1
|
Shafik MS, El-Tanbouly DM, Bishr A, Soubh AA, Attia AS, Muhammad RN. Activation of Sig-1R by afobazole attenuates Tollip/HMGB1-mediaded CCN2 autophagic degradation and NETs formation in sunitinib-induced cardiotoxicity in mice: Involvement of IRE 1α/ASK1/JNK/ AP-1 trajectory. Toxicol Appl Pharmacol 2025:117423. [PMID: 40449751 DOI: 10.1016/j.taap.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/25/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Although the contribution of sigma1 receptor (Sig-1R) to afobazole's cardioprotection has been meticulously investigated, Sig-1R-mediated cardioprotective effect of afobazole against sunitinib cardiotoxicity has not been studied yet. Hence, we aimed at studying the potential modulatory impact of afobazole on Sig-1R to combat sunitinib-induced endoplasmic reticulum (ER) stress, maladaptive autophagy, and hyperactivation of neutrophils that ends up with neutrophil extracellular traps (NETs) formation. Pre-treatment with afobazole attenuated sunitinib-induced cardiotoxicity and enhanced cardiac function via significant reduction of TNNT2 and CK-MB, and restoration of nearly normal hemodynamic measurements. Afobazole-mediated Sig-1R activation mitigated the ER stress sensor, IRE1α activation and its downstream (ASK/JNK/AP-1) pathways along with caspase-3 and FK18. Subsequently, afobazole hindered NETs formation by prohibiting ER stress-induced activation of caspase-2 and pro-inflammatory cytokines; IL-1β and TNFα, as indicated by the significant reduction of NETs' specific components, namely, PAD4, NE, and MPO, along with the NETs' specific marker Cit H3. Afobazole also downregulated sunitinib-induced maladaptive autophagy, as reflected by reducing the expressions of autophagy-regulating proteins (ATG5 and ATG7) and microtubule-associated protein light chain 3 (LC3-II/I) ratio as well p62 upregulation. Furthermore, afobazole exhibited a cardioprotective effect by restoring nearly normal CCN2 level that was degraded by Tollip and HMGB1. The above-mentioned outcomes triggered by afobazole were clearly negated upon administration of the Sig-1R antagonist (BD1047), confirming that Sig-1R activation predominantly mediates the observed cardioprotective effects. Afobazole demonstrated efficacy in mitigating sunitinib-induced cardiotoxicity, as evidenced through the enhancements in hemodynamic stability, reduction of ER stress, amelioration of maladaptive autophagy, and inhibition of NETs formation.
Collapse
Affiliation(s)
- Marihan S Shafik
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Egypt.
| | - Dalia M El-Tanbouly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Abeer Bishr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Ayman A Soubh
- Pharmacology and Toxicology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Amina S Attia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Radwa N Muhammad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
2
|
Feng Y, Geng Y, Liu Z, Lu L, Cai C, Ding C, Dong S, Gao B. QRICH1, as a key effector of endoplasmic reticulum stress, enhances HBV in promoting HMGB1 translocation and secretion in hepatocytes. Immunobiology 2025; 230:152913. [PMID: 40383084 DOI: 10.1016/j.imbio.2025.152913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/24/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Extracellular high mobility group box 1 (HMGB1) serves as a damage-associated molecular pattern (DAMP) and leads to diverse biological effects, including the aggravation of HBV-related liver diseases. However, mechanisms underlying HMGB1 secretion in HBV-induced hepatic injury and fibrosis remain unclear. Glutamine-rich 1 (QRICH1) is known as a critical effector of endoplasmic reticulum (ER) stress and is elevated in liver diseases. Whether QRICH1 participates in HBV-induced hepatic fibrosis warrants further investigation. Here, we explore the mechanism of HMGB1 secretion during HBV-induced hepatic fibrosis and the effect of QRICH1 on the process. METHODS In vivo experiments were conducted using a chronic recombinant cccDNA (rcccDNA) mouse model. Clinical specimens were obtained from Zhongshan Hospital, Fudan University. The levels of QRICH1 and HMGB1 were determined via immunohistochemistry. Liver collagen deposition was determined by Sirius red and Masson's trichrome staining. The serum levels of HMGB1 and indicators of liver injury were detected via ELISA. HMGB1 cyto-translocation was analyzed by Western blotting and quantitative real-time PCR (qRT-PCR). RESULTS Our findings demonstrated that ER stress promoted HBV-induced hepatic fibrosis in a mouse model. QRICH1 expression and HMGB1 secretion were elevated and positively correlated in rcccDNA mice with ER stress activation and chronic hepatitis B (CHB) patients with severe fibrosis. HBV modulated Sirtuin6 (SIRT6) expression, affecting HMGB1 cyto-translocation via acetylation regulation. Furthermore, QRICH1 enhanced HBV-induced HMGB1 translocation and secretion by regulating HMGB1 transcription. CONCLUSION HBV promotes HMGB1 acetylation and cyto-translocation by modulating SIRT6 expression. QRICH1 enhances HBV-induced HMGB1 translocation and secretion by regulating HMGB1 transcription.
Collapse
Affiliation(s)
- Ying Feng
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yucai Geng
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhixiang Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lin Lu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chen Cai
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chenke Ding
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuyu Dong
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China..
| |
Collapse
|
3
|
Bi C, Liu B, Gao P, Wang C, Fang S, Huo Z, Song Q, Dong D, Wu X, Li G. RAGE deficiency ameliorates abdominal aortic aneurysm progression. Inflamm Res 2025; 74:63. [PMID: 40244438 DOI: 10.1007/s00011-025-02027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a vascular disease characterized by inflammation and arterial wall degradation. The receptor for advanced glycation end products (RAGE) plays a pivotal role in regulating inflammatory pathways, but its specific contribution to AAA pathogenesis remains unclear. PURPOSE This study aimed to investigate the role of RAGE in AAA development by examining its expression in human and mice AAA tissues and exploring the effects of RAGE deficiency on aneurysm progression, macrophage polarization, and inflammatory responses. METHODS RAGE expression was analyzed in human AAA samples and porcine pancreatic elastase (PPE) induced AAA mouse models using Western blotting, immunohistochemistry, and immunofluorescence. In vivo RAGE-deficient (RAGE-/-) mice were generated to assess the impact of RAGE knockout on AAA progression. In vitro experiments utilized RAW264.7 transfected with RAGE-targeting siRNA to study macrophage polarization and NF-κB signaling. RESULTS RAGE expression was elevated in AAA tissues, particularly in macrophages. RAGE-/- mice exhibited reduced AAA incidence, mortality, and aortic dilation compared to wild-type mice. Histological analysis showed preserved elastic fibers and smooth muscle layers, along with decreased inflammatory cell infiltration and MMP2/MMP9 expression. RAGE deficiency inhibited M1-like macrophage polarization and pro-inflammatory cytokine secretion, mediated through suppression of the NF-κB pathway. CONCLUSIONS RAGE deficiency mitigates AAA progression by modulating macrophage polarization and reducing inflammation via the NF-κB pathway. These findings highlight RAGE as a potential therapeutic target for AAA treatment.
Collapse
Affiliation(s)
- Cong Bi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Bingqi Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Peixian Gao
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chuanle Wang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Sheng Fang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Zhengkun Huo
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qingpeng Song
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Dianning Dong
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Mak KM, Shekhar AC, Ding SY. Neutrophil extracellular traps mediate pathophysiology of hepatic cells during liver injury. Anat Rec (Hoboken) 2025. [PMID: 40219700 DOI: 10.1002/ar.25673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Neutrophil extracellular traps (NETs) are web-like, bactericidal structures produced by neutrophils and are composed principally of extracellular DNA, histones, elastase, and myeloperoxidase, among other components. NET formation is an innate immune response that is beneficial for pathogen killing and clearance. However, excessive NET formation and clearance defects can lead to inflammation and induce damage to host organs. NETs are also implicated in the development of noninfectious inflammatory disorders, such as liver injury in chronic liver diseases. The liver parenchyma contains hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells. Each of these cells possesses unique structures and functions, and their interactions with NETs result in pathophysiological changes contributing to liver injury. This review updates the findings related to the modes of action and molecular mechanisms by which NETs modulate the pathophysiology of various hepatic cells and potentiate liver injury. The article also reviews the roles of NETs in hepatic ischemia reperfusion injury, hepatocellular carcinoma pathogenesis, and cancer metastasis. Last, we examine data to determine whether NETs induce crosstalk among various hepatic cells during liver injury and to identify future research directions.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena Y Ding
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Mincheva G, Moreno-Manzano V, Felipo V, Llansola M. Extracellular vesicles from mesenchymal stem cells improve liver injury in rats with mild liver damage. Underlying mechanisms and role of TGFβ. Life Sci 2025; 364:123429. [PMID: 39884339 DOI: 10.1016/j.lfs.2025.123429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Preventing the progression of liver damage to fibrosis would be beneficial for patients with steatotic liver disease (SLD). Mesenchymal stem cells (MSC) are a promising therapy for SLD and derived extracellular vesicles (EVs) could even improve the treatment's efficacy and safety. However, the mechanisms of MSC-EVs beneficial effects are not well known. It has been suggested that modifying the EVs cargo could improve their beneficial effects. The aims of this study were to assess if MSC-EVs reduce liver damage in a rat model of mild liver damage; to analyze the underlying mechanisms and to assess if silencing TGFβ enhances the beneficial effects of MSC-EVs. CCl4 was injected three times per week during four weeks to induce mild liver damage. EVs from human adipocyte MSC and from TGFβ-depleted MSC (siTGFβ-MSC-EVs) were injected in the tail vein. Steatosis, fibrosis, liver inflammation, macrophage infiltration and liver content of fibrotic markers, DAMPs, cytokines and bile acids were analyzed. Normal MSC-EVs reduce the CCL2 increase in liver, macrophage infiltration and the increases in the fibrosis markers collagen I and α-SMA. Treatment with siTGFβ-MSC-EVs, in addition, reduces liver steatosis, the increase of bile acids (mainly TCA), and DAMP HMGB1 levels, inducing a larger reduction of collagen I in liver of CCl4 rats. Treatment with MSCs-EVs effectively reduces early liver damage. Silencing of TGFβ in MSCs enhances the beneficial effects by additional mechanisms. Early treatment with MSC-EVs, especially after silencing TGFβ, could improve liver damage in SLD patients.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- Laboratory of Neuronal and Tissue Regeneration, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
6
|
Pei Z, Fan J, Tang M, Li Y. Ferroptosis: A New Strategy for the Treatment of Fibrotic Diseases. Adv Biol (Weinh) 2025; 9:e2400383. [PMID: 39377183 DOI: 10.1002/adbi.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.
Collapse
Affiliation(s)
- Zhuo Pei
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, 110044, China
| | - Maolin Tang
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
7
|
Guo L, Han L, Zhang J, Shen M, Li J, Zhang K, Chen R, Liu H. HMGB1 mediates epithelial-mesenchymal transition and fibrosis in silicosis via RAGE/β-catenin signaling. Chem Biol Interact 2025; 408:111385. [PMID: 39800143 DOI: 10.1016/j.cbi.2025.111385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of silicosis. High mobility group box 1 (HMGB1) has been found to induce EMT in fibrotic diseases. Previous studies have revealed a critical role of HMGB1 in silicosis, whereas the detail mechanisms still obscure. Here, we observed that HMGB1 protein was increased in the serum of silicosis patients and in the lung tissues of silicotic mice. The levels of HMGB1, receptor for advanced glycation end products (RAGE) and β-catenin protein were increased in the alveolar EMT cell model established by the treatment of transforming growth factor β1 (TGF-β1) and conditioned mediums derived from silica-stimulated macrophages. The activation of HMGB1, RAGE, β-catenin, EMT process, as well as cell migration triggered by TGF-β1 in RLE-6TN cells could be enhanced by treatment with recombinant HMGB1 protein (rHMGB1) and decreased by HMGB1 chemical inhibitor glycyrrhizin or RAGE inhibitor FPS-ZM1. And RAGE suppression could alleviate HMGB1-mediated the aggravation of β-catenin signaling, cell migration and EMT process induced by TGF-β1. Furthermore, both HMGB1 inhibition and RAGE knockout effectively alleviated the lung function impairment, EMT process, pulmonary inflammation and fibrosis in silicotic mice. These findings suggested that HMGB1 might promote EMT through RAGE/β-catenin axis in silicosis. And HMGB1 might constitute a therapeutic target for ameliorating the fibrosis of silicosis.
Collapse
Affiliation(s)
- Lingli Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China; Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Lu Han
- Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Jing Zhang
- LinYi Center for Disease Control and Prevention, LinYi, Shangdong, 276000, China
| | - Mengyao Shen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Jiacheng Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Kuijie Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Ruru Chen
- Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Heliang Liu
- Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
8
|
Sun HM, Feng QY, Qin BF, Guo X, Liu XK, Song J, Shi LQ. Bruceine A attenuates fibrogenesis and inflammation through NR2F2-regulated HMGB1 inflammatory signaling cascades in hepatic fibrosis. Eur J Pharmacol 2025; 987:177164. [PMID: 39615868 DOI: 10.1016/j.ejphar.2024.177164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
This investigation explored the hepatoprotective capabilities of Bruceine A (BA) and its underlying mechanisms in mitigating hepatic fibrosis. Hepatic stellate cells (HSCs) and mouse primary hepatocytes were treated with TGF-β and subsequently exposed to BA. To assess the effects of BA on the NR2F2-HMGB1 signaling cascade, these cells underwent transfection with a siRNA vector targeting NR2F2. The interaction between NR2F2 and the HMGB1 promoter was elucidated using a dual luciferase assay. In vivo, C57BL/6 mice were treated with thioacetamide (TAA) to induce liver damage, followed by administration of BA. The study found that BA moderated extracellular matrix (ECM) buildup, epithelial-mesenchymal transition (EMT), and inflammatory mediator levels, while concurrently reducing NR2F2 and HMGB1 expression in activated HSCs. Furthermore, BA lessened pyroptosis in hepatocytes, curtailing the inflammatory response. The absence of NR2F2 in HSCs or hepatocytes hindered BA's inhibitory effect on this pathway. It was demonstrated that NR2F2 binds directly to the HMGB1 promoter. Treatment with BA resulted in diminished serum levels of ALT and AST, mitigated damage in hepatic tissues, and decreased the ECM and neutrophil extracellular traps (NETs), thus protecting hepatocytes from fibrosis. Furthermore, BA suppressed the synthesis of inflammatory mediators such as NLRP3, caspase-1, and IL-1β by blocking the NR2F2-driven HMGB1 pathway, markedly reversing hepatic fibrosis. These observations highlight the efficacy of BA as a viable therapeutic candidate for hepatic fibrosis.
Collapse
Affiliation(s)
- Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Xin Guo
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua, Jilin Province, 134001, China
| | - Xue-Kun Liu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua, Jilin Province, 134001, China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China.
| | - Li-Qiang Shi
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| |
Collapse
|
9
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Liu J, Li H, Chen H, Xiao X, Jin Z, Paerhati P, Bao W, Cui C, Zhu J, Yuan Y. An anti-RAGE chimeric antibody alleviates CCl 4-induced liver fibrosis via RAGE/NF-kB pathway in mice. Biomed Pharmacother 2024; 181:117737. [PMID: 39657505 DOI: 10.1016/j.biopha.2024.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
Liver fibrosis is a progressive condition characterized by excessive deposition of extracellular matrix components, leading to organ dysfunction. Chronic inflammation and activation of hepatic stellate cells (HSCs) are two dominant events in all stages of fibrosis development. The receptor for advanced glycation end products (RAGE) pathway is involved in modulating liver injury and fibrosis, and preventing it, or deletion of Ager gene can protect the liver against fibrosis progression. To investigate functions and mechanism of chimeric anti-RAGE monoclonal antibody against liver fibrosis, murine-derived monoclonal anti-RAGE antibodies were used to construct murine-human chimeric antibodies. The properties of the chimeric antibody were characterized, and the biological functions of antibody A5 or its evolved humanized molecule, huA5, were investigated in cell or animal model. The data showed that blocking the RAGE pathway with huA5 robustly reduced liver injury and fibrosis. Furthermore, huA5 significantly suppressed the activation of HSCs and inhibited expression of fibrosis-associated genes, including COL1A1,TIMP1, and ACTA2. huA5 also interfered with RAGE downstream signal transduction and down-regulate both ERK and NF-κB phosphorylation, inhibited the RAGE/NF-kB pathway, leading to reduced expression of pro-inflammatory cytokines and profibrotic markers. Finally, RAGE silencing significantly decreased the expression of activation-related genes in HSCs, inhibiting HSCs proliferation and migration. These results clearly revealed that the anti-RAGE chimeric antibody exerted antifibrotic efficacy in vitro and attenuated liver fibrosis in vivo. HuA5 can be further developed as a lead molecule of drug to treat patients with liver fibrosis.
Collapse
Affiliation(s)
- Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Huiyi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Hui Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Xinyi Xiao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Wenxin Bao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Caixia Cui
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201100, China.
| |
Collapse
|
11
|
Ma X, Qiu J, Zou S, Tan L, Miao T. The role of macrophages in liver fibrosis: composition, heterogeneity, and therapeutic strategies. Front Immunol 2024; 15:1494250. [PMID: 39635524 PMCID: PMC11616179 DOI: 10.3389/fimmu.2024.1494250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Macrophages, the predominant immune cells in the liver, are essential for maintaining hepatic homeostasis and responding to liver injury caused by external stressors. The hepatic macrophage population is highly heterogeneous and plastic, mainly comprised of hepatic resident kuffer cells (KCs), monocyte-derived macrophages (MoMφs), lipid-associated macrophages (LAMs), and liver capsular macrophages (LCMs). KCs, a population of resident macrophages, are localized in the liver and can self-renew through in situ proliferation. However, MoMφs in the liver are recruited from the periphery circulation. LAMs are a self-renewing subgroup of liver macrophages near the bile duct. While LCMs are located in the liver capsule and derived from peripheral monocytes. LAMs and LCMs are also involved in liver damage induced by various factors. Hepatic macrophages exhibit distinct phenotypes and functions depending on the specific microenvironment in the liver. KCs are critical for initiating inflammatory responses after sensing tissue damage, while the MoMφs infiltrated in the liver are implicated in both the progression and resolution of chronic hepatic inflammation and fibrosis. The regulatory function of liver macrophages in hepatic fibrosis has attracted significant interest in current research. Numerous literatures have documented that the MoMφs in the liver have a dual impact on the progression and resolution of liver fibrosis. The MoMφs in the liver can be categorized into two subtypes based on their Ly-6C expression level: inflammatory macrophages with high Ly-6C expression (referred to as Ly-6Chi subgroup macrophages) and reparative macrophages with low Ly-6C expression (referred to as Ly-6Clo subgroup macrophages). Ly-6Chi subgroup macrophages are conducive to the occurrence and progression of liver fibrosis, while Ly-6Clo subgroup macrophages are associated with the degradation of extracellular matrix (ECM) and regression of liver fibrosis. Given this, liver macrophages play a pivotal role in the occurrence, progression, and regression of liver fibrosis. Based on these studies, treatment therapies targeting liver macrophages are also being studied gradually. This review aims to summarize researches on the composition and origin of liver macrophages, the macrophage heterogeneity in the progression and regression of liver fibrosis, and anti-fibrosis therapeutic strategies targeting macrophages in the liver.
Collapse
Affiliation(s)
- Xiaocao Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jia Qiu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Shubiao Zou
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liling Tan
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingting Miao
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Wang D, Wang Y. Identification of protein partners for small molecules reshapes the understanding of nonalcoholic steatohepatitis and drug discovery. Life Sci 2024; 356:123031. [PMID: 39226989 DOI: 10.1016/j.lfs.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.
Collapse
Affiliation(s)
- Danyi Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
13
|
Ge X, Subramaniyam N, Song Z, Desert R, Han H, Das S, Komakula SSB, Wang C, Lantvit D, Ge Z, Hoshida Y, Nieto N. Post-translational modifications drive the effects of HMGB1 in alcohol-associated liver disease. Hepatol Commun 2024; 8:e0549. [PMID: 39760999 PMCID: PMC11495752 DOI: 10.1097/hc9.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD). METHODS We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells). RESULTS Hmgb1 ablation in hepatocytes or myeloid cells partially protected, while ablation in both prevented steatosis, inflammation, IL1B production, and alcohol-induced liver injury. Hepatocytes were a major source of [H], [O], and [Ac] HMGB1, whereas myeloid cells produced only [H] and [Ac] HMGB1. Neutralization of HMGB1 prevented, whereas injection of [H] HMGB1 increased AALD, which was worsened by injection of [O] HMGB1. While [O] HMGB1 induced liver injury, [Ac] HMGB1 protected and counteracted the effects of [O] HMGB1 in AALD. [O] HMGB1 stimulated macrophage (MF) migration, activation, IL1B production, and secretion. Ethanol-fed RageΔMye but not Tlr4ΔMye, RageΔHep, or Tlr4ΔHep mice were protected from AALD, indicating a crucial role of RAGE in myeloid cells for AALD. [O] HMGB1 recruited and activated myeloid cells through RAGE and contributed to steatosis, inflammation, and IL1B production in AALD. CONCLUSIONS These results provide evidence for targeting [O] HMGB1 of hepatocyte origin as a ligand for RAGE signaling in myeloid cells and a driver of steatosis, inflammatory cell infiltration, and IL1B production in AALD. Importantly, we reveal that [Ac] HMGB1 offsets the noxious effects of [O] HMGB1 in AALD.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Zhuolun Song
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Romain Desert
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Hui Han
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Chao Wang
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Zhiyan Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yujin Hoshida
- Department of Internal Medicine, Division of Digestive and Liver Diseases, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, Illinois, USA
- Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, lllinois, USA
| |
Collapse
|
14
|
Davaanyam D, Seol SI, Oh SA, Lee H, Lee JK. Hepatocyte activation and liver injury following cerebral ischemia promote HMGB1-mediated hepcidin upregulation in hepatocytes and regulation of systemic iron levels. Exp Mol Med 2024; 56:2171-2183. [PMID: 39349828 PMCID: PMC11541749 DOI: 10.1038/s12276-024-01314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/24/2024] [Indexed: 10/03/2024] Open
Abstract
We previously reported that high mobility group box 1 (HMGB1), a danger-associated molecular pattern (DAMP), increases intracellular iron levels in the postischemic brain by upregulating hepcidin, a key regulator of iron homeostasis, triggering ferroptosis. Since hepatocytes are the primary cells that produce hepcidin and control systemic iron levels, we investigated whether cerebral ischemia induces hepcidin upregulation in hepatocytes. Following middle cerebral artery occlusion (MCAO) in a rodent model, significant liver injury was observed. This injury was evidenced by significantly elevated Eckhoff's scores and increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Additionally, total iron levels were significantly elevated in the liver, with intracellular iron accumulation detected in hepatocytes. Hepcidin expression in the liver, which is primarily localized in hepatocytes, increased significantly starting at 3 h after MCAO and continued to increase rapidly, reaching a peak at 24 h. Interestingly, HMGB1 levels in the liver were also significantly elevated after MCAO, with the disulfide form of HMGB1 being the major subtype. In vitro experiments using AML12 hepatocytes showed that recombinant disulfide HMGB1 significantly upregulated hepcidin expression in a Toll-like receptor 4 (TLR4)- and RAGE-dependent manner. Furthermore, treatment with a ROS scavenger and a peptide HMGB1 antagonist revealed that both ROS generation and HMGB1 induction contributed to hepatocyte activation and liver damage following MCAO-reperfusion. In conclusion, this study revealed that cerebral ischemia triggers hepatocyte activation and liver injury. HMGB1 potently induces hepcidin not only in the brain but also in the liver, thereby influencing systemic iron homeostasis following ischemic stroke.
Collapse
Affiliation(s)
- Dashdulam Davaanyam
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Sang-A Oh
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Hahnbi Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea.
| |
Collapse
|
15
|
Yang Y, Wang X. Nano-drug delivery systems (NDDS) in metabolic dysfunction-associated steatotic liver disease (MASLD): current status, prospects and challenges. Front Pharmacol 2024; 15:1419384. [PMID: 39166109 PMCID: PMC11333238 DOI: 10.3389/fphar.2024.1419384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
About one-third of the global population suffers from metabolic dysfunction-associated steatotic liver disease (MASLD), but specific treatments for MASLD have long been lacking, primarily due to the unclear etiology of the disease. In addition to lifestyle modifications and weight loss surgery, pharmacotherapy is the most common treatment among MASLD patients, and these drugs typically target the pathogenic factors of MASLD. However, bioavailability, efficacy, and side effects all limit the maximum therapeutic potential of the drugs. With the development of nanomedicine, recent years have seen attempts to combine MASLD pharmacotherapy with nanomaterials, such as liposomes, polymer nanoparticles, micelles, and cocrystals, which effectively improves the water solubility and targeting of the drugs, thereby enhancing therapeutic efficacy and reducing toxic side effects, offering new perspectives and futures for the treatment of MASLD.
Collapse
Affiliation(s)
| | - Xiaojing Wang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Wenzhou Medical University and Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
16
|
Qin X, Liu J. Nanoformulations for the diagnosis and treatment of metabolic dysfunction-associated steatohepatitis. Acta Biomater 2024; 184:37-53. [PMID: 38879104 DOI: 10.1016/j.actbio.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive phase of metabolic dysfunction-associated steatotic liver disease (MASLD) that develops into irreversible liver cirrhosis and hepatocellular carcinoma, ultimately necessitating liver transplantation as the sole life-saving option. However, given the drawbacks of liver transplantation, including invasiveness, chronic immunosuppression, and a lack of donor livers, prompt diagnosis and effective treatment are indispensable. Due to the limitations of liver biopsy and conventional imaging modalities in diagnosing MASH, as well as the potential hazards associated with liver-protecting medicines, numerous nanoformulations have been created for MASH theranostics. Particularly, there has been significant study interest in artificial nanoparticles, natural biomaterials, and bionic nanoparticles that exhibit exceptional biocompatibility and bioavailability. In this review, we summarized extracellular vesicles (EVs)-based omics analysis and Fe3O4-based functional magnetic nanoparticles as magnetic resonance imaging (MRI) contrast agents for MASH diagnosis. Additionally, artificial nanoparticles such as organic and inorganic nanoparticles, as well as natural biomaterials such as cells and cell-derived EVs and bionic nanoparticles including cell membrane-coated nanoparticles, have also been reported for MASH treatment owing to their specific targeting and superior therapeutic effect. This review has the potential to stimulate advancements in nanoformulation fabrication techniques. By exploring their compatibility with cell biology, it could lead to the creation of innovative material systems for efficient theragnostic uses for MASH. STATEMENT OF SIGNIFICANCE: People with metabolic dysfunction-associated steatohepatitis (MASH) will progress to fibrosis, cirrhosis, or even liver cancer. It is imperative to establish effective theragnostic techniques to stop MASH from progressing into a lethal condition. In our review, we summarize the advancement of artificial, natural, and bionic nanoparticles applied in MASH theragnosis. Furthermore, the issues that need to be resolved for these cutting-edge techniques are summarized to realize a more significant clinical impact. We forecast the key fields that will advance further as nanotechnology and MASH research progress. Generally, our discovery has significant implications for the advancement of nanoformulation fabrication techniques, and their potential to be compatible with cell biology could lead to the creation of innovative materials systems for effective MASH theragnostic.
Collapse
Affiliation(s)
- Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| |
Collapse
|
17
|
Jing X, Zhou G, Zhu A, Jin C, Li M, Ding K. RG-I pectin-like polysaccharide from Rosa chinensis inhibits inflammation and fibrosis associated to HMGB1/TLR4/NF-κB signaling pathway to improve non-alcoholic steatohepatitis. Carbohydr Polym 2024; 337:122139. [PMID: 38710550 DOI: 10.1016/j.carbpol.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 05/08/2024]
Abstract
A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked β-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.
Collapse
Affiliation(s)
- Xiaoqi Jing
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Guangqin Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Anming Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China
| | - Can Jin
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China
| | - Meixia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
18
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
19
|
Gu Q, Chang Y, Jin Y, Fang J, Ji T, Lin J, Zhu X, Dong B, Ying H, Fan X, Li Z, Gao Z, Zhu Y, Tong Y, Cai X. Hepatocyte-specific loss of DDB1 attenuates hepatic steatosis but aggravates liver inflammation and fibrosis in MASH. Hepatol Commun 2024; 8:e0474. [PMID: 38934719 PMCID: PMC11213592 DOI: 10.1097/hc9.0000000000000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/21/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND MASH is a common clinical disease that can lead to advanced liver conditions, but no approved pharmacotherapies are available due to an incomplete understanding of its pathogenesis. Damaged DNA binding protein 1 (DDB1) participates in lipid metabolism. Nevertheless, the function of DDB1 in MASH is unclear. METHODS Clinical liver samples were obtained from patients with MASH and control individuals by liver biopsy. Hepatocyte-specific Ddb1-knockout mice and liver Hmgb1 knockdown mice were fed with a methionine-and choline-deficient diet to induce MASH. RESULTS We found that the expression of DDB1 in the liver was significantly decreased in MASH models. Hepatocyte-specific ablation of DDB1 markedly alleviated methionine-and choline-deficient diet-induced liver steatosis but unexpectedly exacerbated inflammation and fibrosis. Mechanistically, DDB1 deficiency attenuated hepatic steatosis by downregulating the expression of lipid synthesis and uptake genes. We identified high-mobility group box 1 as a key candidate target for DDB1-mediated liver injury. DDB1 deficiency upregulated the expression and extracellular release of high-mobility group box 1, which further increased macrophage infiltration and activated HSCs, ultimately leading to the exacerbation of liver inflammation and fibrosis. CONCLUSIONS These data demonstrate the independent regulation of hepatic steatosis and injury in MASH. These findings have considerable clinical implications for the development of therapeutic strategies for MASH.
Collapse
Affiliation(s)
- Qiuxia Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushun Chang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binzhi Dong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zerui Gao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongfen Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Wu XN, Wang MZ, Zhang N, Zhang W, Dong J, Ke MY, Xiang JX, Ma F, Xue F, Hou JJ, Ma ZJ, Wang FM, Liu XM, Wu R, Pawlik TM, Ye K, Yu J, Zhang XF, Lyu Y. Sex-determining region Y gene promotes liver fibrosis and accounts for sexual dimorphism in its pathophysiology. J Hepatol 2024; 80:928-940. [PMID: 38336346 DOI: 10.1016/j.jhep.2024.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.
Collapse
Affiliation(s)
- Xiao-Ning Wu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng-Zhou Wang
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Nan Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng-Yun Ke
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun-Xi Xiang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Feng Ma
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Feng Xue
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jing-Jing Hou
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhi-Jie Ma
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fu-Min Wang
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xue-Min Liu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, China; Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Yi Lyu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
21
|
Nawaz M, Afridi MN, Ullah I, Khan IA, Ishaq MS, Su Y, Rizwan HM, Cheng KW, Zhou Q, Wang M. The inhibitory effects of endophytic metabolites on glycated proteins under non-communicable disease conditions: A review. Int J Biol Macromol 2024; 269:131869. [PMID: 38670195 DOI: 10.1016/j.ijbiomac.2024.131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Protein glycation in human body is closely linked to the onset/progression of diabetes associated complications. These glycated proteins are commonly known as advanced glycation end products (AGEs). Recent literature has also highlighted the involvement of AGEs in other non-communicable diseases (NCDs) such as cardiovascular, cancer, and Alzheimer's diseases and explored the impact of plant metabolites on AGEs formation. However, the significance of endophytic metabolites against AGEs has recently garnered attention but has not been thoroughly summarized thus far. Therefore, the objective of this review is to provide a comprehensive overview of the importance of endophytic metabolites in combating AGEs under NCDs conditions. Additionally, this review aims to elucidate the processes of AGEs formation, absorption, metabolism, and their harmful effects. Collectively, endophytic metabolites play a crucial role in modulating signaling pathways and enhancing the digestibility properties of gut microbiota (GM) by targeting on AGEs/RAGE (receptor for AGEs) axis. Furthermore, these metabolites exhibit anti-AGEs activities similar to those derived from host plants, but at a lower cost and higher production rate. The use of endophytes as a source of such metabolites offers a risk-free and sustainable approach that holds substantial potential for the treatment and management of NCDs.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Naveed Afridi
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Irfan Ullah
- CPSP/REU/SGR-2016-021-8421, College of Physicians and Surgeons, Pakistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University Peshawar, KP, Pakistan
| | - Yuting Su
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hafiz Muhammad Rizwan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
22
|
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. Int Immunopharmacol 2024; 133:112085. [PMID: 38626550 DOI: 10.1016/j.intimp.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.
Collapse
Affiliation(s)
- Xiaojiao Wu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Ge X, Han H, Desert R, Das S, Song Z, Komakula SSB, Chen W, Athavale D, Lantvit D, Nieto N. A Protein Complex of Liver Origin Activates a Pro-inflammatory Program That Drives Hepatic and Intestinal Injury in Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:101362. [PMID: 38788899 PMCID: PMC11296289 DOI: 10.1016/j.jcmgh.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND & AIMS There is limited information on how the liver-to-gut axis contributes to alcohol-associated liver disease (AALD). We previously identified that high-mobility group box-1 (HMGB1) undergoes oxidation in hepatocytes and demonstrated elevated serum levels of oxidized HMGB1 ([O] HMGB1) in alcoholic patients. Since interleukin-1 beta (IL-1B) increases in AALD, we hypothesized hepatocyte-derived [O] HMGB1 could interact with IL-1B to activate a pro-inflammatory program that, besides being detrimental to the liver, drives intestinal barrier dysfunction. RESULTS Alcohol-fed RageΔMye mice exhibited decreased nuclear factor kappa B signaling, a pro-inflammatory signature, and reduced total intestinal permeability, resulting in protection from AALD. In addition, [O] HMGB1 bound and signaled through the receptor for advanced-glycation end-products (RAGE) in myeloid cells, driving hepatic inflammation, intestinal permeability, and increased portal blood lipopolysaccharide in AALD. We identified that [O] HMGB1 formed a complex with IL-1B, which was found in the livers of patients with acute alcoholic hepatitis and mice with AALD. This complex originated from the liver, because it was absent in the intestine when hepatocytes did not produce [O] HMGB1. Mechanistically, the complex bound RAGE in Kupffer cells and macrophages induced a pro-inflammatory program. Moreover, it bound RAGE in intestinal macrophages and epithelial cells, leading to intestinal inflammation, altered intestinal epithelial cell tight junction protein expression, increased intestinal permeability, and elevated portal blood lipopolysaccharide, enhancing AALD pathogenesis. CONCLUSIONS We identified a protein complex of liver origin that amplifies the pro-inflammatory feedback loop in AALD; therefore, targeting this complex could have significant therapeutic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Hui Han
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Romain Desert
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Sukanta Das
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Zhuolun Song
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | | | - Wei Chen
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Dipti Athavale
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Daniel Lantvit
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois; Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, Illinois; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
24
|
Yu C, Xiang Y, Zhang M, Wen J, Duan X, Wang L, Deng G, Fang P. Glycyrrhizic Acid Alleviates Semen Strychni-Induced Neurotoxicity Through the Inhibition of HMGB1 Phosphorylation and Inflammatory Responses. J Neuroimmune Pharmacol 2024; 19:21. [PMID: 38771510 PMCID: PMC11108907 DOI: 10.1007/s11481-024-10128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The neurotoxicity of Semen Strychni has been reported recently in several clinical cases. Therefore, this study was conducted to investigate the role of HMGB1 in a model of neurotoxicity induced by Semen Strychni and to assess the potential alleviating effects of glycyrrhizic acid (GA), which is associated with the regulation of HMGB1 release. Forty-eight SD rats were intraperitoneally injected with Semen Strychni extract (175 mg/kg), followed by oral administration of GA (50 mg/kg) for four days. After treatment of SS and GA, neuronal degeneration, apoptosis, and necrosis were observed via histopathological examination. Inflammatory cytokines (TNF-α and IL-1β), neurotransmitter associated enzymes (MAO and AChE), serum HMGB1, nuclear and cytoplasmic HMGB1/ph-HMGB1, and the interaction between PP2A, PKC, and HMGB1 were evaluated. The influence of the MAPK pathway was also examined. As a result, this neurotoxicity was characterized by neuronal degeneration and apoptosis, the induction of pro-inflammatory cytokines, and a reduction in neurotransmitter-metabolizing enzymes. In contrast, GA treatment significantly ameliorated the abovementioned effects and alleviated nerve injury. Furthermore, Semen Strychni promoted HMGB1 phosphorylation and its translocation between the nucleus and cytoplasm, thereby activating the NF-κB and MAPK pathways, initiating various inflammatory responses. Our experiments demonstrated that GA could partially reverse these effects. In summary, GA acid alleviated Semen Strychni-induced neurotoxicity, possibly by inhibiting HMGB1 phosphorylation and preventing its release from the cell.
Collapse
Affiliation(s)
- Changwei Yu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Yalan Xiang
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Min Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Jing Wen
- Department of Pharmacy, the Third Hospital of Changsha, Changsha, 410015, China
| | - Xiaoyu Duan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Lu Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Gongying Deng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Pingfei Fang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China.
| |
Collapse
|
25
|
Yang C, Geng X, Wan G, Song L, Wang Y, Zhou G, Wang J, Pan Z. Transcriptomic and proteomic investigation of the ameliorative effect of total polyphenolic glycoside extract on hepatic fibrosis in Lamiophlomis rotata Kudo via the AGE/RAGE pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117720. [PMID: 38211823 DOI: 10.1016/j.jep.2024.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-β1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.
Collapse
Affiliation(s)
- Congwen Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Xiaoyu Geng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Guoguo Wan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Guoying Zhou
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
| | - Jianwei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.
| |
Collapse
|
26
|
Singh KP, Avihingsanon A, Zerbato JM, Zhao W, Braat S, Tennakoon S, Rhodes A, Matthews GV, Fairley CK, Sasadeusz J, Crane M, Audsley J, Lewin SR. Predictors of liver disease progression in people living with HIV-HBV co-infection on antiretroviral therapy. EBioMedicine 2024; 102:105054. [PMID: 38518655 PMCID: PMC10966452 DOI: 10.1016/j.ebiom.2024.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND In people living with HIV-HBV, liver fibrosis progression can occur even with suppressive antiretroviral therapy (ART). We investigated the relationship between liver fibrosis and biomarkers of inflammation, apoptosis, and microbial translocation. METHODS In this observational cohort study adults living with HIV-HBV already on effective ART were recruited in Australia and Thailand and followed for 3 years including 6 monthly clinical review and blood tests and annual transient elastography. Differences in clinical and laboratory predictors of liver fibrosis progression were tested followed by regression analysis adjusted for CD4+ T-cells at study entry. A linear mixed model was fitted to longitudinal data to explore changes over time. FINDINGS 67 participants (85% male, median age 49 y) were followed for 175 person-years. Median duration of ART was 10 years (interquartile range (IQR) 8-16 years). We found 11/59 (19%) participants during 3-years follow-up (6/100 person-years) met the primary endpoint of liver disease progression, defined as increased Metavir stage from baseline to final scan. In regression analysis, progressors compared to non-progressors had higher levels of high mobility group box 1 protein (HGMB1), (median (IQR) 3.7 (2.6-5.0) and 2.4 ng/mL (1.5-3.4) respectively, adjusted relative risk 1.47, 95% CI [1.00, 2.17]) and lower nadir CD4+ T-cell percentage (median 4% (IQR 2-8) and 11% (4-15) respectively (relative risk 0.93, 95% CI [0.88, 0.98]). INTERPRETATION Progression in liver fibrosis occurs in people with HIV-HBV on suppressive ART. Fibrosis progression was associated with higher HMGB1 and lower percentage nadir CD4+ T-cell count, highlighting the importance of early initiation of HBV-active ART. FUNDING This work was supported by NHMRC project grant 1101836; NHMRC practitioner fellowship 1138581 and NHMRC program grant 1149990. The funder had no role in study design, data collection, data analysis, interpretation, writing of this manuscript or decision to submit for publication.
Collapse
Affiliation(s)
- Kasha P Singh
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, 3004, Australia.
| | | | - Jennifer M Zerbato
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Sabine Braat
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, 3053, Australia; MISCH (Methods and Implementation Support for Clinical Health) research Hub, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Surekha Tennakoon
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Gail V Matthews
- Kirby Institute, UNSW, Kensington, New South Wales, 2052, Australia
| | | | - Joe Sasadeusz
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, 3004, Australia
| | - Megan Crane
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, 3004, Australia.
| |
Collapse
|
27
|
Geng X, Wang Y, Li H, Song L, Luo C, Gu X, Zhong H, Chen H, Chen X, Wang J, Pan Z. Total iridoid glycoside extract of Lamiophlomis rotata (Benth) Kudo accelerates diabetic wound healing by the NRF2/COX2 axis. Chin Med 2024; 19:53. [PMID: 38519940 PMCID: PMC10960394 DOI: 10.1186/s13020-024-00921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Lamiophlomis rotata (Benth.) Kudo (L. rotata), the oral Traditional Tibetan herbal medicine, is adopted for treating knife and gun wounds for a long time. As previously demonstrated, total iridoid glycoside extract of L. rotata (IGLR) induced polarization of M2 macrophage to speed up wound healing. In diabetic wounds, high levels inflammatory and chemotactic factors are usually related to high reactive oxygen species (ROS) levels. As a ROS target gene, nuclear factor erythroid 2-related factor 2 (NRF2), influences the differentiation of monocytes to M1/M2 macrophages. Fortunately, iridoid glycosides are naturally occurring active compounds that can be used as the oxygen radical scavenger. Nevertheless, the influence of IGLR in diabetic wound healing and its associated mechanism is largely unclear. MATERIALS AND METHODS With macrophages and dermal fibroblasts in vitro, as well as a thickness excision model of db/db mouse in vivo, the role of IGLR in diabetic wound healing and the probable mechanism of the action were investigated. RESULTS Our results showed that IGLR suppressed oxidative distress and inflammation partly through the NRF2/cyclooxygenase2 (COX2) signaling pathway in vitro. The intercellular communication between macrophages and dermal fibroblasts was investigated by the conditioned medium (CM) of IGLR treatment cells. The CM increased the transcription and translation of collagen I (COL1A1) and alpha smooth muscle actin (α-SMA) within fibroblasts. With diabetic wound mice, the data demonstrated IGLR activated the NRF2/KEAP1 signaling and the downstream targets of the pathway, inhibited COX2/PEG2 signaling and decreased the interaction inflammatory targets of the axis, like interleukin-1beta (IL-1β), interleukin 6 (IL-6), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase1 (caspase1) and NOD-like receptor-containing protein 3 (NLRP3).In addition, the deposition of COL1A1, and the level of α-SMA, and Transforming growth factor-β1 (TGF-β1) obviously elevated, whereas that of pro-inflammatory factors reduced in the diabetic wound tissue with IGLR treatment. CONCLUSION IGLR suppressed oxidative distress and inflammation mainly through NRF2/COX2 axis, thus promoting paracrine and accelerating wound healing in diabetes mice.
Collapse
Affiliation(s)
- Xiaoyu Geng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Huan Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Chen Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaojie Gu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Haixin Zhong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Huilin Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xinzhu Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, China
| | - Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, China.
| |
Collapse
|
28
|
Ge X, Desert R, Magdaleno F, Han H, Song Z, Das S, Athavale D, Chen W, Barahona I, Lantvit D, Chen H, Hwang S, Nieto N. Redox-sensitive high-mobility group box-1 isoforms contribute to liver fibrosis progression and resolution in mice. J Hepatol 2024; 80:482-494. [PMID: 37989401 PMCID: PMC10923114 DOI: 10.1016/j.jhep.2023.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND & AIMS High-mobility group box-1 (HMGB1) significantly increases and undergoes post-translational modifications (PTMs) in response to liver injury. Since oxidative stress plays a major role in liver fibrosis and induces PTMs in proteins, we hypothesized that redox-sensitive HMGB1 isoforms contribute to liver fibrosis progression and resolution. METHODS We used ESI-LC-MS (electrospray ionization-liquid chromatography-mass spectrometry) to study PTMs of HMGB1 during fibrosis progression and resolution. Conditional knockout mice were used for functional analyses. RESULTS We identified that disulfide ([O]) and sulfonated ([SO3]) HMGB1 increase during carbon tetrachloride-induced liver fibrosis progression, however, while [O] HMGB1 declines, [SO3] HMGB1 drops but remains, during fibrosis resolution. Conditional knockout of Hmgb1 revealed that production of [O] and [SO3] HMGB1 occurs mostly in hepatocytes. Co-injection of [O] HMGB1 worsens carbon tetrachloride-induced liver fibrosis more than co-injection of [H] HMGB1. Conversely, ablation of [O] Hmgb1 in hepatocytes reduces liver fibrosis. Moreover, ablation of the receptor for advanced-glycation end-products (Rage) reveals that the profibrogenic effect of [O] HMGB1 is mediated by RAGE signaling in hepatic stellate cells (HSCs). Notably, injection of [SO3] HMGB1 accelerates fibrosis resolution due to RAGE-dependent stimulation of HSC apoptosis. Importantly, gene signatures activated by redox-sensitive HMGB1 isoforms in mice, classify patients with fibrosis according to fibrosis and inflammation scores. CONCLUSION Dynamic changes in hepatocyte-derived [O] and [SO3] HMGB1 signal through RAGE-dependent mechanisms on HSCs to drive their profibrogenic phenotype and fate, contributing to progression and resolution of liver fibrosis. IMPACT AND IMPLICATIONS Since oxidative stress plays a major role in liver fibrosis and induces post-translational modifications of proteins, we hypothesized that redox-sensitive HMGB1 isoforms contribute to liver fibrosis progression and resolution. This study is significant because a rise in [H] HMGB1 could flag 'patient at risk', the presence of [O] HMGB1 could suggest 'disease in progress or active scarring', while the appearance of [SO3] HMGB1 could point at 'resolution under way'. The latter could be used as a readout for response to pharmacological intervention with anti-fibrotic agents.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Fernando Magdaleno
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Ines Barahona
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Hui Chen
- Mass Spectrometry Core, University of Illinois at Chicago, 835 S. Wolcott Ave., suite E12, Chicago, IL 60612, USA
| | - Sunil Hwang
- Mass Spectrometry Core, University of Illinois at Chicago, 835 S. Wolcott Ave., suite E12, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St, suite 130 CSN, MC 847, Chicago, IL 60612, USA; Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 S. Wood St., suite 1020N, MC 787, Chicago, IL 60612, USA; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
29
|
Raj R, Shen P, Yu B, Zhang J. A patent review on HMGB1 inhibitors for the treatment of liver diseases. Expert Opin Ther Pat 2024; 34:127-140. [PMID: 38557201 DOI: 10.1080/13543776.2024.2338105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development. AREAS COVERED This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023. EXPERT OPINIONS In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.
Collapse
Affiliation(s)
- Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
30
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Diwan R, Bhatt HN, Beaven E, Nurunnabi M. Emerging delivery approaches for targeted pulmonary fibrosis treatment. Adv Drug Deliv Rev 2024; 204:115147. [PMID: 38065244 PMCID: PMC10787600 DOI: 10.1016/j.addr.2023.115147] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, and life-threatening interstitial lung disease which causes scarring in the lung parenchyma and thereby affects architecture and functioning of lung. It is an irreversible damage to lung functioning which is related to epithelial cell injury, immense accumulation of immune cells and inflammatory cytokines, and irregular recruitment of extracellular matrix. The inflammatory cytokines trigger the differentiation of fibroblasts into activated fibroblasts, also known as myofibroblasts, which further increase the production and deposition of collagen at the injury sites in the lung. Despite the significant morbidity and mortality associated with PF, there is no available treatment that efficiently and effectively treats the disease by reversing their underlying pathologies. In recent years, many therapeutic regimens, for instance, rho kinase inhibitors, Smad signaling pathway inhibitors, p38, BCL-xL/ BCL-2 and JNK pathway inhibitors, have been found to be potent and effective in treating PF, in preclinical stages. However, due to non-selectivity and non-specificity, the therapeutic molecules also result in toxicity mediated severe side effects. Hence, this review demonstrates recent advances on PF pathology, mechanism and targets related to PF, development of various drug delivery systems based on small molecules, RNAs, oligonucleotides, peptides, antibodies, exosomes, and stem cells for the treatment of PF and the progress of various therapeutic treatments in clinical trials to advance PF treatment.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
32
|
Ortega-Ribera M, Babuta M, Szabo G. Sinusoidal cell interactions—From soluble factors to exosomes. SINUSOIDAL CELLS IN LIVER DISEASES 2024:23-52. [DOI: 10.1016/b978-0-323-95262-0.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Dai Q, Qing X, Jiang W, Wang S, Liu S, Liu X, Huang F, Zhao H. Aging aggravates liver fibrosis through downregulated hepatocyte SIRT1-induced liver sinusoidal endothelial cell dysfunction. Hepatol Commun 2024; 8:e0350. [PMID: 38126919 PMCID: PMC10749712 DOI: 10.1097/hc9.0000000000000350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Aging increases the susceptibility to chronic liver diseases and hastens liver fibrosis deterioration, but the underlying mechanisms remain partially understood. The aim of this study was to investigate the effect of aging and chronic liver diseases on hepatocyte Sirtuin 1 (SIRT1) and LSECs and their contribution to liver fibrosis pathogeneses. METHODS Young (8-12 wk) and aged (18-20 mo) mice were subjected to carbon tetrachloride-induced liver fibrosis. Primary HSCs and LSECs were isolated and cocultured for in vitro experiments. Liver tissues and blood samples from healthy controls and patients with liver fibrosis were analyzed. RESULTS Downregulated hepatocytes SIRT1 in aged mice increased high mobility group box 1 acetylation, cytoplasmic translocation, and extracellular secretion, causing LSECs dysfunction by means of the toll-like receptor 4/AK strain transforming (AKT)/endothelial nitric oxide synthase pathway, ultimately activating HSCs and increasing susceptibility to liver injury and fibrosis. Adeno-associated virus-mediated overexpression of SIRT1 in hepatocytes suppressed the abovementioned alterations and attenuated carbon tetrachloride-induced liver injury and fibrosis in liver fibrosis mice, and there were no significant differences in liver injury and fibrosis indicators between young and aged mice after SIRT1 overexpression treatment. In vitro experiments demonstrated that SIRT1 overexpression and endothelial nitric oxide synthase agonist YC-1 improved LSECs function and inhibited HSCs activation, mediated by nitric oxide. Similarly, downregulated hepatocytes SIRT1 and LSECs dysfunction were observed in the livers of aged individuals compared to young individuals and were more pronounced in aged patients with liver fibrosis. CONCLUSIONS Aging aggravates liver fibrosis through downregulated hepatocytes SIRT1-induced LSECs dysfunction, providing a prospective curative approach for preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Jiang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shouwen Wang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shengsheng Liu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
34
|
Athavale D, Barahona I, Song Z, Desert R, Chen W, Han H, Das S, Ge X, Komakula SSB, Gao S, Lantvit D, Guzman G, Nieto N. Overexpression of HMGB1 in hepatocytes accelerates PTEN inactivation-induced liver cancer. Hepatol Commun 2023; 7:e0311. [PMID: 38055645 PMCID: PMC10984663 DOI: 10.1097/hc9.0000000000000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/10/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Liver cancer is increasing due to the rise in metabolic dysfunction-associated steatohepatitis (MASH). High-mobility group box-1 (HMGB1) is involved in the pathogenesis of chronic liver disease, but its role in MASH-associated liver cancer is unknown. We hypothesized that an increase in hepatocyte-derived HMGB1 in a mouse model of inactivation of PTEN that causes MASH could promote MASH-induced tumorigenesis. METHODS We analyzed publicly available transcriptomics datasets, and to explore the effect of overexpressing HMGB1 in cancer progression, we injected 1.5-month-old Pten∆Hep mice with adeno-associated virus serotype-8 (AAV8) vectors to overexpress HMGB1-EGFP or EGFP, and sacrificed them at 3, 9 and 11 months of age. RESULTS We found that HMGB1 mRNA increases in human MASH and MASH-induced hepatocellular carcinoma (MASH-HCC) compared to healthy livers. Male and female Pten∆Hep mice overexpressing HMGB1 showed accelerated liver tumor development at 9 and 11 months, respectively, with increased tumor size and volume, compared to control Pten∆Hep mice. Moreover, Pten∆Hep mice overexpressing HMGB1, had increased incidence of mixed HCC-intrahepatic cholangiocarcinoma (iCCA). All iCCAs were positive for nuclear YAP and SOX9. Male Pten∆Hep mice overexpressing HMGB1 showed increased cell proliferation and F4/80+ cells at 3 and 9 months. CONCLUSION Overexpression of HMGB1 in hepatocytes accelerates liver tumorigenesis in Pten∆Hep mice, enhancing cell proliferation and F4/80+ cells to drive MASH-induced liver cancer.
Collapse
Affiliation(s)
- Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Inés Barahona
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Shenglan Gao
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
35
|
Fu J, Deng W, Ge J, Fu S, Li P, Wu H, Wang J, Gao Y, Gao H, Wu T. Sirtuin 1 alleviates alcoholic liver disease by inhibiting HMGB1 acetylation and translocation. PeerJ 2023; 11:e16480. [PMID: 38034869 PMCID: PMC10688304 DOI: 10.7717/peerj.16480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Background Alcoholic liver disease (ALD) encompasses a spectrum of liver disorders resulting from prolonged alcohol consumption and is influenced by factors such as oxidative stress, inflammation, and apoptosis. High Mobility Group Box 1 (HMGB1) plays a pivotal role in ALD due to its involvement in inflammation and immune responses. Another key factor, Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, is known for its roles in cellular stress responses and metabolic regulation. Despite individual studies on HMGB1 and SIRT1 in ALD, their specific molecular interactions and combined effects on disease advancement remain incompletely understood. Methods Alcohol-induced liver injury (ALI) models were established using HepG2 cells and male C57BL/6 mice. HMGB1 and SIRT1 expressions were assessed at the mRNA and protein levels usingreverse transcription-quantitative polymerase chain reaction, western blot, and immunofluorescence staining. The physical interaction between HMGB1 and SIRT1 was investigated using co-immunoprecipitation and immunofluorescence co-expression analyses. Cellular viability was evaluated using the CCK-8 assay. Results In patients with clinical ALI, HMGB1 mRNA levels were elevated, while SIRT1 expression was reduced, indicating a negative correlation between the two. ALI models were successfully established in cells and mice, as evidenced by increased markers of cellular and liver damage. HMGB1 acetylation and translocation were observed in both ALI cells and mouse models. Treatment with the SIRT1 agonist, SRT1720, reversed the upregulation of HMGB1 acetylation, nuclear translocation, and release in the ethyl alcohol (EtOH) group. Furthermore, SIRT1 significantly attenuated ALI. Importantly, in vivo binding was confirmed between SIRT1 and HMGB1. Conclusions SIRT1 alleviates HMGB1 acetylation and translocation, thereby ameliorating ALI.
Collapse
Affiliation(s)
- Juan Fu
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Deng
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jun Ge
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shengqi Fu
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Panpan Li
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huazhi Wu
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiao Wang
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yi Gao
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hui Gao
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tao Wu
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
36
|
Kholodenko IV, Yarygin KN. Hepatic Macrophages as Targets for the MSC-Based Cell Therapy in Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:3056. [PMID: 38002056 PMCID: PMC10669188 DOI: 10.3390/biomedicines11113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a serious public health issue associated with the obesity pandemic. Obesity is the main risk factor for the non-alcoholic fatty liver disease (NAFLD), which progresses to NASH and then to end-stage liver disease. Currently, there are no specific pharmacotherapies of NAFLD/NASH approved by the FDA or other national regulatory bodies and the treatment includes lifestyle adjustment and medicines for improving lipid metabolism, enhancing sensitivity to insulin, balancing oxidation, and counteracting fibrosis. Accordingly, further basic research and development of new therapeutic approaches are greatly needed. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles prevent induced hepatocyte death in vitro and attenuate NASH symptoms in animal models of the disease. They interact with hepatocytes directly, but also target other liver cells, including Kupffer cells and macrophages recruited from the blood flow. This review provides an update on the pathogenesis of NAFLD/NASH and the key role of macrophages in the development of the disease. We examine in detail the mechanisms of the cross-talk between the MSCs and the macrophages, which are likely to be among the key targets of MSCs and their derivatives in the course of NAFLD/NASH cell therapy.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | | |
Collapse
|
37
|
Li X, Hua S, Fang D, Fei X, Tan Z, Zheng F, Wang W, Fang M. RAGE deficiency ameliorates autoimmune hepatitis involving inhibition of IL-6 production via suppressing protein Arid5a in mice. Clin Exp Med 2023; 23:2167-2179. [PMID: 36454447 DOI: 10.1007/s10238-022-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Activation of T cells and pro-inflammatory cytokines are essential for human autoimmune hepatitis. RAGE is one of the receptors for the inflammatory alarm molecule high mobility group box 1 (HMGB1), and it is involved in autoimmune hepatitis. However, the molecular mechanism of RAGE in the context of autoimmune hepatitis remains elusive. This study aimed to identify the function and mechanism of RAGE in autoimmune hepatitis. The role and underlying mechanisms of RAGE signaling-driven immune inflammatory response in ConA-induced experimental hepatitis were examined using the RAGE-deficient mice. We found that the RAGE deficiency protected the mouse from liver inflammatory injury caused by the ConA challenge. mRNA expression of VCAM-1, IL-6, and TNF-α within the livers is markedly decreased in RAGE-deficient mice compared to wild-type mice. In parallel, RAGE deficiency leads to reduced levels of the serum pro-inflammatory cytokines IL-6 and TNF-α as compared with wild-type control mice. RAGE-deficient mice exhibit increased hepatic NK cells and decreased CD4+ T cells compared with wild-type control mice. Notably, in vivo blockade of IL-6 in wild-type mice significantly protected mice from ConA-induced hepatic injury. Furthermore, RAGE deficiency impaired IL-6 production and was associated with decreased expression of Arid5a in liver tissues, a half-life IL-6 mRNA regulator. RAGE signaling is important in regulating the development of autoimmune hepatitis. Immune regulation of RAGE may represent a novel therapeutic strategy to prevent immune-mediated liver injury.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030, China
| | - Shuyao Hua
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030, China
| | - Dai Fang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Xiaoyuan Fei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030, China
| | - Min Fang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
38
|
Hou C, Wang D, Zhao M, Ballar P, Zhang X, Mei Q, Wang W, Li X, Sheng Q, Liu J, Wei C, Shen Y, Yang Y, Wang P, Shao J, Xu S, Wang F, Sun Y, Shen Y. MANF brakes TLR4 signaling by competitively binding S100A8 with S100A9 to regulate macrophage phenotypes in hepatic fibrosis. Acta Pharm Sin B 2023; 13:4234-4252. [PMID: 37799387 PMCID: PMC10547964 DOI: 10.1016/j.apsb.2023.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been recently identified as a neurotrophic factor, but its role in hepatic fibrosis is unknown. Here, we found that MANF was upregulated in the fibrotic liver tissues of the patients with chronic liver diseases and of mice treated with CCl4. MANF deficiency in either hepatocytes or hepatic mono-macrophages, particularly in hepatic mono-macrophages, clearly exacerbated hepatic fibrosis. Myeloid-specific MANF knockout increased the population of hepatic Ly6Chigh macrophages and promoted HSCs activation. Furthermore, MANF-sufficient macrophages (from WT mice) transfusion ameliorated CCl4-induced hepatic fibrosis in myeloid cells-specific MANF knockout (MKO) mice. Mechanistically, MANF interacted with S100A8 to competitively block S100A8/A9 heterodimer formation and inhibited S100A8/A9-mediated TLR4-NF-κB signal activation. Pharmacologically, systemic administration of recombinant human MANF significantly alleviated CCl4-induced hepatic fibrosis in both WT and hepatocytes-specific MANF knockout (HKO) mice. This study reveals a mechanism by which MANF targets S100A8/A9-TLR4 as a "brake" on the upstream of NF-κB pathway, which exerts an impact on macrophage differentiation and shed light on hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Mingxia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiang Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiang Sheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yi Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Juntang Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Sa Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Fuyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
39
|
Pujals M, Mayans C, Bellio C, Méndez O, Greco E, Fasani R, Alemany-Chavarria M, Zamora E, Padilla L, Mitjans F, Nuciforo P, Canals F, Nonell L, Abad M, Saura C, Tabernero J, Villanueva J. RAGE/SNAIL1 signaling drives epithelial-mesenchymal plasticity in metastatic triple-negative breast cancer. Oncogene 2023; 42:2610-2628. [PMID: 37468678 DOI: 10.1038/s41388-023-02778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Epithelial/Mesenchymal (E/M) plasticity plays a fundamental role both in embryogenesis and during tumorigenesis. The receptor for advanced glycation end products (RAGE) is a driver of cell plasticity in fibrotic diseases; however, its role and molecular mechanism in triple-negative breast cancer (TNBC) remains unclear. Here, we demonstrate that RAGE signaling maintains the mesenchymal phenotype of aggressive TNBC cells by enforcing the expression of SNAIL1. Besides, we uncover a crosstalk mechanism between the TGF-β and RAGE pathways that is required for the acquisition of mesenchymal traits in TNBC cells. Consistently, RAGE inhibition elicits epithelial features that block migration and invasion capacities. Next, since RAGE is a sensor of the tumor microenvironment, we modeled acute acidosis in TNBC cells and showed it promotes enhanced production of RAGE ligands and the activation of RAGE-dependent invasive properties. Furthermore, acute acidosis increases SNAIL1 levels and tumor cell invasion in a RAGE-dependent manner. Finally, we demonstrate that in vivo inhibition of RAGE reduces metastasis incidence and expands survival, consistent with molecular effects that support the relevance of RAGE signaling in E/M plasticity. These results uncover new molecular insights on the regulation of E/M phenotypes in cancer metastasis and provide rationale for pharmacological intervention of this signaling axis.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carla Mayans
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Chiara Bellio
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emanuela Greco
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mercè Alemany-Chavarria
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Esther Zamora
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Padilla
- LEITAT Technological Center, 08028, Barcelona, Spain
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Abad
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Altos Labs Cambridge Institute of Science, Cambridge, UK
| | - Cristina Saura
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josep Tabernero
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- IOB Institute of Oncology, Quiron Group (Quiron-IOB), Barcelona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Abdelfattah AM, Mahmoud SS, El-Wafaey DI, Abdelgeleel HM, Abdelhamid AM. Diacerein ameliorates cholestasis-induced liver fibrosis in rat via modulating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticulum stress. Sci Rep 2023; 13:11455. [PMID: 37454204 PMCID: PMC10349817 DOI: 10.1038/s41598-023-38375-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Diacerein is an interleukin (IL)-1β inhibitor approved for osteoarthritis. This study aimed to investigate the potential anti-fibrotic effect of diacerein against bile duct ligation (BDL)-induced liver fibrosis. Forty male Wistar rats were divided into: sham-operated group, BDL group, and BDL groups treated with diacerein at 10, 30, and 50 mg/kg/day starting two days before surgery and continued for 4 weeks. Diacerein decreased the hepatic injury markers and alleviated oxidative stress triggered by BDL by reducing hepatic malondialdehyde (MDA) and increasing hepatic superoxide dismutase (SOD) levels. Diacerein mitigated BDL-induced inflammation via lowering hepatic levels and mRNA expression of high mobility group box 1 (HMGB1), nuclear factor-κB (NF-κB), and IL-1β. The hepatic gene expression of Advanced Glycation End products Receptor (RAGE) gene and immunohistochemical expression of some ER stress markers, e.g., glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), CCAAT/enhancer-binding protein homologous protein (CHOP), and phosphorylated c-Jun N-terminal kinase protein contents were lowered by diacerein. Furthermore, diacerein suppressed the hepatic levels of fibrogenic mediators, e.g., Transforming growth factor β1 (TGF-β1), α- smooth muscle actin (α-SMA), collagen 1, and hydroxyproline, as well as the apoptotic caspase 3 and BAX immunostaining in BDL rats. The histopathological abnormalities induced by BDL significantly improved. Our study demonstrated that diacerein exhibited an antifibrotic effect by inhibiting HMGB1/RAGE/NF-κB/JNK pathway, and ER stress. Better protection was observed with increasing the dose.
Collapse
Affiliation(s)
| | - Shireen Sami Mahmoud
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| |
Collapse
|
41
|
Feng W, Chen J, Huang W, Wang G, Chen X, Duan L, Yin Y, Chen X, Zhang B, Sun M, Luo X, Nie Y, Fan D, Wu K, Xia L. HMGB1-mediated elevation of KLF7 facilitates hepatocellular carcinoma progression and metastasis through upregulating TLR4 and PTK2. Theranostics 2023; 13:4042-4058. [PMID: 37554278 PMCID: PMC10405848 DOI: 10.7150/thno.84388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Background: Metastasis is a major cause of HCC-related deaths with no effective pharmacotherapies. Chronic inflammation promotes HCC dissemination, however, its underlying mechanisms are not fully understood. Here, we investigated the role of Krüppel-like factor 7 (KLF7) in inflammation-provoked HCC metastasis and proposed therapeutic strategies for KLF7-positive patients. Methods: The expression of KLF7 in human HCC specimens were examined by immunohistochemistry and quantitative real-time PCR. The luciferase reporter assays and chromatin immunoprecipitation assays were conducted to explore the transcriptional regulation related to KLF7. Orthotopic xenograft models and DEN/CCl4-induced HCC models were established to evaluate HCC progression and metastasis. Results: KLF7 overexpression promotes HCC metastasis through transactivating toll-like receptor 4 (TLR4) and protein tyrosine kinase 2 (PTK2) expression. High mobility group box 1 (HMGB1) upregulates KLF7 expression through the TLR4/advanced glycosylation end-product specific receptor (RAGE)-PI3K-AKT-NF-κB pathway, forming an HMGB1-KLF7-TLR4 positive feedback loop. The HMGB1-KLF7-TLR4/PTK2 axis is gradually activated during the progression of inflammation-HCC transition. Genetic depletion of KLF7 impedes HMGB1-mediated HCC progression and metastasis. The combined application of TLR4 inhibitor TAK-242 and PTK2 inhibitor defactinib alleviates HCC progression and metastasis induced by the HMGB1-KLF7 axis. In human HCCs, KLF7 expression is positively correlated with cytoplasmic HMGB1, p-p65, TLR4, and PTK2 levels, and patients positively co-expressing HMGB1/KLF7, p-p65/KLF7, KLF7/TLR4 or KLF7/PTK2 exhibit the worst prognosis. Conclusions: HMGB1-induced KLF7 overexpression facilitates HCC progression and metastasis by upregulating TLR4 and PTK2. Genetic ablation of KLF7 via AAV gene therapy and combined blockade of TLR4 and PTK2 represents promising therapy strategies for KLF7-positive HCC patients.
Collapse
Affiliation(s)
- Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
42
|
Yan M, Li H, Xu S, Wu J, Li J, Xiao C, Mo C, Ding BS. Targeting Endothelial Necroptosis Disrupts Profibrotic Endothelial-Hepatic Stellate Cells Crosstalk to Alleviate Liver Fibrosis in Nonalcoholic Steatohepatitis. Int J Mol Sci 2023; 24:11313. [PMID: 37511074 PMCID: PMC10379228 DOI: 10.3390/ijms241411313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic liver diseases affect over a billion people worldwide and often lead to fibrosis. Nonalcoholic steatohepatitis (NASH), a disease paralleling a worldwide surge in metabolic syndromes, is characterized by liver fibrosis, and its pathogenesis remains largely unknown, with no effective treatment available. Necroptosis has been implicated in liver fibrosis pathogenesis. However, there is a lack of research on necroptosis specific to certain cell types, particularly the vascular system, in the context of liver fibrosis and NASH. Here, we employed a mouse model of NASH in combination with inducible gene knockout mice to investigate the role of endothelial necroptosis in NASH progression. We found that endothelial cell (EC)-specific knockout of mixed lineage kinase domain-like protein (MLKL), a critical executioner involved in the disruption of cell membranes during necroptosis, alleviated liver fibrosis in the mouse NASH model. Mechanistically, EC-specific deletion of Mlkl mitigated the activation of TGFβ/Smad 2/3 pathway, disrupting the pro-fibrotic crosstalk between endothelial cells and hepatic stellate cells (HSCs). Our findings highlight endothelial MLKL as a promising molecular target for developing therapeutic interventions for NASH.
Collapse
Affiliation(s)
- Mengli Yan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Hui Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Shiyu Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Jinyan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Jiachen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Chengju Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
- Fibrosis Research Program, Division of Pulmonary and Critical Care Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
43
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
44
|
Adjei‐Mosi J, Sun Q, Smithson SB, Shealy GL, Amerineni KD, Liang Z, Chen H, Wang M, Ping Q, Han J, Morita M, Kamat A, Musi N, Zang M. Age-dependent loss of hepatic SIRT1 enhances NLRP3 inflammasome signaling and impairs capacity for liver fibrosis resolution. Aging Cell 2023; 22:e13811. [PMID: 36999514 PMCID: PMC10186605 DOI: 10.1111/acel.13811] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 04/01/2023] Open
Abstract
Our studies indicate that the longevity factor SIRT1 is implicated in metabolic disease; however, whether and how hepatocyte-specific SIRT1 signaling is involved in liver fibrosis remains undefined. We characterized a functional link of age-mediated defects in SIRT1 to the NLRP3 inflammasome during age-related liver fibrosis. In multiple experimental murine models of liver fibrosis, we compared the development of liver fibrosis in young and old mice, as well as in liver-specific SIRT1 knockout (SIRT1 LKO) mice and wild-type (WT) mice. Liver injury, fibrosis, and inflammation were assessed histologically and quantified by real-time PCR analysis. In a model of hepatotoxin-induced liver fibrosis, old mice displayed more severe and persistent liver fibrosis than young mice during liver injury and after injury cessation, as characterized by inhibition of SIRT1, induction of NLRP3, infiltration of macrophages and neutrophils, activation of hepatic stellate cells (HSCs), and excessive deposition and remodeling of the extracellular matrix. Mechanistically, deletion of SIRT1 in hepatocytes resulted in NLRP3 and IL-1β induction, pro-inflammatory response, and severe liver fibrosis in young mice, mimicking the ability of aging to impair the resolution of established fibrosis. In an aging mouse model, chronic-plus-binge alcohol feeding-induced liver fibrosis was attenuated by treatment with MCC950, a selective NLRP3 inhibitor. NLRP3 inhibition ameliorated alcoholic liver fibrosis in old mice by repressing inflammation and reducing hepatocyte-derived danger signaling-ASK1 and HMGB1. In conclusion, age-dependent SIRT1 defects lead to NLRP3 activation and inflammation, which in turn impairs the capacity to resolve fibrosis during aging.
Collapse
Affiliation(s)
- Jennifer Adjei‐Mosi
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Qing Sun
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Steven Blake Smithson
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Gavyn Lee Shealy
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Krupa Dhruvitha Amerineni
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Zerong Liang
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Hanqing Chen
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Mei Wang
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Qinggong Ping
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Jingyan Han
- Boston University School of MedicineBostonMassachusettsUSA
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Amrita Kamat
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Geriatric Research, Education and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexasUSA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Geriatric Research, Education and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexasUSA
| | - Mengwei Zang
- Barshop Institute for Longevity and Aging Studies, Center for Healthy AgingSan AntonioTexasUSA
- Department of Molecular MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
- Geriatric Research, Education and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexasUSA
| |
Collapse
|
45
|
Liu J, Jin Z, Wang X, Jakoš T, Zhu J, Yuan Y. RAGE pathways play an important role in regulation of organ fibrosis. Life Sci 2023; 323:121713. [PMID: 37088412 DOI: 10.1016/j.lfs.2023.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.
Collapse
Affiliation(s)
- Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Xiaolong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| |
Collapse
|
46
|
Wu P, Liao T, Ma Z, Wei Y, Yin S, Huang Z, Mao J. Macrophage pyroptosis promotes synovial fibrosis through the HMGB1/TGF- β1 axis: an in vivo and in vitro study. In Vitro Cell Dev Biol Anim 2023; 59:289-299. [PMID: 37195554 DOI: 10.1007/s11626-023-00769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/28/2023] [Indexed: 05/18/2023]
Abstract
Macrophages and fibroblasts are the main effector cells in synovial tissue in the knee joint. Our previous studies showed that there was synovial macrophage pyroptosis in knee osteoarthritis (KOA) and that inhibiting this pyroptosis could alleviate synovial fibrosis. In the present study, we aimed to elucidate the mechanism by which macrophage pyroptosis affects synovial fibrosis. We established an LPS/ATP-induced model in macrophages that mimicked the inflammatory environment of KOA and induced macrophage pyroptosis. The TGF-β1, SMAD3, and P-SMAD3, and the synovial fibrosis markers (Collagen I, TIMP1, Vimentin, and TGF-β1) were significantly decreased after fibroblasts were cultured with RAGE inhibitors and SMAD3 inhibitors. Moreover, ELISA and immunofluorescence analysis showed that macrophage pyroptosis induced the release of IL-1β, IL-18, and HMGB1 and caused the translocation of HMGB1 from the fibroblast nucleus to the cell membrane, where it could bind with RAGE. Subsequently, in the synovial tissue of KOA model rats, we observed that inhibiting HMGB1, RAGE, and SMAD3 could alleviate the expression of synovial fibrosis markers (Collagen I, TIMP1, Vimentin, and TGF-β1) at both the mRNA and protein levels. Besides, HE and Sirius Red staining were used to observe the transverse diameter of the right knee. In conclusion, macrophage pyroptosis induced IL-1β, IL-18, and HMGB1, which could be caused HMGB1 to translocate from the fibroblast nucleus and bind with RAGE, activating the TGF-β1/SMAD3 signaling pathway and affecting synovial fibrosis.
Collapse
Affiliation(s)
- Peng Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Taiyang Liao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenyuan Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yibao Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Songjiang Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhengquan Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Jun Mao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
47
|
Tong H, Wang L, Zhang K, Shi J, Wu Y, Bao Y, Wang C. S100A6 Activates Kupffer Cells via the p-P38 and p-JNK Pathways to Induce Inflammation, Mononuclear/macrophage Infiltration Sterile Liver Injury in Mice. Inflammation 2023; 46:534-554. [PMID: 36484925 DOI: 10.1007/s10753-022-01750-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/17/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Noninfectious liver injury, including the effects of chemical material, drugs and diet, is a major cause of liver diseases worldwide. In chemical and drugs-induced liver injury, innate inflammatory responses are mediated by extracellular danger signals. The S100 protein can act as danger signals, which can promote the migration and chemotaxis of immune cells, promote the release of various inflammatory cytokines, and regulate the body's inflammatory and immune responses. However, the role of S100A6 in inflammatory response in chemical and drugs-induced sterile liver injury remains unclear. We constructed the model of sterile liver injury induced by carbon tetrachloride (CCl4)/Paracetamol (APAP) and performed RNA sequencing (RNA-seq) on the liver tissues after injury (days 2 and 5). We analyzed inflammatory protein secretion in the liver tissue supernatant by enzyme-linked immunosorbent assay (ELISA), determined the inflammation response by bioinformatic analysis during sterile liver injury, and assessed mononuclear/macrophage infiltration by immunohistochemistry and flow cytometry. Immunohistochemistry was used to analyze the location of S100A6. We conducted inflammatory factor expression analysis and molecular mechanistic studies in Kupffer cells (KCs) induced by S100A6 using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), ELISA, and western blot in vitro experiments. We performed chemokine CCL2 expression analysis and molecular mechanism studies using the same method. We used a Transwell assay to show the infiltration of mononuclear/macrophage. We here observed that aggravated inflammatory response was shown in CCl4 and APAP-administrated mice, as evidenced by enhanced production of inflammatory cytokines (TNF-α, IL-1β), and elevated mononuclear/macrophage infiltration and activation of immunity. The expression of S100A6 was significantly increased on day 2 after sterile liver injury, which is primarily produced by injured liver cells. Mechanistic studies established that S100A6 activates Kupffer cells (KCs) via the p-P38, p-JNK and P65 pathways to induce inflammation in vitro. Furthermore, TNF-α can stimulate liver cells via the p-P38 and p-JNK pathways to produce CCL2 and promote the infiltration of mononuclear/macrophage. In summary, we showed that S100A6 plays an important role in regulating inflammation, thus influencing sterile liver injury. Our findings provide novel evidence that S100A6 can as a danger signal that contributes to pro-inflammatory activation through p-P38 and p-JNK pathways in CCl4 and APAP-induced sterile liver injury in mice. In addition, the inflammatory factor TNF-α induces a large amount of CCL2 production in normal liver cells surrounding the injured area through a paracrine action, which is chemotactic for blood mononuclear/macrophage infiltration.
Collapse
Affiliation(s)
- He Tong
- School of Life Science, Inner Mongolia University, Yu Quan District, Xin Lin Guo Le Nan Road 49, Hohhot, 010020, Inner Mongolia, China
| | - Li Wang
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Kefan Zhang
- School of Life Science, Inner Mongolia University, Yu Quan District, Xin Lin Guo Le Nan Road 49, Hohhot, 010020, Inner Mongolia, China
| | - Jing Shi
- School of Life Science, Inner Mongolia University, Yu Quan District, Xin Lin Guo Le Nan Road 49, Hohhot, 010020, Inner Mongolia, China
| | - Yongshuai Wu
- School of Life Science, Inner Mongolia University, Yu Quan District, Xin Lin Guo Le Nan Road 49, Hohhot, 010020, Inner Mongolia, China
| | - Yulong Bao
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China.
| | - Changshan Wang
- School of Life Science, Inner Mongolia University, Yu Quan District, Xin Lin Guo Le Nan Road 49, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
48
|
Ma Y, Hu L, Tang J, Guo W, Feng Y, Liu Y, Tang F. Three-Dimensional Cell Co-Culture Liver Models and Their Applications in Pharmaceutical Research. Int J Mol Sci 2023; 24:ijms24076248. [PMID: 37047220 PMCID: PMC10094553 DOI: 10.3390/ijms24076248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
As the primary site for the biotransformation of drugs, the liver is the most focused on organ type in pharmaceutical research. However, despite being widely used in pharmaceutical research, animal models have inherent species differences, while two-dimensional (2D) liver cell monocultures or co-cultures and three-dimensional (3D) liver cell monoculture in vitro liver models do not sufficiently represent the complexity of the human liver’s structure and function, making the evaluation results from these tools less reliable. Therefore, there is a pressing need to develop more representative in vitro liver models for pharmaceutical research. Fortunately, an exciting new development in recent years has been the emergence of 3D liver cell co-culture models. These models hold great promise as in vitro pharmaceutical research tools, because they can reproduce liver structure and function more practically. This review begins by explaining the structure and main cell composition of the liver, before introducing the potential advantages of 3D cell co-culture liver models for pharmaceutical research. We also discuss the main sources of hepatocytes and the 3D cell co-culture methods used in constructing these models. In addition, we explore the applications of 3D cell co-culture liver models with different functional states and suggest prospects for their further development.
Collapse
|
49
|
Singh KP, Pallett LJ, Singh H, Chen A, Otano I, Duriez M, Rombouts K, Pinzani M, Crane M, Fusai G, Avihingsanon A, Lewin SR, Maini MK. Pro-fibrogenic role of alarmin high mobility group box 1 in HIV-hepatitis B virus coinfection. AIDS 2023; 37:401-411. [PMID: 36384811 DOI: 10.1097/qad.0000000000003435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Liver disease is accelerated in people with HIV (PWH) with hepatitis B virus (HBV) coinfection. We hypothesized that liver fibrosis in HIV-HBV is triggered by increased hepatocyte apoptosis, microbial translocation and/or HIV/HBV viral products. DESIGN Sera from PWH with HBV coinfection versus from those with HBV only or putative mediators were used to examine the pathogenesis of liver disease in HIV-HBV. METHODS We applied sera from PWH and HBV coinfection versus HBV alone, or putative mediators (including HMGB1), to primary human hepatic stellate cells (hHSC) and examined pro-fibrogenic changes at the single cell level using flow cytometry. High mobility group box 1 (HMGB1) levels in the applied sera were assessed according to donor fibrosis stage. RESULTS Quantitative flow cytometric assessment of pro-fibrogenic and inflammatory changes at the single cell level revealed an enhanced capacity for sera from PWH with HBV coinfection to activate hHSC. This effect was recapitulated by lipopolysaccharide, HIV-gp120, hepatocyte conditioned-media and the alarmin HMGB1. Induction of hepatocyte cell death increased their pro-fibrogenic potential, an effect blocked by HMGB1 antagonist glycyrrhizic acid. Consistent with a role for this alarmin, HMGB1 levels were elevated in sera from PWH and hepatitis B coinfection compared to HBV alone and higher in those with HIV-HBV with liver fibrosis compared to those without. CONCLUSIONS Sera from PWH and HBV coinfection have an enhanced capacity to activate primary hHSC. We identified an increase in circulating HMGB1 which, in addition to HIV-gp120 and translocated microbial products, drove pro-fibrogenic changes in hHSC, as mechanisms contributing to accelerated liver disease in HIV-HBV.
Collapse
Affiliation(s)
- Kasha P Singh
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Laura J Pallett
- Division of Infection and Immunity, University College London, London, UK
| | - Harsimran Singh
- Division of Infection and Immunity, University College London, London, UK
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Antony Chen
- Division of Infection and Immunity, University College London, London, UK
| | - Itziar Otano
- Division of Infection and Immunity, University College London, London, UK
| | - Marion Duriez
- Division of Infection and Immunity, University College London, London, UK
| | - Krista Rombouts
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Megan Crane
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
| | - Giuseppe Fusai
- Institute for Liver and Digestive Health, University College London, London, UK
| | | | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
50
|
Wang SJ, Ye W, Li WY, Tian W, Zhang M, Sun Y, Feng YD, Liu CX, Liu SY, Cao W, Meng JR, Li XQ. Effects and mechanisms of Xiaochaihu Tang against liver fibrosis: An integration of network pharmacology, molecular docking and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116053. [PMID: 36529247 DOI: 10.1016/j.jep.2022.116053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a potentially harmful chronic liver disease caused by various etiologies. There is currently no specific drug for liver fibrosis. Xiaochaihu Tang (XCHT) is a traditional formula combined of seven herbs, which was first recorded in the Treatise on Febrile Diseases in Han Dynasty of ancient China. It is widely used in clinic to hepatic protection, analgesic, antipyretic and anti-inflammatory treatment. And it has been recommended for treating chronic hepatitis and chronic cholecystitis in the latest guidelines for the diagnosis and treatment of liver fibrosis with integrated traditional and western medicine. However, the underlying regulatory mechanisms remain elusive. AIM OF THE STUDY This study aims to explore the therapeutic effects of XCHT on liver fibrosis and its underlying molecular mechanisms from the perspective of network pharmacology and experimental research. MATERIALS AND METHODS Carbon tetrachloride (CCl4) induced and bile duct ligation (BDL) induced liver fibrosis models in mice were established to evaluate the anti-fibrosis effects of XCHT in vivo. Potential anti-fibrosis targets of XCHT were screened via network establishment. The underlying mechanisms were uncovered through GO and pathway enrichment analysis. Then, the core targets were identified from protein-protein interaction network by means of the Cytohubba plug-in of Cytoscape. Furthermore, two effective monomer components of XCHT were recognized by molecular docking. Moreover, the predicted components and pathways were verified by in vitro experiments. RESULTS When treated with XCHT, liver fibrosis was alleviated in both mice models, showing as the improvement of liver function, the protection of hepatocytes, the inhibition of HSC activation and the reduction of hepatic collagen accumulation. 540 monomer components, 300 therapeutic targets, 109 signaling pathways, 246 GO biological processes, 77 GO cellular components, 107 GO molecular functions items and core targets were identified by network analysis. Then, 6-gingerol and baicalein were identified as the core components of anti-fibrosis effects of XCHT via leptin or Nrf2 signaling pathway. Furthermore, the experiment in vitro also validated the results. CONCLUSIONS Our study suggests XCHT could alleviate liver fibrosis through multi-targets and multi-pathways; 6-gingerol and baicalein are its core components which may play an important role via leptin or Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shou-Jia Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wen Ye
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wan-Yi Li
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wen Tian
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Meng Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Chen-Xu Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Shao-Yuan Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing-Ru Meng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China.
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|