1
|
Gu CB, Wang C. GRB14: A prognostic biomarker driving tumor progression in gastric cancer through the PI3K/AKT signaling pathway by interacting with COBLL1. Open Life Sci 2025; 20:20251084. [PMID: 40321159 PMCID: PMC12048902 DOI: 10.1515/biol-2025-1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/14/2025] [Accepted: 02/22/2025] [Indexed: 05/08/2025] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy with a high incidence rate. Growth factor receptor-bound protein 14 (GRB14) is crucial in cell signal transduction and is associated with tumor growth, invasion, and metastasis. The aim of this study is to investigate the impact of GRB14 on GC growth and metastasis. GRB14 expression and prognosis in GC tissues were analyzed using bioinformatics. The GC cell lines, SGC-7901, MGC-803, BGC-823, and normal gastric epithelial cell line (GES-1) were used in this study. Cell viability, cycle progression, and apoptosis were assessed via CCK-8 and flow cytometry. The colony formation, transwell, and wound-healing assays were conducted to evaluate cell proliferation, invasion, and migration. Protein levels involved in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by Western blot. GRB14 expression was significantly higher in GC tissues than adjacent healthy tissues, correlating with poor prognosis. GRB14 knockdown promoted apoptosis and inhibited cell growth, invasion, and migration, while its overexpression exhibited opposite effects. GRB14 directly interacted with cordon-bleu WH2 repeat protein like 1, facilitating PI3K/AKT signaling in GC cells. This study highlights GRB14's critical role in GC progression and suggests its potential as a therapeutic target.
Collapse
Affiliation(s)
- Chun-Bin Gu
- Medical College, Soochow University,
Suzhou, 215006, P.R. China
- Department of General Surgery, Sheyang County People’s Hospital, Sheyang, 224300,
P.R. China
| | - Chuang Wang
- Department of General Surgery, Hulunbuir People’s Hospital Affiliated to Soochow University,
Hulunbuir, 021000, P.R. China
| |
Collapse
|
2
|
Moorwood K, Smith FM, Garfield AS, Cowley M, Holt LJ, Daly RJ, Ward A. Grb7, Grb10 and Grb14, encoding the growth factor receptor-bound 7 family of signalling adaptor proteins have overlapping functions in the regulation of fetal growth and post-natal glucose metabolism. BMC Biol 2024; 22:221. [PMID: 39343875 PMCID: PMC11441139 DOI: 10.1186/s12915-024-02018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The growth factor receptor bound protein 7 (Grb7) family of signalling adaptor proteins comprises Grb7, Grb10 and Grb14. Each can interact with the insulin receptor and other receptor tyrosine kinases, where Grb10 and Grb14 inhibit insulin receptor activity. In cell culture studies they mediate functions including cell survival, proliferation, and migration. Mouse knockout (KO) studies have revealed physiological roles for Grb10 and Grb14 in glucose-regulated energy homeostasis. Both Grb10 KO and Grb14 KO mice exhibit increased insulin signalling in peripheral tissues, with increased glucose and insulin sensitivity and a modestly increased ability to clear a glucose load. In addition, Grb10 strongly inhibits fetal growth such that at birth Grb10 KO mice are 30% larger by weight than wild type littermates. RESULTS Here, we generate a Grb7 KO mouse model. We show that during fetal development the expression patterns of Grb7 and Grb14 each overlap with that of Grb10. Despite this, Grb7 and Grb14 did not have a major role in influencing fetal growth, either alone or in combination with Grb10. At birth, in most respects both Grb7 KO and Grb14 KO single mutants were indistinguishable from wild type, while Grb7:Grb10 double knockout (DKO) were near identical to Grb10 KO single mutants and Grb10:Grb14 DKO mutants were slightly smaller than Grb10 KO single mutants. In the developing kidney Grb7 had a subtle positive influence on growth. An initial characterisation of Grb7 KO adult mice revealed sexually dimorphic effects on energy homeostasis, with females having a significantly smaller renal white adipose tissue depot and an enhanced ability to clear glucose from the circulation, compared to wild type littermates. Males had elevated fasted glucose levels with a trend towards smaller white adipose depots, without improved glucose clearance. CONCLUSIONS Grb7 and Grb14 do not have significant roles as inhibitors of fetal growth, unlike Grb10, and instead Grb7 may promote growth of the developing kidney. In adulthood, Grb7 contributes subtly to glucose mediated energy homeostasis, raising the possibility of redundancy between all three adaptors in physiological regulation of insulin signalling and glucose handling.
Collapse
Affiliation(s)
- Kim Moorwood
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Florentia M Smith
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Alastair S Garfield
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Michael Cowley
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Present Address: Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Campus, Box 7633, Raleigh, NC, 27695, USA
| | - Lowenna J Holt
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Ward
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Fan H, Lei S, Zhao Z, Huang Y, Wang H, Liu X, Li X, Xu M, Zhang W, Sun K, Xing H, Mei Y, Huang J, Zhu C, Zhang K, Zong Y, Shen X, Xie Q, Liu C. Beneficial Effects of Traditional Chinese Medicine Fuzheng Huayu on the Occurrence of Hepatocellular Carcinoma in Patients with Compensated Chronic Hepatitis B Cirrhosis Receiving Entecavir: A Multicenter Retrospective Cohort Study. J Clin Transl Hepatol 2024; 12:505-515. [PMID: 38779515 PMCID: PMC11106348 DOI: 10.14218/jcth.2023.00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND AIMS The application of antifibrotic drugs to treat patients with chronic liver diseases who are receiving antiviral therapies for hepatocellular carcinoma (HCC) has not been established. Here, we aimed to assess the impact of the Traditional Chinese Medicine Fuzheng Huayu (FZHY) on the occurrence of HCC in patients with hepatitis B virus-related compensated cirrhosis receiving the antiviral drug entecavir (ETV). METHODS A multicenter retrospective cohort study was performed. Compensated liver cirrhosis patients were divided into the ETV+FZHY group or the ETV group according to treatment. The cumulative incidence of HCC was analyzed using Kaplan-Meier and log-rank tests. Propensity score matching was used for confounding factors. Stratified analysis and Cox regression were used to determine the effects of FZHY on the occurrence of HCC and liver function decompensation. RESULTS Out of 910 chronic hepatitis B patients, 458 were in the ETV+FZHY group and 452 were in the ETV group. After propensity score matching, the 5-year cumulative incidence of HCC was 9.8% in the ETV+FZHY group and 21.8% in the ETV group (p<0.01). The adjusted hazard ratio for HCC was 0.216 (0.108, 0.432) when FZHY treatment was >36 months. Age, diabetes, alanine aminotransferase, γ-glutamyl transpeptidase, albumin, hepatitis B e-antigen, and fibrosis 4 score were associated with the occurrence of HCC. FZHY decreased the risk of HCC in patients aged >45 years with a hepatitis B virus DNA level of ≥2,000 IU/l. CONCLUSION Adjunctive FZHY treatment reduced HCC occurrence in patients with hepatitis B virus cirrhosis who were treated with ETV, possibly due to the antifibrotic properties of FZHY.
Collapse
Affiliation(s)
- Haina Fan
- Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shujuan Lei
- Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhimin Zhao
- Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Liu
- Department of Infectious Diseases, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaodong Li
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Min Xu
- Department of Infectious Diseases, Huaian Fourth People’s Hospital, Huai’an, Jiangsu, China
| | - Wei Zhang
- Institute of Liver Diseases, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Kewei Sun
- Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huichun Xing
- Center of Hepatology, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China
| | - Yang Mei
- Department of Hepatology, The Fifth People’s Hospital of Anyang, Anyang, Henan, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanwu Zhu
- Department of Hepatology, The Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, China
| | - Kejun Zhang
- Department of Gastroenterology, The First People’s Hospital of Jingmen, Jingmen, Hubei, China
| | - Yali Zong
- Department of Integrated Traditional and Western Medicine, The Ninth Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Xizhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Ni W, Lu Y, Wang W. Exploring the interconnected between type 2 diabetes mellitus and nonalcoholic fatty liver disease: Genetic correlation and Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e38008. [PMID: 38728519 PMCID: PMC11081543 DOI: 10.1097/md.0000000000038008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Epidemiological and clinical studies have indicated a higher risk of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), implying a potentially shared genetic etiology, which is still less explored. Genetic links between T2DM and NAFLD were assessed using linkage disequilibrium score regression and pleiotropic analysis under composite null hypothesis. European GWAS data have identified shared genes, whereas SNP-level pleiotropic analysis under composite null hypothesis has explored pleiotropic loci. generalized gene-set analysis of GWAS data determines pleiotropic pathways and tissue enrichment using eQTL mapping to identify associated genes. Mendelian randomization analysis was used to investigate the causal relationship between NAFLD and T2DM. Linkage disequilibrium score regression analysis revealed a strong genetic correlation between T2DM and NAFLD, and identified 24 pleiotropic loci. These single-nucleotide polymorphisms are primarily involved in biosynthetic regulation, RNA biosynthesis, and pancreatic development. generalized gene-set analysis of GWAS data analysis revealed significant enrichment in multiple brain tissues. Gene mapping using these 3 methods led to the identification of numerous pleiotropic genes, with differences observed in liver and kidney tissues. These genes were mainly enriched in pancreas, brain, and liver tissues. The Mendelian randomization method indicated a significantly positive unidirectional causal relationship between T2DM and NAFLD. Our study identified a shared genetic structure between NAFLD and T2DM, providing new insights into the genetic pathogenesis and mechanisms of NAFLD and T2DM comorbidities.
Collapse
Affiliation(s)
- Wenjuan Ni
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Baotou, Inner Mongolia, China
| | - Yao Lu
- Baotou Medical Collage, Baotou, Inner Mongolia, China
| | - Wei Wang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Baotou, Inner Mongolia, China
| |
Collapse
|
5
|
Yang X, Guo J, Li W, Li C, Zhu X, Liu Y, Wu X. PPM1H is down-regulated by ATF6 and dephosphorylates p-RPS6KB1 to inhibit progression of hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:164-179. [PMID: 37456776 PMCID: PMC10345229 DOI: 10.1016/j.omtn.2023.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
We have shown previously that polymorphism of activating transcription factor 6 (ATF6) is associated with susceptibility to hepatocellular carcinoma (HCC). Therefore, genes down-regulated by ATF6 might play a tumor-suppressing role. In the present study, we identified that expression of protein phosphatase magnesium- or manganous-dependent 1H (PPM1H) mRNA and protein can be inhibited by ATF6 in hepatoma cells and mice with liver Atf6 knockdown. Tumor tissues from 134 HCC patients were analyzed by immunohistochemistry, and PPM1H exhibited higher expression levels in adjacent para-cancer tissues than in HCC tissues. Therefore, patients with higher expression of PPM1H had a better prognosis. PPM1H inhibited proliferation, migration, and invasion of hepatoma cells. In addition, PPM1H inhibited induced HCC nodule formation as well as tumor xenograft growth in diethylnitrosamine/CCl4-induced HCC mouse model and nude mouse tumorigenicity assay, respectively. A 3D model of PPM1H was obtained by homology multi-template modeling, and ribosomal protein S6 kinase B1 (RPS6KB1) in the bone morphogenetic protein (BMP)/transforming growth factor β (TGF-β) pathway was screened out as the potential substrate of PPM1H by Rosetta. PPM1H could directly dephosphorylate p-RPS6KB1. To conclude, we discovered RPS6KB1 as a new PPM1H dephosphorylation substrate. PPM1H exhibited a suppressive effect on HCC progression by dephosphorylating p-RPS6KB1.
Collapse
Affiliation(s)
- Xiaoshuang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Jianting Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Li
- Department of Interventional Radiology, Affiliated Hospital of Qingdao University, Shandong 266003, P.R. China
| | - Chunrui Li
- Beijing Cloud Computing Key Technique and Application Key Laboratory, Beijing Computing Center, Beijing 100094, P.R. China
| | - Xilin Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaopan Wu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
6
|
Tan XP, Zhou K, Zeng QL, Yuan YF, Chen W. Influence of AFP on surgical outcomes in non-B non-C patients with curative resection for hepatocellular carcinoma. Clin Exp Med 2023; 23:107-115. [PMID: 35293607 PMCID: PMC9939498 DOI: 10.1007/s10238-022-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
To study the clinical and prognostic features of non-B non-C alpha-fetoprotein (AFP)(-)-hepatocellular carcinoma (HCC) (NBNC-AFP(-)-HCC) and the relationship between the prognostic features of HCC and hepatitis B virus surface antigen (HBsAg) status and AFP. We enrolled 227 patients who underwent hepatic resection for HCC between January 1998 and December 2007 at Sun Yat-sen University Cancer Center, all of whom were diagnosed with HCC by pathology. All patients were stratified into one of four groups (B-AFP(+)-HCC, B-AFP(-)-HCC, NBNC-AFP(+)-HCC, and NBNC-AFP(-)-HCC) according to AFP levels and HBsAg status. The clinicopathologic and survival characteristics of NBNC-AFP(-)-HCC patients were compared with those of all other three groups. Out of the 105 NBNC-HCC patients, 43 patients (40.9%) had AFP-negative HCC. There were some differences in factors between the B-AFP(+) and NBNC-AFP(-) patients, such as age, body mass index (BMI), diabetes, and ALT (P < 0.05). On univariate analysis, tumour size, secondary tumour, and portal invasion were prognostic factors for overall survival (OS) and disease-free survival (DFS) (P < 0.05). Cox multivariate regression analysis suggested that tumour size and tumour number (P < 0.05) were independent predictors. In addition, compared with the B-AFP(+)-HCC, B-AFP(-)-HCC, and NBNC-AFP(+)-HCC groups, the NBNC-AFP(-)-HCC patients had the best DFS (P < 0.05). Compared with the B-AFP(+)-HCC and NBNC-AFP(+)-HCC groups, the NBNC-AFP(-)-HCC patients had better OS (P < 0.05), and survival rates were similar to those of B-AFP(-)-HCC patients. NBNC-AFP(-)-HCC patients had a relatively favourable prognosis. It can serve as a useful marker in predicting the risk of tumour recurrence in the early stages.
Collapse
Affiliation(s)
- Xiao-Ping Tan
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Kai Zhou
- Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
| | - Qing-Li Zeng
- The 334 Hospital Affiliated to Nanchang University, Nanchang, 330024, Jiangxi, China
| | - Yun-Fei Yuan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510655, China.
| | - Wei Chen
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
7
|
Cataldi M, Manco F, Tarantino G. Steatosis, Steatohepatitis and Cancer Immunotherapy: An Intricate Story. Int J Mol Sci 2021; 22:12947. [PMID: 34884762 PMCID: PMC8657798 DOI: 10.3390/ijms222312947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors represent one of the most significant recent advances in clinical oncology, since they dramatically improved the prognosis of deadly cancers such as melanomas and lung cancer. Treatment with these drugs may be complicated by the occurrence of clinically-relevant adverse drug reactions, most of which are immune-mediated, such as pneumonitis, colitis, endocrinopathies, nephritis, Stevens Johnson syndrome and toxic epidermal necrolysis. Drug-induced steatosis and steatohepatitis are not included among the typical forms of cancer immunotherapy-induced liver toxicity, which, instead, usually occurs as a panlobular hepatitis with prominent lymphocytic infiltrates. Nonetheless, non-alcoholic fatty liver disease is a risk factor for immunotherapy-induced hepatitis, and steatosis and steatohepatitis are frequently observed in this condition. In the present review we discuss how these pathology findings could be explained in the context of current models suggesting immune-mediated pathogenesis for steatohepatitis. We also review evidence suggesting that in patients with hepatocellular carcinoma, the presence of steatosis or steatohepatitis could predict a poor therapeutic response to these agents. How these findings could fit with immune-mediated mechanisms of these liver diseases will also be discussed.
Collapse
Affiliation(s)
- Mauro Cataldi
- Department of Neuroscience, Reproductive Medicine and Dentistry, Section of Pharmacology, Federico II University, Medical School of Naples, 80131 Naples, Italy; (M.C.); (F.M.)
| | - Federica Manco
- Department of Neuroscience, Reproductive Medicine and Dentistry, Section of Pharmacology, Federico II University, Medical School of Naples, 80131 Naples, Italy; (M.C.); (F.M.)
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University, Medical School of Naples, 80131 Naples, Italy
| |
Collapse
|
8
|
Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, Kan Q, Fan R, Liu Z, Zhang M. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance. Int J Biol Sci 2021; 17:1061-1078. [PMID: 33867829 PMCID: PMC8040305 DOI: 10.7150/ijbs.57168] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is a central nervous malignancy with a very poor prognosis. This study attempted to explore the role of exosomes induced by low-dose radiation-induced (ldrEXOs) and ldrEXOs-derived circ-METRN in glioblastoma progression and radioresistance at the molecular, cellular, animal, and clinical levels. Results in the present study revealed that low-dose radiation stimulated the secretion of ldrEXOs which delivered high levels of circ-METRN. And circ-METRN-abundant ldrEXOs increased the expression of γ-H2AX, indicating an efficient DNA damage-repair process in glioblastoma cells. The ldrEXOs-derived circ-METRN enhanced the glioblastoma progression and radioresistance via miR-4709-3p/GRB14/PDGFRα pathway. Up-regulating PDGFRα can rescue the tumor-promoting function of ldrEXOs in groups previously treated with inhibition of GRB14. Additionally, in-vivo experiments revealed that treatments with ldrEXOs promoted the growth of xenografted tumors and shortened the survival period. Furthermore, clinical researches indicated that circ-METRN may be transported into the bloodstream by exosomes in the early stages of fractionated radiotherapy. It has important clinical values to detect the serum exosomal circ-METRN in the early stage of radiotherapy, which is not only conducive to predict radioresistance and prognosis but also to assist MRI diagnosis in detecting the very early recurrence of glioblastoma. In summary, this study reveals for the first time that low-dose radiation-induced exosomal circ-METRN plays an oncogenic role in glioblastoma progression and radioresistance through miR-4709-3p/GRB14/PDGFRα pathway, providing mechanistic insights into the roles of circRNAs and a valuable marker for therapeutic targets in glioblastoma.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qinchen Cao
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yonggang Shi
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiaolong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yin Mi
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ke Liu
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Quancheng Kan
- Department of Pharmacy and Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhangsuo Liu
- Department of Pharmacy and Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Mingzhi Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
9
|
Li W, Deng R, Liu S, Wang K, Sun J. Hepatitis B virus-related hepatocellular carcinoma in the era of antiviral therapy: The emerging role of non-viral risk factors. Liver Int 2020; 40:2316-2325. [PMID: 32666675 DOI: 10.1111/liv.14607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the major malignant lethal tumours, is most prevalent in Asian patients with chronic hepatitis B virus (HBV) infection. Both viral and non-viral factors contribute to the development of HCC. It is established that viral factors associated with HBV DNA level, HBV genotype, designated gene mutation, HBV DNA integration, HBx protein, hepatitis B surface antigen (HBsAg), hepatitis B core-related antigen (HBcrAg) and HBV RNA are correlated with hepatocarcinogenesis. Before the introduction of antiviral therapy, viral factors once attracted more attention during the development of HCC. With the widespread use of antiviral therapy, predominantly nucleos(t)ide analogues (NAs), most patients with chronic hepatitis B (CHB) have achieved sustained viral control. The role of non-viral factors, especially modifiable factors, is anticipated to be reinforced in the future. Herein, we reviewed the modifiable non-viral risk factors of HBV-related HCC, in the hope of providing substantial evidence for further development of novel precautionary measures for HCC. In addition, the therapeutic interventions for reducing the risk of HCC, like potential conventional pharmaceutical interventions and lifestyle modification are also discussed in this review. Future studies that would explore the specific mechanism of HBV-related HCC development in patients with satisfactory viral control and related precision treatment are warranted.
Collapse
Affiliation(s)
- Wanying Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Deng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaifeng Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine. Sci Rep 2020; 10:5186. [PMID: 32198362 PMCID: PMC7083857 DOI: 10.1038/s41598-020-61869-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase reporter was used as a readout of Wnt/β-catenin pathway activity, in vivo in mouse liver and in vitro in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target genes in mice liver, revealing a nutritional regulation of the Wnt/β-catenin pathway. This effect was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/β-catenin activity in primary hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/β-catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as potential novel physiological inducers of hepatic Wnt/β-catenin pathway.
Collapse
|
11
|
Lequoy M, Gigante E, Couty JP, Desbois-Mouthon C. Hepatocellular carcinoma in the context of non-alcoholic steatohepatitis (NASH): recent advances in the pathogenic mechanisms. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2019-0044/hmbci-2019-0044.xml. [PMID: 32112699 DOI: 10.1515/hmbci-2019-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. HCC is particularly aggressive and is one of the leading causes of cancer mortality. In recent decades, the epidemiological landscape of HCC has undergone significant changes. While chronic viral hepatitis and excessive alcohol consumption have long been identified as the main risk factors for HCC, non-alcoholic steatohepatitis (NASH), paralleling the worldwide epidemic of obesity and type 2 diabetes, has become a growing cause of HCC in the US and Europe. Here, we review the recent advances in epidemiological, genetic, epigenetic and pathogenic mechanisms as well as experimental mouse models that have improved the understanding of NASH progression toward HCC. We also discuss the clinical management of patients with NASH-related HCC and possible therapeutic approaches.
Collapse
Affiliation(s)
- Marie Lequoy
- Service d'Hépato-Gastro-Entérologie, AP-HP, F-75012 Paris, France
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Elia Gigante
- Service d'Hépato-Gastro-Entérologie, AP-HP, F-75012 Paris, France
| | - Jean-Pierre Couty
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France
| | - Christèle Desbois-Mouthon
- Centre de Recherche des Cordeliers, INSERM UMR_S1138, 15 rue de l'école de médecine, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France
| |
Collapse
|
12
|
Chen Z, Yu H, Shi X, Warren CR, Lotta LA, Friesen M, Meissner TB, Langenberg C, Wabitsch M, Wareham N, Benson MD, Gerszten RE, Cowan CA. Functional Screening of Candidate Causal Genes for Insulin Resistance in Human Preadipocytes and Adipocytes. Circ Res 2019; 126:330-346. [PMID: 31739742 DOI: 10.1161/circresaha.119.315246] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rationale: Genome-wide association studies have identified genetic loci associated with insulin resistance (IR) but pinpointing the causal genes of a risk locus has been challenging. Objective: To identify candidate causal genes for IR, we screened regional and biologically plausible genes (16 in total) near the top 10 IR-loci in risk-relevant cell types, namely preadipocytes and adipocytes. Methods and Results: We generated 16 human Simpson-Golabi-Behmel syndrome preadipocyte knockout lines each with a single IR-gene knocked out by lentivirus-mediated CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system. We evaluated each gene knockout by screening IR-relevant phenotypes in the 3 insulin-sensitizing mechanisms, including adipogenesis, lipid metabolism, and insulin signaling. We performed genetic analyses using data on the genotype-tissue expression portal expression quantitative trait loci database and accelerating medicines partnership type 2 diabetes mellitus Knowledge Portal to evaluate whether candidate genes prioritized by our in vitro studies were expression quantitative trait loci genes in human subcutaneous adipose tissue, and whether expression of these genes is associated with risk of IR, type 2 diabetes mellitus, and cardiovascular diseases. We further validated the functions of 3 new adipose IR genes by overexpression-based phenotypic rescue in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines. Twelve genes, PPARG, IRS-1, FST, PEPD, PDGFC, MAP3K1, GRB14, ARL15, ANKRD55, RSPO3, COBLL1, and LYPLAL1, showed diverse phenotypes in the 3 insulin-sensitizing mechanisms, and the first 7 of these genes could affect all the 3 mechanisms. Five out of 6 expression quantitative trait loci genes are among the top candidate causal genes and the abnormal expression levels of these genes (IRS-1, GRB14, FST, PEPD, and PDGFC) in human subcutaneous adipose tissue could be associated with increased risk of IR, type 2 diabetes mellitus, and cardiovascular disease. Phenotypic rescue by overexpression of the candidate causal genes (FST, PEPD, and PDGFC) in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines confirmed their function in adipose IR. Conclusions: Twelve genes showed diverse phenotypes indicating differential roles in insulin sensitization, suggesting mechanisms bridging the association of their genomic loci with IR. We prioritized PPARG, IRS-1, GRB14, MAP3K1, FST, PEPD, and PDGFC as top candidate genes. Our work points to novel roles for FST, PEPD, and PDGFC in adipose tissue, with consequences for cardiometabolic diseases.
Collapse
Affiliation(s)
- Zhifen Chen
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| | - Haojie Yu
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| | - Xu Shi
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.)
| | - Curtis R Warren
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.).,Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (C.R.W.)
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom (L.A.L., C.L., N.W.)
| | - Max Friesen
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| | - Torsten B Meissner
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom (L.A.L., C.L., N.W.)
| | - Martin Wabitsch
- Pediatrics and Adolescent Medicine, Ulm University Hospital, Germany (M.W.)
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom (L.A.L., C.L., N.W.)
| | - Mark D Benson
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.)
| | - Rob E Gerszten
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.)
| | - Chad A Cowan
- From the Beth Israel Deaconess Medical Center, Cardiovascular Institute, Harvard Medical School, Boston, MA (Z.C., H.Y., X.S., M.F., T.B.M., M.D.B., R.E.G, C.A.C.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (Z.C., H.Y., M.F., C.R.W., T.B.M., C.A.C.)
| |
Collapse
|
13
|
Yu MC, Liu JX, Ma XL, Hu B, Fu PY, Sun HX, Tang WG, Yang ZF, Qiu SJ, Zhou J, Fan J, Xu Y. Differential network analysis depicts regulatory mechanisms for hepatocellular carcinoma from diverse backgrounds. Future Oncol 2019; 15:3917-3934. [PMID: 31729887 DOI: 10.2217/fon-2019-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To elucidate the integrative combinational gene regulatory network landscape of hepatocellular carcinoma (HCC) molecular carcinogenesis from diverse background. Materials & methods: Modified gene regulatory network analysis was used to prioritize differentially regulated genes and links. Integrative comparisons using bioinformatics methods were applied to identify potential critical molecules and pathways in HCC with different backgrounds. Results: E2F1 with its surrounding regulatory links were identified to play different key roles in the HCC risk factor dysregulation mechanisms. Hsa-mir-19a was identified as showed different effects in the three HCC differential regulation networks, and showed vital regulatory role in HBV-related HCC. Conclusion: We describe in detail the regulatory networks involved in HCC with different backgrounds. E2F1 may serve as a universal target for HCC treatment.
Collapse
Affiliation(s)
- Min-Cheng Yu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Ji-Xiang Liu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai 201203, PR China
| | - Xiao-Lu Ma
- Department of Laboratory Medicine, Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Pei-Yao Fu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Hai-Xiang Sun
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Wei-Guo Tang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, PR China
| | - Zhang-Fu Yang
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Shuang-Jian Qiu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, PR China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, PR China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yang Xu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| |
Collapse
|
14
|
Subbotin VM. A hypothesis on paradoxical privileged portal vein metastasis of hepatocellular carcinoma. Can organ evolution shed light on patterns of human pathology, and vice versa? Med Hypotheses 2019; 126:109-128. [PMID: 31010487 DOI: 10.1016/j.mehy.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Unlike other carcinomas, hepatocellular carcinoma (HCC) metastasizes to distant organs relatively rarely. In contrast, it routinely metastasizes to liver vasculature/liver, affecting portal veins 3-10 times more often than hepatic veins. This portal metastatic predominance is traditionally rationalized within the model of a reverse portal flow, due to accompanying liver cirrhosis. However, this intuitive model is not coherent with facts: 1) reverse portal flow occurs in fewer than 10% of cirrhotic patients, while portal metastasis occurs in 30-100% of HCC cases, and 2) portal vein prevalence of HCC metastasis is also characteristic of HCC in non-cirrhotic livers. Therefore, we must assume that the route for HCC metastatic dissemination is the same as for other carcinomas: systemic dissemination via the draining vessel, i.e., via the hepatic vein. In this light, portal prevalence versus hepatic vein of HCC metastasis appears as a puzzling pattern, particularly in cases when portal HCC metastases have appeared as the sole manifestation of HCC. Considering that other GI carcinomas (colorectal, pancreatic, gastric and small bowel) invariably disseminate via portal vein, but very rarely form portal metastasis, portal prevalence of HCC metastasis appears as a paradox. However, nature does not contradict itself; it is rather our wrong assumptions that create paradoxes. The 'portal paradox' becomes a logical event within the hypothesis that the formation of the unique portal venous system preceded the appearance of liver in evolution of chordates. The analysis suggests that the appearance of the portal venous system, supplying hormones and growth factors of pancreatic family, which includes insulin, glucagon, somatostatin, and pancreatic polypeptide (HGFPF) to midgut diverticulum in the early evolution of chordates (in an Amphioxus-like ancestral animal), promoted differentiation of enterocytes into hepatocytes and their further evolution to the liver of vertebrates. These promotional-dependent interactions are conserved in the vertebrate lineage. I hypothesize that selective homing and proliferation of malignant hepatocytes (i.e., HCC cells) in the portal vein environment are due to a uniquely high concentration of HGFPF in portal blood. HGFPF are also necessary for liver function and renewal and are significantly extracted by hepatocytes from passing blood, creating a concentration gradient of HGFPF between the portal blood and hepatic vein outflow, making post-liver vasculature and remote organs less favorable spaces for HCC growth. It also suggested that the portal vein environment (i.e., HGFPF) promotes the differentiation of more aggressive HCC clones from already-seeded portal metastases, explaining the worse outcome of HCC with the portal metastatic pattern. The analysis also offers new hypothesis on the phylogenetic origin of the hepatic diverticulum of cephalochordates, with certain implications for the modeling of the chordate phylogeny.
Collapse
Affiliation(s)
- Vladimir M Subbotin
- Arrowhead Parmaceuticals, Madison, WI 53719, USA; University of Wisconsin, Madison, WI 53705, USA; University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
15
|
Benabou E, Salamé Z, Wendum D, Lequoy M, Tahraoui S, Merabtene F, Chrétien Y, Scatton O, Rosmorduc O, Fouassier L, Fartoux L, Praz F, Desbois-Mouthon C. Insulin receptor isoform A favors tumor progression in human hepatocellular carcinoma by increasing stem/progenitor cell features. Cancer Lett 2019; 450:155-168. [PMID: 30849481 DOI: 10.1016/j.canlet.2019.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/09/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly neoplasms. Insulin receptor (IR) exists in two isoforms, IR-A and IR-B, the latter being predominantly expressed in normal adult hepatocytes while IR-A is overexpressed in HCC to the detriment of IR-B. This study evaluated the biological functions associated with IR-A overexpression in HCC in relation to expression of its ligand IGF-II. The value of INSRA:INSRB ratio which was increased in ˜70% of 85 HCC was associated with stem/progenitor cell features such as cytokeratin-19 and α-fetoprotein and correlated with shorter patient survival. IGF2 mRNA upregulation was observed in 9.4% of HCC and was not associated with higher INSRA:INSRB ratios. Ectopic overexpression of IR-A in two HCC cell lines presenting a strong autocrine IGF-II secretion loop or not stimulated cell migration and invasion. In cells cultured as spheroids, IR-A overexpression promoted gene programs related to stemness, inflammation and cell movement. IR-A also increased cell line tumorigenicity in vivo after injection to immunosuppressed mice and the sphere-forming cells made a significant contribution to this effect. Altogether, these results demonstrate that IR-A is a novel player in HCC progression.
Collapse
Affiliation(s)
- Eva Benabou
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | - Zeina Salamé
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | - Dominique Wendum
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France; AP-HP, Saint-Antoine HCospital, Department of Pathology, F-75012, Paris, France; Histomorphology Platform, UMS 30 Lumic, F-75012, Paris, France
| | - Marie Lequoy
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France; AP-HP, Saint-Antoine Hospital, Department of Hepatology, F-75012, Paris, France
| | - Sylvana Tahraoui
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | | | - Yves Chrétien
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | - Olivier Scatton
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France; AP-HP, Pitié-Salpétrière Hospital, Department of Hepatobiliary Surgery and Liver Transplantation, F-75013, Paris, France
| | - Olivier Rosmorduc
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France; AP-HP, Pitié-Salpétrière Hospital, Department of Hepatology, F-75013, Paris, France
| | - Laura Fouassier
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | - Laetitia Fartoux
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France; AP-HP, Pitié-Salpétrière Hospital, Department of Hepatology, F-75013, Paris, France
| | - Françoise Praz
- Sorbonne Université, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | | |
Collapse
|
16
|
Pan Y, Liu G, Wang D, Li Y. Analysis of lncRNA-Mediated ceRNA Crosstalk and Identification of Prognostic Signature in Head and Neck Squamous Cell Carcinoma. Front Pharmacol 2019; 10:150. [PMID: 30886579 PMCID: PMC6409312 DOI: 10.3389/fphar.2019.00150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) can act as ceRNA to regulate the expression of target genes by sponging miRNAs, and therefore plays an essential role in tumor initiation and progression. However, functional roles and regulatory mechanisms of lncRNAs as ceRNAs in head and neck squamous cell carcinoma (HNSCC) remain to be determined. We downloaded RNA sequence profiles from The Cancer Genome Atlas (TCGA) database, and identified the differential RNAs by bioinformatics. Then we analyzed the biological processes of differential expressed RNAs (DER), and established their interaction networks and pathway analysis to find out potential biological effects of these DERs. Besides, we also explored the relationship between the DERs and prognosis of HNSCC patients. We obtained 525 tumor samples and 44 paracancerous controls, and there were 1081 DElncRNAs, 1889 DEmRNAs, and 145 DEmiRNAs. GO and KEGG pathways analysis of these DEmRNAs were mainly involved in "Protein digestion and absorption," "Calcium signaling pathway," and "ECM-receptor interaction." The analysis of the ceRNA network identified 61 DElncRNAs as functional ceRNAs whose dysregulated expression may affect the expression of oncogenes/tumor suppressor genes. Furthermore, univariate and multivariate Cox regression analysis revealed that 4 DElncRNAs, 3 EDmiRNAs, and 6 DEmRNAs can predict survival with high accuracy. Survival analysis found that 4 lncRNAs was related to prognostic, including overexpressed RP11-366H4.1, HOTTIP, RP11-865I6.2, and RP11-275N1.1 patients had a worse survival. In conclusion, through constructing the ceRNA network in HNSCC patients, we identified key lncRNA-miRNA-mRNA network in HNSCC. All the DERs might participate in varieties of pathways in the initiation, progression, and invasion of HNSCC. Furthermore, some miRNAs (hsa-mir-99a, hsa-mir-337, and hsa-mir-137) and mRNAs (NOSTRIN, TIMP4, GRB14, HOXB9, CELSR3, and ADGRD2) may be the prognostic genes of HNSCC. This study provided a new target and theoretical basis for further research on molecular mechanisms and biomarkers.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dujuan Wang
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, Dongguan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Meakin PJ, Mezzapesa A, Benabou E, Haas ME, Bonardo B, Grino M, Brunel JM, Desbois-Mouthon C, Biddinger SB, Govers R, Ashford MLJ, Peiretti F. The beta secretase BACE1 regulates the expression of insulin receptor in the liver. Nat Commun 2018; 9:1306. [PMID: 29610518 PMCID: PMC5880807 DOI: 10.1038/s41467-018-03755-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/08/2018] [Indexed: 01/04/2023] Open
Abstract
Insulin receptor (IR) plays a key role in the control of glucose homeostasis; however, the regulation of its cellular expression remains poorly understood. Here we show that the amount of biologically active IR is regulated by the cleavage of its ectodomain, by the β-site amyloid precursor protein cleaving enzyme 1 (BACE1), in a glucose concentration-dependent manner. In vivo studies demonstrate that BACE1 regulates the amount of IR and insulin signaling in the liver. During diabetes, BACE1-dependent cleavage of IR is increased and the amount of IR in the liver is reduced, whereas infusion of a BACE1 inhibitor partially restores liver IR. We suggest the potential use of BACE1 inhibitors to enhance insulin signaling during diabetes. Additionally, we show that plasma levels of cleaved IR reflect IR isoform A expression levels in liver tumors, which prompts us to propose that the measurement of circulating cleaved IR may assist hepatic cancer detection and management.
Collapse
Affiliation(s)
- Paul J Meakin
- Division of Molecular & Clinical Medicine, Ninewells Hospital & Medical School, Dundee, DD19SY, UK
| | - Anna Mezzapesa
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385, Marseille, France
| | - Eva Benabou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | - Mary E Haas
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | | | - Michel Grino
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385, Marseille, France
| | - Jean-Michel Brunel
- Aix Marseille Univ, INSERM, CNRS, CRCM, Institut Paoli Calmettes, Marseille, 13385, France
| | - Christèle Desbois-Mouthon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Roland Govers
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385, Marseille, France
| | - Michael L J Ashford
- Division of Molecular & Clinical Medicine, Ninewells Hospital & Medical School, Dundee, DD19SY, UK
| | - Franck Peiretti
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385, Marseille, France.
| |
Collapse
|
18
|
Subbotin VM. Privileged portal metastasis of hepatocellular carcinoma in light of the coevolution of a visceral portal system and liver in the chordate lineage: a search for therapeutic targets. Drug Discov Today 2018; 23:548-564. [PMID: 29330122 DOI: 10.1016/j.drudis.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/21/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) disseminates systemically, but metastases occur in distant organs only in minority of patients, whereas HCC routinely metastasizes to liver and its vessels. HCC cells disseminate via hepatic veins, but portal veins are affected by metastasis more frequently than are hepatic veins, and correlates with poor prognosis. In this review, I suggest that privileged HCC portal metastasis occurs because of high levels of pancreatic family hormones and growth factors (PHGFs) in the portal blood. The analysis suggests that the appearance of the portal system carrying PHGFs in the evolution of invertebrate chordate (Amphioxus) led to the evolution of the liver in vertebrate; given that the portal pattern of HCC metastasis and selection of more-aggressive clones are PHGF dependent, PHGFs and their ligands constitute therapeutic targets.
Collapse
Affiliation(s)
- Vladimir M Subbotin
- Department of Oncology, University of Wisconsin, Madison, WI 53705, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
19
|
Denechaud PD, Fajas L, Giralt A. E2F1, a Novel Regulator of Metabolism. Front Endocrinol (Lausanne) 2017; 8:311. [PMID: 29176962 PMCID: PMC5686046 DOI: 10.3389/fendo.2017.00311] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
In the past years, several lines of evidence have shown that cell cycle regulatory proteins also can modulate metabolic processes. The transcription factor E2F1 is a central player involved in cell cycle progression, DNA-damage response, and apoptosis. Its crucial role in the control of cell fate has been extensively studied and reviewed before; however, here, we focus on the participation of E2F1 in the regulation of metabolism. We summarize recent findings about the cell cycle-independent roles of E2F1 in various tissues that contribute to global metabolic homeostasis and highlight that E2F1 activity is increased during obesity. Finally, coming back to the pivotal role of E2F1 in cancer development, we discuss how E2F1 links cell cycle progression with different metabolic adaptations required for cell growth and survival.
Collapse
Affiliation(s)
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Albert Giralt
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Albert Giralt,
| |
Collapse
|