRR) polysaccharide was isolated by hot water extraction and ethanol precipitation, and then purified by DEAE anion exchange chromatography and gel filtration. With a high-fat-diet-induced obesity/NAFLD mouse model, we found that consumption of the SMRR polysaccharide could remarkably reverse obesity and its related progress of NAFLD, including attenuated hepatocellular steatosis, hepatic fibrosis and inflammation. In addition, we also reveal the potential mechanism behind these is that the SMRR polysaccharide could regulate the gut–liver axis by modulating the homeostasis of gut microbiota and thereby improving intestinal function.
Collapse
|
40
|
Liu Y, Liu X, Zhou W, Zhang J, Wu J, Guo S, Jia S, Wang H, Li J, Tan Y. Integrated bioinformatics analysis reveals potential mechanisms associated with intestinal flora intervention in nonalcoholic fatty liver disease. Medicine (Baltimore) 2022; 101:e30184. [PMID: 36086766 PMCID: PMC10980383 DOI: 10.1097/md.0000000000030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that imposes a huge economic burden on global public health. And the gut-liver axis theory supports the therapeutic role of intestinal flora in the development and progression of NAFLD. To this end, we designed bioinformatics study on the relationship between intestinal flora disorder and NAFLD, to explore the possible molecular mechanism of intestinal flora interfering with NAFLD. METHODS Differentially expressed genes for NAFLD were obtained from the GEO database. And the disease genes for NAFLD and intestinal flora disorder were obtained from the disease databases. The protein-protein interaction network was established by string 11.0 database and visualized by Cytoscape 3.7.2 software. Cytoscape plug-in MCODE and cytoHubba were used to screen the potential genes of intestinal flora disorder and NAFLD, to obtain potential targets for intestinal flora to interfere in the occurrence and process of NAFLD. Enrichment analysis of potential targets was carried out using R 4.0.2 software. RESULTS The results showed that 7 targets might be the key genes for intestinal flora to interfere with NAFLD. CCL2, IL6, IL1B, and FOS are mainly related to the occurrence and development mechanism of NAFLD, while PTGS2, SPINK1, and C5AR1 are mainly related to the intervention of intestinal flora in the occurrence and development of NAFLD. The gene function is mainly reflected in basic biological processes, including the regulation of metabolic process, epithelial development, and immune influence. The pathway is mainly related to signal transduction, immune regulation, and physiological metabolism. The TNF signaling pathway, AGE-RAGE signaling pathway in diabetic activity, and NF-Kappa B signaling pathways are important pathways for intestinal flora to interfere with NAFLD. According to the analysis results, there is a certain correlation between intestinal flora disorder and NAFLD. CONCLUSION It is speculated that the mechanism by which intestinal flora may interfere with the occurrence and development of NAFLD is mainly related to inflammatory response and insulin resistance. Nevertheless, further research is needed to explore the specific molecular mechanisms.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Hepatoprotective Mechanism of Ginsenoside Rg1 against Alcoholic Liver Damage Based on Gut Microbiota and Network Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5025237. [PMID: 36052161 PMCID: PMC9427247 DOI: 10.1155/2022/5025237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Alcoholic liver disease (ALD) is a major public health problem worldwide, which needs to be effective prevention. Ginsenoside Rg1 (GRg1), a bioactive ingredient extracted from ginseng, has benefit effects on health. In this study, 11 potential targets of GRg1 against ALD were firstly obtained by network pharmacology. KEGG pathway enrichment showed that GRg1-target-ALD was closely related to Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathways. In addition, GRg1 decreased antioxidant levels and increased oxidative levels in alcohol-treated mice, which alleviated oxidative stress-induced hepatic damage. GRg1 enhanced intestinal barrier function via upregulating the levels of tight junction protein and immunoglobulin A. GRg1 also reduced alcohol-induced inflammation by suppressing TLR4/NF-κB pathway, which was consistent with the prediction of network targets. Moreover, GRg1 altered GM population, and Verrucomicrobia, Bacteroidetes, Akkermansia, Bacteroides, Lachnospiraceae_NK4A136_group, and Alloprevotella played positive association with intestinal barrier indicators and negative correlation with hepatic inflammation biomarkers. The results suggest that GRg1 administration might be a promising strategy for protection of alcohol-induced liver damage.
Collapse
|
42
|
Kim J, Ahn SW, Kim JY, Whon TW, Lim SK, Ryu BH, Han NS, Choi HJ, Roh SW, Lee SH. Probiotic Lactobacilli ameliorate alcohol-induced hepatic damage via gut microbial alteration. Front Microbiol 2022; 13:869250. [PMID: 36081800 PMCID: PMC9446534 DOI: 10.3389/fmicb.2022.869250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alcoholic liver disease (ALD), which includes fatty liver, cirrhosis, steatosis, fibrosis, and hepatocellular carcinoma, is a global health problem. The probiotic effects of lactic acid bacteria (LAB) are well-known; however, their protective effect against ALD remains unclear. Therefore, in this study, our objective was to assess the protective effects of LAB on ALD. To this end, mice were fed either a normal diet or an alcohol diet for 10 days (to induce ALD) accompanied by vehicle treatment (the NC and AC groups) or kimchi-derived LAB (Lactiplantibacillus plantarum DSR J266 and Levilactobacillus brevis DSR J301, the AL group; or Lacticaseibacillus rhamnosus GG, the AG group). Our results showed that mice in the AC group showed significantly higher serum aspartate aminotransferase and alanine aminotransferase levels than those in the normal diet groups; however, their levels in the AL and AG groups were relatively lower. We also observed that the AL and AG groups showed relatively lower interleukin-6 levels than the AC group. Additionally, AC group showed the accumulation of several fat vesicles in the liver, while the AL and AG groups showed remarkably lower numbers of fat vesicles. The relative abundance of Enterococcus feacalis, which showed association with liver injury, significantly increased in the AC group compared with its levels in the normal diet groups. However, the AG group showed a decreased relative abundance in this regard, confirming that LAB exerted an improvement effect on gut microbial community. These findings suggested that via gut microbiota alteration, the ingestion of LAB can alleviate the ill effects of alcohol consumption, including inflammation, liver damage, gut dysbiosis, and abnormal intestinal nutrient metabolism.
Collapse
Affiliation(s)
- Juseok Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Seong Woo Ahn
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Joon Yong Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Seul Ki Lim
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Byung Hee Ryu
- Food Research Division, Food BU, Daesang Corporation Research Institute, Icheon, South Korea
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
| | - Hak-Jong Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Seong Woon Roh
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- *Correspondence: Se Hee Lee,
| |
Collapse
|
43
|
Wang Y, Yu Y, Ding L, Xu P, Zhou J. Matcha green tea targets the gut-liver axis to alleviate obesity and metabolic disorders induced by a high-fat diet. Front Nutr 2022; 9:931060. [PMID: 35978960 PMCID: PMC9376390 DOI: 10.3389/fnut.2022.931060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity induced by a high-fat diet (HFD) is an increasing global health problem, leading to many metabolic syndromes. As the emerging food additive rich in tea polyphenols, theanine, caffeine, and so on, matcha green tea has gained more and more popularity for its outstanding potential in ameliorating metabolic disorders. This study investigated the composition and antioxidant activity of matcha green tea and further explored its effects on gut-liver axis homeostasis in an HFD-induced obese mouse model. Male (7-8 weeks old) C57BL/6J mice were divided into four groups with the following dietary supplementation for 8 weeks: a normal chow diet (NCD), a normal chow diet+1.0% matcha (NCM), a high-fat diet (HFD), and a high-fat diet+1.0% matcha (HFM). The results demonstrated that matcha green tea ameliorated the development of obesity, lipid accumulation, and hepatic steatosis induced by HFD. Subsequently, dietary matcha supplementation restored the alterations in fecal bile acid profile and gut microbial composition. Meanwhile, the levels of mRNA expression in hepatocytes demonstrated that matcha intervention made significant regulatory on the multiple metabolic pathways of hosts involved in glucose, lipid, and bile acid metabolism. These findings present new evidence for matcha green tea as an effective nutritional strategy to mitigate obesity and relevant metabolic disorders through the gut-liver axis.
Collapse
Affiliation(s)
| | | | | | | | - Jihong Zhou
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Yuan F, Cai JN, Dai M, Lv X. Inhibition of P2Y 6 receptor expression in Kupffer cells alleviates alcoholic steatohepatitis in mice. Int Immunopharmacol 2022; 109:108909. [PMID: 35700583 DOI: 10.1016/j.intimp.2022.108909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
Abstract
Inflammation plays an important role in the progression of alcohol-related liver disease (ALD). UDP-P2Y6 signaling is involved in many human diseases. The purinergic P2Y6 receptor, an important regulator of inflammation and phagocytosis, has attracted attention, but its role in alcoholic steatohepatitis remains unclear. Here, we found that P2Y6 levels were significantly elevated in Kupffer cells in the livers of mice with alcoholic steatohepatitis and ethanol (EtOH)-induced RAW264.7 cells. In this study, mice with alcoholic steatohepatitis were intraperitoneally injected with MRS2578, a specific inhibitor of the P2Y6 receptor, and P2Y6 was silenced in EtOH-induced RAW264.7 cells. We found a marked improvement in steatosis and inflammation in the livers of mice with alcoholic steatohepatitis and EtOH-induced RAW264.7 cells. However, P2Y6 activation in vivo and overexpression in vitro showed contrasting results. In addition, the expression of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK), a phosphorylated protein in the p38 MAPK signaling pathway, was significantly altered after P2Y6 silencing or overexpression in vitro. P2Y6 can induce the activation of the p38 MAPK signaling pathway by mediating the calcium influx, whereas inhibition of the expression of P2Y6 can block the inflammatory process to some extent and thus improve the inflammatory response. The results of this study suggested that targeting P2Y6 signaling may be a potentially effective strategy for the treatment of alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Fei Yuan
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; Department of Pharmacy, Anhui Provincial Cancer Hospital, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Jun-Nan Cai
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Meng Dai
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiongwen Lv
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| |
Collapse
|
45
|
Wang T, Rong X, Zhao C. Circadian Rhythms Coordinated With Gut Microbiota Partially Account for Individual Differences in Hepatitis B-Related Cirrhosis. Front Cell Infect Microbiol 2022; 12:936815. [PMID: 35846774 PMCID: PMC9283756 DOI: 10.3389/fcimb.2022.936815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cirrhosis is the end stage of chronic liver diseases like chronic hepatitis B. In China, hepatitis B accounts for around 60% of cases of cirrhosis. So far, clinical and laboratory indexes for the early diagnosis of cirrhosis are far from satisfactory. Nevertheless, there haven't been specific drugs for cirrhosis. Thus, it is quite necessary to uncover more specific factors which play their roles in cirrhosis and figure out the possible therapeutic targets. Among emerging factors taking part in the initiation and progression of cirrhosis, gut microbiota might be a pivot of systemic factors like metabolism and immune and different organs like gut and liver. Discovery of detailed molecular mechanism in gut microbiota and gut liver axis leads to a more promising prospect of developing new drugs intervening in these pathways. Time-based medication regimen has been proofed to be helpful in hormonotherapy, especially in the use of glucocorticoid. Thus, circadian rhythms, though haven't been strongly linked to hepatitis B and its complications, are still pivotal to various pathophysiological progresses. Gut microbiota as a potential effective factor of circadian rhythms has also received increasing attentions. Here, our work, restricting cirrhosis to the post-hepatitis B one, is aimed to summarize how circadian rhythms and hepatitis B-related cirrhosis can intersect via gut microbiota, and to throw new insights on the development of new and time-based therapies for hepatitis B-related cirrhosis and other cirrhosis.
Collapse
Affiliation(s)
- Tongyao Wang
- Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Science (CAMS) Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingyu Rong
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chao Zhao
- Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Science (CAMS) Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai, China
| |
Collapse
|
46
|
Peng YC, Xu JX, Zeng CF, Zhao XH, You XM, Xu PP, Li LQ, Qi LN. Operable hepatitis B virus-related hepatocellular carcinoma: gut microbiota profile of patients at different ages. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:477. [PMID: 35571398 PMCID: PMC9096381 DOI: 10.21037/atm-22-1572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Background Age was important prognostic factors for operable hepatocellular carcinoma patients. The aim of the present study was to assess the difference in gut microbiota in patients with operable hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) at different ages ; to investigate the features of the microbiota and its function associated with different ages; to provide a preliminary look at effects of the gut microbiota dimension on prognostic. Methods From September 2020 to May 2021, patients with HBV-HCC were able to undergo liver resection and were recruited consecutively and divided into the younger age group (age <45 years) (Y.AG) (n=20), middle age group (age from 45 to 65 years) (M.AG) (n=13) 45–65 years, and older age group (age >65 years) (O.AG) (n=20). The relationships between gut microbiota and different ages were explored using 16S rRNA gene sequencing data. PICRUST2 was used to examine the metagenomic data in PHLF patients. Fisher’s exact and Mann-Whitney U-test were used for the data analysis. Results Pairwise comparison between the three groups showed that the α-diversity of Y.AG was significantly higher than that of O.AG (ACE Index, P=0.017; chao1 Index, P=0.031; observed_species Index, P=0.011; and goods_coverage Index, P=0.041). The β-diversity in the 3 groups differed significantly (stress =0.100), while the composition (β-diversity) differed significantly between the Y.AG and the M.AG (stress =0.090), the M.AG and the O.AG (stress =0.095), and the Y.AG and the O.AG (stress =0.099). At the genus level, 7 bacterial genera were significantly enriched in the O.AG compared with the Y.AG, of which Streptococcus, Blautia, Erysipelotrichaceae_UCG-003, and Fusicatenibacter represented the major variances in O.AG microbiomes. Eleven genera were significantly increased in the O.AG, of which Prevotella, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Ruminiclostridium, and Phascolarctobacterium represented the major variances in the O.AG. The Y.AG and the O.AG were predicted by PICRUSt2 analysis, which found 72 pathways related to differential gut microbiome at the genus level. Redundancy analysis showed that 7 environmental factors were significantly correlated with intestinal microorganisms, especially in the Y.AG compared with the O.AG. Conclusions Analysis of gut microbiota characteristics in patients of different ages could ultimately contribute to the development of novel avenues for the treatment of HCC at different ages.
Collapse
Affiliation(s)
- Yu-Chong Peng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Chuan-Fa Zeng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Xin-Hua Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Ping-Ping Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
47
|
Albuquerque-Souza E, Sahingur SE. Periodontitis, chronic liver diseases, and the emerging oral-gut-liver axis. Periodontol 2000 2022; 89:125-141. [PMID: 35244954 PMCID: PMC9314012 DOI: 10.1111/prd.12427] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver carries out a wide range of functions ranging from the control of metabolites, nutrient storage, and detoxification to immunosurveillance. While inflammation is essential for the tissue remodeling and maintenance of homeostasis and normal liver physiology, constant exposure to dietary and microbial products creates a niche for potentially prolonged immune activation and unresolved inflammation in susceptible host. Failure to restrain inflammation can lead to development of chronic liver diseases characterized by fibrosis, cirrhosis and eventually liver failure. The liver maintains close interactions with numerous organs which can influence its metabolism and physiology. It is also known that oral cavity microenvironment can influence the physiological conditions of other organs and emerging evidence implicates that this could be true for the liver as well. Presence of chronic inflammation and dysbiotic microbiota is a common feature leading to clinical pathology both in periodontitis and chronic liver diseases (CLDs). In fact, known CLDs appear to have some relationship with periodontitis, which impacts the onset or progression of these conditions in a bidirectional crosstalk. In this review, we explore the emerging association between oral‐gut‐liver axis focusing on periodontitis and common CLDs including nonalcoholic fatty liver disease, chronic viral hepatitis, liver cirrhosis, and hepatocellular cancer. We highlight the immune pathways and oral microbiome interactions which can link oral cavity and liver health and offer perspectives for future research.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sinem E Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Bacterial Translocation in Gastrointestinal Cancers and Cancer Treatment. Biomedicines 2022; 10:biomedicines10020380. [PMID: 35203589 PMCID: PMC8962358 DOI: 10.3390/biomedicines10020380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been increasing evidence that gut microbiota is associated with the onset and exacerbation of various diseases, such as gastrointestinal cancer. For instance, it is well known that local inflammation of the intestinal tract in colorectal cancer that is caused by the increased number of Fusobacterium, due to changes in the intestinal bacterial flora, is involved in carcinogenesis. In contrast, gut bacteria or their products, pathogen-associated molecular patterns, not only cause intestinal inflammation but also invade the bloodstream through dysbiosis and gut barrier dysfunction, thereby leading to systemic inflammation, namely bacterial translocation. The involvement of bacterial translocation in the carcinogenesis of gastrointestinal cancers and their prognosis is increasingly being recognized. The Toll-like receptor signaling pathways plays an important role in the carcinogenesis of such cancers. In addition, bacterial translocation influences the treatment of cancers such as surgery and chemotherapy. In this review, we outline the concept of bacterial translocation, summarize the current knowledge on the relationship between gut bacteria and gastrointestinal cancer, and provide future perspectives of this field.
Collapse
|
49
|
Kawaguchi S, Sakuraba H, Horiuchi M, Ding J, Matsumiya T, Seya K, Iino C, Endo T, Kikuchi H, Yoshida S, Hiraga H, Fukuda S, Imaizumi T. Hepatic Macrophages Express Melanoma Differentiation-Associated Gene 5 in Nonalcoholic Steatohepatitis. Inflammation 2022; 45:343-355. [PMID: 34523053 DOI: 10.1007/s10753-021-01550-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
The activation of innate immune system is essential for the pathogenesis of nonalcoholic steatohepatitis (NASH). Among pattern recognition receptors, it is well-characterized that toll-like receptors (TLRs) are deeply involved in the development of NASH to reflect exposure of the liver to gut-driven endotoxins. In contrast, it has not been elucidated whether retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are similarly implicated in the disease progression. In the present study, we examined the expression of melanoma differentiation-associated antigen 5 (MDA5), known to be a member of RLRs, in a diet-induced murine model of NASH. The liver tissues were collected from C57BL/6 J mice at 1, 3, and 6 weeks after choline-deficient L-amino acid-defined high-fat diet (CDAHFD), and the expression of MDA5 was analyzed by western blotting, immunofluorescence (IF), and real-time quantitative PCR (qPCR). The results of western blotting showed that hepatic expression of MDA5 was increased at 3 and 6 weeks. In IF, MDA5-positive cells co-expressed F4/80 and CD11b, indicating they were activated macrophages, and these cells began to appear at 1 week after CDAHFD. The mRNA expression of MDA5 was significantly upregulated at 1 week. Additionally, we performed IF using liver biopsy specimens collected from 11 patients with nonalcoholic fatty liver diseases (NAFLD), and found that MDA5-positive macrophages were detected in eight out of eleven patients. In an in vitro study, MDA5 was induced upon stimulation with lipopolysaccharide in murine bone marrow-derived macrophages and THP-1 cells. Our findings suggest that MDA5 may be involved in the inflammation of NASH.
Collapse
Affiliation(s)
- Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Momone Horiuchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Jiangli Ding
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tetsu Endo
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hidezumi Kikuchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shukuko Yoshida
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Shibata Irika Co. Ltd. Hirosaki, Aomori, Japan
| | - Hiroto Hiraga
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
50
|
Probiotic Bacillus Alleviates Oxidative Stress-Induced Liver Injury by Modulating Gut-Liver Axis in a Rat Model. Antioxidants (Basel) 2022; 11:antiox11020291. [PMID: 35204173 PMCID: PMC8868294 DOI: 10.3390/antiox11020291] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests a key role of gut microbiota in maintaining liver functions through modulating the gut–liver axis. In this study, we investigated whether microbiota alteration mediated by probiotic Bacillus was involved in alleviating oxidative stress- induced liver injury. Sprague–Dawley rats were orally administered Bacillus SC06 or SC08 for a 24-day period and thereafter intraperitoneally injected diquat (DQ) to induce oxidative stress. Results showed that Bacillus, particularly SC06 significantly inhibited hepatic injuries, as evidenced by the alleviated damaged liver structure, the decreased levels of ALT, AST, ALP and LDH, and the suppressed mitochondrial dysfunction. SC06 pretreatment markedly enhanced the liver antioxidant capacity by decreasing MDA and p47, and increasing T-AOC, SOD and HO-1.16S rRNA sequencing analysis revealed that DQ significantly changed the diversities and composition of gut microbiota, whereas Bacillus pretreatments could attenuate gut dysbiosis. Pearson’s correlation analysis showed that AST and MDA exerted a positive correlation with the opportunistic pathogenic genera and species (Escherichia and Shigella), and negatively correlated with the potential probiotics (Lactobacillus), while SOD exerted a reverse trend. The microbial metagenomic analysis demonstrated that Bacillus, particularly SC06 markedly suppress the metabolic pathways such as carbohydrate metabolism, lipid metabolism, amino acid metabolism and metabolism of cofactors and vitamins. Furthermore, SC06 decreased the gene abundance of the pathways mediating bacterial replication, secretion and pathogenicity. Taken together, Bacillus SC06 alleviates oxidative stress-induced liver injuries via optimizing the composition, metabolic pathways and pathogenic replication and secretion of gut microbiota. These findings elucidate the mechanisms of probiotics in alleviating oxidative stress and provide a promising strategy for preventing liver diseases by targeting gut microbiota.
Collapse
|