1
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2025; 17:1688-1710. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang P, Yuksel M, Gabeta S, Graham J, Hussain M, Blackmore LJ, Huang X, Hadzic D, Samyn M, Grammatikopoulos T, Heneghan M, Liberal R, Longhi MS, Mieli-Vergani G, Vergani D, Ma Y. HLA alleles predisposing to autoimmunity are linked to impaired immunoregulation in patients with juvenile autoimmune liver disease and in their first-degree relatives. J Autoimmun 2025; 154:103436. [PMID: 40334621 DOI: 10.1016/j.jaut.2025.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/21/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND & AIMS Juvenile autoimmune liver disease (JAILD) comprises autoimmune hepatitis and autoimmune sclerosing cholangitis. JAILD-predisposing genes include HLA-DR3,DR7, DR13 and haplotype A1-B8-DR3. Mechanisms leading to liver autoimmunity remain elusive, though JAILD patients have aberrated immunoregulation. We investigated the influence of HLA genes on immune cells, focusing on T-cells and frequency and function of T regulatory cells (Tregs) in JAILD patients, their first-degree-relatives (FDRs) and healthy controls (HCs). METHODS HLA class I and II genotypes were defined by PCR and peripheral blood mononuclear cells were immunophenotyped by FACS in 82 patients, 72 FDRs, 50 HCs. Treg function was tested by inhibition of CD4posCD25neg T-cell proliferation. Links between HLA genes, Treg frequency/function, pro-inflammatory/immunoregulatory cytokines, soluble and membrane-bound programmed cell death-1 (PD-1) were investigated. RESULTS Proportion of subjects carrying HLA DR3/DR7/DR13 was 88 %, 92 %, 64 % in patients, FDRs and HCs. Circulating Treg frequency was lower in patients and FDRs than HCs. Inhibitory capacity of Tregs was lower in patients but similar in FDRs compared to HCs. FDRs possessing HLA DR3/DR7/DR13 genes had Treg frequencies lower than those without. PD-1 posCD4pos T-cells were fewer in patients than HCs; PD-1posCD8pos T-cells were fewer in patients and FDRs than HCs. Patient plasma levels of IFN-γ were higher, and ratios of IFN-γ/IL-10 and IFN-γ/IL-2 lower than in HCs. All nine FDRs with autoimmune disorders had HLA DR3/DR7/DR13 genes and lower Treg frequency than those without autoimmune disorders and HCs. CONCLUSION We show a link between HLA disease-predisposing genes and defective immunoregulation not only in JAILD patients, but also in their FDRs, who are prone to autoimmune disorders.
Collapse
Affiliation(s)
- Pengyun Wang
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK
| | - Muhammed Yuksel
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK; School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, UK.
| | - Stella Gabeta
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK; Department of Medicine and Research Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece
| | - Jonathon Graham
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK
| | - Munther Hussain
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK
| | - Laura Jayne Blackmore
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK; University Hospital Lewisham, King's College Hospital Foundation Trust, London, SE13 6LH, UK
| | - Xiaohong Huang
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK
| | - Dino Hadzic
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, Denmark Hill, London, UK
| | - Marianne Samyn
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, Denmark Hill, London, UK
| | | | - Michael Heneghan
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK
| | - Rodrigo Liberal
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK; Gastroenterology Department, Centro Hospitalar São João, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Maria Serena Longhi
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK; Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, 02215, MA, USA
| | - Giorgina Mieli-Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK; Paediatric Liver, GI & Nutrition Centre, King's College Hospital, Denmark Hill, London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK
| | - Yun Ma
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
3
|
Xiao Y, Luo T, Duan C, Wang X, Yang Y, Li R, Deng J, Zhao Q. Ethyl acetate extract from Herpetospermun cardigerum wall. Ameliorated concanavalin A-induced autoimmune hepatitis in mice by reprofiling gut microenvironment to modulate IDO1/KYN and PI3K/AKT/NF-κB pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119578. [PMID: 40081510 DOI: 10.1016/j.jep.2025.119578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an immunoinflammatory chronic liver disease with increasing prevalence worldwidely, lacking of effective medicine. Herpetospermum caudigerum Wall. (HC) is a traditional Tibetan medicine used to treat liver diseases for thousands of years. However, investigation into the effects of HC in AIH remains scarce. PURPOSE Our study aimed to explore the effects and mechanisms of ethyl acetate extract from the seeds of HC (HCDEAE) against concanavalin A (Con A)-induced liver impairment in mouse. STUDY DESIGN AND METHODS HCDEAE was extracted from the seeds of HC, then characterized by UPLC-Q-TOF/MS. Con A-induced AIH mice were used to investigate the impacts of HCDEAE on liver impairment, T cells differentiation, gut microbiota and its derived metabolites, intestinal barrier impairment and inflammation, as well as the mechanisms of HCDEAE in liver in AIH. RESULTS HCDEAE (90 mg/kg, i.g.) effectively alleviated Con A-induced hepatic pathological damage, suppressed elevation of serum ALT, AST, IFN-γ, and TNF-α; in spleen, HCDEAE attenuated spleen impairment, elevated the percentage of CD4+CD25+ cells and FOXP3 gene expression, inhibited up-regulation of RORγt gene expression and IL-17; in liver, HCDEAE down-regulated IL-17, elevated FOXP3 gene expression and IL-10, increased the protein and gene expression of TGF-β1; in colon, HCDEAE attenuated intestinal barrier impairment, inhibited down-regulation of Occludin and ZO-1, and relieved elevation of IL-1β, as well as re-profiled the gut microenvironment. Furthermore, HCDEAE demonstrated the ability to elevate tryptophan metabolism among kynurenine pathway, activate IDO1/KYN pathway and inhibit PI3K/AKT/NF-κB signaling pathway in liver of AIH mice. CONCLUSION Pretreatment with HCDEAE (90 mg/kg·d-1, i.g.) for 9 days could effectively alleviate the liver inflammation and injure, protect intestinal barriers, attenuate spleen impairment, maintain Treg-Th17 cell equilibrium in Con A-induced AIH mice, via re-profiling gut microbiota, modulation of tryptophan metabolism in the gastrointestinal tract and in liver, to activate IDO1/KYN pathway and inhibit the abnormal activation of PI3K/AKT/NF-κB signaling pathway in liver. The present study highlighted the potential of HCDEAE as a drug candidate for AIH.
Collapse
Affiliation(s)
- Yu Xiao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Tianfeng Luo
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Changsong Duan
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Xinhui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jinpeng Deng
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
4
|
Singh A, Mazumder A, Das S, Kanda A, Tyagi PK, Chaitanya MVNL. Harnessing the Power of Probiotics: Boosting Immunity and Safeguarding against Various Diseases and Infections. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2025; 20:5-29. [PMID: 40302548 DOI: 10.2174/0127724344308638240530065552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2025]
Abstract
The human microbiome, a diverse microorganism community, crucially defends against pathogens. Probiotics, postbiotics, and paraprobiotics alone and in combination are potent in countering fungal and waterborne infections, particularly against viral threats. This review focuses on the mechanisms of the microbiome against viral infections, emphasizing probiotic interventions. Certain Lactic Acid Bacteria (LAB) strains effectively eliminate toxic aflatoxin B1 (AFB1) from microfungi-produced mycotoxins. LAB binding to AFB1 persists post-gastric digestion, and pre-incubation with mycotoxins reduces probiotic adhesion to mucus. Oral probiotic administration in animals increases mycotoxin excretion, reducing associated health risks. Bifidobacterium longum and Lactobacillus rhamnosus show exceptional efficacy in removing cyanobacterial toxin microcystin-LR from drinking water. Engineered probiotics promise advanced therapeutic applications for metabolic disorders, Alzheimer's, and type 1 diabetes, serving as diagnostic tools for detecting pathogens and inflammation markers. In antimicrobial peptide production, genetically modified probiotics producing human β-defensin 2 (HBD2) treat Crohn's disease with implemented biocontainment strategies preventing unintended environmental impacts.
Collapse
Affiliation(s)
- Archna Singh
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - Saumya Das
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - Anmol Kanda
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144001, Punjab, India
| |
Collapse
|
5
|
Wu J, Lyu S, Guo D, Yang N, Liu Y. Protective effects of YCHD on the autoimmune hepatitis mice model induced by Ad-CYP2D6 through modulating the Th1/Treg ratio and intestinal flora. Front Immunol 2024; 15:1488125. [PMID: 39606230 PMCID: PMC11600021 DOI: 10.3389/fimmu.2024.1488125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease mediated by autoimmune reactions, the pathogenesis of AIH is probably related to the imbalance of intestinal flora. Yinchenhao decoction (YCHD) has been used to relieve AIH. However, the mechanisms underpinning YCHD's hepatoprotective effects with the gut microbito have not been fully revealed. Objective To explore the potential mechanism of YCHD in treating AIH based on changes in the intestinal flora and Th1/Treg ratio in the spleen and hepatic hilar lymph nodes. Methods The AIH mice model induced by the adenovirus vectors that overexpress human cytochrome P450 family 2 subfamily D member 6 (Ad-CYP2D6) was established (untreated group). One week after the Ad-CYP2D6 injection, the AIH model mice were treated by administering YCHD by gavage for 14 days (YCHD-treated group). The therapeutic efficacy of YCHD on AIH was evaluated by detecting the histopathological changes of the liver, serum transaminases (ALT and AST), inflammatory factors (TNF-α,IL-17 and IFN-γ), and autoantibodies (including LKM-1 and LC-1). The ratio of Th1 to Treg within the spleen and hepatic hilar lymph nodes of the mice was detected by flow cytometry. The changes in the species and abundance of intestinal flora and intestinal flora metabolites were analyzed via 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC/MS) to reveal the protective mechanism of YCHD on liver injury. Result YCHD decreased the transaminase activity (AST and ALT), the content of autoantibodies (LC-1 and LKM-1), and the serum TNF-α, IL-12, and IL-17 levels in AIH mice. The degree of inflammatory infiltration in the YCHD-treated group was significantly less than that in the untreated group. YCHD can effectively reverse the abundance and diversity of intestinal flora in AIH mice and affect the release of short-chain fatty acids (SCFAs), especially butyric acid. Moreover, the flow cytometry results showed that YCHD could also decline the ratio of Th1/Treg, which probably be induced by SCFAs via the G protein-coupled receptor (GPR). Conclusion YCHD may affect the release of SCFAs by regulating the intestinal microbiota, thereby affecting the differentiation of Th1 and Treg, and achieving the effect of alleviating liver damage.
Collapse
Affiliation(s)
- Jiawen Wu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| | - Sixue Lyu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| | - Di Guo
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| | - Na Yang
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| | - Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| |
Collapse
|
6
|
Longhi MS, Zhang L, Mieli-Vergani G, Vergani D. B and T cells: (Still) the dominant orchestrators in autoimmune hepatitis. Autoimmun Rev 2024; 23:103591. [PMID: 39117005 PMCID: PMC11409799 DOI: 10.1016/j.autrev.2024.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Autoimmune hepatitis (AIH) is a severe hepatopathy characterized by hypergammaglobulinemia, presence of serum autoantibodies and histological appearance of interface hepatitis. Liver damage in AIH is initiated by the presentation of a liver autoantigen to uncommitted Th0 lymphocytes, followed by a cascade of effector immune responses culminating with the production of inflammatory cytokines, activation of cytotoxic cells and subsequent hepatocyte injury. B cells actively participate in AIH liver damage by presenting autoantigens to uncommitted T lymphocytes. B cells also undergo maturation into plasma cells that are responsible for production of immunoglobulin G and autoantibodies, which mediate antibody dependent cell cytotoxicity. Perpetuation of effector immunity with consequent progression of liver damage is permitted by impairment in regulatory T cells (Tregs), a lymphocyte subset central to the maintenance of immune homeostasis. Treg impairment in AIH is multifactorial, deriving from numerical decrease, reduced suppressive function, poor response to IL-2 and less stable phenotype. In this review, we discuss the role of B and T lymphocytes in the pathogenesis of AIH. Immunotherapeutic strategies that could limit inflammation and halt disease progression while reconstituting tolerance to liver autoantigens are also reviewed and discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Lina Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; School of Arts and Sciences, Tufts University, Medford, MA, USA
| | - Giorgina Mieli-Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
7
|
Song J, Dai J, Chen X, Ding F, Ding Y, Ma L, Zhang L. Bifidobacterium mitigates autoimmune hepatitis by regulating IL-33-induced Treg/Th17 imbalance via the TLR2/4 signaling pathway. Histol Histopathol 2024; 39:623-632. [PMID: 37916940 DOI: 10.14670/hh-18-669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The present work aims to evaluate the efficacy of Live Combined Bifidobacterium, Lactobacillus and Enterococcus Capsules (LCBLECs), a probiotic drug containing Bifidobacterium, in the treatment of autoimmune hepatitis (AIH). In this study, a mouse model of experimental autoimmune hepatitis (EAH) was established to investigate the effects of LCBLECs on AIH. The results showed that LCBLECs improved dysbiosis of gut microbiota, reduced liver injury, restored liver function, and maintained Treg/Th17 balance in EAH mice. In addition, LCBLECs restored Treg/Th17 balance in EAH mice by downregulating IL-33 production. Besides, LCBLECs also suppress IL-33 upregulation in EAH mice by inhibiting the TLR2/4 signaling pathway. Furthermore, LCBLECs also mitigated dysbiosis of gut microbiota and enhanced the efficacy of conventional treatment for AIH patients. To sum up, our findings revealed that LCBLECs exerted therapeutic effects on EAH mice by improving Treg/Th17 imbalance in an IL-33-dependent manner via the TLR2/4 signaling pathway and relieved the clinical symptoms of AIH patients, indicating Bifidobacterium supplementation with LCBLECs might be a potential adjuvant therapy for AIH treatment.
Collapse
Affiliation(s)
- Jianguo Song
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Juan Dai
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xueping Chen
- Department of Gastroenterology, The People's Hospital of Wuqia, Xinjiang, China
| | - Fei Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanbo Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China.
| | - Liwen Zhang
- Department of Pediatrics, the Second People's Hospital of Changzhou, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Floreani A, Gabbia D, De Martin S. Are Gender Differences Important for Autoimmune Liver Diseases? Life (Basel) 2024; 14:500. [PMID: 38672770 PMCID: PMC11050899 DOI: 10.3390/life14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Gender Medicine has had an enormous expansion over the last ten years. Autoimmune liver diseases include several conditions, i.e., autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and conditions involving the liver or biliary tree overlapping with AIH, as well as IgG4-related disease. However, little is known about the impact of sex in the pathogenesis and natural history of these conditions. The purpose of this review is to provide an update of the gender disparities among the autoimmune liver diseases by reviewing the data published from 1999 to 2023. The epidemiology of these diseases has been changing over the last years, due to the amelioration of knowledge in their diagnosis, pathogenesis, and treatment. The clinical data collected so far support the existence of sex differences in the natural history of autoimmune liver diseases. Notably, their history could be longer than that which is now known, with problems being initiated even at a pediatric age. Moreover, gender disparity has been observed during the onset of complications related to end-stage liver disease, including cancer incidence. However, there is still an important debate among researchers about the impact of sex and the pathogenesis of these conditions. With this review, we would like to emphasize the urgency of basic science and clinical research to increase our understanding of the sex differences in autoimmune liver diseases.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Consultant IRCCS Negrar, 37024 Verona, Italy
- University of Padova, 35122 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| |
Collapse
|
9
|
Sun C, Zhu D, Zhu Q, He Z, Lou Y, Chen D. The significance of gut microbiota in the etiology of autoimmune hepatitis: a narrative review. Front Cell Infect Microbiol 2024; 14:1337223. [PMID: 38404291 PMCID: PMC10884129 DOI: 10.3389/fcimb.2024.1337223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disease of the liver that is mediated by autoimmunity and has complex pathogenesis. Its prevalence has increased globally. Since the liver is the first organ to be exposed to harmful substances, such as gut-derived intestinal microbiota and its metabolites, gut health is closely related to liver health, and the "liver-gut axis" allows abnormalities in the gut microbiota to influence the development of liver-related diseases such as AIH. Changes in the composition of the intestinal microbiota and its resultant disruption of the intestinal barrier and microbial transport are involved in multiple ways in the disruption of immune homeostasis and inflammation, thereby influencing the development of AIH. In terms of the mechanisms involved in immune, the gut microbiota or its metabolites, which is decreased in secondary bile acids, short-chain fatty acids (SCFAs), and polyamines, and increased in lipopolysaccharide (LPS), branched-chain amino acids (BCAA), tryptophan metabolite, amino acid, and bile acid, can disrupt immune homeostasis by activating various immune cells and immune-related signaling pathways, resulting in aberrant activation of the immune system. Clarifying this mechanism has significant clinical implications for the treatment of AIH with drugs that target intestinal microbiota and related signaling pathways. Therefore, this narrative review summarizes the progress in exploring the involvement of gut microbiota in the pathogenesis of AIH, with the aim of helping to improve the precise targeting of therapeutic treatments against AIH for the benefit of clinical AIH treatment.
Collapse
Affiliation(s)
- Chen Sun
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongzi Zhu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeping He
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Lou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Desheng Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Yuming Z, Ruqi T, Gershwin ME, Xiong M. Autoimmune Hepatitis: Pathophysiology. Clin Liver Dis 2024; 28:15-35. [PMID: 37945156 DOI: 10.1016/j.cld.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Genome-wide association analyses suggest that HLA genes including HLA-DRB*0301, HLA-DRB*0401, and HLA-B*3501 as well as non-HLA genes including CD28/CTLA4/ICOS and SYNPR increased AIH susceptibility. The destruction of hepatocytes is the result of the imbalance between proinflammatory cells and immunosuppressive cells, especially the imbalance between Tregs and Th17 cells. The microbiome in patients with AIH is decreased in diversity with a specific decline in Bifidobacterium and enrichment in Veillonella and Faecalibacterium. Recent evidence has demonstrated the pathogenic role of E. gallinarum and L.reuteri in inducing autoimmunity in the liver.
Collapse
Affiliation(s)
- Zhou Yuming
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Tang Ruqi
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Merrill Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| | - Ma Xiong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Poddighe D, Maulenkul T, Zhubanova G, Akhmaldtinova L, Dossybayeva K. Natural Killer T (NKT) Cells in Autoimmune Hepatitis: Current Evidence from Basic and Clinical Research. Cells 2023; 12:2854. [PMID: 38132174 PMCID: PMC10742140 DOI: 10.3390/cells12242854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Natural killer T (NKT) cells are unconventional T cells that are activated by glycolipid antigens. They can produce a variety of inflammatory and regulatory cytokines and, therefore, modulate multiple aspects of the immune response in different pathological settings, including autoimmunity. NKT cells have also been implicated in the immunopathogenesis of autoimmune hepatitis, and in this review we summarize and analyze the main studies investigating the involvement and/or homeostasis of NKT cells in this disease. In detail, the evidence from both basic and clinical research has been specifically analyzed. Even though the experimental murine models supported a relevant role of NKT cells in immune-mediated hepatic injury, very few studies specifically investigated NKT cell homeostasis in patients with autoimmune hepatitis; however, these initial studies reported some alterations of NKT cells in these patients, which may also correlate with the disease activity to some extent. Further clinical studies are needed to investigate the potential role and use of NKT cell analysis as a disease marker of clinical relevance, and to better understand the precise cellular and molecular mechanisms by which NKT cells contribute to the pathogenesis of autoimmune hepatitis.
Collapse
Affiliation(s)
- Dimitri Poddighe
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| | - Tilektes Maulenkul
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| | - Gulsamal Zhubanova
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
| | - Lyudmila Akhmaldtinova
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
| | - Kuanysh Dossybayeva
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
| |
Collapse
|
12
|
Liu X, Liu M, Zhao M, Li P, Gao C, Fan X, Cai G, Lu Q, Chen X. Fecal microbiota transplantation for the management of autoimmune diseases: Potential mechanisms and challenges. J Autoimmun 2023; 141:103109. [PMID: 37690971 DOI: 10.1016/j.jaut.2023.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Autoimmune diseases (AIDs) are a series of immune-mediated lethal diseases featured by over-activated immune cells attacking healthy self-tissues and organs due to the loss of immune tolerance, which always causes severe irreversible systematical organ damage and threatens human health heavily. To date, there are still no definitive cures for the treatment of AIDs due to their pathogenesis has not been clearly understood. Besides, the current clinical treatments of AIDs majorly rely on glucocorticoids and immune suppressors, which can lead to serious side effects. In the past years, there are increasing studies demonstrating that an imbalance of gut microbiota is intimately related to the pathogenesis of various AIDs, shedding light on the development of therapeutics by targeting the gut microbiota for the management of AIDs. Among all the approaches targeting the gut microbiota, fecal microbiota transplantation (FMT) has attracted increasing interest, and it has been proposed as a possible strategy to intervene in the homeostasis of gut microbiota for the treatment of various diseases. However, despite the reported good curative effects and clinical studies conducted on FMT, the detailed mechanisms of FMT for the effective treatment of those diseases have not been figured out. To fully understand the mechanisms of the therapeutic effects of FMT on AIDs and improve the therapeutic efficacy of FMT treatment, a systematic review of this topic is necessary. Hence, in this review paper, the potential mechanisms of FMT for the treatment of various AIDs were summarized, including promotion, shaping, activation, or inhibition of the host immune system via the interactions between the microorganisms and the gut immune system, gut-brain, gut-liver, gut-kidney axis, and so on. Then, applications of FMT for the treatment of various AIDs were detailed presented. Finally, the current challenges and potential solutions for the development of FMT formulations and FMT therapeutics were comprehensively discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| |
Collapse
|
13
|
Li L, Kang Y. The Gut Microbiome and Autoimmune Hepatitis: Implications for Early Diagnostic Biomarkers and Novel Therapies. Mol Nutr Food Res 2023; 67:e2300043. [PMID: 37350378 DOI: 10.1002/mnfr.202300043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Autoimmune hepatitis (AIH) is a serious chronic liver disease that may last for decades and eventually develop into cirrhosis and liver failure. In recent years, people have paid more attention to the microbiome-gut-liver axis, which provides guidance for all to explore the role of microbiome in the occurrence and development of liver diseases. In this review, the possible mechanism of intestinal microbes promoting the occurrence of AIH, mainly expounding the key ways such as bacterial ecological imbalance, intestinal leakage, and molecular simulation between microbes and autoantigens is summarized. In addition, this paper also discusses that intestinal microbiome has great potential as a biomarker for early diagnosis of AIH, and intestinal microbiome is also a candidate target for prevention and treatment of AIH. Finally, the study summarizes and prospects the targeted therapy of intestinal microorganisms to prevent the occurrence and development of AIH.
Collapse
Affiliation(s)
- Liping Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
14
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
15
|
Ma L, Song J, Chen X, Dai D, Chen J, Zhang L. Fecal microbiota transplantation regulates TFH/TFR cell imbalance via TLR/MyD88 pathway in experimental autoimmune hepatitis. Heliyon 2023; 9:e20591. [PMID: 37860535 PMCID: PMC10582310 DOI: 10.1016/j.heliyon.2023.e20591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/04/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Objective Autoimmune hepatitis (AIH) is a chronic immune-mediated inflammatory liver disease. Intestinal flora disturbance in AIH is closely related to TFH/TFR cell imbalances. As a new method of microbial therapy, the role of fecal microbiota transplantation (FMT) in AIH remains elusive. Here, we attempted to verify the functional role and molecular mechanism of FMT in AIH. Methods An experimental autoimmune hepatitis (EAH) mouse model was established to mimic the characteristics of AIH. H&E staining was used to detect histological features in mouse liver tissues. Serological tests were employed to identify several liver function biomarkers. Flow cytometry was utilized to examine the status of TFH/TFR cell subsets. Western blotting was used to evaluate TLR pathway-associated protein abundance. RT‒qPCR was applied to evaluate Treg cell markers and inflammation marker levels in mouse liver tissues. Results There was significant liver inflammation and dysregulated TFR/TFH cells with elevated levels of liver inflammation-associated biomarkers in EAH mice. Interestingly, transferring therapeutic FMT into EAH mice dramatically reduced liver injury and improved the imbalance between splenic TFR and TFH cells. FMT treatment also reduced elevated contents of serum alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) in EAH mice. Furthermore, therapeutic FMT reversed the increased levels of IL-21 while promoting IL-10 and TGF-β cytokines. Mechanistically, FMT regulated TFH cell response in EAH mice in a TLR4/11/MyD88 pathway-dependent manner. Conclusion Our findings demonstrated that liver injury and dysregulation between TFR and TFH cells in EAH might be reversed by therapeutic FMT via the TLR4/11-MyD88 signaling pathway.
Collapse
Affiliation(s)
- Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The People's Hospital of Wuqia, Xin Jiang, China
| | - Jianguo Song
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The People's Hospital of Wuqia, Xin Jiang, China
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China
| | - Xueping Chen
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The People's Hospital of Wuqia, Xin Jiang, China
| | - Duan Dai
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jianping Chen
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liwen Zhang
- Department of Pediatrics, The Second People's Hospital of Changzhou, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
16
|
Yadav V, Irfan R, Safdar S, Sunkara V, Ekhator C, Pendyala PR, Devi M, Shahzed SMI, Das A, Affaf M, Bellegarde SB, Shrestha R, Naseem MA, Al Khalifa A. Advances in Understanding and Managing Autoimmune Hepatitis: A Narrative Review. Cureus 2023; 15:e43973. [PMID: 37622052 PMCID: PMC10446851 DOI: 10.7759/cureus.43973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune-mediated destruction of hepatocytes, leading to inflammation and fibrosis. In recent years, significant advances have been made in understanding the pathogenesis, epidemiology, diagnosis, and treatment of AIH. This comprehensive narrative review aims to provide an up-to-date overview of these advances. The review begins by outlining the historical background of AIH, dating back to its initial recognition in the 1940s, and highlights the evolution of diagnostic criteria and classification based on autoantibody profiles. The epidemiology of AIH is explored, discussing its varying prevalence across different regions and the role of genetic predisposition, viral infections, and drug exposure as risk factors. Furthermore, the review delves into the pathogenesis of AIH, focusing on the dysregulated immune response, involvement of T cells, and potential contribution of the gut microbiome. Clinical presentation, diagnostic criteria, and liver biopsy as crucial tools for diagnosis are also discussed. Regarding management, the review provides an in-depth analysis of the standard first-line treatments involving glucocorticoids and azathioprine, as well as alternative therapies for non-responsive cases. Additionally, emerging second and third-line treatment options are examined. In conclusion, this narrative review highlights the complexity of AIH and underscores the importance of early diagnosis and individualized treatment approaches to improve patient outcomes. Further research and clinical trials are needed to optimize AIH management and ensure a better long-term prognosis for affected individuals.
Collapse
Affiliation(s)
- Vikas Yadav
- Internal Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, IND
| | | | | | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Praful R Pendyala
- Neurology, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| | | | | | - Archana Das
- Internal Medicine, North East Medical College and Hospital, Sylhet, BGD
| | - Maryam Affaf
- Medicine, Khyber Medical University, Peshawar, PAK
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | - Riya Shrestha
- Medicine, Nepal Medical College and Teaching Hospital, Kathmandu, NPL
| | | | - Ahmed Al Khalifa
- Medical School, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah, SAU
| |
Collapse
|
17
|
Terrin M, Migliorisi G, Dal Buono A, Gabbiadini R, Mastrorocco E, Quadarella A, Repici A, Santoro A, Armuzzi A. Checkpoint Inhibitor-Induced Colitis: From Pathogenesis to Management. Int J Mol Sci 2023; 24:11504. [PMID: 37511260 PMCID: PMC10380448 DOI: 10.3390/ijms241411504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The advent of immunotherapy, specifically of immune checkpoint inhibitors (ICIs), for the treatment of solid tumors has deeply transformed therapeutic algorithms in medical oncology. Approximately one-third of patients treated with ICIs may de velop immune-related adverse events, and the gastrointestinal tract is often affected by different grades of mucosal inflammation. Checkpoint inhibitors colitis (CIC) presents with watery or bloody diarrhea and, in the case of severe symptoms, requires ICIs discontinuation. The pathogenesis of CIC is multifactorial and still partially unknown: anti-tumor activity that collaterally effects the colonic tissue and the upregulation of specific systemic inflammatory pathways (i.e., CD8+ cytotoxic and CD4+ T lymphocytes) are mainly involved. Many questions remain regarding treatment timing and options, and biological treatment, especially with anti-TNF alpha, can be offered to these patients with the aim of rapidly resuming oncological therapies. CIC shares similar pathogenesis and aspects with inflammatory bowel disease (IBD) and the use of ICI in IBD patients is under evaluation. This review aims to summarize the pathogenetic mechanism underlying CIC and to discuss the current evidenced-based management options, including the role of biological therapy, emphasizing the relevant clinical impact on CIC and the need for prompt recognition and treatment.
Collapse
Affiliation(s)
- Maria Terrin
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Giulia Migliorisi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
| | - Elisabetta Mastrorocco
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Alessandro Quadarella
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| |
Collapse
|
18
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Abstract
BACKGROUND Autoimmune hepatitis has an unknown cause and genetic associations that are not disease-specific or always present. Clarification of its missing causality and heritability could improve prevention and management strategies. AIMS Describe the key epigenetic and genetic mechanisms that could account for missing causality and heritability in autoimmune hepatitis; indicate the prospects of these mechanisms as pivotal factors; and encourage investigations of their pathogenic role and therapeutic potential. METHODS English abstracts were identified in PubMed using multiple key search phases. Several hundred abstracts and 210 full-length articles were reviewed. RESULTS Environmental induction of epigenetic changes is the prime candidate for explaining the missing causality of autoimmune hepatitis. Environmental factors (diet, toxic exposures) can alter chromatin structure and the production of micro-ribonucleic acids that affect gene expression. Epistatic interaction between unsuspected genes is the prime candidate for explaining the missing heritability. The non-additive, interactive effects of multiple genes could enhance their impact on the propensity and phenotype of autoimmune hepatitis. Transgenerational inheritance of acquired epigenetic marks constitutes another mechanism of transmitting parental adaptations that could affect susceptibility. Management strategies could range from lifestyle adjustments and nutritional supplements to precision editing of the epigenetic landscape. CONCLUSIONS Autoimmune hepatitis has a missing causality that might be explained by epigenetic changes induced by environmental factors and a missing heritability that might reflect epistatic gene interactions or transgenerational transmission of acquired epigenetic marks. These unassessed or under-evaluated areas warrant investigation.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
20
|
Abstract
Autoimmune liver diseases (AILD) are a group of immune-mediated liver inflammatory diseases with three major forms including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Interaction of both genetic and environmental factors leads to the breakdown of self-tolerance, hence resulting in hyper-responsive of autoantibodies and aggressive autoreactive immune cells. Genetic studies have identified dozens of risk loci associated with initiation and development of AILD. However, the role of exogenous factors remains unclear. Recently, both infectious and inflammatory diseases have been associated with microbiota, which colonizes multiple mucosal surfaces and participates in human physiological process and function in immune system, particularly influencing liver, and biliary system via gut-liver axis. Emerging evidence on the role of gut microbiota has expanded our knowledge of AILD in both pathogenesis and potential therapeutic targets, along with putative diagnosis biomarkers. Herein we review the relationship between host and gut microbiota, discuss their potential roles in disease onset and progression, and summarize the compositional and functional alterations of the microbiota in AILD. We also highlighted the microbiota-based therapeutics such as antibiotics and fecal microbiota transplantation (FMT).
Collapse
Affiliation(s)
- Qiwei Qian
- School of Medicine, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei He
- School of Medicine, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruqi Tang
- School of Medicine, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiong Ma
- School of Medicine, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China -
| |
Collapse
|
21
|
Research Progress of Fecal Microbiota Transplantation in Liver Diseases. J Clin Med 2023; 12:jcm12041683. [PMID: 36836218 PMCID: PMC9960958 DOI: 10.3390/jcm12041683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence suggested that gut microbiota is associated with liver diseases through the gut-liver axis. The imbalance of gut microbiota could be correlated with the occurrence, development, and prognosis of a series of liver diseases, including alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, cirrhosis, primary sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC). Fecal microbiota transplantation (FMT) seems to be a method to normalize the patient's gut microbiota. This method has been traced back to the 4th century. In recent decade, FMT has been highly regarded in several clinical trials. As a novel approach to reconstruct the intestinal microecological balance, FMT has been used to treat the chronic liver diseases. Therefore, in this review, the role of FMT in the treatment of liver diseases was summarized. In addition, the relationship between gut and liver was explored through the gut-liver axis, and the definition, objectives, advantages, and procedures of FMT were described. Finally, the clinical value of FMT therapy in liver transplant (LT) recipients was briefly discussed.
Collapse
|
22
|
Nicolaides S, Boussioutas A. Immune-Related Adverse Events of the Gastrointestinal System. Cancers (Basel) 2023; 15:cancers15030691. [PMID: 36765649 PMCID: PMC9913287 DOI: 10.3390/cancers15030691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) are a form of immunotherapy that have revolutionized the treatment of a number of cancers. Specifically, they are antibodies targeted against established and emerging immune checkpoints, such as cytotoxic T-cell antigen 4 (CTLA4), programmed cell death ligand 1 (PD-L1) and programmed cell death 1 protein (PD-1) on CD8-positive T cells, which promote the destruction of tumor cells. While the immune checkpoint inhibitors are very effective in the treatment of a number of cancers, their use is limited by serious and in some cases life-threatening immune-related adverse events. While these involve many organs, one of the most prevalent serious adverse events is immune checkpoint inhibitor colitis, occurring in a significant proportion of patients treated with this therapy. In this review, we aim to broadly describe the immune-related adverse events known to occur within the gastrointestinal system and the potential role played by the intestinal microbiome.
Collapse
Affiliation(s)
- Steven Nicolaides
- Department of Gastroenterology, Western Health, Melbourne, VIC 3011, Australia
- Department of Gastroenterology, The Alfred, Melbourne, VIC 3004, Australia
| | - Alex Boussioutas
- Department of Gastroenterology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
- Correspondence:
| |
Collapse
|
23
|
Yuksel M, Nazmi F, Wardat D, Akgül S, Polat E, Akyildiz M, Arikan Ç. Standard immunosuppressive treatment reduces regulatory B cells in children with autoimmune liver disease. Front Immunol 2023; 13:1053216. [PMID: 36685568 PMCID: PMC9849683 DOI: 10.3389/fimmu.2022.1053216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Autoimmune hepatitis (AIH) is a chronic liver disease caused by a perturbed immune system. The scarcity of short- and long-term immune monitoring of AIH hampered us to comprehend the interaction between immunosuppressive medication and immune homeostasis. Methods and patients We recruited children with AIH at the time of diagnosis and at the 1st, 3rd, 6th, 12th, 18th, and 24th months of immunosuppression (IS). We also enrolled children with AIH being on IS for >2 years. Children with drug-induced liver injury (DILI), and those receiving tacrolimus after liver transplantation (LT), were enrolled as disease/IS control subjects. Healthy children (HC) were also recruited. Peripheral blood mononuclear cells (PBMCs) were isolated from all participants. Healthy liver tissue from adult donors and from livers without inflammation were obtained from children with hepatoblastoma. By using flow cytometry, we performed multi-parametric immune profiling of PBMCs and intrahepatic lymphocytes. Additionally, after IS with prednisolone, tacrolimus, rapamycin, or 6-mercaptopurine, we carried out an in vitro cytokine stimulation assay. Finally, a Lifecodes SSO typing kit was used to type HLA-DRB1 and Luminex was used to analyze the results. Results Untreated AIH patients had lower total CD8 T-cell frequencies than HC, but these cells were more naïve. While the percentage of naïve regulatory T cells (Tregs) (CD4+FOXP3lowCD45RA+) and regulatory B cells (Bregs, CD20+CD24+CD38+) was similar, AIH patients had fewer activated Tregs (CD4+FOXP3highCD45RA - ) compared to HC. Mucosal-associated-invariant-T-cells (MAIT) were also lower in these patients. Following the initiation of IS, the immune profiles demonstrated fluctuations. Bregs frequency decreased substantially at 1 month and did not recover anymore. Additionally, the frequency of intrahepatic Bregs in treated AIH patients was lower, compared to control livers, DILI, and LT patients. Following in vitro IS drugs incubation, only the frequency of IL-10-producing total B-cells increased with tacrolimus and 6MP. Lastly, 70% of AIH patients possessed HLA-DR11, whereas HLA-DR03/DR07/DR13 was present in only some patients. Conclusion HLA-DR11 was prominent in our AIH cohort. Activated Tregs and MAIT cell frequencies were lower before IS. Importantly, we discovered a previously unrecognized and long-lasting Bregs scarcity in AIH patients after IS. Tacrolimus and 6MP increased IL-10+ B-cells in vitro.
Collapse
Affiliation(s)
- Muhammed Yuksel
- Paediatric Gastroenterology-Hepatology, Koç University Hospital, Istanbul, Türkiye,Liver Immunology Lab, Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Farinaz Nazmi
- Paediatric Gastroenterology-Hepatology, Koç University Hospital, Istanbul, Türkiye,Liver Immunology Lab, Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Dima Wardat
- Liver Immunology Lab, Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Sebahat Akgül
- Transplant Immunology Research Centre of Excellence (TIREX) Tissue Typing Lab, Koç University Hospital, Istanbul, Türkiye
| | - Esra Polat
- Paediatric Gastroenterology and Hepatology, Sancaktepe Education and Research Hospital, Istanbul, Türkiye
| | - Murat Akyildiz
- Adult Gastroenterology-Hepatology, Koç University Hospital, Istanbul, Türkiye
| | - Çigdem Arikan
- Paediatric Gastroenterology-Hepatology, Koç University Hospital, Istanbul, Türkiye,Liver Immunology Lab, Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, Türkiye,*Correspondence: Çigdem Arikan,
| |
Collapse
|
24
|
Lapierre P, Alvarez F. Type 2 autoimmune hepatitis: Genetic susceptibility. Front Immunol 2022; 13:1025343. [PMID: 36248826 PMCID: PMC9556705 DOI: 10.3389/fimmu.2022.1025343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Two types of autoimmune hepatitis (AIH) are recognized; AIH-1 is characterized by the presence of anti-nuclear and/or anti-smooth muscle autoantibodies, while AIH-2 is associated with the presence of anti-Liver kidney microsome and/or anti-Liver Cytosol antibodies. The autoantigens targeted by AIH-2 autoantibodies are the cytochrome P450 2D6 and Formiminotransferase-cyclodeaminase for anti-LKM1 and anti-LC1 respectively. Both autoantigens are expressed in hepatocytes at higher levels than in any other cell type. Therefore, compared to AIH-1, the autoantigens targeted in AIH-2 are predominantly tissue-specific. Distinct clinical features are specific to AIH-2 compared to AIH-1, including diagnosis in younger patients (mean age 6.6 years), onset as fulminant hepatitis in very young patients (3 years of age or less), higher frequency in children than in adults and is frequently associated with extrahepatic T cell-mediated autoimmune diseases. AIH-2 is also often diagnosed in patients with primary immunodeficiency. AIH-2 is associated with specific HLA class II susceptibility alleles; DQB1*0201 is considered the main determinant of susceptibility while DRB1*07/DRB1*03 is associated with the type of autoantibody present. HLA DQB1*0201 is in strong linkage disequilibrium with both HLA DRB1*03 and DRB1*07. Interestingly, as in humans, MHC and non-MHC genes strongly influence the development of the disease in an animal model of AIH-2. Altogether, these findings suggest that AIH-2 incidence is likely dependent on specific genetic susceptibility factors combined with distinct environmental triggers.
Collapse
Affiliation(s)
- Pascal Lapierre
- Laboratoire d’hépatologie cellulaire, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Université de Montréal, Montréal, QC, Canada
| | - Fernando Alvarez
- Service de gastroentérologie, hépatologie et nutrition, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montréal, QC, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Fernando Alvarez,
| |
Collapse
|
25
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. HLA, gut microbiome and hepatic autoimmunity. Front Immunol 2022; 13:980768. [PMID: 36059527 PMCID: PMC9433828 DOI: 10.3389/fimmu.2022.980768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Genetic susceptibility to autoimmune liver diseases is conferred mainly by polymorphisms of genes encoding for the human leukocyte antigens (HLA). The strongest predisposition to autoimmune hepatitis type 1 (AIH-1) is linked to the allele DRB1*03:01, possession of which is associated with earlier disease onset and more severe course. In populations where this allele is very rare, such as in Asia, and in DRB1*03-negative patients, risk of AIH-1 is conferred by DRB1*04, which is associated with later disease onset and milder phenotype. AIH type 2 (AIH-2) is associated with DRB1*07. The pediatric condition referred to as autoimmune sclerosing cholangitis (ASC), is associated with the DRB1*13 in populations of Northern European ancestry. DRB1*1501 is protective from AIH-1, AIH-2 and ASC in Northern European populations. Possession of the DRB1*08 allele is associated with an increased risk of primary biliary cholangitis (PBC) across different populations. DRB1*03:01 and B*08:01 confer susceptibility to primary sclerosing cholangitis (PSC), as well as DRB1*13 and DRB1*15 in Europe. The hepatic blood supply is largely derived from the splanchnic circulation, suggesting a pathophysiological role of the gut microbiome. AIH appears to be associated with dysbiosis, increased gut permeability, and translocation of intestinal microbial products into the circulation; molecular mimicry between microbial and host antigens may trigger an autoaggressive response in genetically-predisposed individuals. In PBC an altered enteric microbiome may affect intestinal motility, immunological function and bile secretion. Patients with PSC have a gut microbial profile different from health as well as from patients with inflammatory bowel disease without PSC.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Faculty of Biomedical Sciences, Epatocentro Ticino and Università della Svizzera Italiana, Lugano, Switzerland
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
- *Correspondence: Benedetta Terziroli Beretta-Piccoli,
| | - Giorgina Mieli-Vergani
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | - Diego Vergani
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| |
Collapse
|
26
|
Intestinal homeostasis in autoimmune liver diseases. Chin Med J (Engl) 2022; 135:1642-1652. [PMID: 36193976 PMCID: PMC9509077 DOI: 10.1097/cm9.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Intestinal homeostasis depends on complex interactions between the gut microbiota and host immune system. Emerging evidence indicates that the intestinal microbiota is a key player in autoimmune liver disease (AILD). Autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related sclerosing cholangitis have been linked to gut dysbiosis. Diverse mechanisms contribute to disturbances in intestinal homeostasis in AILD. Bacterial translocation and molecular mimicry can lead to hepatic inflammation and immune activation. Additionally, the gut and liver are continuously exposed to microbial metabolic products, mediating variable effects on liver immune pathologies. Importantly, microbiota-specific or associated immune responses, either hepatic or systemic, are abnormal in AILD. Comprehensive knowledge about host-microbiota interactions, included but not limited to this review, facilitates novel clinical practice from a microbiome-based perspective. However, many challenges and controversies remain in the microbiota field of AILD, and there is an urgent need for future investigations.
Collapse
|
27
|
Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol 2022; 13:923599. [PMID: 35911738 PMCID: PMC9326173 DOI: 10.3389/fimmu.2022.923599] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | - Zheng-Min Cao
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | | | - Juan-mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Christen U, Hintermann E. Animal Models for Autoimmune Hepatitis: Are Current Models Good Enough? Front Immunol 2022; 13:898615. [PMID: 35903109 PMCID: PMC9315390 DOI: 10.3389/fimmu.2022.898615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune liver diseases like autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related cholangitis are chronic inflammatory diseases of the liver with an autoimmune background. The therapy of autoimmune hepatitis targets the autoreactive immune system and is largely dependent on the use of glucocorticoids and cytostatic drugs. In contrast, the treatment of cholestatic autoimmune liver diseases is restricted to the use of secondary or semi-synthetic bile acids, like ursodeoxycholic acid or obeticholic acid. Although the management of the disease using such drugs works well for the majority of patients, many individuals do not respond to standard therapy. In addition, chronic treatment with glucocorticoids results in well-known side effects. Further, the use of bile acids is a symptomatic therapy that has no direct immunomodulatory effect. Thus, there is still a lot of room for improvement. The use of animal models has facilitated to elucidate the pathogenesis of autoimmune liver diseases and many potential target structures for immunomodulatory therapies have been identified. In this review, we will focus on autoimmune hepatitis for which the first animal models have been established five decades ago, but still a precise treatment for autoimmune hepatitis, as obtainable for other autoimmune diseases such as rheumatoid arthritis or multiple sclerosis has yet to be introduced. Thus, the question arises if our animal models are too far from the patient reality and thus findings from the models cannot be reliably translated to the patient. Several factors might be involved in this discrepancy. There is first and foremost the genetic background and the inbred status of the animals that is different from human patients. Here the use of humanized animals, such as transgenic mice, might reduce some of the differences. However, there are other factors, such as housing conditions, nutrition, and the microbiome that might also play an important role. This review will predominantly focus on the current status of animal models for autoimmune hepatitis and the possible ways to overcome discrepancies between model and patient.
Collapse
|
29
|
Cheng Z, Yang L, Chu H. The Gut Microbiota: A Novel Player in Autoimmune Hepatitis. Front Cell Infect Microbiol 2022; 12:947382. [PMID: 35899041 PMCID: PMC9310656 DOI: 10.3389/fcimb.2022.947382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic immune-mediated liver disease distributed globally in all ethnicities with increasing prevalence. If left untreated, the disease will lead to cirrhosis, liver failure, or death. The intestinal microbiota is a complex ecosystem located in the human intestine, which extensively affects the human physiological and pathological processes. With more and more in-depth understandings of intestinal microbiota, a substantial body of studies have verified that the intestinal microbiota plays a crucial role in a variety of digestive system diseases, including alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). However, only a few studies have paid attention to evaluate the relationship between AIH and the intestinal microbiota. While AIH pathogenesis is not fully elucidated yet, some studies have indicated that intestinal microbiota putatively made significant contributions to the occurrence and the development of AIH by triggering several specific signaling pathways, altering the metabolism of intestinal microbiota, as well as modulating the immune response in the intestine and liver. By collecting the latest related literatures, this review summarized the increasing trend of the aerobic bacteria abundance in both AIH patients and AIH mice models. Moreover, the combination of specific bacteria species was found distinct to AIH patients, which could be a promising tool for diagnosing AIH. In addition, there were alterations of luminal metabolites and immune responses, including decreased short-chain fatty acids (SCFAs), increased pathogen associated molecular patterns (PAMPs), imbalanced regulatory T (Treg)/Th17 cells, follicular regulatory T (TFR)/follicular helper T (TFH) cells, and activated natural killer T (NKT) cells. These alterations participate in the onset and the progression of AIH via multiple mechanisms. Therefore, some therapeutic methods based on restoration of intestinal microbiota composition, including probiotics and fecal microbiota transplantation (FMT), as well as targeted intestinal microbiota-associated signaling pathways, confer novel insights into the treatment for AIH patients.
Collapse
Affiliation(s)
| | - Ling Yang
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| | - Huikuan Chu
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| |
Collapse
|
30
|
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse Models of Liver Parenchyma Injuries and Regeneration. Front Cell Dev Biol 2022; 10:903740. [PMID: 35721478 PMCID: PMC9198899 DOI: 10.3389/fcell.2022.903740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Canjun Xiao
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
| | - Jun Shi
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Zhiying He
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| |
Collapse
|
31
|
B cells in autoimmune hepatitis: bystanders or central players? Semin Immunopathol 2022; 44:411-427. [PMID: 35488094 PMCID: PMC9256567 DOI: 10.1007/s00281-022-00937-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
B cells are central for the adaptive immune system to mount successful immune responses not only as antibody producers but also as regulators of cellular immunity. These multifaceted features are also reflected in autoimmunity where autoreactive B cells can fuel disease by production of cytotoxic autoantibodies, presentation of autoantigens to autoreactive T cells, and secretion of cytokines and chemokines that either promote detrimental immune activation or impair regulatory T and B cells. The role of B cells and autoantibodies in autoimmune hepatitis (AIH) have been controversially discussed, with typical autoantibodies and hypergammaglobulinemia indicating a key role, while strong HLA class II association suggests T cells as key players. In this review, we summarize current knowledge on B cells in AIH and how different B cell subpopulations may drive AIH progression beyond autoantibodies. We also discuss recent findings of B cell-directed therapies in AIH.
Collapse
|
32
|
Centa M, Weinstein EG, Clemente JC, Faith JJ, Fiel MI, Lyallpuri R, Herbin O, Alexandropoulos K. Impaired central tolerance induces changes in the gut microbiota that exacerbate autoimmune hepatitis. J Autoimmun 2022; 128:102808. [PMID: 35276587 PMCID: PMC8963681 DOI: 10.1016/j.jaut.2022.102808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
Abstract
Medullary thymic epithelial cells (mTECs) induce T cell tolerance in the thymus through the elimination of self-reactive thymocytes. Commensal bacteria are also critical for shaping T cell responses in the gut and distal organs. We previously showed that mice depleted of mTECs (Traf6ΔTEC) generated autoreactive T cells and developed autoimmune hepatitis (AIH). In this report, we found that Toll-like receptor (TLR)-mediated microbial sensing on liver hematopoietic cells and the gut microbiota contributed to AIH development in Traf6ΔTEC mice. While adoptive transfer of thymic Traf6ΔTEC T cells in immune-deficient mice was sufficient for AIH development, colonization of germ-free mice with Traf6ΔTEC microbiota failed to induce AIH, suggesting that the gut microbiota contributes to but is not sufficient for AIH development. Microbiota-mediated exacerbation of AIH associated with increased numbers of hepatic Foxp3+ T cells and their increase was proportional to the degree of inflammation. The contribution of the gut microbiota to AIH development associated with an altered microbial signature whose composition was influenced by the qualitative nature of the thymic T cell compartment. These results suggest that aberrant selection of T cells in the thymus can induce changes in the gut microbiota that lead to exacerbation of organ-specific autoimmunity and AIH. Our results add to our understanding of the mechanisms of AIH development and create a platform towards developing novel therapeutic approaches for treating this disease.
Collapse
Affiliation(s)
- Monica Centa
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jose C Clemente
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J Faith
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robby Lyallpuri
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Konstantina Alexandropoulos
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
Wang H, Wang Q, Yang C, Guo M, Cui X, Jing Z, Liu Y, Qiao W, Qi H, Zhang H, Zhang X, Zhao N, Zhang M, Chen M, Zhang S, Xu H, Zhao L, Qiao M, Wu Z. Bacteroides acidifaciens in the gut plays a protective role against CD95-mediated liver injury. Gut Microbes 2022; 14:2027853. [PMID: 35129072 PMCID: PMC8820816 DOI: 10.1080/19490976.2022.2027853] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intestinal flora plays an important role in the development of many human and animal diseases. Microbiome association studies revealed the potential regulatory function of intestinal bacteria in many liver diseases, such as autoimmune hepatitis, viral hepatitis and alcoholic hepatitis. However, the key intestinal bacterial strains that affect pathological liver injury and the underlying functional mechanisms remain unclear. We found that the gut microbiota from gentamycin (Gen)-treated mice significantly alleviated concanavalin A (ConA)-induced liver injury compared to vancomycin (Van)-treated mice by inhibiting CD95 expression on the surface of hepatocytes and reducing CD95/CD95L-mediated hepatocyte apoptosis. Through the combination of microbiota sequencing and correlation analysis, we isolated 5 strains with the highest relative abundance, Bacteroides acidifaciens (BA), Parabacteroides distasonis (PD), Bacteroides thetaiotaomicron (BT), Bacteroides dorei (BD) and Bacteroides uniformis (BU), from the feces of Gen-treated mice. Only BA played a protective role against ConA-induced liver injury. Further studies demonstrated that BA-reconstituted mice had reduced CD95/CD95L signaling, which was required for the decrease in the L-glutathione/glutathione (GSSG/GSH) ratio observed in the liver. BA-reconstituted mice were also more resistant to alcoholic liver injury. Our work showed that a specific murine intestinal bacterial strain, BA, ameliorated liver injury by reducing hepatocyte apoptosis in a CD95-dependent manner. Determination of the function of BA may provide an opportunity for its future use as a treatment for liver disease.
Collapse
Affiliation(s)
- Hesuiyuan Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chengmao Yang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mingming Guo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyue Cui
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhe Jing
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wanjin Qiao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hang Qi
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyang Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengjuan Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Min Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Song Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- College of Life Sciences, Nankai University, Tianjin, China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liqing Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mingqiang Qiao
- College of Life Sciences, Nankai University, Tianjin, China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin, China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China,CONTACT Zhenzhou Wu Nankai University, No. 94 Weijin Road, Nankai Distract, Tianjin300071, China
| |
Collapse
|
34
|
Chung YY, Rahim MN, Heneghan MA. Autoimmune hepatitis and pregnancy: considerations for the clinician. Expert Rev Clin Immunol 2022; 18:325-333. [PMID: 35179437 DOI: 10.1080/1744666x.2022.2044307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Autoimmune hepatitis (AIH) is an immune mediated inflammatory disease of the liver which affects females of reproductive age. AIH poses unique challenges in pregnancy and historically was associated with adverse pregnancy outcomes. AREAS COVERED This report aims to review the current evidence for AIH pregnancy outcomes and the use of medical therapies in pregnancy. The disease course of AIH in pregnancy including loss of biochemical response (LOBR) and hepatic decompensation is also reviewed. The importance of preconception counselling and continued monitoring into the post-partum phase are reinforced. EXPERT OPINION The lack of prognostic markers and targeted immunosuppression are some of the areas for future development, as this will aid the move towards individualised risk stratification and personalised care.
Collapse
Affiliation(s)
- Y Y Chung
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | - M N Rahim
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK.,School of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - M A Heneghan
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK.,School of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
35
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmmune hepatitis. Cell Mol Immunol 2022; 19:158-176. [PMID: 34580437 PMCID: PMC8475398 DOI: 10.1038/s41423-021-00768-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a T-cell mediated, inflammatory liver disease affecting all ages and characterized by female preponderance, elevated serum transaminase and immunoglobulin G levels, positive circulating autoantibodies, and presence of interface hepatitis at liver histology. AIH type 1, affecting both adults and children, is defined by positive anti-nuclear and/or anti-smooth muscle antibodies, while type 2 AIH, affecting mostly children, is defined by positive anti-liver-kidney microsomal type 1 and/or anti-liver cytosol type 1 antibody. While the autoantigens of type 2 AIH are well defined, being the cytochrome P4502D6 (CYP2D6) and the formiminotransferase cyclodeaminase (FTCD), in type 1 AIH they remain to be identified. AIH-1 predisposition is conferred by possession of the MHC class II HLA DRB1*03 at all ages, while DRB1*04 predisposes to late onset disease; AIH-2 is associated with possession of DRB1*07 and DRB1*03. The majority of patients responds well to standard immunosuppressive treatment, based on steroid and azathioprine; second- and third-line drugs should be considered in case of intolerance or insufficient response. This review offers a comprehensive overview of pathophysiological and clinical aspects of AIH.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino & Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, Switzerland.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK.
| | - Giorgina Mieli-Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| |
Collapse
|
36
|
Binda C, Gibiino G, Coluccio C, Sbrancia M, Dajti E, Sinagra E, Capurso G, Sambri V, Cucchetti A, Ercolani G, Fabbri C. Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms 2022; 10:312. [PMID: 35208765 PMCID: PMC8877314 DOI: 10.3390/microorganisms10020312] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20% of the European population. At the same time, neoplasms of the biliary system have an increasing incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could also account for some of the complications surrounding the post-liver-transplant phase. The aim of this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps in the available evidence in order to guide further clinical research in these settings, and, eventually, to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Elton Dajti
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
| | - Emanuele Sinagra
- Endoscopy Unit, Fondazione Istituto San Raffaele-G. Giglio, 90015 Cefalù, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy
| | - Gabriele Capurso
- Division of Pancreato-Biliary Endoscopy and EUS, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milano, Italy;
| | - Vittorio Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy;
- Unit of Microbiology, Department of Pathological Anatomy, Trasfusion Medicine and Laboratory Medicine, University of Bologna, 40125 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, 47121 Forlì, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| |
Collapse
|
37
|
Armandi A, Actis GC, Ribaldone DG. Autoimmunity of the liver. TRANSLATIONAL AUTOIMMUNITY 2022:309-331. [DOI: 10.1016/b978-0-12-824466-1.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
New agents for immunosuppression. Best Pract Res Clin Gastroenterol 2021; 54-55:101763. [PMID: 34874846 DOI: 10.1016/j.bpg.2021.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023]
Abstract
The human abdomen harbors organs that the host's immune system can attack easily. This immunological storm front leads to diseases like Crohn's Disease, Ulcerative Colitis or Autoimmune Hepatitis. Serious symptoms like pain, diarrhea, fatigue, or malnutrition accompany these diseases. Moreover, many patients have an increased risk for developing special kind of malignancies and some autoimmune disease can show a high mortality. The key to treat them consists of a deep understanding of their pathophysiology. In vitro and especially in vivo basic research laid the foundation for our increasing knowledge about it during the past years. This enabled the development of new therapeutic approaches that interact directly with cytokines or immune cells instead of building the treatment on a total immunosuppression. Different kind of antibodies, kinase inhibitors, and regulatory T cells build the base for these approaches. This review shows new therapeutical approaches in gastrointestinal autoimmune diseases in context to their pathophysiological basis.
Collapse
|
39
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
40
|
Vuerich M, Wang N, Kalbasi A, Graham JJ, Longhi MS. Dysfunctional Immune Regulation in Autoimmune Hepatitis: From Pathogenesis to Novel Therapies. Front Immunol 2021; 12:746436. [PMID: 34650567 PMCID: PMC8510512 DOI: 10.3389/fimmu.2021.746436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disorder characterized by hypergammaglobulinemia, presence of serum autoantibodies and histological features of interface hepatitis. AIH therapeutic management still relies on the administration of corticosteroids, azathioprine and other immunosuppressants like calcineurin inhibitors and mycophenolate mofetil. Withdrawal of immunosuppression often results in disease relapse, and, in some cases, therapy is ineffective or associated with serious side effects. Understanding the mechanisms underlying AIH pathogenesis is therefore of paramount importance to develop more effective and well tolerated agents capable of restoring immunotolerance to liver autoantigens. Imbalance between effector and regulatory cells permits liver damage perpetuation and progression in AIH. Impaired expression and regulation of CD39, an ectoenzyme key to immunotolerance maintenance, have been reported in Tregs and effector Th17-cells derived from AIH patients. Interference with these altered immunoregulatory pathways may open new therapeutic avenues that, in addition to limiting aberrant inflammatory responses, would also reconstitute immune homeostasis. In this review, we highlight the most recent findings in AIH immunopathogenesis and discuss how these could inform and direct the development of novel therapeutic tools.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Yuksel M, Armutlu A, Nazmi F, Ceylaner S, Arikan C. A novel insight into the pathophysiology of autoimmune hepatitis: An immune activator mutation in the FLT3 receptor. HEPATOLOGY FORUM 2021; 2:112-116. [PMID: 35784907 PMCID: PMC9138941 DOI: 10.14744/hf.2021.2021.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 06/15/2023]
Abstract
Autoimmune hepatitis (AIH) is a chronic progressive autoimmune liver disease characterized by hypergammaglobulinemia, interface hepatitis, a female preponderance, and the presence of autoantibodies in most patients. The presence of HLA-DR3/DR4 and functional impairment in regulatory T cells are associated with AIH. However, AIH is a multifactorial complex disease. This report is a description of a case of seronegative AIH in a girl with chronic hepatitis, a high immunoglobulin E (IgE) level, perforating nodular dermatitis, and sheer eosinophilia. To re-evaluate the diagnosis, whole exon sequencing was performed. It was determined that the patient had ancestral haplotype A1-B8-DR3, which is associated with autoimmunity. Importantly, it was also noted that an undocumented point mutation (Ala627Thr) of the FMS-like tyrosine 3 kinase (FLT3) receptor was present. This FLT3 receptor gain-of-function mutation is associated with the activation of the mechanistic target of rapamycin (mTOR), and dendritic cell activation. In addition, a loss-of-function mutation in the melanocortin-3 receptor gene, which inhibits interleukin 4, was detected. The constellation of these immune deregulatory factors may have propagated auto-aggression of the liver, causing chronic hepatitis with AIH features. The findings of seronegativity with eosinophilia and a high IgE level led us to hypothesize that the pathognomonic mechanism in this case was unlike that of classic AIH pathophysiology. Since mTOR is constitutively activated, mTOR inhibitors may be a useful option to treat AIH and dermatitis.
Collapse
Affiliation(s)
- Muhammed Yuksel
- Paediatric Gastroenterology-Hepatology/Liver Transplantation Centre, Koc University, Istanbul, Turkey
- Research Centre for Translational Medicine (KUTTAM)-Liver Immunology Laboratory, Koc University, Istanbul, Turkey
| | - Ayse Armutlu
- Department of Pathology, Koc University Hospital, Istanbul, Turkey
| | - Farinaz Nazmi
- Paediatric Gastroenterology-Hepatology/Liver Transplantation Centre, Koc University, Istanbul, Turkey
- Research Centre for Translational Medicine (KUTTAM)-Liver Immunology Laboratory, Koc University, Istanbul, Turkey
| | - Serdar Ceylaner
- Intergen Diagnostic Centre for Genetic Disorders, Ankara, Turkey
| | - Cigdem Arikan
- Paediatric Gastroenterology-Hepatology/Liver Transplantation Centre, Koc University, Istanbul, Turkey
- Research Centre for Translational Medicine (KUTTAM)-Liver Immunology Laboratory, Koc University, Istanbul, Turkey
| |
Collapse
|
42
|
Yamaguchi A, Teratani T, Chu P, Suzuki T, Taniki N, Mikami Y, Shiba S, Morikawa R, Amiya T, Aoki R, Kanai T, Nakamoto N. Hepatic Adenosine Triphosphate Reduction Through the Short-Chain Fatty Acids-Peroxisome Proliferator-Activated Receptor γ-Uncoupling Protein 2 Axis Alleviates Immune-Mediated Acute Hepatitis in Inulin-Supplemented Mice. Hepatol Commun 2021; 5:1555-1570. [PMID: 34510840 PMCID: PMC8435281 DOI: 10.1002/hep4.1742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/24/2021] [Indexed: 02/04/2023] Open
Abstract
How liver tolerance is disrupted in immune-mediated liver injury is currently unclear. There is also insufficient information available regarding susceptibility, precipitation, escalation, and perpetuation of autoimmune hepatitis. To explore how dietary fiber influences hepatic damage, we applied the concanavalin A (ConA)-induced acute immune-mediated liver injury model in mice fed a diet supplemented with 6.8% inulin, a water-soluble fermentable fiber. Twelve hours after ConA administration, inulin-supplemented diet-fed mice demonstrated significantly alleviated hepatic damage histologically and serologically, with down-regulation of hepatic interferon-γ and tumor necrosis factor and reduced myeloperoxidase (MPO)-producing neutrophil infiltration. Preconditioning with an inulin-supplemented diet for 2 weeks significantly reduced hepatic adenosine triphosphate (ATP) content; suramin, a purinergic P2 receptor antagonist, abolished the protective effect. Of note, the portal plasma derived from mice fed the inulin-supplemented diet significantly alleviated ConA-induced immune-mediated liver injury. Mechanistically, increased portal short-chain fatty acid (SCFA) levels, such as those of acetate and butyrate, by inulin supplementation leads to up-regulation of hepatic γ-type peroxisome proliferator-activated receptor (Pparg) and uncoupling protein 2 (Ucp2), which uncouples mitochondrial ATP synthesis downstream of PPARγ. Pparg down-regulating small interfering RNA cancelled the protective effect of inulin supplementation against MPO-producing neutrophil infiltration and the subsequent immune-mediated liver injury, suggesting that the SCFA-PPARγ-UCP2 axis plays a key role in the protective effect by inulin supplementation. Moreover, significant changes in the gut microbiota, including increased operational taxonomic units in genera Akkermansia and Allobaculum, also characterized the protective effect of the inulin-supplemented diet. Conclusion: There is a possible unraveled etiopathophysiological link between the maintenance of liver tolerance and dietary fiber. The SCFA-PPARγ-UCP2 axis may provide therapeutic targets for immune-mediated liver injury in the future.
Collapse
Affiliation(s)
- Akihiro Yamaguchi
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
- Department of Gastroenterology and HepatologyNational Hospital Organization Saitama HospitalSaitamaJapan
| | - Toshiaki Teratani
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Po‐sung Chu
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Takahiro Suzuki
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
- Miyarisan Pharmaceutical Co., Ltd.TokyoJapan
| | - Nobuhito Taniki
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Yohei Mikami
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Shunsuke Shiba
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Rei Morikawa
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Takeru Amiya
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
- Research Unit/Immunology and InflammationSohyaku Innovative Research DivisionMitsubishi Tanabe Pharma CoKanagawaJapan
| | - Ryo Aoki
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
- Institute of Health ScienceEzaki Glico Co., Ltd.OsakaJapan
| | - Takanori Kanai
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| |
Collapse
|
43
|
Domerecka W, Kowalska-Kępczyńska A, Michalak A, Homa-Mlak I, Mlak R, Cichoż-Lach H, Małecka-Massalska T. Etiopathogenesis and Diagnostic Strategies in Autoimmune Hepatitis. Diagnostics (Basel) 2021; 11:1418. [PMID: 34441353 PMCID: PMC8393562 DOI: 10.3390/diagnostics11081418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease with the incidence of 10 to 17 per 100,000 people in Europe. It affects people of any age, but most often occurs in the 40-60 age group. The clinical picture is varied, from asymptomatic to severe acute hepatitis or liver failure. The disease onset is probably associated with the impaired function of T lymphocytes, the development of molecular mimicry, intestinal dysbiosis, or infiltration with low density neutrophils, which, alongside autoantibodies (i.e., ANA, ASMA), implicate the formation of neutrophil extracellular traps (NETs), as a component of the disease process, and mediate the inappropriate immune response. AIH is characterized with an increased activity of aminotransferases, elevated concentration of serum immunoglobulin G, the presence of circulating autoantibodies and liver inflammation. The result of the histological examination of the liver and the presence of autoantibodies, although not pathognomonic, still remain a distinguishing feature. The diagnosis of AIH determines lifelong treatment in most patients. The treatment is implemented to prevent the development of cirrhosis and end-stage liver failure. This work focuses mainly on the etiopathogenesis and diagnosis of AIH.
Collapse
Affiliation(s)
- Weronika Domerecka
- Chair and Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Anna Kowalska-Kępczyńska
- Department of Biochemical Diagnostics, Chair of Laboratory Diagnostics, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-090 Lublin, Poland; (A.M.); (H.C.-L.)
| | - Iwona Homa-Mlak
- Chair and Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Radosław Mlak
- Chair and Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-090 Lublin, Poland; (A.M.); (H.C.-L.)
| | - Teresa Małecka-Massalska
- Chair and Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| |
Collapse
|
44
|
Cargill T, Culver EL. The Role of B Cells and B Cell Therapies in Immune-Mediated Liver Diseases. Front Immunol 2021; 12:661196. [PMID: 33936097 PMCID: PMC8079753 DOI: 10.3389/fimmu.2021.661196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
B cells form a branch of the adaptive immune system, essential for the body’s immune defense against pathogens. B cell dysfunction has been implicated in the pathogenesis of immune mediated liver diseases including autoimmune hepatitis, IgG4-related hepatobiliary disease, primary biliary cholangitis and primary sclerosing cholangitis. B cells may initiate and maintain immune related liver diseases in several ways including the production of autoantibodies and the activation of T cells via antigen presentation or cytokine production. Here we comprehensively review current knowledge on B cell mechanisms in immune mediated liver diseases, exploring disease pathogenesis, B cell therapies, and novel treatment targets. We identify key areas where future research should focus to enable the development of targeted B cell therapies.
Collapse
Affiliation(s)
- Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma L Culver
- Oxford Liver Unit, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
45
|
Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells in autoimmune hepatitis: an updated overview. J Autoimmun 2021; 119:102619. [PMID: 33652348 DOI: 10.1016/j.jaut.2021.102619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T-cells (Tregs) are key players in the maintenance of immune homeostasis by preventing immune responses to self-antigens. Defects in Treg frequency and/or function result in overwhelming CD4 and CD8 T cell immune responses participating in the autoimmune attack. Perpetuation of autoimmune damage is also favored by Treg predisposition to acquire effector cell features upon exposure to a proinflammatory challenge. Treg impairment plays a permissive role in the initiation and perpetuation of autoimmune liver diseases, namely autoimmune hepatitis, primary biliary cholangitis and primary sclerosing cholangitis. In this Review, we outline studies reporting the role of Treg impairment in the pathogenesis of these conditions and discuss methods to restore Treg number and function either by generation/expansion in the test tube or through in vivo expansion upon administration of low dose IL-2. Challenges and caveats of these potential therapeutic strategies are also reviewed and discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Giorgina Mieli-Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
46
|
Blossom SJ, Gokulan K, Arnold M, Khare S. Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice. Front Pharmacol 2020; 11:569008. [PMID: 33250767 PMCID: PMC7673404 DOI: 10.3389/fphar.2020.569008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Trichloroethylene (TCE) is a common environmental toxicant linked with hypersensitivity and autoimmune responses in humans and animal models. While autoimmune diseases are more common in females, mechanisms behind this disparity are not clear. Recent evidence suggests that autoimmunity may be increasing in males, and occupational studies have shown that TCE-mediated hypersensitivity responses occur just as often in males. Previous experimental studies in autoimmune-prone MRL+/+ mice have focused on responses in females. However, it is important to include both males and females in order to better understand sex-disparity in autoimmune disease. In addition, because of an alarming increase in autoimmunity in adolescents, developmental and/or early life exposures to immune-enhancing environmental pollutants should also be considered. Using MRL+/+ mice, we hypothesized that TCE would alter markers related to autoimmunity to a greater degree in female mice relative to male mice, and that TCE would enhance these effects. Mice were continuously exposed to either TCE or vehicle beginning at gestation, continuing during lactation, and directly in the drinking water. Both male and female offspring were evaluated at 7 weeks of age. Sex-specific effects were evident. Female mice were more likely than males to show enhanced CD4+ T cell cytokine responses (e.g., IL-4 and IFN-γ). Although none of the animals developed pathological or serological signs of autoimmune hepatitis-like disease, TCE-exposed female mice were more likely than males in either group to express higher levels of biomarkers in the liver related to regeneration/repair and proliferation. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure and were more prominent in females as compared to males. Thus, our expectations were correct in that young adult female mice developmentally exposed to TCE were more likely to exhibit alterations in immunological and gut/liver endpoints compared to male mice.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Matthew Arnold
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
47
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Zhang H, Liu M, Liu X, Zhong W, Li Y, Ran Y, Guo L, Chen X, Zhao J, Wang B, Zhou L. Bifidobacterium animalis ssp. Lactis 420 Mitigates Autoimmune Hepatitis Through Regulating Intestinal Barrier and Liver Immune Cells. Front Immunol 2020; 11:569104. [PMID: 33123141 PMCID: PMC7573389 DOI: 10.3389/fimmu.2020.569104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated inflammatory liver disease of uncertain cause. Accumulating evidence shows that gut microbiota and intestinal barrier play significant roles in AIH thus the gut–liver axis has important clinical significance as a potential therapeutic target. In the present study, we found that Bifidobacterium animalis ssp. lactis 420 (B420) significantly alleviated S100-induced experimental autoimmune hepatitis (EAH) and modulated the gut microbiota composition. While the analysis of clinical specimens revealed that the fecal SCFA quantities were decreased in AIH patients, and B420 increased the cecal SCFA quantities in EAH mice. Remarkably, B420 application improved intestinal barrier function through upregulation of tight junction proteins in both vitro and vivo experiments. Moreover, B420 decreased the serum endotoxin level and suppressed the RIP3 signaling pathway of liver macrophages in EAH mice thus regulated the proliferation of Th17 cells. Nevertheless, the inhibition effect of B420 on RIP3 signaling pathway was blunted in vitro studies. Together, our results showed that early intervention with B420 contributed to improve the liver immune homeostasis and liver injury in EAH mice, which might be partly due to the protection of intestinal barrier. Our study suggested the potential efficacy of probiotics application against AIH and the promising therapeutic strategies targeting gut–liver axis for AIH.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yanni Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Liping Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Gastroenterology and Hepatology, People's Hospital of Hetian District, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
49
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
50
|
Lou J, Jiang Y, Rao B, Li A, Ding S, Yan H, Zhou H, Liu Z, Shi Q, Cui G, Yu Z, Ren Z. Fecal Microbiomes Distinguish Patients With Autoimmune Hepatitis From Healthy Individuals. Front Cell Infect Microbiol 2020; 10:342. [PMID: 32850468 PMCID: PMC7416601 DOI: 10.3389/fcimb.2020.00342] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: The intestinal microbiome is associated with various autoimmune diseases. Regional difference is the main influencing factor of intestinal microbial difference. This study aimed to identify the differences in fecal microbiome between autoimmune hepatitis (AIH) patients and healthy controls (HCs) in Central China, and to validate the efficacy of fecal microbiome as a diagnostic tool for AIH. Design: We collected 115 fecal samples from AIH patients (N = 37) and HCs (N = 78) in Central China and performed gene sequencing. Fecal microbiomes were characterized and microbial markers for AIH were identified. Results: Fecal microbial diversity showed a downward trend in AIH compared with HCs. Fecal microbial communities significantly differed between both groups. At the phylum level, Verrucomicrobia abundance was significantly increased, while Lentisphaerae and Synergistetes were significantly decreased in the AIH patients vs. the HCs. Compared to the HCs, 15 genera, including Veillonella, Faecalibacterium, and Akkermansia, were enriched, while 19 genera, such as Pseudobutyrivibrio, Lachnospira, and Ruminococcaceae, were decreased in the AIH patients. Ten genera, including Veillonella, Faecalibacterium, and Akkermansia, predominated in the AIH patients. Five microbial biomarkers were deemed optimal diagnostic tools for AIH. The probability of disease was significantly increased in AIH group vs. HCs, achieving 83.25% value of area under the curve. Conclusion: We present the characteristics of AIH patients in Central China for the first time. Five microbial biomarkers, including Lachnospiraceae, Veillonella, Bacteroides, Roseburia, and Ruminococcaceae, achieved a high potential distinguishing AIH patients from HCs.
Collapse
Affiliation(s)
- Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Heqi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingmiao Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|