1
|
Zhang X, Sun P, Wang Y, Xu L, Li HY, Tong LJ, Tan C, Ding J, Yang CH, Meng LH. JMC14: a novel dual PI3Kδ/CSF1R inhibitor with potent antitumor activity in hematological and solid tumors. Acta Pharmacol Sin 2025:10.1038/s41401-025-01575-x. [PMID: 40389566 DOI: 10.1038/s41401-025-01575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/22/2025] [Indexed: 05/21/2025]
Abstract
PI3Kδ, predominantly expressed in immune cells and markedly dysregulated in B-cell malignancies, emerges as a promising and well-validated therapeutic target in hematologic cancers. Meanwhile, CSF1R regulates the formation and polarization of tumor-associated macrophages (TAMs), facilitating immune suppression and tumor progression in various solid tumors. Although targeting PI3Kδ or CSF1R has shown promise, the clinical application is often constrained by off-target effects, toxicity, and limited efficacy, particularly in solid malignancies. In this study, we identified JMC14, a novel dual inhibitor targeting PI3Kδ and CSF1R with a distinct structure and favorable selectivity among human kinome, yielding IC50 values of 12 nM against PI3Kδ and 143 nM against CSF1R, respectively. JMC14 preferentially inhibited PI3Kδ-mediated signaling at the cellular level and exhibited robust antiproliferative activity across 10 lines of diffuse large B-cell lymphoma (DLBCL) cells, outperforming the approved PI3Kδ inhibitor idelalisib. Notably, its efficacy negatively correlated with the PI3Kα expression among the cell lines tested, suggesting a compensatory pathway mediated by PI3Kα. Daily oral administration of JMC14 (10, 30, or 100 mg/kg, for 21 days) dose-dependently suppressed tumor progression in xenografts derived from TMD8 cells and DLBCL patients, accompanied by good tolerance. Additionally, M-NFS-60 myeloid leukemia cells, which are dependent on the CSF-1-CSF1R axis for survival and proliferation, were effectively inhibited by JMC14 both in vitro and in vivo, further validating its inhibitory activity targeting CSF1R. Furthermore, JMC14 demonstrated potent antitumor activity in murine triple-negative breast cancer (TNBC), which was associated with its activity to reshape the immune microenvironment by reducing M2-like TAMs, enhancing CD8+ T cell infiltration. Collectively, these findings establish JMC14 as a potent dual PI3Kδ/CSF1R inhibitor with remarkable efficacy against both hematologic and solid malignancies with hyperactivation of PI3Kδ and/or CSF1R, highlighting the potential of JMC14 as a useful probe to dissect the interaction of PI3Kδ and CSF1R in tumor progression and immune reprogramming.
Collapse
Affiliation(s)
- Xi Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pu Sun
- Division of Anti-tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Wang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lan Xu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Yu Li
- Division of Anti-tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin-Jiang Tong
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cun Tan
- Division of Small-molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Ding
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chun-Hao Yang
- Division of Small-molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Xie J, Chen Q, Li L, Liu J. Overexpression of SERPINA3 inhibits castration-resistant prostate cancer progression by enhancing M1 macrophage recruitment via CXCL2 upregulation. Braz J Med Biol Res 2025; 58:e14445. [PMID: 40367014 PMCID: PMC12068766 DOI: 10.1590/1414-431x2025e14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/19/2025] [Indexed: 05/16/2025] Open
Abstract
The primary objective of the present study was to identify differentially expressed genes (DEGs) associated with castration-resistant prostate cancer (CRPC) to verify the potential mechanism of CRPC progression. DEGs from CRPC datasets were filtered with a P<0.05 and Spearman correlation coefficient ≥0.3. Serpin peptidase inhibitor, clade A member 3 (SERPINA3), was uniquely present in three CRPC datasets, and its low expression in CRPC was confirmed in cell lines and tissues. Colony formation, transwell assays, and subcutaneous tumor formation experiments in mice demonstrated that overexpression of SERPINA3 may significantly inhibit the proliferation and invasion of PC3 cells. Mechanistic studies revealed that, in prostate cancer (PCa), SERPINA3 can activate the interleukin (IL)-17 and tumor necrosis factor (TNF)α signaling pathways by promoting the expression of CXC chemokine ligand 2 (CXCL2), thereby increasing the recruitment of M1 macrophages into the tumor microenvironment and inhibiting the progression of PCa. The current results indicated that the expression of SERPINA3 may be negatively correlated with CRPC, and it could promote the M1 polarization of macrophages and inhibit the progression of CRPC by increasing the expression of CXCL2.
Collapse
Affiliation(s)
- Jianbing Xie
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Qiren Chen
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Lixian Li
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Jinyu Liu
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| |
Collapse
|
3
|
Yu J, Hu Q, Fan K, Gao Y, Li Y. C15orf39, a downstream effector of PI3K/AKT signaling, promotes gastric carcinogenesis and correlates with patient outcomes. Int J Biol Macromol 2025; 306:141615. [PMID: 40032127 DOI: 10.1016/j.ijbiomac.2025.141615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
The phosphatidylinositol-3-kinases (PI3K) signaling pathway is highly complex and well-known to exert oncogenic roles in multiple cancer types. Exploring new factors involved in this pathway may offer the potential for improving the early diagnosis and treatment strategies for cancers. Here we used gastric cancer (GC) as a model to identify co-regulated effectors downstream of three catalytic subunits of PI3K through high-throughput sequencing in PIK3CA, PIK3CB, and PIK3CD knockdown GC cells. C15orf39, a new uncharacterized gene, was selected due to the most significant expression change. qRT-PCR and immunohistochemistry analyses revealed that C15orf39 was frequently upregulated in GC tissues and strongly correlated with poor clinical outcomes in GC patients. Gain- and loss-of-function studies demonstrated that C15orf39 promoted GC cell proliferation, migration, and drug resistance. Mechanistically, C15orf39 promoted GC progression possibly via modulating cell mitosis and cell cycle. FOXK2, a transcription factor activated by PI3K/AKT signaling, could bind to the promoter of C15orf39 and positively regulate C15orf39 expression. These findings unveiled a new PI3K/AKT/FOXK2/C15orf39 signaling axis that promotes GC development and progression. C15orf39 may become a potential biomarker for early diagnosis and personalized treatment to improve the prognosis of GC patients.
Collapse
Affiliation(s)
- Jiahua Yu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Qingqing Hu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kailing Fan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
4
|
Li J, Xue J, Liu T, Feng Y, Xu N, Huang J, Yin Y, Zhang J, Mou H, Shentu J, Bao H, Xu Z, Xu Z. Phase Ib study of the oral PI3Kδ inhibitor linperlisib in patients with advanced solid tumors. Int J Clin Oncol 2025; 30:241-251. [PMID: 39538003 PMCID: PMC11785675 DOI: 10.1007/s10147-024-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Patients with advanced solid tumors have a suboptimal prognosis. This study investigated the safety and feasibility of linperlisib, a selective phosphatidylinositol 3-kinase delta isoform (PI3Kδ) inhibitor, for treating patients with advanced solid tumors. METHODS In this phase Ib, single-arm, open-label, multi-center clinical trial, patients with histologically confirmed advanced solid tumors from eight centers in China were enrolled to receive oral linperlisib (80 mg/day). The primary endpoint was safety. RESULTS Between August 2019 and June 2022, 94 patients were enrolled in the trial and received the study treatment. The most common (≥ 20%) treatment emergent adverse events (TEAEs) of all grades irrespective of causality were increased aspartate aminotransferase (AST) (26.6%), proteinuria (26.6%), decreased appetite (25.5%), increased alanine aminotransferase (ALT) (22.3%), weight loss (21.3%), and anemia (21.3%). The most common grade ≥ 3 TEAEs were diarrhea (4.3%), increased AST (3.2%), increased ALT (3.2%), neutropenia (3.2%), anemia (3.2%), increased blood alkaline phosphatase (3.2%). The objective response rate (ORR) was 1.1% (95% confidence interval [CI] 0.0-5.8), and the disease control rate (DCR) was 37.2% (95% CI 27.5-47.8). As of the data cutoff, the median follow-up time was 4.2 months (95% CI 2.8-6.9). The median progression-free survival (PFS) was 1.85 months (95% CI 1.79-1.88). The median overall survival (OS) was not reached. CONCLUSION Linperlisib showed an acceptable safety profile and preliminary clinical benefit in patients with a range of advanced solid tumors. Further studies of linperlisib safety and efficacy are warranted.
Collapse
Affiliation(s)
- Jin Li
- Department of Oncology, East Hospital Affiliated to Tongji University, No. 150 Jimo Road, Pudong New Area, Shanghai, 200120, China.
| | - Junli Xue
- Department of Oncology, East Hospital Affiliated to Tongji University, No. 150 Jimo Road, Pudong New Area, Shanghai, 200120, China
| | - Tianshu Liu
- Department of Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Yi Feng
- Department of Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Nong Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Jianjin Huang
- Department of Oncology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Yongmei Yin
- Department of Oncology, Jiangsu Provincial People's Hospital, Nanjing, 210029, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haibo Mou
- Department of Oncology, Zhejiang Shulan Hospital, Hangzhou, 310022, China
| | - Jiangzhong Shentu
- Department of Pharmacology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Hanying Bao
- Shanghai Yingli Pharmaceutical Co., Ltd., Shanghai, 201210, China
| | - Zusheng Xu
- Shanghai Yingli Pharmaceutical Co., Ltd., Shanghai, 201210, China
| | - Zuhong Xu
- Shanghai Yingli Pharmaceutical Co., Ltd., Shanghai, 201210, China
| |
Collapse
|
5
|
Zhu M, Wang Y, Park J, Titus A, Guo F. Dispensable regulation of brain development and myelination by the immune-related protein Serpina3n. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579239. [PMID: 38370831 PMCID: PMC10871299 DOI: 10.1101/2024.02.06.579239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Serine protease inhibitor clade A member 3n (Serpina3n) or its human orthologue SERPINA3 is a secretory immune-related molecule produced primarily in the liver and brain under homeostatic conditions and upregulated in response to system inflammation. Yet it remains elusive regarding its cellular identity and physiological significance in the development of the postnatal brain. Here, we reported that oligodendroglial lineage cells are the major cell population expressing Serpina3n protein in the postnatal murine CNS. Using loss-of-function genetic tools, we found that Serpina3n conditional knockout (cKO) from Olig2-expressing cells does not significantly affect cognitive and motor functions in mice. Serpina3n depletion does not appear to interfere with oligodendrocyte differentiation and developmental myelination nor affects the population of other glial cells and neurons in vivo. Together, these data suggest that the immune-related molecule Serpina3n plays a minor role, if any, in regulating neural cell development in the postnatal brain under homeostatic conditions. We found that Serpina3n is significantly upregulated in response to oxidative stress, and it potentiates oxidative injury and cell senescence of oligodendrocytes. Our data raise the interest in pursuing its functional significance in the CNS under disease/injury conditions.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Yan Wang
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Joohyun Park
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Annlin Titus
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Fuzheng Guo
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| |
Collapse
|
6
|
Pan Y, Qiao L, Zhang Y, Sooranna SR, Huang D, Ou M, Xu F, Chen L, Huang D. The molecular and network mechanisms of antilipidemic potential effects of Ganfule capsules in nonalcoholic fatty liver disease. Heliyon 2024; 10:e34297. [PMID: 39113948 PMCID: PMC11305243 DOI: 10.1016/j.heliyon.2024.e34297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder characterized by hepatic steatosis, inflammation and fibrosis. Ganfule (GFL), a traditional Chinese medicine, has demonstrated therapeutic potential in the treatment of NAFLD but the mechanisms involved are not fully understood.To evaluate the biochemical mechanisms of GFL in treating NAFLD by examining its effects on biological networks, key therapeutic targets, histopathological changes and clinical implications. METHODS Chemical component screening, key target prediction, biological functional enrichment analysis, lipid profile localization analysis and complex network analysis were performed on GFL using multi-database mining, network analysis and molecular docking. An NAFLD rat model was then established and treated with different doses of GFL. Histopathological evaluation and western blotting were used to verify the expression levels of key target proteins in GFL-treated NAFLD rats. RESULTS Network analysis analysis identified 12 core targets, 12 core active ingredients and 7 core Chinese medicinal herbs in GFL potentially involved in the treatment of NAFLD. Biological functional enrichment analysis revealed the involvement of lipid metabolism, apoptosis and intracellular signaling pathways. Molecular docking confirmed a strong affinity between GFL's core compounds and certain target proteins. Histopathological examination of an NAFLD rat model showed reduced hepatocellular steatosis after GFL treatment. Western blotting revealed significant downregulation of PPARA and PPARD protein expression and upregulation of PIK3CG and PRKACA protein expression in NAFLD rats treated with lower doses of GFL. CONCLUSIONS Our results suggest that GFL modulates key proteins involved in lipid metabolism and apoptosis pathways. GFL improved the histopathological features of NAFLD rats by regulating lipid metabolism as well as reducing hepatocyte apoptosis and hepatocellular steatosis. These findings offer insights into the biochemical mechanism of action of GFL and support its use in the treatment for NAFLD.
Collapse
Affiliation(s)
- Yu Pan
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Nanning, 530023, Peoples Republic of China
| | - Liya Qiao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- Chinese Medicinal Materials Product Quality Supervision and Inspection Station, 530023, Peoples Republic of China
| | - Yunkun Zhang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
| | - Suren R. Sooranna
- Academic Department of Obstetrics and Gvnaecology, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW109NH, United Kingdom
| | - Danna Huang
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Nanning, 530023, Peoples Republic of China
| | - Min Ou
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Nanning, 530023, Peoples Republic of China
| | - Fei Xu
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
| | - Lu Chen
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Nanning, 530023, Peoples Republic of China
| | - Dan Huang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
| |
Collapse
|
7
|
Luo L, Wu X, Fan J, Dong L, Wang M, Zeng Y, Li S, Yang W, Jiang J, Wang K. FBXO7 ubiquitinates PRMT1 to suppress serine synthesis and tumor growth in hepatocellular carcinoma. Nat Commun 2024; 15:4790. [PMID: 38839752 PMCID: PMC11153525 DOI: 10.1038/s41467-024-49087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Cancer cells are often addicted to serine synthesis to support growth. How serine synthesis is regulated in cancer is not well understood. We recently demonstrated protein arginine methyltransferase 1 (PRMT1) is upregulated in hepatocellular carcinoma (HCC) to methylate and activate phosphoglycerate dehydrogenase (PHGDH), thereby promoting serine synthesis. However, the mechanisms underlying PRMT1 upregulation and regulation of PRMT1-PHGDH axis remain unclear. Here, we show the E3 ubiquitin ligase F-box-only protein 7 (FBXO7) inhibits serine synthesis in HCC by binding PRMT1, inducing lysine 37 ubiquitination, and promoting proteosomal degradation of PRMT1. FBXO7-mediated PRMT1 downregulation cripples PHGDH arginine methylation and activation, resulting in impaired serine synthesis, accumulation of reactive oxygen species (ROS), and inhibition of HCC cell growth. Notably, FBXO7 is significantly downregulated in human HCC tissues, and inversely associated with PRMT1 protein and PHGDH methylation level. Overall, our study provides mechanistic insights into the regulation of cancer serine synthesis by FBXO7-PRMT1-PHGDH axis, and will facilitate the development of serine-targeting strategies for cancer therapy.
Collapse
Affiliation(s)
- Li Luo
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, 610041, Chengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, 610041, Chengdu, P. R. China
| | - Xingyun Wu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jiawu Fan
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Lixia Dong
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Mao Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Sijia Li
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, 610014, Chengdu, P.R. China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
8
|
Zhu M, Lan Z, Park J, Gong S, Wang Y, Guo F. Regulation of CNS pathology by Serpina3n/SERPINA3: The knowns and the puzzles. Neuropathol Appl Neurobiol 2024; 50:e12980. [PMID: 38647003 PMCID: PMC11131959 DOI: 10.1111/nan.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | | | - Yan Wang
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
9
|
Peng S, Liang W, Liu Z, Ye S, Peng Z, Zhong Z, Ye Q. Hypothermic machine perfusion reduces donation after circulatory death liver ischemia-reperfusion injury through the SERPINA3-mediated PI3Kδ/Akt pathway. Hum Cell 2024; 37:420-434. [PMID: 38133876 DOI: 10.1007/s13577-023-01012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Hypothermic machine perfusion (HMP) has been demonstrated to be more effective in mitigating ischemia-reperfusion injury (IRI) of donation after circulatory death (DCD) organs than cold storage (CS), yet the underlying mechanism remains obscure. We aimed to propose a novel therapeutic approach to ameliorate IRI in DCD liver transplantation. Twelve clinical liver samples were randomly assigned to HMP or CS treatment and subsequent transcriptomics analysis was performed. By combining in vivo HMP models, we discovered that HMP attenuated inflammation, oxidative stress, and apoptosis in DCD liver through a SEPRINA3-mediated PI3Kδ/AKT signaling cascade. Moreover, in the hypoxia/reoxygenation (H/R) model of BRL-3A, overexpression of SERPINA3 mitigated H/R-induced apoptosis, while SERPINA3 knockdown exacerbated cell injury. Idelalisib (IDE) treatment also reversed the protective effect of SERPINA3 overexpression. Overall, our research provided new insights into therapeutic strategies and identified potential novel molecular targets for therapeutic intervention against DCD liver.
Collapse
Affiliation(s)
- Sheng Peng
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wenjin Liang
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhongzhong Liu
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shaojun Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Zibiao Zhong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Qifa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
10
|
Tzenaki N, Xenou L, Goulielmaki E, Tsapara A, Voudouri I, Antoniou A, Valianatos G, Tzardi M, De Bree E, Berdiaki A, Makrigiannakis A, Papakonstanti EA. A combined opposite targeting of p110δ PI3K and RhoA abrogates skin cancer. Commun Biol 2024; 7:26. [PMID: 38182748 PMCID: PMC10770346 DOI: 10.1038/s42003-023-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Lydia Xenou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Tsapara
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Voudouri
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Angelika Antoniou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - George Valianatos
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Eelco De Bree
- Department of Surgical Oncology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Aikaterini Berdiaki
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | | |
Collapse
|
11
|
Fang W, Song Q, Lv T, Lv J, Cai Z, Wang Z, Song X, Ji X, Huang J. Serpina3n/serpina3 alleviates cyclophosphamide-induced interstitial cystitis by activating the Wnt/β-catenin signal. Int Urol Nephrol 2023; 55:3065-3075. [PMID: 37594700 PMCID: PMC10611603 DOI: 10.1007/s11255-023-03726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND/OBJECTIVE Serpina3n/Serpina3 has been identified to be implicated in inflammatory diseases, but its role in interstitial cystitis/bladder pain syndrome (IC/BPS) remains unknown. Here, we aimed to reveal serpina3n/serpina3 role in IC/BPS in vivo and in vitro. METHODS The IC/BPS model in mice was induced by intraperitoneal injection of 150 mg/kg of cyclophosphamide (CYP). HE and toluidine blue staining were used for histology assessment. Serpina3n/serpina3 expression in the bladder tissues from IC/BPS patients and mouse models were determined by qPCR, immunohistochemistry and western blotting. XAV-939 treatment was applied to inhibit β-catenin activation. Serpina3 role in modulating the growth and apoptosis of HBlEpCs, a human primary bladder epithelial cell line, was assessed by CCK-8 and flow cytometry assays. RESULTS Serpina3n/serpina3 expression was decreased in both human and mice bladder tissues with IC/BPS. Upregulation of serpina3n significantly alleviated CYP-induced bladder injury, with decreased mast cells and pro-inflammatory factor levels, including IL-1β, IL-6, and TNF-α, while increased IL-10 level. In addition, serpina3 overexpression inhibited the apoptosis of HBlEpCs, and increased cell growth. In mechanism, we found that serpina3 overexpression promoted the activation of wnt/β-catenin signaling. And, the inhibition of wnt/β-catenin signaling with XAV-939 abolished serpina3n/serpina3 role in protecting bladder tissues from CYP-induced cystitis, as well as inhibiting HBlEpC apoptosis. CONCLUSION Serpina3n/serpina3 expression was decreased in IC/BPS. Overexpression of serpina3n could alleviate CYP-induced IC/BPS by activating the Wnt/β-catenin signal. This study may provide a new therapeutic strategy for IC/BPS.
Collapse
Affiliation(s)
- Weilin Fang
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Qixiang Song
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Tingting Lv
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Jianwei Lv
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China.
| | - Zhikang Cai
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Zhong Wang
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Xin Song
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Xiang Ji
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Jin Huang
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| |
Collapse
|
12
|
Bou Malham V, Benzoubir N, Vaquero J, Desterke C, Agnetti J, Song PX, Gonzalez-Sanchez E, Arbelaiz A, Jacques S, Di Valentin E, Rahmouni S, Tan TZ, Samuel D, Thiery JP, Sebagh M, Fouassier L, Gassama-Diagne A. Intrinsic cancer cell phosphoinositide 3-kinase δ regulates fibrosis and vascular development in cholangiocarcinoma. Liver Int 2023; 43:2776-2793. [PMID: 37804055 DOI: 10.1111/liv.15751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND & AIMS The class I- phosphatidylinositol-3 kinases (PI3Ks) signalling is dysregulated in almost all human cancers whereas the isoform-specific roles remain poorly investigated. We reported that the isoform δ (PI3Kδ) regulated epithelial cell polarity and plasticity and recent developments have heightened its role in hepatocellular carcinoma (HCC) and solid tumour progression. However, its role in cholangiocarcinoma (CCA) still lacks investigation. APPROACH & RESULTS Immunohistochemical analyses of CCA samples reveal a high expression of PI3Kδ in the less differentiated CCA. The RT-qPCR and immunoblot analyses performed on CCA cells stably overexpressing PI3Kδ using lentiviral construction reveal an increase of mesenchymal and stem cell markers and the pluripotency transcription factors. CCA cells stably overexpressing PI3Kδ cultured in 3D culture display a thick layer of ECM at the basement membrane and a wide single lumen compared to control cells. Similar data are observed in vivo, in xenografted tumours established with PI3Kδ-overexpressing CCA cells in immunodeficient mice. The expression of mesenchymal and stemness genes also increases and tumour tissue displays necrosis and fibrosis, along with a prominent angiogenesis and lymphangiogenesis, as in mice liver of AAV8-based-PI3Kδ overexpression. These PI3Kδ-mediated cell morphogenesis and stroma remodelling were dependent on TGFβ/Src/Notch signalling. Whole transcriptome analysis of PI3Kδ using the cancer cell line encyclopedia allows the classification of CCA cells according to cancer progression. CONCLUSIONS Overall, our results support the critical role of PI3Kδ in the progression and aggressiveness of CCA via TGFβ/src/Notch-dependent mechanisms and open new directions for the classification and treatment of CCA patients.
Collapse
Affiliation(s)
- Vanessa Bou Malham
- INSERM, Unité 1193, Villejuif, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, France
| | - Nassima Benzoubir
- INSERM, Unité 1193, Villejuif, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, France
| | - Javier Vaquero
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, Paris, France
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | | | - Jean Agnetti
- INSERM, Unité 1193, Villejuif, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, France
| | - Pei Xuan Song
- INSERM, Unité 1193, Villejuif, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, France
| | - Ester Gonzalez-Sanchez
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, Paris, France
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Inovarion, Paris, France
| | - Ander Arbelaiz
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, Paris, France
| | - Sophie Jacques
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, Liège, Belgium
| | - Emanuel Di Valentin
- Plateforme des vecteurs viraux, Université de Liège, GIGA B34, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, Liège, Belgium
| | - Tuan Zea Tan
- Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Didier Samuel
- INSERM, Unité 1193, Villejuif, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, France
- Centre Hepato-Biliaire, AP-HP Hôpital Paul Brousse, Villejuif, France
| | - Jean Paul Thiery
- Guangzhou Laboratory, International Biological Island Guangzhou, Guangzhou, China
| | - Mylène Sebagh
- INSERM, Unité 1193, Villejuif, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, France
- Laboratoire d'Anatomopathologie, AP-HP Hôpital Paul-Brousse, Villejuif, France
| | - Laura Fouassier
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, Paris, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, France
| |
Collapse
|
13
|
Ha S, Gujrati H, Wang BD. Aberrant PI3Kδ splice isoform as a potential biomarker and novel therapeutic target for endocrine cancers. Front Endocrinol (Lausanne) 2023; 14:1190479. [PMID: 37670888 PMCID: PMC10475954 DOI: 10.3389/fendo.2023.1190479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction PI3K/AKT signaling pathway is upregulated in a broad spectrum of cancers. Among the class I PI3Ks (PI3Kδ/β/δ isoforms), PI3Kδ has been implicated in hematologic cancers and solid tumors. Alternative splicing is a post-transcriptional process for acquiring proteomic diversity in eukaryotic cells. Emerging evidence has highlighted the involvement of aberrant mRNA splicing in cancer development/progression. Methods Our previous studies revealed that PIK3CD-S is an oncogenic splice variant that promotes tumor aggressiveness and drug resistance in prostate cancer (PCa). To further evaluate the potential of utilizing PI3Kδ-S (encoded from PIK3CD-S) as a cancer biomarker and/or drug target, comprehensive analyses were performed in a series of patient samples and cell lines derived from endocrine/solid tumors. Specifically, IHC, immunofluorescence, western blot and RT-PCR assay results have demonstrated that PI3Kδ isoforms were highly expressed in endocrine/solid tumor patient specimens and cell lines. Results Differential PIK3CD-S/PIK3CD-L expression profiles were identified in a panel of endocrine/solid tumor cells. SiRNA knockdown of PIK3CD-L or PIK3CD-S differentially inhibits AKT/mTOR signaling in PCa, breast, colon and lung cancer cell lines. Moreover, siRNA knockdown of PTEN increased PI3Kδ levels and activated AKT/mTOR signaling, while overexpression of PTEN reduced PI3Kδ levels and inhibited AKT/mTOR signaling in cancer cells. Intriguingly, PI3Kδ-S levels remained unchanged upon either siRNA knockdown or overexpression of PTEN. Taken together, these results suggested that PTEN negatively regulates PI3Kδ-L and its downstream AKT/mTOR signaling, while PI3Kδ-S promotes AKT/mTOR signaling without regulation by PTEN. Lastly, PI3Kδ inhibitor Idelalisib and SRPK1/2 inhibitor SRPIN340 were employed to assess their efficacies on inhibiting the PI3Kδ-expressing endocrine/solid tumors. Our results have shown that Idelalisib effectively inhibited PI3Kδ-L (but not PI3Kδ-S) mediated AKT/mTOR signaling. In contrast, SRPIN340 reversed the aberrant mRNA splicing, thereby inhibiting AKT/mTOR signaling. In-vitro functional assays have further demonstrated that a combination of Idelalisib and SRPIN340 achieved a synergistic drug effect (with drastically reduced cell viabilities/growths of tumor spheroids) in inhibiting the advanced tumor cells. Conclusion In summary, our study has suggested a promising potential of utilizing PI3Kδ-S (an oncogenic isoform conferring drug resistance and exempt from PTEN regulation) as a prognostic biomarker and drug target in advanced endocrine cancers.
Collapse
Affiliation(s)
- Siyoung Ha
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Himali Gujrati
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
14
|
Wang K, Luo L, Fu S, Wang M, Wang Z, Dong L, Wu X, Dai L, Peng Y, Shen G, Chen HN, Nice EC, Wei X, Huang C. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat Commun 2023; 14:1011. [PMID: 36823188 PMCID: PMC9950448 DOI: 10.1038/s41467-023-36708-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Serine synthesis is crucial for tumor growth and survival, but its regulatory mechanism in cancer remains elusive. Here, using integrative metabolomics and transcriptomics analyses, we show a heterogeneity between metabolite and transcript profiles. Specifically, the level of serine in hepatocellular carcinoma (HCC) tissues is increased, whereas the expression of phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in serine biosynthesis pathway, is markedly downregulated. Interestingly, the increased serine level is obtained by enhanced PHGDH catalytic activity due to protein arginine methyltransferase 1 (PRMT1)-mediated methylation of PHGDH at arginine 236. PRMT1-mediated PHGDH methylation and activation potentiates serine synthesis, ameliorates oxidative stress, and promotes HCC growth in vitro and in vivo. Furthermore, PRMT1-mediated PHGDH methylation correlates with PHGDH hyperactivation and serine accumulation in human HCC tissues, and is predictive of poor prognosis of HCC patients. Notably, blocking PHGDH methylation with a TAT-tagged nonmethylated peptide inhibits serine synthesis and restrains HCC growth in an HCC patient-derived xenograft (PDX) model and subcutaneous HCC cell-derived xenograft model. Overall, our findings reveal a regulatory mechanism of PHGDH activity and serine synthesis, and suggest PHGDH methylation as a potential therapeutic vulnerability in HCC.
Collapse
Affiliation(s)
- Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, PR China
| | - Shuyue Fu
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Mao Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zihao Wang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lixia Dong
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xingyun Wu
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lunzhi Dai
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yong Peng
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Guobo Shen
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard Collins Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
15
|
Ha S, Wang BD. Molecular Insight into Drug Resistance Mechanism Conferred by Aberrant PIK3CD Splice Variant in African American Prostate Cancer. Cancers (Basel) 2023; 15:1337. [PMID: 36831678 PMCID: PMC9954641 DOI: 10.3390/cancers15041337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Targeting PI3Kδ has emerged as a promising therapy for hematologic and non-hematologic malignancies. Previously, we identified an oncogenic splice variant, PIK3CD-S, conferring Idelalisib resistance in African American (AA) prostate cancer (PCa). In the current study, we employed a comprehensive analysis combining molecular biology, biochemistry, histology, in silico simulation, and in vitro functional assays to investigate the PIK3CD-S expression profiles in PCa samples and to elucidate the drug resistance mechanism mediated by PI3Kδ-S (encoded by PIK3CD-S). The immunohistochemistry, RT-PCR, and Western blot assays first confirmed that PI3Kδ-S is highly expressed in AA PCa. Compared with PCa expressing the full-length PI3Kδ-L, PCa expressing PI3Kδ-S exhibits enhanced drug resistance properties, including a higher cell viability, more antiapoptotic and invasive capacities, and constitutively activated PI3K/AKT signaling, in the presence of PI3Kδ/PI3K inhibitors (Idelalisib, Seletalisib, Wortmannin, and Dactolisib). Molecular docking, ATP-competitive assays, and PI3 kinase assays have further indicated a drastically reduced affinity of PI3Kδ inhibitors with PI3Kδ-S vs. PI3Kδ-L, attributed to the lack of core binding residues in the PI3Kδ-S catalytic domain. Additionally, SRSF2 has been identified as a critical splicing factor mediating exon 20 skipping in PIK3CD pre-mRNA. The inhibition of the SRSF2 activity by SRPIN340 successfully sensitizes AA PCa cells to PI3Kδ inhibitors, suggesting a novel therapeutic option for Idelalisib-resistant tumors.
Collapse
Affiliation(s)
- Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research. Cancers (Basel) 2023; 15:cancers15030784. [PMID: 36765741 PMCID: PMC9913247 DOI: 10.3390/cancers15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. PI3K is a family of eight enzymes divided into three classes with various functions in physiology and largely deregulated in cancer. Here, we will review the recent evidence obtained during the last 5 years on the roles of PI3K class I, II and III isoforms in tumor biology and on the anti-tumoral action of PI3K inhibitors in preclinical cancer models. The dependency of tumors to PI3K isoforms is dictated by both genetics and context (e.g., the microenvironment). The understanding of class II/III isoforms in cancer development and progression remains scarce. Nonetheless, the limited available data are consistent and reveal that there is an interdependency between the pathways controlled by all PI3K class members in their role to promote cancer cell proliferation, survival, growth, migration and metabolism. It is unknown whether this feature contributes to partial treatment failure with isoform-selective PI3K inhibitors. Hence, a better understanding of class II/III functions to efficiently inhibit their positive and negative interactions with class I PI3Ks is needed. This research will provide the proof-of-concept to develop combination treatment strategies targeting several PI3K isoforms simultaneously.
Collapse
|
17
|
SERPINA3: Stimulator or Inhibitor of Pathological Changes. Biomedicines 2023; 11:biomedicines11010156. [PMID: 36672665 PMCID: PMC9856089 DOI: 10.3390/biomedicines11010156] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
SERPINA3, also called α-1-antichymotrypsin (AACT, ACT), is one of the inhibitors of serine proteases, one of which is cathepsin G. As an acute-phase protein secreted into the plasma by liver cells, it plays an important role in the anti-inflammatory response and antiviral response. Elevated levels of SERPINA3 have been observed in heart failure and neurological diseases such as Alzheimer's disease or Creutzfeldt-Jakob disease. Many studies have shown increased expression levels of the SERPINA3 gene in various types of cancer, such as glioblastoma, colorectal cancer, endometrial cancer, breast cancer, or melanoma. In this case, the SERPINA3 protein is associated with an antiapoptotic function implemented by adjusting the PI3K/AKT or MAPK/ERK 1/2 signal pathways. However, the functions of the SERPINA3 protein are still only partially understood, mainly in the context of cancerogenesis, so it seems necessary to summarize the available information and describe its mechanism of action. In particular, we sought to amass the existing body of research focusing on the description of the underlying mechanisms of various diseases not related to cancer. Our goal was to present an overview of the correct function of SERPINA3 as part of the defense system, which unfortunately easily becomes the "Fifth Column" and begins to support processes of destruction.
Collapse
|
18
|
Li Z, Zhao C, He G, Wang Y, Wang Y, Ma X. Identification of PI3K/HDAC Dual-targeted inhibitors with subtype selectivity as potential therapeutic agents against solid Tumors: Building HDAC6 potency in a Quinazolinone-based PI3Kδ-selective template. Bioorg Med Chem 2022; 73:117028. [DOI: 10.1016/j.bmc.2022.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022]
|
19
|
Agnetti J, Bou Malham V, Desterke C, Benzoubir N, Peng J, Jacques S, Rahmouni S, Di Valentin E, Tan TZ, Samuel D, Thiery JP, Gassama-Diagne A. PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun Biol 2022; 5:740. [PMID: 35879421 PMCID: PMC9314410 DOI: 10.1038/s42003-022-03637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
The stem cells involved in formation of the complex human body are epithelial cells that undergo apicobasal polarization and form a hollow lumen. Epithelial plasticity manifests as epithelial to mesenchymal transition (EMT), a process by which epithelial cells switch their polarity and epithelial features to adopt a mesenchymal phenotype. The connection between the EMT program and acquisition of stemness is now supported by a substantial number of reports, although what discriminates these two processes remains largely elusive. In this study, based on 3D organoid culture of hepatocellular carcinoma (HCC)-derived cell lines and AAV8-based protein overexpression in the mouse liver, we show that activity modulation of isoform δ of phosphoinositide 3-kinase (PI3Kδ) controls differentiation and discriminates between stemness and EMT by regulating the transforming growth factor β (TGFβ) signaling. This study provides an important tool to control epithelial cell fate and represents a step forward in understanding the development of aggressive carcinoma.
Collapse
Affiliation(s)
- Jean Agnetti
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Vanessa Bou Malham
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | | | - Nassima Benzoubir
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Juan Peng
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Sophie Jacques
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Emanuel Di Valentin
- Plateforme des vecteurs viraux, GIGA B34, GIGA-institute, Université de Liège, Liège, Belgium
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore National University of Singapore, Center for Translational Medicine, 14 Medical Drive, #12-01, 117599, Singapore, Singapore
| | - Didier Samuel
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
- AP-HP Hôpital Paul Brousse, Centre Hepato-Biliaire, F-94800, Villejuif, France
| | - Jean Paul Thiery
- Guangzhou Laboratory, International biological Island Guangzhou, 510005, Guangzhou, China
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, F-94800, France.
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France.
| |
Collapse
|
20
|
Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188760. [PMID: 35843512 DOI: 10.1016/j.bbcan.2022.188760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Anjana Soman
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
21
|
Naing A, Powderly JD, Nemunaitis JJ, Luke JJ, Mansfield AS, Messersmith WA, Sahebjam S, LoRusso PM, Garrido-Laguna I, Leopold L, Geschwindt R, Ding K, Smith M, Berlin JD. Exploring the safety, effect on the tumor microenvironment, and efficacy of itacitinib in combination with epacadostat or parsaclisib in advanced solid tumors: a phase I study. J Immunother Cancer 2022; 10:jitc-2021-004223. [PMID: 35288468 PMCID: PMC8921936 DOI: 10.1136/jitc-2021-004223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This phase I multicenter study was designed to evaluate the safety, tolerability, efficacy, and translational effects on the tumor microenvironment of itacitinib (Janus-associated kinase 1 (JAK1) inhibitor) in combination with epacadostat (indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor) or parsaclisib (phosphatidylinositol 3-kinase δ (PI3Kδ) inhibitor). METHODS Patients with advanced or metastatic solid tumors were enrolled and received itacitinib (100-400 mg once a day) plus epacadostat (50-300 mg two times per day; group A), or itacitinib (100-400 mg once a day) plus parsaclisib or parsaclisib monotherapy (0.3-10 mg once a day; group B). RESULTS A total of 142 patients were enrolled in the study. The maximum tolerated dose was not reached for either the combination of itacitinib plus epacadostat (n=47) or itacitinib plus parsaclisib (n=90). One dose-limiting toxicity of serious, grade 3 aseptic meningitis was reported in a patient receiving itacitinib 300 mg once a day plus parsaclisib 10 mg once a day, which resolved when the study drugs were withdrawn. The most common treatment-related adverse events among patients treated with itacitinib plus epacadostat included fatigue, nausea, pyrexia, and vomiting, and for patients treated with itacitinib plus parsaclisib were fatigue, pyrexia, and diarrhea. In the itacitinib plus epacadostat group, no patient had an objective response. Among patients receiving itacitinib 100 mg once a day plus parsaclisib 0.3 mg once a day, three achieved partial response for an objective response rate (95% CI) of 7.1% (1.50 to 19.48). Treatment with itacitinib plus epacadostat demonstrated some increase in tumor CD8+ T cell infiltration and minor changes in six plasma proteins, whereas treatment with itacitinib plus high-dose parsaclisib resulted in downregulation of 20 plasma proteins mostly involved in immune cell function, with no observed change in intratumoral CD8+ T cell infiltration. CONCLUSION Adverse events with JAK1 inhibition combined with either IDO1 or PI3Kδ inhibition were manageable, but the combinations demonstrated limited clinical activity or enhancement of immune activation in the tumor microenvironment. TRIAL REGISTRATION NUMBER NCT02559492.
Collapse
Affiliation(s)
- Aung Naing
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA
| | - John D Powderly
- Cancer Research Clinic, Carolina Biooncology Institute, Huntersville, North Carolina, USA
| | | | - Jason J Luke
- Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Solmaz Sahebjam
- Clinical Research Unit, Moffitt Cancer Center, Tampa, Florida, USA
| | - Patricia M LoRusso
- Yale School of Medicine, Yale Cancer Center, New Haven, Connecticut, USA
| | - Ignacio Garrido-Laguna
- University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Lance Leopold
- Immuno-Oncology, Incyte Corporation, Wilmington, Delaware, USA
| | - Ryan Geschwindt
- Immuno-Oncology, Incyte Corporation, Wilmington, Delaware, USA
| | - Kai Ding
- Biostatistics, Incyte Corporation, Wilmington, Delaware, USA
| | - Michael Smith
- Immuno-Oncology, Incyte Corporation, Wilmington, Delaware, USA
| | - Jordan D Berlin
- Division of Hematology/Oncology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Qi J, Wang W, Tang Y, Lou S, Wang J, Yuan T, He Q, Yang B, Zhu H, Cui S. Discovery of Novel Indazoles as Potent and Selective PI3Kδ Inhibitors with High Efficacy for Treatment of Hepatocellular Carcinoma. J Med Chem 2022; 65:3849-3865. [PMID: 35191698 DOI: 10.1021/acs.jmedchem.1c01520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PI3Kδ inhibitors have been developed for treatment of B-cell malignancies and inflammatory and autoimmune diseases. However, their therapeutic role in solid tumors like hepatocellular carcinoma (HCC) is rarely reported. Thus, the development of potent and selective PI3Kδ inhibitors with a new chemotype and therapy is highly desirable. Through the scaffold-hopping strategy, indazole was first described as the core structure of propeller-shaped PI3Kδ inhibitors. A total of 26 indazole derivatives were designed and prepared to identify a novel compound 9x with good isoform selectivity, PK profile, and potency. Compared to Idelalisib and Sorafenib, the pharmacodynamic (PD) studies showed that 9x exhibits superior efficacy in HCC cell lines and xenograft models, and the mechanistic study showed that 9x robustly suppresses the downstream AKT pathway to induce subsequent apoptotic cell death in HCC models. Therefore, this work provides a new structural design of PI3Kδ inhibitors for a novel and efficient therapeutic small molecule toward HCC.
Collapse
Affiliation(s)
- Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihua Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaer Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Becattini B, Breasson L, Sardi C, Zani F, Solinas G. PI3Kγ promotes obesity-associated hepatocellular carcinoma by regulating metabolism and inflammation. JHEP Rep 2021; 3:100359. [PMID: 34704005 PMCID: PMC8521290 DOI: 10.1016/j.jhepr.2021.100359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background & Aims Phosphatidylinositides-3 kinases (PI3Ks) are promising drug targets for cancer therapy, but blockage of PI3K-AKT signalling causes hyperglycaemia, hyperinsulinaemia, and liver damage in patients, and hepatocellular carcinoma (HCC) in mice. There are 4 PI3Ks: PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ. The role of PI3Kγ in HCC is unknown. Methods We performed histopathological, metabolic, and molecular phenotyping of mice with genetic ablation of PI3Kγ using models where HCC was initiated by the carcinogen diethylnitrosamine (DEN) and promoted by dietary or genetic obesity (ob/ob). The role of PI3Kγ in leucocytes was investigated in mice lacking PI3Kγ in haematopoietic and endothelial cells. Results Loss of PI3Kγ had no effects on the development of DEN-induced HCC in lean mice. However, in mice injected with DEN and placed on an obesogenic diet, PI3Kγ ablation reduced tumour growth, which was associated with reduced insulinaemia, steatosis, and expression of inflammatory cytokines. ob/ob mice lacking PI3Kγ, and mice with diet-induced obesity lacking PI3Kγ in leucocytes and endothelial cells did not display improved insulin sensitivity, steatosis, metabolic inflammation, or reduced tumour growth. However, these mice showed a reduced number of tumours, reduced liver infiltration by neutrophils, and reduced hepatocyte proliferation acutely induced by DEN. Conclusions Loss of PI3Kγ reduces tumour development in obesity-promoted HCC through multiple cell types and mechanisms that include improved insulinaemia, steatosis, and metabolic inflammation as well as the regulation of acute neutrophil infiltration and compensatory hepatocyte proliferation. PI3Kγ-selective inhibition may represent a novel therapeutic approach to reduce HCC initiation and slow HCC progression. Lay summary Class-1 phosphatidylinositides-3 kinases (PI3Ks) are critical targets in cancer therapy, but complete inhibition of all isoforms causes liver damage, hyperglycaemia, and insulinaemia. Here we show that selective ablation of the PI3Kγ isoform dampens tumour initiation and growth in a mouse model of carcinogen-initiated and obesity-promoted hepatocellular carcinoma (HCC). The effect of PI3Kγ ablation on reduced tumour growth was explained by reduced tumour cell proliferation, which was associated with reduced insulin levels, liver lipids, and reduced expression of tumour-promoting cytokines. PI3Kγ ablation in leucocytes of obese mice had no effects on tumour size. However, it reduced tumour number in association with reduced carcinogen-induced neutrophil infiltration and hepatocyte proliferation in livers of obese mice. Inhibition of PI3Kγ may thus reduce HCC initiation and growth in obese subjects by a mechanism involving reduced metabolic stress and insulinaemia and reduced carcinogen-induced neutrophil infiltration to the fatty liver. PI3Kγ ablation does not affect carcinogen-induced liver cancer in lean mice. PI3Kγ ablation reduces carcinogen-induced liver cancer in obese mice. Systemic PI3Kγ ablation reduces hyperinsulinaemia, steatosis, metabolic inflammation, and growth of liver tumours. PI3Kγ ablation in leucocytes and endothelial cells reduces neutrophil infiltration and hepatocyte proliferation acutely induced by carcinogen in the fatty liver.
Collapse
Key Words
- AKT
- AST, aspartate aminotransferase
- BMDM, bone marrow-derived macrophages
- DEN, diethylnitrosamine
- GTT, glucose tolerance test
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- ITT, insulin tolerance test
- Insulin
- NAFLD
- NASH
- PI3K, phosphatidylinositides-3 kinase
- PTEN, phosphatase and tensin homolog
- RT, room temperature
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labelling
- WT, wild-type
- mTOR
Collapse
Affiliation(s)
- Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine at Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ludovic Breasson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine at Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Claudia Sardi
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine at Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine at Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
24
|
Wu M, Xia X, Hu J, Fowlkes NW, Li S. WSX1 act as a tumor suppressor in hepatocellular carcinoma by downregulating neoplastic PD-L1 expression. Nat Commun 2021; 12:3500. [PMID: 34108491 PMCID: PMC8190270 DOI: 10.1038/s41467-021-23864-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
WSX1, a receptor subunit for IL-27, is widely expressed in immune cells and closely involved in immune response, but its function in nonimmune cells remains unknown. Here we report that WSX1 is highly expressed in human hepatocytes but downregulated in hepatocellular carcinoma (HCC) cells. Using NRAS/AKT-derived spontaneous HCC mouse models, we reveal an IL-27–independent tumor-suppressive effect of WSX1 that largely relies on CD8+ T-cell immune surveillance via reducing neoplastic PD-L1 expression and the associated CD8+ T-cell exhaustion. Mechanistically, WSX1 transcriptionally downregulates an isoform of PI3K—PI3Kδ and thereby inactivates AKT, reducing AKT-induced GSK3β inhibition. Activated GSK3β then boosts PD-L1 degradation, resulting in PD-L1 reduction. Overall, we demonstrate that WSX1 is a tumor suppressor that reinforces hepatic immune surveillance by blocking the PI3Kδ/AKT/GSK3β/PD-L1 pathway. Our results may yield insights into the host homeostatic control of immune response and benefit the development of cancer immunotherapies. The biological functions of WSX1, the alpha subunit of the interleukin-27 receptor, in non-immune cells are largely unknown. Here, the authors propose an IL-27-independent tumor suppressor role for WSX1 in hepatocytes, showing that WSX1 restricts tumor progression by down-regulating PD-L1 expression in tumour cells and maximizing T cell mediated antitumor immune responses.
Collapse
Affiliation(s)
- Man Wu
- Liver Cancer Institute & Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.,Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqing Xia
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jiemiao Hu
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shulin Li
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Tran M, Wu J, Wang L, Shin DJ. A Potential Role for SerpinA3N in Acetaminophen-Induced Hepatotoxicity. Mol Pharmacol 2021; 99:277-285. [PMID: 33436521 PMCID: PMC7985612 DOI: 10.1124/molpharm.120.000117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/31/2020] [Indexed: 10/25/2022] Open
Abstract
Acetaminophen (APAP) is a commonly used pain and fever reliever but is also the most frequent cause of drug-induced liver injury. The mechanism pertaining acetaminophen toxicity has been well documented, whereas mechanisms of hepatotoxicity are not well established. Serine (or cysteine) peptidase inhibitor, clade A, member 3N (SerpinA3N), a serine protease inhibitor, is synthesized in the liver but the role of SerpinA3N in relation to APAP-induced liver injury is not known. Wild-type and hepatocyte-specific SerpinA3N knockout (HKO) mice were injected intraperitoneally with a single dose of PBS or APAP (400 mg/kg) for 12 hours, and markers of liver injury, cell death, and inflammation were assessed. SerpinA3N expression was highly induced in mice with APAP overdose. SerpinA3N HKO mice had diminished liver injury and necrosis as shown by lower alanine aminotransferase and interleukin-6 levels, accompanied by suppressed inflammatory cytokines and reduced neutrophil infiltration. The reduced oxidative stress was associated with enhanced antioxidant enzyme capabilities. Taken together, hepatocyte SerpinA3N deficiency reduced APAP-induced liver injury by ameliorating inflammation and modulating the 5' AMP-activated protein kinase-unc-51-like autophagy activating kinase 1 signaling pathway. Our study provides novel insights into a potential role for SerpinA3N in APAP-induced liver injury. SIGNIFICANCE STATEMENT: Our studies indicate that serine (or cysteine) peptidase inhibitor, clade A, member 3N (SerpinA3N) may have a pathophysiological role in modulating acetaminophen (APAP)-induced liver injury. More specifically, mice with hepatic deletion of SerpinA3N suppressed inflammation and liver injury to reduce APAP-induced hepatotoxicity. Controlling the inflammatory response offers possible approaches for novel therapeutics; therefore, understanding the pathophysiological role of SerpinA3N in inducing liver injury may add to the development of more efficacious treatments.
Collapse
Affiliation(s)
- Melanie Tran
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut (M.T., J.W., D.-J.S.) and Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut (L.W.)
| | - Jianguo Wu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut (M.T., J.W., D.-J.S.) and Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut (L.W.)
| | - Li Wang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut (M.T., J.W., D.-J.S.) and Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut (L.W.)
| | - Dong-Ju Shin
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut (M.T., J.W., D.-J.S.) and Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut (L.W.)
| |
Collapse
|
26
|
Overexpression of SERPINA3 promotes tumor invasion and migration, epithelial-mesenchymal-transition in triple-negative breast cancer cells. Breast Cancer 2021; 28:859-873. [PMID: 33569740 PMCID: PMC8213666 DOI: 10.1007/s12282-021-01221-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-021-01221-4.
Collapse
|
27
|
Hong W, Li S, Cai Y, Zhang T, Yang Q, He B, Yu J, Chen Z. The Target MicroRNAs and Potential Underlying Mechanisms of Yiqi-Bushen-Tiaozhi Recipe against-Non-Alcoholic Steatohepatitis. Front Pharmacol 2020; 11:529553. [PMID: 33281601 PMCID: PMC7688626 DOI: 10.3389/fphar.2020.529553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as potential therapeutic targets for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH). Traditional Chineses Medicine (TCM) plays an important role in the prevention or treatment of NAFLD/NASH. However, miRNA targets of TCM against NASH still remain largely unknown. Here, we showed that Yiqi-Bushen-Tiaozhi (YBT) recipe effectively attenuated diet-induced NASH in C57BL/6 mice. To identify the miRNA targets of YBT and understand the potential underlying mechanisms, we performed network pharmacology using miRNA and mRNA deep sequencing data combined with Ingenuity Pathway Analysis (IPA). Mmu-let-7a-5p, mmu-let-7b-5p, mmu-let-7g-3p and mmu-miR-106b-3p were screened as the main targets of YBT. Our results suggested that YBT might alleviate NASH by regulating the expression of these miRNAs that potentially modulate inflammation/immunity and oxidative stress. This study provides useful information for guiding future studies on the mechanism of YBT against NASH by regulating miRNAs.
Collapse
Affiliation(s)
- Wei Hong
- The Second Central Laboratory, The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Songsong Li
- The Second Central Laboratory, The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yueqin Cai
- Laboratory Animal Research Center of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Zhang
- The Second Central Laboratory, The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Qingrou Yang
- The Second Central Laboratory, The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The Second Central Laboratory, The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Jianshun Yu
- The Second Central Laboratory, The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhiyun Chen
- The Second Central Laboratory, The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
28
|
Sansone V, Le Grazie M, Roselli J, Polvani S, Galli A, Tovoli F, Tarocchi M. Telomerase reactivation is associated with hepatobiliary and pancreatic cancers. Hepatobiliary Pancreat Dis Int 2020; 19:420-428. [PMID: 32386990 DOI: 10.1016/j.hbpd.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) and its components play a significant role in cancer progression, but recent data demonstrated that telomeres and telomerase alterations could be found in other diseases; increasing evidence suggests a key role of this enzyme in the fields of hepatobiliary and pancreatic diseases. DATA SOURCES We performed a PubMed search with the following keywords: telomerase, hepatocellular carcinoma, cholangiocarcinoma, pancreatic adenocarcinoma by December 2019. We reviewed the relevant publications that analyzed the correlation between telomerase activity and hepatobiliary and pancreatic diseases. RESULTS Telomerase reactivation plays a significant role in the development and progression of hepatobiliary and pancreatic tumors and could be used as a diagnostic biomarker for hepatobiliary and pancreatic cancers, as a predictor for prognosis and a promising therapeutic target. CONCLUSIONS Our review summarized the evidence about the critical role of hTERT in cancerous and precancerous lesions of the alteration and its activity in hepatobiliary and pancreatic diseases.
Collapse
Affiliation(s)
- Vito Sansone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Marco Le Grazie
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Jenny Roselli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Mirko Tarocchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| |
Collapse
|
29
|
Park JS, Bae SH. Phosphoinositide 3-kinase inhibitors are effective therapeutic drugs for the treatment of hepatocellular carcinoma? Clin Mol Hepatol 2020; 26:577-578. [PMID: 32937686 PMCID: PMC7641560 DOI: 10.3350/cmh.2020.0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jeong Su Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Han Bae
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Li Q, Qiu J, Yang H, Sun G, Hu Y, Zhu D, Deng Z, Wang X, Tang J, Jiang R. Kinesin family member 15 promotes cancer stem cell phenotype and malignancy via reactive oxygen species imbalance in hepatocellular carcinoma. Cancer Lett 2020; 482:112-125. [DOI: 10.1016/j.canlet.2019.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
|
31
|
p110δ PI3K as a therapeutic target of solid tumours. Clin Sci (Lond) 2020; 134:1377-1397. [DOI: 10.1042/cs20190772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
AbstractFrom the time of first characterization of PI3K as a heterodimer made up of a p110 catalytic subunit and a regulatory subunit, a wealth of evidence have placed the class IA PI3Ks at the forefront of drug development for the treatment of various diseases including cancer. The p110α isoform was quickly brought at the centre of attention in the field of cancer research by the discovery of cancer-specific gain-of-function mutations in PIK3CA gene in a range of human solid tumours. In contrast, p110δ PI3K was placed into the spotlight of immunity, inflammation and haematologic malignancies because of the preferential expression of this isoform in leucocytes and the rare mutations in PIK3CD gene. The last decade, however, several studies have provided evidence showing that the correlation between the PIK3CA mutations and the response to PI3K inhibition is less clear than originally considered, whereas concurrently an unexpected role of p110δ PI3K in solid tumours has being emerging. While PIK3CD is mostly non-mutated in cancer, the expression levels of p110δ protein seem to act as an intrinsic cancer-causing driver in various solid tumours including breast, prostate, colorectal and liver cancer, Merkel-Cell carcinoma, glioblastoma and neurobalstoma. Furthermore, p110δ selective inhibitors are being studied as potential single agent treatments or as combination partners in attempt to improve cancer immunotherapy, with both strategies to shown great promise for the treatment of several solid tumours. In this review, we discuss the evidence implicating the p110δ PI3K in human solid tumours, their impact on the current state of the field and the potential of using p110δ-selective inhibitors as monotherapy or combined therapy in different cancer contexts.
Collapse
|
32
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
33
|
Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, Cervello M, McCubrey JA. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:915-929. [PMID: 31657972 DOI: 10.1080/14728222.2019.1685501] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge.Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using the Medline Database from 2000 to the present.Expert opinion: The involvement of RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC and TP53 pathways as drivers of the disease and drug resistance is a challenge. Moreover, miRs regulate the expression of key genes in these pathways. What we and others are proposing is the prospect of targeting miRs and their downstream targets to improve conventional approaches to treat HCC. Combination approaches are often promising because multiple signaling pathways are deregulated due to diverse mutations and events.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
34
|
Abby Philips C, Agarwal M, Phadke N, Rajesh S, Padsalgi G, Ahamed R, Augustine P. A Novel Phosphoinositide-3-kinase Adapter Protein 1 Gene Missense Mutation in Familial Cirrhosis. J Clin Exp Hepatol 2019; 9:652-656. [PMID: 31695254 PMCID: PMC6823681 DOI: 10.1016/j.jceh.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/03/2019] [Indexed: 12/12/2022] Open
Abstract
Familial cirrhosis is a condition that is associated with the presence of liver disease with genetic linkage among multiple family members in a generation or in multiple generations. With cirrhosis, most of these disease pathogeneses are related to a defect of an enzyme/transport protein leading to a deranged metabolic pathway with variable prevalence. Many studies and high-quality metanalyses have shed light on genetic linkage associated with nonalcoholic fatty liver disease and steatohepatitis such as the PNPLA3, MBOAT7, and TM6SF2 variants. In this report, we shed light on a novel missense mutation associated with cirrhosis in a family of brothers associated with phosphoinositide-3-kinase adapter protein 1 gene through high-output whole exosome gene sequencing methodology.
Collapse
Key Words
- CCDS, Consensus Coding Sequence
- DNA, Deoxyribonucleic acid
- EWAS, Epigenome wide association study
- GWAS, Genome-wide association studies
- HCC, Hepatocellular carcinoma
- HGVS, Human Genome Variation Society
- MBOAT7, Membrane bound O-acyltransferase domain-containing 7
- NAFLD, Non-alcoholic fatty liver disease
- NGS, Next generation sequencing
- OMIM, Online Mendelian Inheritance in Man
- PBC, Primary biliary cholangitis
- PI3K
- PIK3AP1, Phosphoinositide-3-Kinase Adapter Protein 1
- PNPLA3
- PNPLA3, Patatin-like phospholipase domain containing 3
- RNA, Ribosomal nucleic acid
- RefSeq, Reference Sequence Database
- TMC4, Transmembrane channel-like 4 gene
- chronic liver disease
- epigenetics
- exosome
- familial cirrhosis
- gene mutation
- genomics
- illumina
- linkage
- metagenome
- missense mutation
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | | | - Nikhil Phadke
- Molecular, Cellular and Developmental Biology, Genepath-Dx, Pune, Maharashtra, India
| | - Sasidharan Rajesh
- The Liver Unit, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Guruprasad Padsalgi
- The Liver Unit, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Rizwan Ahamed
- The Liver Unit, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Philip Augustine
- The Liver Unit, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| |
Collapse
|
35
|
Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 2019; 20:515-534. [PMID: 31110302 DOI: 10.1038/s41580-019-0129-z] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PI3Ks are a family of lipid kinases that phosphorylate intracellular inositol lipids to regulate signalling and intracellular vesicular traffic. Mammals have eight isoforms of PI3K, divided into three classes. The class I PI3Ks generate 3-phosphoinositide lipids, which directly activate signal transduction pathways. In addition to being frequently genetically activated in cancer, similar mutations in class I PI3Ks have now also been found in a human non-malignant overgrowth syndrome and a primary immune disorder that predisposes to lymphoma. The class II and class III PI3Ks are regulators of membrane traffic along the endocytic route, in endosomal recycling and autophagy, with an often indirect effect on cell signalling. Here, we summarize current knowledge of the different PI3K classes and isoforms, focusing on recently uncovered biological functions and the mechanisms by which these kinases are activated. Deeper insight into the PI3K isoforms will undoubtedly continue to contribute to a better understanding of fundamental cell biological processes and, ultimately, of human disease.
Collapse
Affiliation(s)
- Benoit Bilanges
- UCL Cancer Institute, University College London, London, UK.
| | - York Posor
- UCL Cancer Institute, University College London, London, UK.
| | | |
Collapse
|
36
|
Ko E, Kim JS, Bae JW, Kim J, Park SG, Jung G. SERPINA3 is a key modulator of HNRNP-K transcriptional activity against oxidative stress in HCC. Redox Biol 2019; 24:101217. [PMID: 31121493 PMCID: PMC6529774 DOI: 10.1016/j.redox.2019.101217] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Most studies about serpin peptidase inhibitor, clade A member 3 (SERPINA3) has been limited to its inhibitory functions and mechanisms. Herein, we report a novel role of SERPINA3 in transcriptional regulation of HCC progression-related genes. Among 19 selected genes through HCC cell isolation system based on telomere length, microarray analyses, and cell-based studies, SERPINA3 was the strongest determinant of increases in telomere length, HCC cell proliferation, survival, migration, and invasion. We also found that SERPINA3 strongly interacted with heterogeneous nuclear ribonucleoprotein K (HNRNP-K) under H2O2 exposure, and the oxidation-elicited SERPINA3-HNRNP-K complex enhanced the promoter activities and transcript levels of a telomere-relating gene (POT1) and HCC-promoting genes (UHRF1 and HIST2H2BE). Intriguingly, the inhibition of SERPINA3 oxidation rendered the transcriptional activity of the SERPINA3-HNRNP-K complex suppressed. Moreover, the co-immunoprecipitated HNRNP-K with SERPINA3 quantitatively correlated with not only the level of SERPINA3 oxidation but also the level of POT1, UHRF1, and HIST2H2BE transcripts and telomere length in HCC tissues. Therefore, the upregulated transcriptional activity of HNRNP-K mediated by SERPINA3 promotes HCC cell survival and proliferation and could be an indicator of poor prognosis for HCC patients. SERPINA3-HNRNP-K complex promotes HCC survival and proliferation. Oxidation of SERPINA3 accentuated the role of complex on target regulatory DNA. Blockade of the SERPINA3-HNRNP-K complex could be valuable in HCC therapy.
Collapse
Affiliation(s)
- Eunkyong Ko
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jong-Seo Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Center for RNA Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jong Woo Bae
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Center for RNA Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jeesoo Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Center for RNA Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Guhung Jung
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
37
|
Wang KF, Chen YD, Mo LQ, Zhang Z, Liu YJ, Chen JX, Sui XB, Xie T, Wu SX. Integrated traditional Chinese and Western medicine in hepatocellular carcinoma treatment. Shijie Huaren Xiaohua Zazhi 2019; 27:459-466. [DOI: 10.11569/wcjd.v27.i7.459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the branches of oncology become more and more detailed, its deficiencies gradually appear in clinical work in recent years. With the development of modern medicine, individualized treatment of hepatocellular carcinoma (HCC) has already been more emphasized in clinical work. This article reviews the diagnosis and treatment of HCC, which can be regarded as an organic systemic disease, based on a concept of integrated medicine. It is suggested that simply eliminating cancer lesions does not mean curing HCC. In clinical practice, it is necessary to use integrative thoughts such as basic study combined with clinical practice, medicine with pharmacy, traditional Chinese medicine with Western medicine, local with whole, etc, so as to find new integrative methods for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Kai-Feng Wang
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Yi-Dan Chen
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Li-Qin Mo
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Zhen Zhang
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Ya-Juan Liu
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Jiang-Xiang Chen
- Institute of Integrative Medicine, Hangzhou Normal University, Hangzhou 310002, Zhejiang Province, China
| | - Xin-Bing Sui
- Institute of Integrative Medicine, Hangzhou Normal University, Hangzhou 310002, Zhejiang Province, China
| | - Tian Xie
- Institute of Integrative Medicine, Hangzhou Normal University, Hangzhou 310002, Zhejiang Province, China
| | - Shi-Xiu Wu
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| |
Collapse
|