1
|
Santos-Sánchez G, Cruz-Chamorro I. Plant-derived bioactive peptides and protein hydrolysates for managing MAFLD: A systematic review of in vivo effects. Food Chem 2025; 481:143956. [PMID: 40147387 DOI: 10.1016/j.foodchem.2025.143956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a growing health concern worldwide. Among the pursuit of therapeutic interventions, interest in natural bioactive compounds has intensified because of their potential hepatoprotective effects. This systematic review aims to evaluate the impact of plant-derived hydrolysates and peptides on MAFLD through the current literatures, encompassing their mechanisms of action. Key outcomes evaluated included changes in liver enzymes, liver lipid content, inflammation markers, and histopathological improvements. Preliminary findings suggest a potential beneficial effect of plant-derived hydrolysates and peptides on the improvement of MAFLD-related parameters, with mechanisms implicating antioxidant, anti-inflammatory, and lipid-lowering properties. This review highlights emerging evidence supporting the potential therapeutic role of plant-derived hydrolysates and peptides in the management of MAFLD. However, more well-designed clinical trials with larger sample sizes and longer durations are warranted to elucidate their efficacy, optimal dose, and long-term safety.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), 28049 Madrid, Spain.
| | - Ivan Cruz-Chamorro
- Facultad de Enfermería, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| |
Collapse
|
2
|
Huang H, Ru SJ, Chen JM, Liu W, Fang SH, Liu Q, Meng Q, Liu P, Zhou H. Quantitative Proteomic Study Reveals Amygdalin Alleviates Liver Fibrosis Through Inhibiting mTOR/PDCD4/JNK Pathway in Hepatic Stellate Cells. Drug Des Devel Ther 2025; 19:3735-3749. [PMID: 40356680 PMCID: PMC12067723 DOI: 10.2147/dddt.s500439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
Purpose Hepatic fibrosis is a major cause of morbidity and mortality for which there is currently limited therapy. Amygdalin, a cyanogenic glucoside derived from Semen Persicae, exerts significant anti-fibrotic effects in the liver. However, the molecular mechanism by which amygdalin inhibits the progression of liver fibrosis remains unclear. This study aimed to elucidate the potential mechanism of action of amygdalin against liver fibrosis. Methods Quantitative proteomic profiling of the mouse liver tissues from control, carbon tetrachloride (CCl4)-induced fibrosis, and amygdalin-treated groups was performed to explore the key effector proteins of amygdalin. Histology and immunohistochemistry as well as serum biochemical analysis were performed to evaluate amygdalin efficacy in mice. The key gene programmed cell death protein 4 (PDCD4) was overexpressed or knocked down in human hepatic stellate cells (HSCs). The mRNA and protein levels of related molecules were detected by RT-qPCR and Western blotting, respectively. Results Amygdalin could effectively ameliorated CCl4-induced liver fibrosis in mice. Bioinformatics analysis revealed that PDCD4 was downregulated in CCl4-induced liver fibrosis, but amygdalin treatment reversed these changes. An in vitro study showed that PDCD4 inhibited the activation of human hepatic stellate cell line LX-2 cells by regulating the JNK/c-Jun pathway and amygdalin inhibited the activation of LX-2 cells in a PDCD4-dependent manner. We further found that amygdalin inhibited the phosphorylation of PDCD4 at Ser67 by inhibiting the mTOR/S6K1 pathway to enhance PDCD4 expression. Conclusion Our data demonstrated a potential pharmaceutical mechanism by which amygdalin alleviates liver fibrosis by inhibiting the mTOR/PDCD4/JNK pathway in HSCs, suggesting that PDCD4 is a potential target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hui Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Su-Jie Ru
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Jia-Mei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, People’s Republic of China
| | - Wei Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, People’s Republic of China
| | - Shan-Hua Fang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qian Liu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qian Meng
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, People’s Republic of China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hu Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Trehan R, Huang P, Zhu XB, Wang X, Soliman M, Strepay D, Nur A, Kedei N, Arhin M, Ghabra S, Rodríguez-Matos F, Benmebarek MR, Ma C, Korangy F, Greten TF. SPP1 + macrophages cause exhaustion of tumor-specific T cells in liver metastases. Nat Commun 2025; 16:4242. [PMID: 40335453 PMCID: PMC12059142 DOI: 10.1038/s41467-025-59529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Functional tumor-specific CD8+ T cells are essential for effective anti-tumor immune response and immune checkpoint inhibitor therapy. Here we show that, compared to other organ sites, primary, metastatic liver tumors in murine models contain a higher number of tumor-specific CD8+ T cells which are also dysfunctional. High-dimensional, multi-omic analysis of patient samples reveals a higher frequency of exhausted tumor-reactive CD8+ T cells and enriched interactions between these cells and SPP1+ macrophages in profibrotic, alpha-SMA rich regions specifically in the liver. Differential pseudotime trajectory inference analysis reveals that extrahepatic signaling promotes an intermediate cell (IC) population in the liver, characterized by co-expression of VISG4, CSF1R, CD163, TGF-βR, IL-6R, and SPP1. Analysis of premetastatic adenocarcinoma patient samples reveals enrichment of this population may predict liver metastasis. These findings suggest a mechanism by which extrahepatic tumors drive liver metastasis by promoting an IC population that inhibits tumor-reactive CD8+ T cell function.
Collapse
Affiliation(s)
- Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTR, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Arhin
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shadin Ghabra
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodríguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Vijayan V, M Unagolla J, Panchal D, John JE, Menon SS, Menon JU. Biomimetic nanoparticles for targeted therapy of liver disease. RSC PHARMACEUTICS 2025:d5pm00044k. [PMID: 40321406 PMCID: PMC12045541 DOI: 10.1039/d5pm00044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Liver fibrosis is a progressive and fatal condition characterized by stiffness and scarring of the liver due to excessive buildup of extracellular matrix (ECM) proteins. If left untreated, it can progress to liver cirrhosis and hepatocellular carcinoma (HCC)-one of the fastest-rising causes of cancer mortality in the United States. Despite the increased prevalence of liver fibrosis due to infections, exposure to toxins, and unhealthy lifestyles, there are no effective treatments available. Recent advances in nanomedicine can lead to more targeted and effective strategies for treating liver diseases than existing treatments. In particular, the use of biomimetic nanoparticles (NPs) such as liposomes and cell-membrane-coated NPs is of interest. NPs functionalized with cell membranes mimic the properties of the source cell used and provide inherent immune evasion ability, homologous adhesion, and prolonged circulation. This review explores the types of biomimetic coatings, different cargoes delivered through biomimetic NPs for various treatment modalities, and the type of core NPs used for targeting liver fibrosis and HCC.
Collapse
Affiliation(s)
- Veena Vijayan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Janitha M Unagolla
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Dhruvisha Panchal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Judith Eloyi John
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | | | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
- Department of Chemical Engineering, University of Rhode Island Kingston RI 02881 USA
| |
Collapse
|
5
|
Du W, Siwan E, Twigg SM, Min D. Alterations in Immune Cell Profiles in the Liver in Diabetes Mellitus: A Systematic Review. Int J Mol Sci 2025; 26:4027. [PMID: 40362271 PMCID: PMC12071842 DOI: 10.3390/ijms26094027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The aim of this study was to systematically review literature on immune responses in liver tissue pathology in diabetes, focusing on immune cell populations and related cytokines. A systematic search of relevant English full-text articles up to June 2024 from online databases, covering animal and human studies, was conducted using the PRISMA workflow. Thirteen studies met criteria. Immune cells in the liver, including monocytes/macrophages, neutrophils, and iNKT and T cells, were implicated in liver inflammation and fibrosis in diabetes. Pro-inflammatory cytokines, including interferon-ɣ, tumor necrosis factor-α, interleukin (IL)-15, IL-18, and IL-1β were upregulated in the liver, potentially contributing to liver inflammation and fibrosis progression. In contrast, the anti-inflammatory cytokine IL-4 was downregulated, possibly attributing to chronic inflammation in diabetes. Pathological immune responses via the TLR4/MyD88/NF-κB pathway and the IL-17/IL-23 axis were also linked to liver fibrosis in diabetes. In conclusion, this review highlights the putative pivotal role of immune cells in diabetes-related liver fibrosis progression through their regulation of cytokines and signaling pathways. Further research on diabetes and dysmetabolic liver pathology is needed to clarify immune cell localization in the liver and their interactions with resident cells promoting fibrosis. Targeting immune mechanisms may provide therapeutic strategies for managing liver fibrosis in diabetes.
Collapse
Affiliation(s)
- Wanying Du
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
| | - Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
| | - Stephen M. Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
6
|
Puri M, Sonawane S. Liver Sinusoidal Endothelial Cells in the Regulation of Immune Responses and Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Int J Mol Sci 2025; 26:3988. [PMID: 40362227 PMCID: PMC12071881 DOI: 10.3390/ijms26093988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Liver Sinusoidal Endothelial Cells (LSECs) play a crucial role in maintaining liver homeostasis, regulating immune responses, and fibrosis in liver diseases. This review explores the unique functions of LSECs in liver pathology, particularly their roles in immune tolerance, antigen presentation, and the modulation of hepatic stellate cells (HSCs) during fibrosis. LSECs act as key regulators of immune balance in the liver by preventing excessive immune activation while also filtering antigens and interacting with immune cells, including Kupffer cells and T cells. Metabolic Dysfunction-Associated Fatty Liver Disease(MAFLD) is significant because it can lead to advanced liver dysfunction, such as cirrhosis and liver cancer. The prevalence of Metabolic Associated Steatohepatitis (MASH) is increasing globally, particularly in the United States, and is closely linked to rising rates of obesity and type 2 diabetes. Early diagnosis and intervention are vital to prevent severe outcomes, highlighting the importance of studying LSECs in liver disease. However, during chronic liver diseases, LSECs undergo dysfunction, leading to their capillarization, loss of fenestrations, and promotion of pro-fibrotic signaling pathways such as Transforming growth factor-beta (TGF-β), which subsequently activates HSCs and contributes to the progression of liver fibrosis. The review also discusses the dynamic interaction between LSECs, HSCs, and other hepatic cells during the progression of liver diseases, emphasizing how changes in LSEC phenotype contribute to liver scarring and fibrosis. Furthermore, it highlights the potential of LSECs as therapeutic targets for modulating immune responses and preventing fibrosis in liver diseases. By restoring LSECs' function and targeting pathways associated with their dysfunction, novel therapies could be developed to halt or reverse liver disease progression. The findings of this review reinforce the importance of LSECs in liver pathology and suggest that they hold significant promises as targets for future treatment strategies aimed at addressing chronic liver diseases.
Collapse
Affiliation(s)
- Munish Puri
- Onco-Immunology, Magnit Global, Folsom, CA 95630, USA
| | - Snehal Sonawane
- Department of Pathology, University of Illinois, Chicago, IL 60612, USA;
| |
Collapse
|
7
|
Obrzut O, Gostyńska-Stawna A, Kustrzyńska K, Stawny M, Krajka-Kuźniak V. Curcumin: A Natural Warrior Against Inflammatory Liver Diseases. Nutrients 2025; 17:1373. [PMID: 40284236 PMCID: PMC12030243 DOI: 10.3390/nu17081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Curcumin (CUR), a bioactive compound found in turmeric, has garnered attention for its potential anti-inflammatory properties and impact on liver health. Numerous studies suggest that CUR may be crucial in mitigating liver inflammation. The compound's anti-inflammatory effects are believed to be attributed to its ability to modulate various molecular pathways involved in the inflammatory response. Research indicates that CUR may suppress the activation of inflammatory cells and the production of pro-inflammatory cytokines in the liver. Additionally, it has been observed to inhibit the activity of transcription factors that play a key role in inflammation. By targeting these molecular mechanisms, CUR may help alleviate the inflammatory burden on the liver. Moreover, CUR's antioxidant properties are thought to contribute to its protective effects on the liver. Oxidative stress is closely linked to inflammation, and CUR's ability to neutralize free radicals may further support its anti-inflammatory action. While the evidence is promising, it is essential to note that more research is needed to fully understand the precise mechanisms through which CUR influences liver inflammation. Nevertheless, these findings suggest that CUR could be a potential therapeutic agent in managing liver inflammatory conditions. In this review, we explore the potential impact of CUR on inflammation, highlighting the key mechanisms involved, as reported in the literature.
Collapse
Affiliation(s)
- Olga Obrzut
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Karolina Kustrzyńska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
8
|
Li J, Yang L, Xiao M, Li N, Huang X, Ye L, Zhang H, Liu Z, Li J, Liu Y, Liang X, Li T, Li J, Cao Y, Pan Y, Lin X, Dai H, Dai E, Li M. Spatial and Single-Cell Transcriptomics Reveals the Regional Division of the Spatial Structure of MASH Fibrosis. Liver Int 2025; 45:e16125. [PMID: 39400982 PMCID: PMC11891380 DOI: 10.1111/liv.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To elucidate the regional distribution of metabolic dysfunction-associated steatohepatitis (MASH) fibrosis within the liver and to identify potential therapeutic targets for MASH fibrosis. METHODS Liver sections from healthy controls, patients with simple steatosis and MASH patients were analysed using spatial transcriptomics integrated with single-cell RNA-seq. RESULTS Spatial transcriptomics analysis of liver tissues revealed that the fibrotic region (Cluster 9) was primarily distributed in lobules, with some fibrosis also found in the surrounding area. Integration of the single-cell-sequencing data set (GSE189175) showed a greater proportion of inflammatory cells (Kupffer cells and T cells) and myofibroblasts in MASH. Six genes, showing high- or low-specific expression in Cluster 9, namely, ADAMTSL2, PTGDS, S100A6, PPP1R1A, ASS1 and G6PC, were identified in combination with pathology. The average expression levels of ADAMTSL2, PTGDS and S100A6 on the pathological HE staining map were positively correlated with the increase in the degree of fibrosis and aligned strongly with the distribution of fibrosis. ADAMTSL2+ myofibroblasts play a role in TNF signalling pathways and in the production of ECM structural components. Pseudotime analysis indicated that in the early stages of MASH, infiltration by T cells and Kupffer cells triggers a significant inflammatory response. Subsequently, this inflammation leads to the activation of hepatic stellate cells (HSCs), transforming them into myofibroblasts and promoting the development of liver fibrosis. CONCLUSION This study is the first to characterise lineage-specific changes in gene expression, subpopulation composition, and pseudotime analysis in MASH fibrosis and reveals potential therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jin‐zhong Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Liu Yang
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Min‐xi Xiao
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Ni Li
- Division of General Internal MedicineBeijing Tsinghua Changgung Hospital, Tsinghua UniversityBeijingChina
| | - Xin Huang
- Division of Hepatobiliary SurgeryBeijing Tsinghua Changgung Hospital, Tsinghua UniversityBeijingChina
| | - Li‐hong Ye
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Hai‐cong Zhang
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Zhi‐quan Liu
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Jun‐qing Li
- Division of Liver DiseaseThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Yun‐yan Liu
- Division of Liver DiseaseThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Xu‐jing Liang
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Tao‐yuan Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Jie‐ying Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yang Cao
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yun Pan
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Xun‐ge Lin
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Hai‐mei Dai
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Er‐hei Dai
- Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and TreatmentThe Fifth Hospital of ShijiazhuangShijiazhuangChina
| | - Min‐ran Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
9
|
Jiao X, Lai L, Sun B, Qian Y, Yang W. The transcription factor mesenchyme homeobox 1 exacerbates hepatic fibrosis by transcriptional activation of connective tissue growth factor. Exp Cell Res 2025; 447:114513. [PMID: 40073959 DOI: 10.1016/j.yexcr.2025.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
As a chronic condition, liver fibrosis is characterized by diverse etiological factors, and the pivotal event to its pathogenesis is the activation of quiescent hepatic stellate cells (HSCs) into myofibroblasts. Mesenchyme homeobox 1 (MEOX1) is a transcription factors central to cellular development and differentiation. However, the role of MEOX1 signaling in hepatic fibrosis still remains largely unknown. In this study, we investigated the potential role and mechanism of MEOX1 in liver fibrosis using different models in vivo and in vitro. The hepatic expression of MEOX1 exhibited a positive correlation with the degree of fibrosis in patients diagnosed with non-alcoholic steatohepatitis (NASH), as determined through bioinformatics analysis. Furthermore, MEOX1 demonstrated high expression levels in activated HSCs and fibrotic liver tissues induced by methionine and choline-deficient diet (MCD), thioacetamide (TAA), or carbon tetrachloride (CCl4) treatment in C57/BL6 mice. Mechanistically, MEOX1 facilitated HSC activation, proliferation, and migration. The comprehensive analysis of transcriptome sequencing and chromatin immunoprecipitation sequencing data revealed that connective tissue growth factor (CTGF) served as a target gene for MEOX1 in HSCs. Specifically, MEOX1 bound to the promoter region of CTGF and enhanced its transcriptional activity, thereby mediating the exacerbating effect of MEOX1 on hepatic fibrosis. In conclusion, our current findings elucidate the role of MEOX1 in exacerbating hepatic fibrosis progression through transcriptional activation of CTGF. Our findings provide valuable insights into the therapeutic potential of targeting MEOX1 for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Jiao
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Linying Lai
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| |
Collapse
|
10
|
Li F, Wang B, Fu X, Liang J, Xiao X, Wei X. Protective effects of Scutellaria barbata against hepatocyte apoptosis during hepatic fibrosis progression. Cytotechnology 2025; 77:78. [PMID: 40083900 PMCID: PMC11896960 DOI: 10.1007/s10616-025-00738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Scutellaria barbata is a medicinal plant with anti-inflammatory, antioxidant, and antitumor properties. Limited studies exist on the link between S. barbata and liver fibrosis. The focus of this study is to examine the impact of S. barbata-containing serum on rat hepatocytes undergoing hepatic fibrosis. Molecular mechanisms underlying the observed effects are sought to be predicted. Transforming growth factor β1 (TGF-β1)-treated hepatic stellate cells (HSCs) supernatant was utilized to produce hepatic fibrosis-like conditions in hepatocytes BRL-3A cultured in vitro. S. barbata-containing serum was used as an intervention, with various dosage groups and a positive drug group (N-acetylcysteine). Cell proliferation, mitochondrial membrane potential (MMP), apoptosis, and expression of apoptosis-related proteins and genes were assessed through various assays and techniques. Bioinformatics analysis was employed to predict target genes and signaling pathways affected by S. barbata. Chemical components of S. barbata in the serum were detected by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-QE-MS) was used to identify. Cellular experiments demonstrated that S. barbata-containing serum restored cell proliferation and reduced apoptotic activity induced by the fibrosis model, with a significant downregulation of apoptosis-related proteins (cleaved-Caspase-3, Bax), a substantial upregulation of the anti-apoptotic protein BCL-2, and a substantial elevation in the level of cellular MMP. Bioinformatics analysis highlighted the involvement of S. barbata in hepatocyte apoptosis during liver fibrosis, possibly through pathways like PI3K-Akt. UHPLC-QE-MS identified 29 chemical components of S. barbata in the bloodstream, suggesting their role in anti-hepatic fibrosis effects. S. barbata was found to effectively inhibit hepatocyte apoptosis during hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Li
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
- Department of Clinical Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311 Hainan China
| | - Bi Wang
- Department of Clinical Laboratory, Hainan Fifth People’s Hospital (Hainan Skin Disease and Plastic Surgery Hospital), Haikou, 570206 Hainan China
| | - Xianxian Fu
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
| | - Jinqiang Liang
- School of Pharmacy, Hainan University, Haikou, 570228 Hainan China
| | - Xi Xiao
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000 Hunan China
| | - Xiaobin Wei
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
| |
Collapse
|
11
|
Xiong H, Guo J. Targeting Hepatic Stellate Cells for the Prevention and Treatment of Liver Cirrhosis and Hepatocellular Carcinoma: Strategies and Clinical Translation. Pharmaceuticals (Basel) 2025; 18:507. [PMID: 40283943 PMCID: PMC12030350 DOI: 10.3390/ph18040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatic stellate cells (HSC) are the major source of myofibroblasts (MFB) in fibrosis and cancer- associated fibroblasts (CAF) in both primary and metastatic liver cancer. Over the past few decades, there has been significant progress in understanding the cellular and molecular mechanisms by which liver fibrosis and HCC occur, as well as the key roles of HSC in their pathogenesis. HSC-targeted approaches using specific surface markers and receptors may enable the selective delivery of drugs, oligonucleotides, and therapeutic peptides that exert optimized anti-fibrotic and anti-HCC effects. Recent advances in omics, particularly single-cell sequencing and spatial transcriptomics, hold promise for identifying new HSC targets for diagnosing and treating liver fibrosis/cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| | - Jinsheng Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| |
Collapse
|
12
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
13
|
Kerbert AJC, Engelmann C, Habtesion A, Kumar P, Hassan M, Qi T, Volkert I, Otto T, Hall A, Khetan VU, Olde Damink S, Aguilar F, Chollet C, Brunet L, Clària J, Moreau R, Arroyo V, Coenraad MJ, Mehta G, Castelli F, Trautwein C, Fenaille F, Andreola F, Jalan R. Hyperammonemia induces programmed liver cell death. SCIENCE ADVANCES 2025; 11:eado1648. [PMID: 40053595 PMCID: PMC11887801 DOI: 10.1126/sciadv.ado1648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Hyperammonemia is common in liver cirrhosis and causally associated with hepatic encephalopathy development. Little is known about its hepatotoxic effects, which we aimed to characterize in this study. In a mouse model of chronic hyperammonemia without preexisting liver disease, we observed development of liver fibrogenesis and necroptotic cell death. Hyperammonemia also induced dysregulation of its main metabolic pathway, the urea cycle, as reflected by down-regulation of urea cycle enzyme protein expression and accumulation of its metabolites. Inhibition of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and its upstream inducer Toll-like receptor 4 (TLR4) protected against liver injury and further hyperammonemia. In clinically relevant rodent models of hyperammonemia (genetic ornithine transcarbamylase deficiency and bile duct ligation-induced cirrhosis), TLR4 inhibition reduced circulating ammonia. In conclusion, hyperammonemia induces liver fibrogenesis and RIPK1-mediated cell death, which is associated with urea cycle dysfunction. Inhibition of RIPK1 and TLR4 protects against hyperammonemia-induced liver injury and are potential therapeutic targets for hyperammonemia and chronic liver disease progression.
Collapse
Affiliation(s)
- Annarein J. C. Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Pavitra Kumar
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Mohsin Hassan
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Berlin, Germany
- Department of CardioMetabolic Disease Research, Boehringer Ingelheim, Biberach, Germany
| | - Tingting Qi
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ines Volkert
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Otto
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Andrew Hall
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Varun U. Khetan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Steven Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Céline Chollet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB-IDF, 91191 Gif-sur-Yvette, France
| | - Ludovic Brunet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB-IDF, 91191 Gif-sur-Yvette, France
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
- Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
- Inserm and Université de Paris, Centre de Recherche sur l’Inflammation (CRI), UMRS1149 Paris, France
- Service d’Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Minneke J. Coenraad
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Gautam Mehta
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Florence Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB-IDF, 91191 Gif-sur-Yvette, France
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- IFADO, Department of Toxicology, TU Dortmund, Dortmund, Germany
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB-IDF, 91191 Gif-sur-Yvette, France
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| |
Collapse
|
14
|
Dhengle S, Maharana KC, Meenakshi S, Singh S. Mechanistic Insights into the Role of MCP-1 in Diverse Liver Pathological Conditions: A Recent Update. Curr Pharm Des 2025; 31:1167-1179. [PMID: 39779567 DOI: 10.2174/0113816128332969241120030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is regarded as a crucial proinflammatory cytokine that controls the migration and entry of macrophages. It has been demonstrated that chemokine ligand 2 and its receptor, chemokine receptor 2, are both implicated in several liver disorders. In a similar context, immunity mediators are overexpressed and stimulated by MCP-1. Additionally, MCP-1 alters the physiology of the hepatocytes, promoting immunologic and inflammatory responses beyond regular metabolism. Alcoholism and other factor including abnormal diet stimulate the liver's synthesis of MCP-1, which can result in inflammation in liver. Studies shows how MCP-1' linked to various liver disorders like alcoholic liver disease, liver fibrosis, non-alcoholic fatty liver disease, hepatitis, hepatic steatosis, hepatocellular cancer, primary biliary cirrhosis. MCP-1 not only predicts the onset, progression, and prognosis of the illness, but it is also directly related to the degree and stage of liver inflammation. In this review, we will explore the mechanism and connection between MCP-1's overexpression in liver disorders, further how it can be linked as a therapeutic biomarker in the above scenario.
Collapse
Affiliation(s)
- Sahil Dhengle
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sarasa Meenakshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
15
|
Habermaass V, Takami Y, Izawa T, Abramo F, Biolatti C, Marchetti V. Lipid Dysmetabolism in Canine Chronic Liver Disease: Relationship Between Clinical, Histological and Immunohistochemical Features. Vet Sci 2025; 12:220. [PMID: 40266905 PMCID: PMC11946210 DOI: 10.3390/vetsci12030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025] Open
Abstract
Chronic liver diseases (CLDs) in dogs are progressive conditions that often lead to liver failure. Metabolic dysfunctions such as cholestasis, obesity, hyperlipidemia, and endocrine disorders play a key role in human liver diseases like MASLD (Metabolic Dysfunction Associated Steatotic Liver Disease) and MASH (Metabolic Dysfunction Associated Steatohepatitis), but their significance in canine CLDs is poorly understood. This study aims to evaluate the association between hepatic lipid accumulation and inflammation or fibrosis in canine CLDs and its potential association with metabolic dysfunctions. Sixteen client-owned dogs with CLDs were assessed for clinical data, histological features, and liver immunohistochemistry (IHC). Histological and IHC markers of inflammation (Iba-1, iNOS, NF-κB), fibrosis (CD206, α-SMA, Sirius Red), and lipid accumulation (adipophilin) were assessed to identify correlations with clinical conditions. The applied markers showed effectiveness in their use on canine liver tissue. Adipophilin-marked lipid accumulation correlated positively with inflammatory markers, indicating a link between steatosis and inflammation. Metabolic dysfunctions were linked to hepatic lipid accumulation and inflammation. These findings show a potential alignment of canine CLDs with human MASLD/MASH, where lipid-induced inflammation drives disease progression. IHC markers could effectively assess these processes, suggesting potential for guiding diagnostics and therapies, though further research is needed to clarify clinical associations.
Collapse
Affiliation(s)
- Verena Habermaass
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (F.A.); (V.M.)
| | - Yuki Takami
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan; (Y.T.); (T.I.)
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan; (Y.T.); (T.I.)
| | - Francesca Abramo
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (F.A.); (V.M.)
| | | | - Veronica Marchetti
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (F.A.); (V.M.)
| |
Collapse
|
16
|
Zhang S, Dong H, Jin X, Sun J, Li Y. The multifaceted roles of macrophages in the transition from hepatitis to hepatocellular carcinoma: From mechanisms to therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167676. [PMID: 39828046 DOI: 10.1016/j.bbadis.2025.167676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Macrophages are central to the progression from hepatitis to hepatocellular carcinoma (HCC), with their remarkable plasticity and ability to adapt to the changing liver microenvironment. Chronic inflammation, fibrosis, and ultimately tumorigenesis are driven by macrophage activation, making them key regulators of liver disease progression. This review explores the diverse roles of macrophages in the transition from hepatitis to HCC. In the early stages of hepatitis, macrophages are essential for pathogen clearance and tissue repair. However, chronic activation leads to prolonged inflammation, which exacerbates liver damage and promotes fibrosis. As the disease progresses to liver fibrosis, macrophages interact with hepatic stellate cells, fostering a pro-tumorigenic microenvironment that supports HCC development. In hepatocarcinogenesis, macrophages contribute to tumor initiation, growth, metastasis, immune evasion, cancer stem cell maintenance, and angiogenesis. Their functional plasticity enables them to adapt to the tumor microenvironment, thereby promoting tumor progression and resistance to therapy. Targeting macrophages represents a promising strategy for preventing and treating HCC. Therapeutic approaches, including reprogramming macrophage phenotypes to enhance anti-tumor immunity, blocking macrophage recruitment and activation, and utilizing nanoparticle-based drug delivery systems, may provide new avenues for combating HCC by modulating macrophage functions and tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Shuairan Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Hang Dong
- Phase I Clinical Trials Center, The People's Hospital of China Medical University, Shenyang, PR China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
17
|
Chen M, Song L, Zeng A. Harnessing nature's arsenal: Targeting the TGF-β/Smad Cascade with novel natural anti-fibrotic agents. Fitoterapia 2025; 181:106372. [PMID: 39778722 DOI: 10.1016/j.fitote.2024.106372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Hepatic fibrosis is a wound healing response that leads to excessive deposition of extracellular matrix (ECM) due to sustained liver injury. Hepatic stellate cells (HSCs) are key players in ECM synthesis, with the TGF-β/Smad signaling pathway being central to their activation. Despite advances in understanding the pathogenesis of hepatic fibrosis, effective anti-fibrotic therapies are still lacking. METHODS This treatise conducts a comprehensive review of the literature on the hepatoprotective effects of natural products, including natural medicine compounds, herbal extracts, and polysaccharides. The focus is on their ability to modulate the TGF-β pathway, which is critical in the activation of HSCs and ECM synthesis in hepatic fibrosis. RESULTS The review identifies a variety of natural products that have shown promise in inhibiting the TGF-β/Smad signaling cascade, thereby reducing the activation of HSCs and ECM accumulation. These findings highlight the potential of these natural products as therapeutic agents in the treatment of hepatic fibrosis. CONCLUSIONS The exploration of natural products as modulators of the TGF-β pathway presents a novel avenue for both clinical and preclinical research into hepatic fibrosis. Further investigation is warranted to fully understand the mechanisms of action and to develop these compounds into effective anti-fibrotic pharmaceuticals.
Collapse
Affiliation(s)
- Maohua Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China; Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China. Chengdu, Sichuan 610072, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
18
|
Thiele M, Johansen S, Israelsen M, Trebicka J, Abraldes JG, Gines P, Krag A. Noninvasive assessment of hepatic decompensation. Hepatology 2025; 81:1019-1037. [PMID: 37801593 PMCID: PMC11825506 DOI: 10.1097/hep.0000000000000618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023]
Abstract
Noninvasive tests (NITs) are used in all aspects of liver disease management. Their most prominent break-through since the millennium has been in advancing early detection of liver fibrosis, but their use is not limited to this. In contrast to the symptom-driven assessment of decompensation in patients with cirrhosis, NITs provide not only opportunities for earlier diagnoses but also accurate prognostication, targeted treatment decisions, and a means of monitoring disease. NITs can inform disease management and decision-making based on validated cutoffs and standardized interpretations as a valuable supplement to clinical acumen. The Baveno VI and VII consensus meetings resulted in tangible improvements to pathways of care for patients with compensated and decompensated advanced chronic liver disease, including the combination of platelet count and transient elastography to diagnose clinically significant portal hypertension. Furthermore, circulating NITs will play increasingly important roles in assessing the response to interventions against ascites, variceal bleeding, HE, acute kidney injury, and infections. However, due to NITs' wide availability, there is a risk of inaccurate use, leading to a waste of resources and flawed decisions. In this review, we describe the uses and pitfalls of NITs for hepatic decompensation, from risk stratification in primary care to treatment decisions in outpatient clinics, as well as for the in-hospital management of patients with acute-on-chronic liver failure. We summarize which NITs to use when, for what indications, and how to maximize the potential of NITs for improved patient management.
Collapse
Affiliation(s)
- Maja Thiele
- Department of Gastroenterology and Hepatology, Fibrosis, Fatty Liver and Steatohepatitis Research Center Odense (FLASH), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Stine Johansen
- Department of Gastroenterology and Hepatology, Fibrosis, Fatty Liver and Steatohepatitis Research Center Odense (FLASH), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mads Israelsen
- Department of Gastroenterology and Hepatology, Fibrosis, Fatty Liver and Steatohepatitis Research Center Odense (FLASH), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jonel Trebicka
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Internal Medicine B, University of Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Juan G. Abraldes
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Pere Gines
- Liver Unit, Hospital Clínic of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Spain
- Institute of Biomedical Investigation August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Fibrosis, Fatty Liver and Steatohepatitis Research Center Odense (FLASH), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Sererols-Viñas L, Garcia-Vicién G, Ruiz-Blázquez P, Lee TF, Lee YA, Gonzalez-Sanchez E, Vaquero J, Moles A, Filliol A, Affò S. Hepatic Stellate Cells Functional Heterogeneity in Liver Cancer. Semin Liver Dis 2025; 45:33-51. [PMID: 40043738 DOI: 10.1055/a-2551-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Hepatic stellate cells (HSCs) are the liver's pericytes, and play key roles in liver homeostasis, regeneration, fibrosis, and cancer. Upon injury, HSCs activate and are the main origin of myofibroblasts and cancer-associated fibroblasts (CAFs) in liver fibrosis and cancer. Primary liver cancer has a grim prognosis, ranking as the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) being the predominant type, followed by intrahepatic cholangiocarcinoma (iCCA). Moreover, the liver hosts 35% of all metastatic lesions. The distinct spatial distribution and functional roles of HSCs across these malignancies represent a significant challenge for universal therapeutic strategies, requiring a nuanced and tailored understanding of their contributions. This review examines the heterogeneous roles of HSCs in liver cancer, focusing on their spatial localization, dynamic interactions within the tumor microenvironment (TME), and emerging therapeutic opportunities, including strategies to modulate their activity, and harness their potential as targets for antifibrotic and antitumor interventions.
Collapse
Affiliation(s)
- Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- University of Barcelona, Barcelona, Spain
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ester Gonzalez-Sanchez
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Anna Moles
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aveline Filliol
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Affò
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
20
|
Parikh NS, Zhang C, Bruce SS, Murthy SB, Rosenblatt R, Liberman AL, Liao V, Kaiser JH, Navi BB, Iadecola C, Kamel H. Association between elevated fibrosis-4 index of liver fibrosis and risk of hemorrhagic stroke. Eur Stroke J 2025; 10:289-297. [PMID: 38872255 PMCID: PMC11569510 DOI: 10.1177/23969873241259561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Cirrhosis is associated with an increased risk of hemorrhagic stroke. Liver fibrosis, typically a silent condition, is antecedent to cirrhosis. The objective of this study was to test the hypothesis that elevated Fibrosis-4 (FIB-4) index, indicating a high probability of liver fibrosis, is associated with an increased risk of hemorrhagic stroke. METHODS We performed a cohort analysis of the prospective United Kingdom Biobank cohort study. Participants 40-69 years old were enrolled between 2007 and 2010 and had available follow-up data until March 1, 2018. We excluded participants with prevalent hemorrhagic stroke or thrombocytopenia. High probability of liver fibrosis was defined as having a value >2.67 of the validated FIB-4 index. The primary outcome was hemorrhagic stroke (intracerebral or subarachnoid hemorrhage), defined based on hospitalization and death registry data. Secondary outcomes were intracerebral and subarachnoid hemorrhage, separately. We used Cox proportional hazards models to evaluate the association of FIB-4 index >2.67 with hemorrhagic stroke while adjusting for potential confounders including hypertension, alcohol use, and antithrombotic use. RESULTS Among 452,994 participants (mean age, 57 years; 54% women), approximately 2% had FIB-4 index >2.67, and 1241 developed hemorrhagic stroke. In adjusted models, FIB-4 index >2.67 was associated with an increased risk of hemorrhagic stroke (HR, 2.0; 95% CI, 1.6-2.6). Results were similar for intracerebral hemorrhage (HR, 2.0; 95% CI, 1.5-2.7) and subarachnoid hemorrhage (HR, 2.2; 95% CI, 1.5-3.5) individually. CONCLUSIONS Elevated FIB-4 index was associated with an increased risk of hemorrhagic stroke.
Collapse
Affiliation(s)
- Neal S. Parikh
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Cenai Zhang
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Samuel S. Bruce
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Santosh B. Murthy
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Russell Rosenblatt
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ava L. Liberman
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Vanessa Liao
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Jed H. Kaiser
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Babak B. Navi
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Hooman Kamel
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
21
|
Bowen CM, Ditmars F, Liu N, Abril JM, Ajasin D, Russell WK, Stevenson H, Eugenin EA, Fair JH, Fagg WS. Amniotic Fluid Reduces Liver Fibrosis By Attenuating Hepatic Stellate Cell Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639215. [PMID: 40027749 PMCID: PMC11870538 DOI: 10.1101/2025.02.20.639215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Regardless of the source of injury or metabolic dysfunction, fibrosis is a frequent driver of liver pathology. Excessive liver fibrosis is caused by persistent activation of hepatic stellate cells (HSCs), which is defined by myofibroblast activation (MFA) and the epithelial-mesenchymal transition (EMT). Strategies to prevent or reverse this HSC phenotype will be critical for successful treatment of liver fibrosis. We have previously shown that full-term, cell-free human amniotic fluid (cfAF) inhibits MFA and EMT in fibroblasts in vitro. We hypothesize that cfAF treatment can attenuate HSC activation and limit liver fibrosis. We tested if cfAF could prevent liver fibrosis or HSC activation in murine models of liver damage, three-dimensional hepatic spheroids, and HSC cultures. Administering cfAF prevented weight loss and the extent of fibrosis in mice with chronic liver damage without stimulating deleterious immune responses. Gene expression profiling and immunostaining indicated that cfAF administration in carbon tetrachloride-treated mice reduced EMT- and MFA-related biomarker abundance and modulated transcript levels associated with liver metabolism, immune regulatory pathways, and cell signaling. cfAF treatment lowered MFA biomarker levels in a dose-dependent manner in hepatic spheroids exposed to ethanol. Treating HSCs with cfAF in vitro strongly repressed EMT. Multi-omics analyses revealed that it also attenuates TGFβ-induced MFA and inflammation-associated processes. Thus, cfAF treatment prevents liver fibrosis by safeguarding against persistent HSC activation. These findings suggest that cfAF may be a safe and effective therapy for reducing liver fibrosis and preventing the development of cirrhosis and/or hepatocellular carcinoma.
Collapse
Affiliation(s)
- Charles M. Bowen
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Frederick Ditmars
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Naiyou Liu
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Jose Marri Abril
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - David Ajasin
- Department of Neurobiology, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - William K. Russell
- Deparment of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Heather Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Jeffrey H. Fair
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - W. Samuel Fagg
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Deparment of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Merakris Therapeutics, RTP Frontier, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
22
|
Ulrich H, Glaser T, Thomas AP. Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 2025; 21:69-81. [PMID: 39320433 PMCID: PMC11958897 DOI: 10.1007/s11302-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
23
|
Abdelrahman RS, Elnfarawy AA, Nashy AE, Abdelsalam RA, Zaghloul MS. Targeting angiogenic and proliferative mediators by montelukast & trimetazidine Ameliorates thioacetamide-induced liver fibrosis in rats. Toxicol Appl Pharmacol 2025; 495:117208. [PMID: 39716576 DOI: 10.1016/j.taap.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Liver fibrosis is a significant health complication with the potential to result in serious mortality and morbidity. However, there is no standard treatment due to its complex pathogenesis. The drug montelukast reversibly and selectively antagonizes the cysteinyl-leukotrienes-1 receptor and reduces inflammation; thus, it is used in the treatment of asthma. Trimetazidine, an anti-anginal agent, selectively inhibits the activity of mitochondrial long-chain 3-ketoacyl-CoA thiolase, inhibition of free fatty acid (FFA) oxidation. This study explores the efficacy of montelukast (5 and 10 mg/kg) and trimetazidine (10-20 mg/kg) against liver fibrosis induced by thioacetamide (TAA) in rats. Impaired liver function tests were significantly improved by montelukast and trimetazidine. The antioxidant and anti-inflammatory effects of montelukast and trimetazidine were proved by the inhibition of malondialdehyde (MDA) and nitric oxide (NO) accumulation, with elevation of glutathione (GSH) and superoxide dismutase activity, decreased heat shock protein (HSP-70) expression, and a decline in interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) levels in liver tissue. Also, the antifibrotic effects were explored by reducing levels of hydroxyproline and alpha-smooth muscle actin (α-SMA) expression in liver tissue and attenuating hepatic expression of hepatic expression of angiogenic mediator vascular endothelium growth factor (VEGF) and proliferative mediator Antigen Kiel 67 (Ki-67).
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia.
| | - Ahmed A Elnfarawy
- Biotechnology Lab, Central Administration of Biological and Innovative Products and Clinical Studies, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Ramy A Abdelsalam
- Lecturer of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| |
Collapse
|
24
|
Liu B, Liu W, Xu M, Zhao T, Zhou B, Zhou R, Zhu Z, Chen X, Bao Z, Wang K, Li H. Drug delivery systems based on mesoporous silica nanoparticles for the management of hepatic diseases. Acta Pharm Sin B 2025; 15:809-833. [PMID: 40177563 PMCID: PMC11959912 DOI: 10.1016/j.apsb.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
The liver performs multiple life-sustaining functions. Hepatic diseases, including hepatitis, cirrhosis, and hepatoma, pose significant health and economic burdens globally. Along with the advances in nanotechnology, mesoporous silica nanoparticles (MSNs) exhibiting diversiform size and shape, distinct morphological properties, and favorable physico-chemical features have become an ideal choice for drug delivery systems and inspire alternative thinking for the management of hepatic diseases. Initially, we introduce the physiological structure of the liver and highlight its intrinsic cell types and correlative functions. Next, we detail the synthesis methods and physicochemical properties of MSNs and their capacity for controlled drug loading and release. Particularly, we discuss the interactions between liver and MSNs with respect to the passive targeting mechanisms of MSNs within the liver by adjusting their particle size, pore diameter, surface charge, hydrophobicity/hydrophilicity, and surface functionalization. Subsequently, we emphasize the role of MSNs in regulating liver pathophysiology, exploring their value in addressing liver pathological states, such as tumors and inflammation, combined with multi-functional designs and intelligent modes to enhance drug targeting and minimize side effects. Lastly, we put forward the problems, challenges, opportunities, as well as clinical translational issues faced by MSNs in the management of liver diseases.
Collapse
Affiliation(s)
- Boyan Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Wenshi Liu
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Miao Xu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tongyi Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Bingxin Zhou
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ruilin Zhou
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ze Zhu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuchun Chen
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Zhiye Bao
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Keke Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| |
Collapse
|
25
|
Hofer BS, Simbrunner B, Königshofer P, Brusilovskaya K, Petrenko O, Taru V, Sorz T, Zinober K, Semmler G, Kauschke SG, Pfisterer L, Trauner M, Mandorfer M, Schwabl P, Reiberger T. Aetiology-specific inflammation patterns in patients and rat models of compensated cirrhosis. Dig Liver Dis 2025; 57:450-458. [PMID: 39343656 DOI: 10.1016/j.dld.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cirrhosis is associated with a proinflammatory environment. AIMS To analyse aetiology-specific inflammation patterns in compensated cirrhosis in animal models and patients. METHODS Portal pressure (PP), fibrosis (collagen proportionate area [CPA]) and hepatic inflammation were measured in cirrhotic rat models (thioacetamide [TAA;n = 12]; choline-deficient high-fat diet [CDHFD;n = 12]; bile duct ligation [BDL;n = 16]). Compensated cirrhotic patients (alcohol-related liver disease [ALD;n = 67]; metabolic dysfunction-associated steatohepatitis [MASH;n = 50]; cholestatic liver disease [primary biliary cholangitis [PBC]/primary sclerosing cholangitis [PSC];n = 22]) undergoing hepatic venous pressure gradient (HVPG) measurement were included. RESULTS In rats, hepatic proinflammatory gene expression was highest in CDHFD and lowest in TAA, despite comparable PP levels. Across all animal models, Tnfa/Il6 correlated positively with CPA, and Mcp1 with elevated PP. Mcp1 was also associated with increased CPA in TAA/CDHFD. Mcp1/Cxcl1 showed a model-independent positive correlation to transaminases. Il1b correlated positively with CPA/PP in BDL and with transaminases in CDHFD. In patients, CRP/IL-6 were lower in MASH compared to ALD or PBC/PSC, regardless of hepatic function. IgA/IgG were highest and complement factors lowest in ALD. More pronounced systemic inflammation was linked to higher HVPG primarily in ALD/MASH. CONCLUSION Proinflammatory pathways are upregulated across all liver disease aetiologies, yet their association with fibrosis and portal hypertension can vary.
Collapse
Affiliation(s)
- Benedikt Silvester Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Vlad Taru
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Thomas Sorz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Kerstin Zinober
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stefan G Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach an der Riss, Germany
| | - Larissa Pfisterer
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach an der Riss, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
26
|
Avgustinovich DF, Chadaeva IV, Kizimenko AV, Kovner AV, Bazovkina DV, Ponomarev DV, Evseenko VI, Naprimerov VA, Lvova MN. The liver-brain axis under the influence of chronic Opisthorchis felineus infection combined with prolonged alcoholization in mice. Vavilovskii Zhurnal Genet Selektsii 2025; 29:92-107. [PMID: 40144377 PMCID: PMC11933900 DOI: 10.18699/vjgb-25-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 03/28/2025] Open
Abstract
Our purpose was to model a combination of a prolonged consumption of ethanol with Opisthorchis felineus infection in mice. Four groups of C57BL/6 mice were compiled: OF, mice infected with O. felineus for 6 months; Eth, mice consuming 20 % ethanol; Eth+OF, mice subjected to both adverse factors; and CON, control mice not exposed to these factors. In the experimental mice, especially in Eth+OF, each treatment caused well-pronounced periductal and cholangiofibrosis, proliferation of bile ducts, and enlargement of areas of inflammatory infiltration in the liver parenchyma. Simultaneously with liver disintegration, the infectious factor caused - in the frontal cerebral cortex - the growth of pericellular edema (OF mice), which was attenuated by the administration of ethanol (Eth+OF mice). Changes in the levels of some proteins (Iba1, IL-1β, IL-6, and TNF) and in mRNA expression of genes Aif1, Il1b, Il6, and Tnf were found in the hippocampus and especially in the frontal cortex, implying region-specific neuroinflammation. Behavioral testing of mice showed that ethanol consumption influenced the behavior of Eth and Eth+OF mice in the forced swimming test and their startle reflex. In the open field test, more pronounced changes were observed in OF mice. In mice of all three experimental groups, especially in OF mice, a disturbance in the sense of smell was detected (fresh peppermint leaves). The results may reflect an abnormality of regulatory mechanisms of the central nervous system as a consequence of systemic inflammation under the combined action of prolonged alcohol consumption and helminth infection.
Collapse
Affiliation(s)
- D F Avgustinovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I V Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kizimenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kovner
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Bazovkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Ponomarev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Evseenko
- Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Naprimerov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - M N Lvova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
27
|
Sartorius K, Wang Y, Sartorius B, Antwi SO, Li X, Chuturgoon A, Yu C, Lu Y, Wang Y. The interactive role of microRNA and other non-coding RNA in hepatitis B (HBV) associated fibrogenesis. Funct Integr Genomics 2025; 25:24. [PMID: 39847120 DOI: 10.1007/s10142-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression. Although extensive research has explained the regulatory role of ncRNA in liver fibrogenesis, most of this research relates to non-CHB etiologies. This review paper outlines the complex interactive regulatory role of microRNA (miRNA) and their interaction with long non-coding RNA (lncRNA), circular RNA (circRNA) and the mainstream epigenetic machinery in CHB induced liver fibrosis. The paper also illustrates some of the difficulties involved in translating candidate ncRNA into approved drugs or diagnostic tools. In conclusion, the important regulatory role of ncRNA in CHB induced liver fibrosis warrants further investigation to exploit their undoubted potential as diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg, South Africa.
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA.
| | - Yanglong Wang
- Department of General Surgery, Xinyi People's Hospital, Xinyi, Jiangsu, China
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Samuel O Antwi
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA
- Division of Epidemiology Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, AL, USA
| | - Xiaodong Li
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, UKZN, Durban, South Africa
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunjie Lu
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yu Wang
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, 213200, Changzhou, Jiangsu, China.
| |
Collapse
|
28
|
Dong W, Xiao L, Luo Z, Yu H, Wang L, Gao Y, Li Z. Assessment of hypoxia status in a rat chronic liver disease model using IVIM and T1 mapping. Front Med (Lausanne) 2025; 11:1477685. [PMID: 39906347 PMCID: PMC11790595 DOI: 10.3389/fmed.2024.1477685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Objectives This study was aimed to assess the diagnostic performance of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and T1 mapping in detecting hypoxia status of chronic liver disease using a carbon tetrachloride (CCl4)-induced rat model. Materials and methods The hypoxia group of chronic liver disease consisted of eight rats induced by injection of CCl4 and the control group consisted of nine rats injected with pure olive oil. All 17 rats underwent MRI examination at week 13 after injection, using T1 mapping and IVIM. Liver specimens were subjected to immunohistochemical staining for the exogenous hypoxia marker pimonidazole and the endogenous hypoxia marker HIF-1α and scored semi-quantitatively. Differences in MRI multiparameters, pimonidazole H-scores, and HIF-1α were analyzed between the control and hypoxia groups. Correlations between MRI multiparameters and H-score, and MRI multiparameters and HIF-1α, were analyzed, and the diagnostic performance of multiparameter MRI was evaluated by receiver operating characteristic (ROC) curve analysis. Results There were significant differences between the control group and the hypoxia group in D* values (p = 0.01) and f values (p = 0.025) of IVIM parameters, T1 mapping (p = 0.003), HIF-1α (p < 0.001) and pimonidazole scores (p = 0.004). D* (r = 0.508, p = 0.037) and T1 mapping (r = 0.489, p = 0.046) values positively correlated with pimonidazole scores. D* (r = 0.556, p = 0.020) and T1 mapping (r = 0.505, p = 0.039) showed a positive correlation with HIF-1α. The optimal cut-off value of T1 mapping was 941.527, and the sensitivity, specificity, and AUC were 87.5, 77.8, and 0.889 (95% confidence interval [CI]: 0.734-1), respectively. Conclusion IVIM and T1 Mapping are promising methods for non-invasive detection of hypoxia status in chronic liver diseases.
Collapse
Affiliation(s)
- Wenlu Dong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Longyang Xiao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziwei Luo
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyang Yu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanxiang Gao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiming Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Pichard V, Guilbaud M, Devaux M, Jaulin N, Journou M, Cospolite M, Garcia A, Ferry N, Michalak-Provost S, Gernoux G, Adjali O. Incomplete elimination of viral genomes is associated with chronic inflammation in nonhuman primate livers after AAV-mediated gene transfer. Gene Ther 2025:10.1038/s41434-025-00514-z. [PMID: 39838066 DOI: 10.1038/s41434-025-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The liver is a unique organ where immunity can be biased toward ineffective response notably in the context of viral infections. Chronic viral hepatitis depends on the inability of the T-cell immune response to eradicate antigen. In the case of recombinant Adeno-Associated-Virus, used for therapeutic gene transfer, conflicting reports describe tolerance induction to different transgene products while other studies have shown conventional cytotoxic CD8+ T cell responses with a rapid loss of transgene expression. We performed a 1 year follow up of 6 non-human primates after all animals received an rAAV8 vector carrying the GFP transgene at doses of 7×1012 vg/kg. We report that despite anti-GFP peripheral cellular response and loss of hepatic transgene expression, we were still able to detect persisting viral genomes in the liver until 1-year post-injection. These viral genomes were associated with liver inflammation, fibrosis and signs of CD8 T cell exhaustion, including high expression of PD-1. Our study shows that AAV8-mediated gene transfer can results to loss of transgene expression in liver and chronic inflammation several months after gene transfer.
Collapse
Affiliation(s)
- Virginie Pichard
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France.
| | - Mickaël Guilbaud
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Marie Devaux
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Nicolas Jaulin
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Malo Journou
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Magalie Cospolite
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Alexandra Garcia
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Nicolas Ferry
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Sophie Michalak-Provost
- HIFIH Laboratory, UPRES 3859, SFR 4208, Angers University, Angers, France
- Pathology Department, Angers University Hospital, Angers, France
| | - Gwladys Gernoux
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France.
| |
Collapse
|
30
|
Liu S, He F, Jin C, Li Q, Zhao G, Ding K. Design and Synthesis of Dual Galectin-3 and EGFR Inhibitors Against Liver Fibrosis. Chem Asian J 2025; 20:e202401078. [PMID: 39504308 DOI: 10.1002/asia.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Liver fibrosis, mainly arising from chronic viral or metabolic liver diseases, is a significant global health concern. There is currently only one FDA-approved drug (Resmetirom) in the market to combat liver fibrosis. Both galectin-3 and epidermal growth factor receptor (EGFR) play important roles in liver fibrosis, while galectin-3 may interact with EGFR. Galectin-3 inhibitors, typically lactose or galactose derivatives may inhibit liver fibrosis. We hypothesized that targeting both galectin-3 and EGFR may have better effect against liver fibrosis. Here, EGFR inhibitor erlotinib was used in a series of designed galectin-3 inhibitors after hybridization with the pharmacophore structure in reported galectin-3 inhibitors to impede hepatic stellate cells (HSCs) activation by a typical method of click chemistry. Bioactivity test results showed that compound 29 suppressed TGF-β-induced upregulation of fibrotic markers (α-SMA, fibronectin-1, and collagen I). The preferred compound 29 displayed better binding to galectin-3 (KD=52.29 μM) and EGFR protein (KD=3.31 μM) by SPR assay. Further docking studies were performed to clarify the possible binding mode of compound 29 with galectin-3 and EGFR. Taken together, these results suggested that compound 29 could be a potential dual galectin-3 and EGFR inhibitor as leading compound for anti-liver fibrosis new drug development.
Collapse
Affiliation(s)
- Shuanglin Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
| | - Fei He
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Can Jin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Qing Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Guilong Zhao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Kan Ding
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
31
|
Cai H, Zhang J, Chen C, Shen J, Zhang X, Peng W, Li C, Lv H, Wen T. Prognostic assessment of early-stage liver cirrhosis induced by HCV using an integrated model of CX3CR1-associated immune infiltration genes. Sci Rep 2025; 15:1771. [PMID: 39800763 PMCID: PMC11725579 DOI: 10.1038/s41598-024-80422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
Chemokine (C-X3-C motif) Receptor 1 (CX3CR1) primarily mediates the chemotaxis and adhesion of immune cells. However, its role in hepatitis C virus (HCV)-induced early-stage liver cirrhosis remains unexplored. GSE15654 was downloaded from the GEO database. The Cox regression model, CIBERSORT, and LASSO technique were utilized to identify CX3CR1-associated immune infiltration genes (IIGs). Surgical resection samples were collected for verification, including 3 healthy controls (HC), 4 individuals with HCV-induced hepatic cirrhosis, and 3 with HCV-induced liver failure. High CX3CR1 expression correlated with worse prognosis in early-stage cirrhosis. CX3CR1-associated IIGs, namely ACTIN4, CD1E, TMCO1, and WSF1, were identified, showing specific expression in the livers of individuals with post-hepatic cirrhosis and liver failure compared to HC. LOC400499 and MTHFD2 were elevated in individuals with liver failure in comparison to those with hepatocirrhosis. Notably, high infiltration of plasma cells and low infiltration of monocytes were predictive of poor prognosis in early-stage cirrhosis. The combined risk model predicted that high expression of CX3CR1-associated IIGs and increased infiltration of plasma cells were associated with unfavorable prognosis in individuals with HCV-induced early-stage liver cirrhosis. The developed combined risk model effectively predicted the prognosis of these individuals.
Collapse
Affiliation(s)
- Haozheng Cai
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Jing Zhang
- Division of Biliary Tract, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Chuwen Chen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Junyi Shen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Xiaoyun Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Wei Peng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Chuan Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Haopeng Lv
- Department of General Surgery, ChengDu Shi Xinjin Qu Renmin Yiyuan: People's Hospital of Xinjin District, Chengdu, China
| | - Tianfu Wen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Saponara I, Aloisio Caruso E, Cofano M, De Nunzio V, Pinto G, Centonze M, Notarnicola M. Anti-Inflammatory and Anti-Fibrotic Effects of a Mixture of Polyphenols Extracted from "Navelina" Orange in Human Hepa-RG and LX-2 Cells Mediated by Cannabinoid Receptor 2. Int J Mol Sci 2025; 26:512. [PMID: 39859241 PMCID: PMC11765147 DOI: 10.3390/ijms26020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Navelina oranges (Citrus sinensis) are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels. Conversely, OE treatment not only enhanced CB2R levels and reduced p38 MAPK, but also promoted a significant reduction in both COX-2 and TGF-β levels, suggesting that OE might be more effective in mitigating inflammatory and fibrotic processes than HE. In LX-2 cells, HE treatment caused a notable decrease in both COX-2 and TGF-β levels, reflecting its efficacy in targeting fibrosis-associated inflammation. OE treatment, on the other hand, reduced Nuclear Factor-Kappa B p65 (NF-κB) expression, a critical transcription factor involved in inflammatory responses, though it did not significantly affect COX-2. LX-2 cells induced to fibrosis with TGF-β and treated with HE and OE showed a reduction in the expression levels of several fibrosis markers. In addition, HE and OE showed antioxidant effects by increasing protein levels of Cu, Zn superoxide dismutase (SOD1), Mn superoxide dismutase (SOD2) and catalase (CAT) and influencing the state of lipid peroxidation. Further research is needed to explore the effects of the treatments in activated hepatic stellate cells and in vivo liver disease models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (I.S.); (E.A.C.); (M.C.); (V.D.N.); (G.P.); (M.C.)
| |
Collapse
|
33
|
Barletta C, Di Natale V, Esposito M, Chisari M, Cocimano G, Di Mauro L, Salerno M, Sessa F. The Rise of Fentanyl: Molecular Aspects and Forensic Investigations. Int J Mol Sci 2025; 26:444. [PMID: 39859160 PMCID: PMC11765396 DOI: 10.3390/ijms26020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Fentanyl is a synthetic opioid widely used for its potent analgesic effects in chronic pain management and intraoperative anesthesia. However, its high potency, low cost, and accessibility have also made it a significant drug of abuse, contributing to the global opioid epidemic. This review aims to provide an in-depth analysis of fentanyl's medical applications, pharmacokinetics, metabolism, and pharmacogenetics while examining its adverse effects and forensic implications. Special attention is given to its misuse, polydrug interactions, and the challenges in determining the cause of death in fentanyl-related fatalities. Fentanyl misuse has escalated dramatically, driven by its substitution for heroin and its availability through online platforms, including the dark web. Polydrug use, where fentanyl is combined with substances like xylazine, alcohol, benzodiazepines, or cocaine, exacerbates its toxicity and increases the risk of fatal outcomes. Fentanyl undergoes rapid distribution, metabolism by CYP3A4 into inactive metabolites, and renal excretion. Genetic polymorphisms in CYP3A4, OPRM1, and ABCB1 significantly influence individual responses to fentanyl, affecting its efficacy and potential for toxicity. Fentanyl's side effects include respiratory depression, cardiac arrhythmias, gastrointestinal dysfunction, and neurocognitive impairments. Chronic misuse disrupts brain function, contributes to mental health disorders, and poses risks for younger and older populations alike. Fentanyl-related deaths require comprehensive forensic investigations, including judicial inspections, autopsies, and toxicological analyses. Additionally, the co-administration of xylazine presents distinct challenges for the scientific community. Histological and immunohistochemical studies are essential for understanding organ-specific damage, while pharmacogenetic testing can identify individual susceptibilities. The growing prevalence of fentanyl abuse highlights the need for robust forensic protocols, advanced research into its pharmacogenetic variability, and strategies to mitigate its misuse. International collaboration, public education, and harm reduction measures are critical for addressing the fentanyl crisis effectively.
Collapse
Affiliation(s)
- Cecilia Barletta
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Virginia Di Natale
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | | | - Mario Chisari
- “Rodolico-San Marco” Hospital, Santa Sofia Street, 87, 95121 Catania, Italy;
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 80121 Napoli, Italy;
| | - Lucio Di Mauro
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Monica Salerno
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Francesco Sessa
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| |
Collapse
|
34
|
Abolfazli S, Butler AE, Jamialahmadi T, Sahebkar A. A Golden Shield: The Protective Role of Curcumin against Liver Fibrosis. Curr Med Chem 2025; 32:1987-2004. [PMID: 37605399 DOI: 10.2174/0929867331666230821095329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023]
Abstract
Several chronic liver injuries can result in liver fibrosis, a wound-healing response defined by an excessive buildup of diffuse extracellular matrix (ECM). Liver fibrosis may progress to liver cirrhosis, liver failure, or hepatocellular carcinoma. Many cellular routes are implicated in the fibrosis process; however, hepatic stellate cells appear to be the main cell type involved. Curcumin, a polyphenolic substance extracted from the Curcuma longa plant, has a diversity of pharmacologic impacts, including anti- inflammatory, antioxidant, antiproliferative and antiangiogenic actions. The anti-fibrotic property of curcumin is less clear, but curcumin's ability to influence inflammatory cytokines, inflammatory pathways, the expression of pro-apoptotic (up-regulated) and anti- apoptotic (down-regulated) proteins, and its ability to lower oxidative stress likely underlie its anti-fibrotic properties. In this review, we investigate and analyze the impact of curcumin on several disorders that lead to liver fibrosis, and discuss the therapeutic applications of curcumin for these disorders.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland-Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Li T, Zhang M, Wu JJ, Liu ZH, Li YP, Dang SS. Comparative analysis of platelet count and function in patients with compensated and decompensated liver cirrhosis. Shijie Huaren Xiaohua Zazhi 2024; 32:904-911. [DOI: 10.11569/wcjd.v32.i12.904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Ting Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Meng Zhang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Jiao-Jiao Wu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Zi-Han Liu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
36
|
Wang Y, Ma H, Zhang B, Li S, Lu B, Qi Y, Liu T, Wang H, Kang X, Liang Y, Kong E, Cao L, Zhou B. Protein palmitoylation in hepatic diseases: Functional insights and therapeutic strategies. J Adv Res 2024:S2090-1232(24)00619-2. [PMID: 39732335 DOI: 10.1016/j.jare.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states. AIM OF REVIEW This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent studies have identified the key role of protein palmitoylation in regulating the development and progression of liver diseases. This review summarizes the intricate mechanisms by which protein palmitoylation modulates the pathophysiological processes of liver diseases and explores the potential of targeting protein palmitoylation modifications or the enzymes regulating this modification as prospective diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sainan Li
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Beijia Lu
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, PR China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Liu Cao
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Binhui Zhou
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
37
|
Zhao H, Liu Z, Chen H, Han M, Zhang M, Liu K, Jin H, Liu X, Shi M, Pu W, Werner M, Meister M, Kauschke SG, Sun R, Wang J, Shen R, Wang QD, Ma X, Tchorz JS, Zhou B. Identifying specific functional roles for senescence across cell types. Cell 2024; 187:7314-7334.e21. [PMID: 39368477 DOI: 10.1016/j.cell.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Cellular senescence plays critical roles in aging, regeneration, and disease; yet, the ability to discern its contributions across various cell types to these biological processes remains limited. In this study, we generated an in vivo genetic toolbox consisting of three p16Ink4a-related intersectional genetic systems, enabling pulse-chase tracing (Sn-pTracer), Cre-based tracing and ablation (Sn-cTracer), and gene manipulation combined with tracing (Sn-gTracer) of defined p16Ink4a+ cell types. Using liver injury and repair as an example, we found that macrophages and endothelial cells (ECs) represent distinct senescent cell populations with different fates and functions during liver fibrosis and repair. Notably, clearance of p16Ink4a+ macrophages significantly mitigates hepatocellular damage, whereas eliminating p16Ink4a+ ECs aggravates liver injury. Additionally, targeted reprogramming of p16Ink4a+ ECs through Kdr overexpression markedly reduces liver fibrosis. This study illuminates the functional diversity of p16Ink4a+ cells and offers insights for developing cell-type-specific senolytic therapies in the future.
Collapse
Affiliation(s)
- Huan Zhao
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zixin Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Chen
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Maoying Han
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hengwei Jin
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuxiu Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mengyang Shi
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Pu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Markus Werner
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Meister
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Stefan G Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Jinjin Wang
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xin Ma
- Department of Pharmacology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jan S Tchorz
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Bin Zhou
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
38
|
Wang Z, Guan R, Gan W, Yang Z, Sun B, Wu J, Zhang D, Sun G, Gao X, Huang J, Liu G, Zhou C, Zhou J, Fan J, Yi Y, Hu B, Qiu S. Effective Antiviral Therapy Improves Immunosuppressive Activities in the Immune Microenvironment of Hepatocellular Carcinoma by Alleviating Inflammation and Fibrosis. Cancer Med 2024; 13:e70459. [PMID: 39659057 PMCID: PMC11632120 DOI: 10.1002/cam4.70459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND AND AIMS The immune microenvironment (IME) plays a crucial role in the progression of hepatocellular carcinoma (HCC). In HCC, the IME is often compromised by hepatitis B virus (HBV) infection, chronic inflammation, and fibrosis. Both antiviral therapy (AVT) and the alleviation of inflammation and fibrosis (AIF) have been shown to improve prognosis. However, the relationship among the IME of HCC, AVT, and AIF remains unclear. METHODS A total of 140 and 110 primary HBV-related HCC patients were enrolled as training and validation sets, respectively, to establish a HCC-immune microenvironment score (H-IME score). Immunohistochemistry was performed to assess the number of granzyme B+ (GrB+) and Foxp3+ cells, as well as the expression of CTLA-4, PD-1, LAG3, TIGIT, TIM3, and VISTA. Another cohort consisting of 114 recurrent HBV-related HCC patients with paired primary and recurrent tissues was used to study the relationship among the IME of HCC, AVT, and AIF. RESULTS The H-IME score, including GrB, Foxp3, CTLA-4, PD-1, LAG3, and TIGIT, was established to evaluate the IME. A higher H-IME score indicates stronger immunosuppressive activities. Both AVT and AIF were found to inhibit immunosuppressive activities in the IME. Compared to primary tumors, the H-IME scores of recurrent tumors in the effective AVT group (e-AVT, classified by HBV DNA) with AIF decreased, while the scores increased in the non-AVT group without AIF. CONCLUSIONS The IME of HCC is closely related to AVT and AIF. e-AVT can enhance anti-tumor activities in the IME by alleviating inflammation and fibrosis.
Collapse
Affiliation(s)
- Zhu‐tao Wang
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ruo‐yu Guan
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Gan
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhang‐fu Yang
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Bao‐ye Sun
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jing‐fang Wu
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Dai Zhang
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Guo‐qiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xu‐kang Gao
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jin‐long Huang
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Gao Liu
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shuang‐Jian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
39
|
Yang D, Liu K, Cai C, Xi J, Yan C, Peng Z, Wang Y, Jing L, Zhang Y, Xie F, Li X. Target-Engineered Liposomes Decorated with Nanozymes Alleviate Liver Fibrosis by Remodeling the Liver Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64536-64553. [PMID: 39530795 DOI: 10.1021/acsami.4c14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Liver fibrosis is a pathological repair response that occurs after sustained liver damage, and prompt intervention is necessary to prevent liver fibrosis from developing into a potentially life-threatening condition. In long-term liver injury, damaged hepatocytes produce excessive amounts of reactive oxygen species (ROS), which activate hepatic stellate cells (HSCs). This activation leads to excessive accumulation of extracellular matrix proteins in liver tissue. Additionally, liver macrophages contribute to the inflammatory microenvironment in the hepatic fibrotic process, exacerbating liver fibrosis through ROS production and the secretion of pro-inflammatory factors. To address the dysregulation of the hepatic microenvironment associated with liver fibrosis, we developed cerium oxide nanozymes using hyaluronic acid (HA) as a template and decorated them on the surface of liposomes loaded with oleanolic acid (OA). We named this prepared and obtained target-engineered liposome HCOL. The inherent superoxide dismutase (SOD) and catalase (CAT) activities of HCOL enabled it to effectively scavenge ROS in HSCs and alleviate the hypoxic conditions characteristic of fibrotic livers. Furthermore, HCOL reduced the concentrations of ROS in macrophages, promoting a shift in macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. This transition increased the production of the anti-inflammatory cytokine interleukin 10 (IL-10), which contributed to the mitigation of the inflammatory microenvironment. Consequently, this therapeutic approach proves effective in decelerating the advancement of liver fibrosis.
Collapse
Affiliation(s)
- Dejun Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Chunyan Cai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Jingjing Xi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Chunmei Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Zhaolei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Yulin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Lin Jing
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine. Chengdu 611137, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
40
|
Ma X, Qiu J, Zou S, Tan L, Miao T. The role of macrophages in liver fibrosis: composition, heterogeneity, and therapeutic strategies. Front Immunol 2024; 15:1494250. [PMID: 39635524 PMCID: PMC11616179 DOI: 10.3389/fimmu.2024.1494250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Macrophages, the predominant immune cells in the liver, are essential for maintaining hepatic homeostasis and responding to liver injury caused by external stressors. The hepatic macrophage population is highly heterogeneous and plastic, mainly comprised of hepatic resident kuffer cells (KCs), monocyte-derived macrophages (MoMφs), lipid-associated macrophages (LAMs), and liver capsular macrophages (LCMs). KCs, a population of resident macrophages, are localized in the liver and can self-renew through in situ proliferation. However, MoMφs in the liver are recruited from the periphery circulation. LAMs are a self-renewing subgroup of liver macrophages near the bile duct. While LCMs are located in the liver capsule and derived from peripheral monocytes. LAMs and LCMs are also involved in liver damage induced by various factors. Hepatic macrophages exhibit distinct phenotypes and functions depending on the specific microenvironment in the liver. KCs are critical for initiating inflammatory responses after sensing tissue damage, while the MoMφs infiltrated in the liver are implicated in both the progression and resolution of chronic hepatic inflammation and fibrosis. The regulatory function of liver macrophages in hepatic fibrosis has attracted significant interest in current research. Numerous literatures have documented that the MoMφs in the liver have a dual impact on the progression and resolution of liver fibrosis. The MoMφs in the liver can be categorized into two subtypes based on their Ly-6C expression level: inflammatory macrophages with high Ly-6C expression (referred to as Ly-6Chi subgroup macrophages) and reparative macrophages with low Ly-6C expression (referred to as Ly-6Clo subgroup macrophages). Ly-6Chi subgroup macrophages are conducive to the occurrence and progression of liver fibrosis, while Ly-6Clo subgroup macrophages are associated with the degradation of extracellular matrix (ECM) and regression of liver fibrosis. Given this, liver macrophages play a pivotal role in the occurrence, progression, and regression of liver fibrosis. Based on these studies, treatment therapies targeting liver macrophages are also being studied gradually. This review aims to summarize researches on the composition and origin of liver macrophages, the macrophage heterogeneity in the progression and regression of liver fibrosis, and anti-fibrosis therapeutic strategies targeting macrophages in the liver.
Collapse
Affiliation(s)
- Xiaocao Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jia Qiu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Shubiao Zou
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liling Tan
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingting Miao
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Luo K, Geng Y, Oosterhuis D, de Meijer VE, Olinga P. Evaluating the antifibrotic potential of naringenin, asiatic acid, and icariin using murine and human precision-cut liver slices. Physiol Rep 2024; 12:e16136. [PMID: 39501714 PMCID: PMC11538472 DOI: 10.14814/phy2.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 11/09/2024] Open
Abstract
Liver fibrosis is an exaggerated wound healing response defined by the excessive accumulation of extracellular matrix. This study investigated the antifibrotic potential of naringenin (NRG), asiatic acid (AA), and icariin (ICA) using murine and human precision-cut liver slices (PCLS). These natural products have shown promise in animal models, but human data are lacking. In this study, PCLS prepared from male mouse liver tissue (mPCLS), healthy human liver tissue (hhPCLS), and cirrhotic human liver tissue (chPCLS) were cultured for 48 h with varying concentrations of the three compounds. Our findings indicate that NRG reduced collagen type 1 (COL1A1) expression in a concentration-dependent manner in both mPCLS and chPCLS, decreased fibrosis-related gene expression, and significantly lowered pro-collagen type 1 (PCOL1A1) levels in the culture medium by 54 ± 21% (mPCLS) and 78 ± 35% (chPCLS). Furthermore, NRG effectively inhibited IL-1β and TNF-α in mPCLS and IL-1β in chPCLS on both gene and protein levels. AA specifically reduced COL1A1 and PCOL1A1 in chPCLS, while ICA selectively downregulated Col1a1 and Acta2 gene expression in mPCLS. This study suggests NRG's potential as an effective antifibrotic agent, warranting further investigation into its mechanisms and therapeutic applications in liver fibrosis.
Collapse
Affiliation(s)
- Ke Luo
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Yana Geng
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, University of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
42
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
43
|
Bedi O, Sapra V, Kumar M, Krishan P. Newer mitochondrial dynamics and their role of calcium signalling in liver regeneration. Mitochondrion 2024; 79:101969. [PMID: 39305943 DOI: 10.1016/j.mito.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024]
Abstract
Liver regeneration is a crucial process involved in cellular proliferation, differentiation, and tissue repair. Calcium signaling impact key pathways like hepatocyte growth factor-Met-tyrosine kinase (HGF-Met) transduction pathway, the epidermal growth factor receptor (EGFR) signaling and Ca-mediated nuclear SKHep1 cell proliferation pathway. Intracellular hepatocyte calcium stores are considered as base for the induction of ca-mediated regeneration process. Calcium signaling interplays with HGF, TGF-β, and NF-κB signaling, influence stem cell behavior and triggers MAPK cascade. The mitochondria calcium is impacting on liver rejuvenation by regulating apoptosis and cell division. In conclusion, it is stated that calcium-signaling holds promise for therapeutic liver interventions.
Collapse
Affiliation(s)
- Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Vaibhav Sapra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
44
|
Ali SA, Datusalia AK. Berberine attenuates ECM accumulation and the progression of acute liver failure through inhibition of NLRP3 inflammasome signalling. Toxicol Appl Pharmacol 2024; 492:117129. [PMID: 39428072 DOI: 10.1016/j.taap.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disease, characterized by upregulated extracellular matrix deposition and inflammatory signalling, with no effective treatment options and targets. The present study was designed to investigate the preventive and therapeutic effects of berberine (BBR) and its underlying mechanism in thioacetamide (TAA)-induced ALF. Male SD rats were administered with TAA 300 mg/kg, i.p., thrice to induce ALF and pre- or post-treated with BBR. To decipher the effects of BBR LFT markers, histopathological analysis of key fibrotic and inflammatory proteins was performed. In addition, the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were assessed by ELISA. Our work showed TAA-induced ALF animals were associated with increased ALT, AST, bilirubin (LFT markers) and histopathological alterations with profuse infiltration of inflammatory cells in the liver tissue. Treatment with BBR has significantly inhibited LFT markers and histological alterations triggered by TAA. In addition, TAA animals demonstrated increased collagen accumulation and upregulated expression of TGF-β1, vimentin, and α-SMA compared to control. The excessive accumulation of collagen, TGF-β1, vimentin, and α-SMA were significantly modulated with BBR treatment. Further, the fluorescence intensity of ROS an activator of NLRP3 including the NLRP3 inflammasome, and its downstream signalling ASC, cleaved IL-1β, and other pro-inflammatory cytokines like TNF-α and IL-6 stimulated by TAA were attenuated by BBR treatment. The current work indicated that BBR significantly ameliorated TAA-induced ALF by inhibiting the extracellular matrix accumulation associated with the NLRP3/IL-1β signalling pathway and could be a viable therapeutic option to treat ALF and other fibroinflammatory diseases.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Ashok Kumar Datusalia
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India.
| |
Collapse
|
45
|
Zhang Q, Liang Q, Wang G, Xie X, Cao Y, Sheng N, Zeng Z, Ren C. Highly Selective Artificial K + Transporters Reverse Liver Fibrosis In Vivo. JACS AU 2024; 4:3869-3883. [PMID: 39483224 PMCID: PMC11522913 DOI: 10.1021/jacsau.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 11/03/2024]
Abstract
Liver fibrosis is a life-threatening disease that currently lacks clinically effective therapeutic agents. Given the close correlation between dysregulated intracellular K+ homeostasis and the progression of liver fibrosis, developing artificial K+ transporters mimicking the essential function of their natural counterparts in regulating intracellular K+ levels might offer an appealing yet unexplored treatment strategy. Here, we present an unconventional class of artificial K+ transporters involving the "motional" collaboration between two K+ transporter molecules. In particular, 6C6 exhibits an impressive EC50 value of 0.28 μM (i.e., 0.28 mol % relative to lipid) toward K+ and an exceptionally high K+/Na+ selectivity of 15.5, representing one of the most selective artificial K+ transporters reported to date. Most importantly, our study demonstrates, for the first time, the potential therapeutic effect of K+-selective artificial ion transporters in reversing liver fibrosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiuping Zhang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Qinghong Liang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Guijiang Wang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaopan Xie
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yin Cao
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Nan Sheng
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiping Zeng
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changliang Ren
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
46
|
Zhao Z, Fan Q, Zhang C, Zheng L, Lin J, Chen M, Wu G, Li H, Huo H, Zhao Q, Luo M. Imperatorin attenuates CCl 4-induced cirrhosis and portal hypertension by improving vascular remodeling and profibrogenic pathways. Eur J Pharmacol 2024; 980:176833. [PMID: 39089464 DOI: 10.1016/j.ejphar.2024.176833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Cirrhosis leads to portal hypertension (PHT), affecting survival with limited treatment options. This study investigated Imperatorin (IMP), a furanocoumarin with anti-inflammatory and hypotensive properties, for its therapeutic role and mechanisms in cirrhotic PHT. METHODS Hepatic stellate cells (HSCs) inhibition by IMP was evaluated using LX-2 cell line. Rat cirrhosis was induced via CCl4 for 16 weeks. Experimental group were orally administered IMP (15/25 mg/kg/day) for 4 weeks. We subsequently examined portal pressure (PP), cirrhosis, inflammation, angiogenesis, and vascular remodeling. Network pharmacology was employed for mechanistic insights. RESULTS IMP significantly inhibited the fibrogenesis in HSCs and suppressed cell viability. CCl4 exposure induced cirrhosis, inflammation, angiogenesis, vascular remodeling and PHT. IMP significantly reduced PP from 22.85 ± 3.88 mmHg to 6.67 ± 0.6 mmHg, diminished collagen deposition and pro-fibrotic factor expression, alleviated inflammation, and improved liver function. Vessel wall thickness in superior mesenteric arteries was restored, and intra-/extrahepatic angiogenesis was inhibited via VEGF and vWF. Furthermore, IMP induced sinusoidal vasodilation by upregulating eNOS and GCH1. Enrichment analysis indicated that IMP was involved in various biological processes associated with cirrhosis, such as the regulation of blood pressure, tissue remodeling, response to inflammation, and regulation of angiogenesis, etc. Additionally, IMP suppressed hepatic expression of TGF-β both in vitro and in vivo, which was further supported by KEGG analysis. CONCLUSION Our research demonstrated that IMP significantly mitigated cirrhosis PHT by reducing hepatic fibrosis and inflammation, curbing angiogenesis and vascular remodeling, and promoting vasodilation. This protective mechanism appears to be facilitated through the downregulation of TGF-β.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangbo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Pashayee-Khamene F, Hajimohammadebrahim-Ketabforoush M, Heidari Z, Yari Z, Karimi S, Saber-firoozi M, Hatami B, Hekmatdoost A. Dietary total antioxidant capacity in relation to disease severity and risk of mortality in cirrhosis; results from a cohort study. Heliyon 2024; 10:e37733. [PMID: 39315216 PMCID: PMC11417536 DOI: 10.1016/j.heliyon.2024.e37733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Liver Cirrhosis, defined as the final stage of chronic liver disease, may become more prevalent in the lower level of body defense against oxidation and inflammation. Therefore, we assessed the association of dietary total antioxidant capacity (DTAC) with the severity and mortality of cirrhosis in a cohort study. 120 newly diagnosed cirrhosis patients from Tehran, Iran, participated in this study. The patients' habitual diet was assessed using a 168-item validated food frequency questionnaire. Both ferric-reducing antioxidant potential (FRAP) and oxygen radical scavenging capacity (ORAC) methods were computed to achieve DTAC scores. The association between DTAC with disease severity and mortality was estimated by multivariate linear regression and cox proportional hazards regression models. Dietary total antioxidant capacity-ORAC had a significant inverse association with disease severity in both crude and adjusted models (P for trend: <0.001 and 0.016 respectively). The risk of mortality in the first and second tertiles of ORAC was 5.56 (95 % CI: 2.25-13.75; P = 0.002) and 3.20 (95 % CI: 1.25-8.19; P = 0.015) higher than those in the third category, respectively. In conclusion, a higher antioxidant capacity of diet is associated with less disease severity and mortality risk in cirrhosis.
Collapse
Affiliation(s)
- Fereshteh Pashayee-Khamene
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Melika Hajimohammadebrahim-Ketabforoush
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Heidari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Saber-firoozi
- Liver and Pancreato-biliary Disease Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Trehan R, Zhu XB, Huang P, Wang X, Soliman M, Strepay D, Nur A, Kedei N, Arhin M, Ghabra S, Rodríguez-Matos F, Benmebarek MR, Ma C, Korangy F, Greten TF. A Paradoxical Tumor Antigen Specific Response in the Liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.614002. [PMID: 39372792 PMCID: PMC11451677 DOI: 10.1101/2024.09.19.614002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Functional tumor-specific CD8+ T cells are essential for an effective anti-tumor immune response and the efficacy of immune checkpoint inhibitor therapy. In comparison to other organ sites, we found higher numbers of tumor-specific CD8+ T cells in primary, metastatic liver tumors in murine tumor models. Despite their abundance, CD8+ T cells in the liver displayed an exhausted phenotype. Depletion of CD8+ T cells showed that liver tumor-reactive CD8+ T failed to control liver tumors but was effective against subcutaneous tumors. Similarly, analysis of single-cell RNA sequencing data from patients showed a higher frequency of exhausted tumor-reactive CD8+ T cells in liver metastasis compared to paired primary colon cancer. High-dimensional, multi-omic analysis combining proteomic CODEX and scRNA-seq data revealed enriched interaction of SPP1+ macrophages and CD8+ tumor-reactive T cells in profibrotic, alpha-SMA rich regions in the liver. Liver tumors grew less in Spp1-/- mice and the tumor-specific CD8+ T cells were less exhausted. Differential pseudotime trajectory inference analysis revealed extrahepatic signaling promoting an intermediate cell (IC) population in the liver, characterized by co-expression of VISG4, CSF1R, CD163, TGF-βR, IL-6R, SPP1. scRNA-seq of a third data set of premetastatic adenocarcinoma showed that enrichment of this population may predict liver metastasis. Our data suggests a mechanism by which extrahepatic tumors facilitate the formation of liver metastasis by promoting an IC population inhibiting tumor-reactive CD8+ T cell function.
Collapse
Affiliation(s)
- Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTR, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Arhin
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shadin Ghabra
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodríguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Senior author
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
- Senior author
| |
Collapse
|
49
|
El-Demerdash FM, Minjal AH, El-Sayed RA, Baghdadi HH. Hepatoprotective Effect of Ethanolic Pomegranate Peel Extract Against Levofloxacin via Suppression of Oxidative Stress, Proinflammation, and Apoptosis in Male Rats. J Med Food 2024; 27:866-878. [PMID: 39001843 DOI: 10.1089/jmf.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
One of the fluoroquinolone antibiotics, levofloxacin (LEV), is used to treat a variety of illnesses leading to oxidative stress and cellular damage. Peel from Punica granatum is a waste product abundant in phytochemicals with various biological activities. This study aimed to evaluate P. granatum peel extract's (PGPE) potential to mitigate oxidative stress, inflammation, apoptosis, and liver damage caused by LEV. There were four groups of rats: control, PGPE, LEV, and PGPE + LEV, respectively, and they were orally administered their daily treatments for 2 weeks. Results revealed that PGPE has a large number of phytochemical components with high antioxidant activity. PGPE intake alone enhanced the antioxidant status and decreased oxidative stress. On the other hand, pretreatment of the LEV group with PGPE restored oxidative stress, antioxidant enzymes, glutathione content, liver function biomarkers, and hematological parameters. Also, normalization of gene expressions (cyclooxygenase-2, transforming growth factor-beta1, caspase-3, heme oxygenase-1, B cell lymphoma-2, interleukin [IL]-10, and IL-1) and improvement in liver architecture, and immunohistochemical alpha-smooth muscle actin, were seen in comparison to the LEV group. Conclusively, PGPE exhibits strong anti-inflammatory, antiapoptotic, and antioxidant properties that shield rat liver from the damaging effects of LEV and offer a fresh viewpoint on the application of fruit waste products.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Ali H Minjal
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
50
|
Setyawati DR, Sekaringtyas FC, Pratiwi RD, Rosyidah A, Azhar R, Gustini N, Syahputra G, Rosidah I, Mardliyati E, Tarwadi, El Muttaqien S. Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1105-1116. [PMID: 39188757 PMCID: PMC11346304 DOI: 10.3762/bjnano.15.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Over recent decades, nanomedicine has played an important role in the enhancement of therapeutic outcomes compared to those of conventional therapy. At the same time, nanoparticle drug delivery systems offer a significant reduction in side effects of treatments by lowering the off-target biodistribution of the active pharmaceutical ingredients. Cancer nanomedicine represents the most extensively studied nanotechnology application in the field of pharmaceutics and pharmacology since the first nanodrug for cancer treatment, liposomal doxorubicin (Doxil®), has been approved by the FDA. The advancement of cancer nanomedicine and its enormous technological success also included various other target diseases, including hepatic fibrosis. This confirms the versatility of nanomedicine for improving therapeutic activity. In this review, we summarize recent updates of nanomedicine platforms for improving therapeutic efficacy regarding liver fibrosis. We first emphasize the challenges of conventional drugs for penetrating the biological barriers of the liver. After that, we highlight design principles of nanocarriers for achieving improved drug delivery of antifibrosis drugs through passive and active targeting strategies.
Collapse
Affiliation(s)
- Damai Ria Setyawati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Fransiska Christydira Sekaringtyas
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Riyona Desvy Pratiwi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - A’liyatur Rosyidah
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Rohimmahtunnissa Azhar
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Nunik Gustini
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Gita Syahputra
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Idah Rosidah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Tarwadi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Sjaikhurrizal El Muttaqien
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| |
Collapse
|