1
|
Tsukiyama N, Tanaka Y, Yamane H, Tanimine N, Kuroda S, Tahara H, Ohira M, Ide K, Kobayashi T, Ohdan H. Impacts of high mobility group box protein 1 gene polymorphisms on morbidity and mortality after living donor liver transplantation. Transpl Immunol 2025; 90:102225. [PMID: 40157616 DOI: 10.1016/j.trim.2025.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
We investigated the effect of single-nucleotide polymorphisms (SNPs) in the high mobility group box 1 (HMGB1) gene on morbidity and mortality after liver transplantation (LT). Among 120 LT recipients and their living donors, the genotypes of HMGB1, and the SNPs rs2249825, rs1045411, rs1412125, and rs1360485 were determined. There were no significant associations between these four SNPs and the incidence of rejection or mortality. However, the incidence of early allograft dysfunction (EAD) (n = 43), which presents as functional insufficiency within 1 week of LT, was significantly higher in recipients with the GC + CC allele of rs2249825 (n = 17/34) than in those with the GG allele (n = 26/86) (p = 0.044). Although the impact of donor HMGB1 SNPs on the incidence of EAD was not statistically significant, recipients with the GC + CC allele of rs2249825 who received liver grafts from donors with the same genotype had the highest incidence of EAD (p = 0.052). In contrast, the donor TC + CC allele of rs1412125 was an independent risk factor for the development of sepsis (n = 33) in LT recipient (OR = 3.05, 95 % CI = 1.18-7.87, p = 0.021). Thus, the SNPs of the HMGB1 gene in either recipients or donors were not associated with mortality but influenced the incidence of EAD and sepsis, likely being a predictive biomarker for the risk of serious complications after LT.
Collapse
Affiliation(s)
- Naofumi Tsukiyama
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Hiroaki Yamane
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
2
|
Alvarado-Tapias E, Pose E, Gratacós-Ginès J, Clemente-Sánchez A, López-Pelayo H, Bataller R. Alcohol-associated liver disease: Natural history, management and novel targeted therapies. Clin Mol Hepatol 2025; 31:S112-S133. [PMID: 39481875 PMCID: PMC11925442 DOI: 10.3350/cmh.2024.0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024] Open
Abstract
Alcohol consumption is a leading cause of preventable morbidity and mortality worldwide and the primary cause of advanced liver disease. Alcohol use disorder is a chronic, frequently relapsing condition characterized by persistent alcohol consumption despite its negative consequences. Alcohol-associated liver disease (ALD) encompasses a series of stages, from fatty liver (steatosis) to inflammation (steatohepatitis), fibrosis, and, ultimately, liver cirrhosis and its complications. The development of ALD is complex, involving both genetic and environmental factors, yet the exact mechanisms at play remain unclear. Alcohol-associated hepatitis (AH), a severe form of ALD, presents with sudden jaundice and liver failure. Currently, there are no approved targeted therapies able to interfere in the pathogenesis of ALD to stop the progression of the disease, making alcohol abstinence the most effective way to improve prognosis across all stages of ALD. For patients with advanced ALD who do not respond to medical therapy, liver transplantation is the only option that can improve prognosis. Recently, AH has become an early indication for liver transplantation in non-responders to medical treatment, showing promising results in carefully selected patients. This review provides an update on the epidemiology, natural history, pathogenesis, and current treatments for ALD. A deeper insight into novel targeted therapies investigated for AH focusing on new pathophysiologically-based agents is also discussed, including anti-inflammatory and antioxidative stress drugs, gut-liver axis modulators, and hepatocyte regenerative molecules.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- Department of Gastroenterology and Hepatology, Hospital of Santa Creu and Sant Pau, Autonomus University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
| | - Elisa Pose
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Gratacós-Ginès
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Clemente-Sánchez
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
| | - Hugo López-Pelayo
- Addictions Unit, Psychiatry and Psychology Service, ICN, Hospital Clinic Barcelona, Barcelona; Health and Addictions Research Group, IDIBAPS, Barcelona, Spain
| | - Ramón Bataller
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
3
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Mandrekar P, Mandal A. Pathogenesis of Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:647-661. [PMID: 39362713 DOI: 10.1016/j.cld.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The pathogenesis of alcohol-associated liver disease (ALD) is complex and multifactorial. Several intracellular, intrahepatic, and extrahepatic factors influence development of early fatty liver injury leading to inflammation and fibrosis. Alcohol metabolism, cellular stress, and gut-derived factors contribute to hepatocyte and immune cell injury leading to cytokine and chemokine production. The pathogenesis of alcohol-associated hepatitis (AH), an advanced form of acute-on-chronic liver failure due to excessive chronic intake in patients with underlying liver disease, is not well understood. While pathogenic mechanisms in early ALD are studied, the pathogenesis of AH requires further investigation to help design effective drugs for patients.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Abhishek Mandal
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Cavazza A, Triantafyllou E, Savoldelli R, Mujib S, Jerome E, Trovato FM, Artru F, Sheth R, Huang XH, Ma Y, Dazzi F, Pirani T, Antoniades CG, Lee WM, McPhail MJ, Karvellas CJ. Macrophage activation markers are associated with infection and mortality in patients with acute liver failure. Liver Int 2024; 44:1900-1911. [PMID: 38588014 PMCID: PMC11466005 DOI: 10.1111/liv.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND AIMS Acute liver failure is a multisystem disorder with a high mortality and frequent need for emergency liver transplantation. Following massive innate immune system activation, soluble markers of macrophage activation are released during liver damage and their association with disease severity and prognosis requires exploration. METHODS Patients ALF from the United States Acute Liver Failure Study Group (USALFSG, n = 224) and King's College Hospital (n = 40) together with healthy controls (HC, n = 50) were recruited. Serum from early (Days 1-3) and late (>Day 3) time points were analysed for MAMs by enzyme-linked immunosorbent assay correlated to markers of illness severity and 21-day spontaneous survival. Surface expression phenotyping was performed via Flow Cytometry on CD14+ monocytes. RESULTS All MAMs serum concentrations were significantly higher in ALF compared to controls (p < .0001). sCD206 concentration was higher in early and late stages of the disease in patients with bacteraemia (p = .002) and infection in general (p = .006). In MELD-adjusted multivariate modelling, sCD206 and sCD163 were independently associated with mortality. CD14+ monocyte expression of CD206 (p < .001) was higher in patients with ALF compared with controls and correlated with SOFA score (p = .018). sCD206 was independently validated as a predictor of infection in an external cohort. CONCLUSIONS sCD206 is increased in serum of ALF patients with infections and poor outcome and is upregulated on CD14+ monocytes. Later measurements of sCD163 and sCD206 during the evolution of ALF have potential as mechanistic predictors of mortality. sCD206 should be explored as a biomarker of sepsis and mortality in ALF.
Collapse
Affiliation(s)
- Anna Cavazza
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Roberto Savoldelli
- School of Cardiovascular and Metabolic Medicine and ScienceKing's College LondonLondonUK
| | - Salma Mujib
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Ellen Jerome
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Francesca M. Trovato
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Florent Artru
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Roosey Sheth
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Xiao Hong Huang
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
| | - Yun Ma
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine and ScienceKing's College LondonLondonUK
| | - Tasneem Pirani
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Charalambos G. Antoniades
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - William M. Lee
- Division of Digestive and Liver DiseasesUT Southwestern Medical CenterDallasTexasUSA
| | - Mark J. McPhail
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Constantine J. Karvellas
- Division of Gastroenterology (Liver Unit), Department of Critical Care MedicineUniversity of AlbertaEdmontonCanada
| | | |
Collapse
|
6
|
Babuta M, Morel C, de Carvalho Ribeiro M, Datta AA, Calenda C, Copeland C, Nasser I, Szabo G. A novel experimental model of MetALD in male mice recapitulates key features of severe alcohol-associated hepatitis. Hepatol Commun 2024; 8:e0450. [PMID: 38896082 PMCID: PMC11186819 DOI: 10.1097/hc9.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The recent increase in the incidence of alcohol-associated hepatitis (AH) coincides with the obesity epidemic in the United States. However, current mouse models do not fully replicate the combined insults of obesity, metabolic dysfunction-associated steatohepatitis, and alcohol. The aim of this study was to develop a new mouse model that recapitulates the robust inflammatory and fibrotic phenotype characteristic of human MetALD. METHODS Eight- to 10-week-old male C57BL/6 mice were fed chow or high fat-cholesterol-sugar diet (metabolic dysfunction-associated steatohepatitis diet) and in each group, some received alcohol in drinking water (ad libitum) and weekly alcohol binges (EtOH) for 3 months. The liver was assessed for features of AH. RESULTS MetALD mice displayed increased liver damage indicated by highly elevated ALT and bilirubin levels compared to all other groups. Liver steatosis was significantly greater in the MetALD mice compared to all other experimental groups. The inflammatory phenotype of MetALD was also recapitulated, including increased IL-6 and IL-1β protein levels as well as increased CD68+ macrophages and Ly6G+ neutrophils in the liver. Sirius red staining and expression of collagen 1, alpha-smooth muscle actin indicated advanced fibrosis in the livers of MetALD mice. In addition, indicators of epithelial-to-mesenchymal transition markers were increased in MetALD mice compared to all other groups. Furthermore, we found increased ductular reaction, dysregulated hedgehog signaling, and decreased liver synthetic functions, consistent with severe AH. CONCLUSIONS Alcohol administration in mice combined with metabolic dysfunction-associated steatohepatitis diet recapitulates key characteristics of human AH including liver damage, steatosis, robust systemic inflammation, and liver immune cell infiltration. This model results in advanced liver fibrosis, ductular reaction, decreased synthetic function, and hepatocyte dedifferentiation, suggesting a robust model of MetALD in mice.
Collapse
Affiliation(s)
- Mrigya Babuta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Morel
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelle de Carvalho Ribeiro
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Aditi Ashish Datta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles Calenda
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Qian Z, Xiong W, Mao X, Li J. Macrophage Perspectives in Liver Diseases: Programmed Death, Related Biomarkers, and Targeted Therapy. Biomolecules 2024; 14:700. [PMID: 38927103 PMCID: PMC11202214 DOI: 10.3390/biom14060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Macrophages, as important immune cells of the organism, are involved in maintaining intrahepatic microenvironmental homeostasis and can undergo rapid phenotypic changes in the injured or recovering liver. In recent years, the crucial role of macrophage-programmed cell death in the development and regression of liver diseases has become a research hotspot. Moreover, macrophage-targeted therapeutic strategies are emerging in both preclinical and clinical studies. Given the macrophages' vital role in complex organismal environments, there is tremendous academic interest in developing novel therapeutic strategies that target these cells. This review provides an overview of the characteristics and interactions between macrophage polarization, programmed cell death, related biomarkers, and macrophage-targeted therapies. It aims to deepen the understanding of macrophage immunomodulation and molecular mechanisms and to provide a basis for the treatment of macrophage-associated liver diseases.
Collapse
Affiliation(s)
- Zibing Qian
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; (Z.Q.); (W.X.)
| | - Wanyuan Xiong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; (Z.Q.); (W.X.)
| | - Xiaorong Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; (Z.Q.); (W.X.)
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Junfeng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; (Z.Q.); (W.X.)
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Hepatology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Raoufinia R, Arabnezhad A, Keyhanvar N, Abdyazdani N, Saburi E, Naseri N, Niazi F, Niazi F, Namdar AB, Rahimi HR. Leveraging stem cells to combat hepatitis: a comprehensive review of recent studies. Mol Biol Rep 2024; 51:459. [PMID: 38551743 DOI: 10.1007/s11033-024-09391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Hepatitis is a significant global public health concern, with viral infections being the most common cause of liver inflammation. Antiviral medications are the primary treatments used to suppress the virus and prevent liver damage. However, the high cost of these drugs and the lack of awareness and stigma surrounding the disease create challenges in managing hepatitis. Stem cell therapy has arisen as a promising therapeutic strategy for hepatitis by virtue of its regenerative and immunomodulatory characteristics. Stem cells have the exceptional capacity to develop into numerous cell types and facilitate tissue regeneration, rendering them a highly promising therapeutic avenue for hepatitis. In animal models, stem cell therapy has demonstrated worthy results by reducing liver inflammation and improving liver function. Furthermore, clinical trials have been undertaken to assess the safety and effectiveness of stem cell therapy in individuals with hepatitis. This review aims to explore the involvement of stem cells in treating hepatitis and highlight the findings from studies conducted on both animals and humans. The objective of this review is to primarily concentrate on the ongoing and future clinical trials that assess the application of stem cell therapy in the context of hepatitis, including the transplantation of autologous bone marrow-derived stem cells, human induced pluripotent stem cells, and other mesenchymal stem cells. In addition, this review will explore the potential merits and constraints linked to stem cell therapy for hepatitis, as well as its prospective implications in the management of this disease.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Arabnezhad
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Naseri
- Department of Biochemistry, School of medicine, Hamadan University of medical sciences, Hamadan, Iran
| | - Fereshteh Niazi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Niazi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Paurević M, Šrajer Gajdošik M, Ribić R. Mannose Ligands for Mannose Receptor Targeting. Int J Mol Sci 2024; 25:1370. [PMID: 38338648 PMCID: PMC10855088 DOI: 10.3390/ijms25031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Martina Šrajer Gajdošik
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Rosana Ribić
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, HR-42000 Varaždin, Croatia
| |
Collapse
|
10
|
Tornai D, Mitchell M, McClain CJ, Dasarathy S, McCullough A, Radaeva S, Kroll-Desrosiers A, Lee J, Barton B, Szabo G. A novel score of IL-13 and age predicts 90-day mortality in severe alcohol-associated hepatitis: A multicenter plasma biomarker analysis. Hepatol Commun 2023; 7:e0296. [PMID: 37994498 PMCID: PMC10666984 DOI: 10.1097/hc9.0000000000000296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/15/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Severe alcoholic hepatitis (AH) has a high short-term mortality rate. The MELD assesses disease severity and mortality; however, it is not specific for AH. We screened plasma samples from patients with severe AH for biomarkers of multiple pathological processes and identified predictors of short-term mortality. METHODS Plasma was collected at baseline from 85 patients with severe AH (MELD≥20, Maddrey's discriminant function≥32) enrolled in the Defeat Alcoholic Steatohepatitis clinical trial (investigating IL-1 receptor antagonist+pentoxifylline+zinc vs. methylprednisolone+placebo). Samples were analyzed for 43 biomarkers and the markers' association with 28- and 90-day mortalities was assessed. RESULTS Thirty-one (36.5%) patients died during the 90-day follow-up with similar ratios in the treatment groups. Eight biomarkers showed an association with mortality. IL-6, IL-22, interferon-α2, soluble TNF receptor 1, lipocalin-2, and α-fetoprotein levels were associated with 28-day mortality, while IL-6, IL-13, and endotoxin levels with 90-day mortality. In multivariable Cox regression, encephalopathy, lipocalin-2, and α-fetoprotein levels were independent predictors of 28-day mortality, and IL-6, IL-13, international normalized ratio levels, and age were independent predictors of 90-day mortality. The combination of IL-13 and age had superior performance in predicting 90-day mortality compared with MELD in the total cohort and the individual treatment groups. CONCLUSIONS We identified predictors of short-term mortality in a cohort exclusively involving patients with severe AH. We created a composite score of IL-13 and age that predicts 90-day mortality regardless of the treatment type with a performance superior to MELD in severe AH.
Collapse
Affiliation(s)
- David Tornai
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mack Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Arthur McCullough
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Marylansd, USA
| | - Aimee Kroll-Desrosiers
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- VA Central Western Massachusetts Healthcare System, Leeds, Massachusetts, USA
| | - JungAe Lee
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Svecla M, Nour J, Bladergroen MR, Nicolardi S, Zhang T, Beretta G, Wuhrer M, Norata GD, Falck D. Impact of Asialoglycoprotein Receptor and Mannose Receptor Deficiency on Murine Plasma N-glycome Profiles. Mol Cell Proteomics 2023; 22:100615. [PMID: 37414249 PMCID: PMC10462831 DOI: 10.1016/j.mcpro.2023.100615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023] Open
Abstract
The asialoglycoprotein receptor (ASGPR) and the mannose receptor C-type 1 (MRC1) are well known for their selective recognition and clearance of circulating glycoproteins. Terminal galactose and N-Acetylgalactosamine are recognized by ASGPR, while terminal mannose, fucose, and N-Acetylglucosamine are recognized by MRC1. The effects of ASGPR and MRC1 deficiency on the N-glycosylation of individual circulating proteins have been studied. However, the impact on the homeostasis of the major plasma glycoproteins is debated and their glycosylation has not been mapped with high molecular resolution in this context. Therefore, we evaluated the total plasma N-glycome and plasma proteome of ASGR1 and MRC1 deficient mice. ASGPR deficiency resulted in an increase in O-acetylation of sialic acids accompanied by higher levels of apolipoprotein D, haptoglobin, and vitronectin. MRC1 deficiency decreased fucosylation without affecting the abundance of the major circulating glycoproteins. Our findings confirm that concentrations and N-glycosylation of the major plasma proteins are tightly controlled and further suggest that glycan-binding receptors have redundancy, allowing compensation for the loss of one major clearance receptor.
Collapse
Affiliation(s)
- M Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - J Nour
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M R Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - S Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - G Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - D Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Riad NM, AbdEl Ghaffar HA, Mansour RR, Abdel Fattah W, Khairy A, Yosry A, Zayed NA, Hanna MOF. Clinical Significance of Evaluation of Monocytic Receptors in Patients with Hepatitis C Virus Infection. Viral Immunol 2023; 36:475-483. [PMID: 37505086 DOI: 10.1089/vim.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Monocytes in hepatitis C virus (HCV) infection play a critical role in chronic liver inflammation and fibrosis. We studied circulating monocytes and monocyte receptors in patients with HCV infection who were naive to treatment and those who received direct acting antiviral therapy and achieved sustained virological response. CD64+ CCR2+ (M1-like) and CD206+ CD163+ CX3CR1+ (M2-like) monocyte numbers and receptor expression were evaluated by flow cytometry. Higher expression of the monocyte chemokine receptor CCR2 predicted the severity of liver fibrosis, independent of successful treatment and viral clearance (R2 = 0.235, p = 0.002), whereas monocyte CX3CR1 expression was lower in both treated and untreated patients compared with controls (p = 0.011). The expression of the scavenger receptor CD163 was lower in patients with successful treatment (p = 0.005), supporting its role as a marker of treatment response. CD64+ CCR2+ (M1-like) and CD206+ CD163+ CX3CR1+ (M2-like) monocyte numbers were not altered with fibrosis progression or treatment response. Our findings reflect the diverse functions of monocytes in liver inflammation, fibrosis, and therapy. However, HCV clearance did not lead to complete monocyte reconstitution. Targeting monocytes and their chemokine receptors bears therapeutic potential to reduce liver fibrosis and improve disease outcome.
Collapse
Affiliation(s)
- Nermine Magdi Riad
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Reem Raied Mansour
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walaa Abdel Fattah
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Khairy
- Department of Endemic Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Yosry
- Department of Endemic Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Naglaa Ali Zayed
- Department of Endemic Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Onsy F Hanna
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Yi Q, Yang J, Wu Y, Wang Y, Cao Q, Wen W. Immune microenvironment changes of liver cirrhosis: emerging role of mesenchymal stromal cells. Front Immunol 2023; 14:1204524. [PMID: 37539053 PMCID: PMC10395751 DOI: 10.3389/fimmu.2023.1204524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Cirrhosis is a progressive and diffuse liver disease characterized by liver tissue fibrosis and impaired liver function. This condition is brought about by several factors, including chronic hepatitis, hepatic steatosis, alcohol abuse, and other immunological injuries. The pathogenesis of liver cirrhosis is a complex process that involves the interaction of various immune cells and cytokines, which work together to create the hepatic homeostasis imbalance in the liver. Some studies have indicated that alterations in the immune microenvironment of liver cirrhosis are closely linked to the development and prognosis of the disease. The noteworthy function of mesenchymal stem cells and their paracrine secretion lies in their ability to promote the production of cytokines, which in turn enhance the self-repairing capabilities of tissues. The objective of this review is to provide a summary of the alterations in liver homeostasis and to discuss intercellular communication within the organ. Recent research on MSCs is yielding a blueprint for cell typing and biomarker immunoregulation. Hopefully, as MSCs researches continue to progress, novel therapeutic approaches will emerge to address cirrhosis.
Collapse
Affiliation(s)
- Qiuyun Yi
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
14
|
de Carvalho Ribeiro M, Iracheta-Vellve A, Babuta M, Calenda CD, Copeland C, Zhuang Y, Lowe PP, Hawryluk D, Catalano D, Cho Y, Barton B, Dasarathy S, McClain C, McCullough AJ, Mitchell MC, Nagy LE, Radaeva S, Lien E, Golenbock DT, Szabo G. Alcohol-induced extracellular ASC specks perpetuate liver inflammation and damage in alcohol-associated hepatitis even after alcohol cessation. Hepatology 2023; 78:225-242. [PMID: 36862512 PMCID: PMC11921786 DOI: 10.1097/hep.0000000000000298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023]
Abstract
BACKGROUND AIMS Prolonged systemic inflammation contributes to poor clinical outcomes in severe alcohol-associated hepatitis (AH) even after the cessation of alcohol use. However, mechanisms leading to this persistent inflammation remain to be understood. APPROACH RESULTS We show that while chronic alcohol induces nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in the liver, alcohol binge results not only in NLRP3 inflammasome activation but also in increased circulating extracellular apoptosis-associated speck-like protein containing a caspase recruitment domain (ex-ASC) specks and hepatic ASC aggregates both in patients with AH and in mouse models of AH. These ex-ASC specks persist in circulation even after the cessation of alcohol use. Administration of alcohol-induced-ex-ASC specks in vivo in alcohol-naive mice results in sustained inflammation in the liver and circulation and causes liver damage. Consistent with the key role of ex-ASC specks in mediating liver injury and inflammation, alcohol binge failed to induce liver damage or IL-1β release in ASC-deficient mice. Our data show that alcohol induces ex-ASC specks in liver macrophages and hepatocytes, and these ex-ASC specks can trigger IL-1β release in alcohol-naive monocytes, a process that can be prevented by the NLRP3 inhibitor, MCC950. In vivo administration of MCC950 reduced hepatic and ex-ASC specks, caspase-1 activation, IL-1β production, and steatohepatitis in a murine model of AH. CONCLUSIONS Our study demonstrates the central role of NLRP3 and ASC in alcohol-induced liver inflammation and unravels the critical role of ex-ASC specks in the propagation of systemic and liver inflammation in AH. Our data also identify NLRP3 as a potential therapeutic target in AH.
Collapse
Affiliation(s)
- Marcelle de Carvalho Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Arvin Iracheta-Vellve
- Monte Rosa Therapeutics, Boston, Massachusetts, 02210, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles D Calenda
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick P Lowe
- Brigham and Women's General Hospital, Boston, Massachusetts, USA
| | - Danielle Hawryluk
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yeonhee Cho
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Craig McClain
- Division of Gastroenterology, University of Louisville, Louisville, Kentucky, USA
| | - Arthur J McCullough
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mack C Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Egil Lien
- Department of Medicine, Division of INfectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Douglas T Golenbock
- Department of Medicine, Division of INfectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Massachusetts, USA
| |
Collapse
|
15
|
Yang Y, Jia X, Qu M, Yang X, Fang Y, Ying X, Zhang M, Wei J, Pan Y. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages. Heliyon 2023; 9:e17116. [PMID: 37484431 PMCID: PMC10361319 DOI: 10.1016/j.heliyon.2023.e17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Chronic liver disease is a significant public health issue that can lead to considerable morbidity and mortality, imposing an enormous burden on healthcare resources. Understanding the mechanisms underlying chronic liver disease pathogenesis and developing effective treatment strategies are urgently needed. In this regard, the activation of liver resident macrophages, namely Kupffer cells, plays a vital role in liver inflammation and fibrosis. Macrophages display remarkable plasticity and can polarize into different phenotypes according to diverse microenvironmental stimuli. The polarization of macrophages into M1 pro-inflammatory or M2 anti-inflammatory phenotypes is regulated by complex signaling pathways such as the PI3K/Akt pathway. This review focuses on investigating the potential of using plant chemicals targeting the PI3K/Akt pathway for treating chronic liver disease while elucidating the polarization mechanism of macrophages under different microenvironments. Studies have demonstrated that inhibiting M1-type macrophage polarization or promoting M2-type polarization can effectively combat chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, and liver fibrosis. The PI3K/Akt pathway acts as a pivotal modulator of macrophage survival, migration, proliferation, and their responses to metabolism and inflammatory signals. Activating the PI3K/Akt pathway induces anti-inflammatory cytokine expression, resulting in the promotion of M2-like phenotype to facilitate tissue repair and resolution of inflammation. Conversely, inhibiting PI3K/Akt signaling could enhance the M1-like phenotype, which exacerbates liver damage. Targeting the PI3K/Akt pathway has tremendous potential as a therapeutic strategy for regulating macrophage polarization and activity to treat chronic liver diseases with plant chemicals, providing new avenues for liver disease treatment.
Collapse
Affiliation(s)
- Yaqian Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaotao Jia
- Department of Neurology, The Affifiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, PR China
| | - Mengyang Qu
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinmao Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaoping Ying
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Meiqian Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanfang Pan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
16
|
Cao Y, Zhi J, Ren H, Sheng M, Jia L, Weng Y, Du H, Yu W. Association between serum HMGB1 elevation and early pediatric acute respiratory distress syndrome: a retrospective study of pediatric living donor liver transplant recipients with biliary atresia in China. BMC Anesthesiol 2023; 23:87. [PMID: 36944948 PMCID: PMC10028322 DOI: 10.1186/s12871-023-02040-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) protein is one of the main risk factors for pediatric acute respiratory distress syndrome (PARDS) after living donor liver transplantation (LDLT). However, studies of the relationship between HMGB1 and PARDS are lacking. We evaluated the link between anomalies of intraoperative serum HMGB1 and PARDS in pediatric LDLT recipients with biliary atresia during the first week after transplant. METHODS Data for 210 pediatric patients with biliary atresia who underwent LDLT between January 2018 and December 2021 were reviewed retrospectively. The main measure was serum HMGB1 levels 30 min after reperfusion, while the outcome was early PARDS after LDLT. Data including pretransplant conditions, laboratory indexes, variables of intraoperation, clinical complications, and outcomes after LDLT were analyzed for each patient. Univariate analysis of PARDS and multivariate logistic regression analyses of serum HMGB1 levels at 30 min in the neohepatic phase in the presence of PARDS were conducted to examine the potential associations. Subgroup interaction analyses and linear relationships between intraoperative serum HMGB1 levels and PARDS were also performed. RESULTS Among the participants, 55 had PARDS during 7 days after LDLT, including four in the first HMGB1 tertile (4.3-8.1 pg/mL), 18 in the second tertile (8.2-10.6 pg/mL), and 33 in the third tertile (10.6-18.8 pg/mL). The nonadjusted association between intraoperative HMGB1 levels and PARDS was positive (odds ratio 1.41, 95% confidence intervals 1.24-1.61, P < 0.0001). The association remained unchanged after adjustment for age, weight, pretransplant total bilirubin, albumin, graft cold ischemia time, and intraoperative blood loss volume (odds ratio 1.28, 95% confidence interval 1.10-1.49, P = 0.0017). After controlling for potential confounders, the association between intraoperative HMGB1 levels and PARDS remained positive, as well as in the subgroup analyses. CONCLUSIONS Serum HMGB1 levels at 30 min after reperfusion were positively associated with early PARDS among pediatric patients with biliary atresia who had undergone LDLT. Identifying such patients early may increase the efficacy of perioperative respiratory management.
Collapse
Affiliation(s)
- Yimei Cao
- The First Central Clinical College of Tianjin Medical University, Tianjin, 300070, China
| | - Jiahao Zhi
- The First Central Clinical College of Tianjin Medical University, Tianjin, 300070, China
| | - Hengchang Ren
- Department of Anesthesiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Hongyin Du
- Department of Anesthesiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
17
|
Cho Y, Bukong TN, Tornai D, Babuta M, Vlachos IS, Kanata E, Catalano D, Szabo G. Neutrophil extracellular traps contribute to liver damage and increase defective low-density neutrophils in alcohol-associated hepatitis. J Hepatol 2023; 78:28-44. [PMID: 36063965 PMCID: PMC11910133 DOI: 10.1016/j.jhep.2022.08.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS In alcohol-associated hepatitis (AH), inflammation and neutrophil counts correlate with poor clinical outcomes. Here, we investigated how neutrophils contribute to liver damage in AH. METHODS We isolated blood neutrophils from individuals with AH to examine neutrophil extracellular traps (NETs) and performed RNA sequencing to explore their unique characteristics. RESULTS We observed a significant increase in NET production in AH. We also observed a unique low-density neutrophil (LDN) population in individuals with AH and alcohol-fed mice that was not present in healthy controls. Transcriptome analysis of peripheral LDNs and high-density neutrophils (HDNs) from individuals with AH revealed that LDNs exhibit a functionally exhausted phenotype, while HDNs are activated. Indeed, AH HDNs exhibited increased resting reactive oxygen species (ROS) production and produced more ROS upon lipopolysaccharide stimulation than control HDNs, whereas AH LDNs failed to respond to lipopolysaccharide. We show that LDNs are generated from HDNs after alcohol-induced NET release in vitro, and this LDN subset has decreased functionality, including reduced phagocytic capacity. Moreover, LDNs showed reduced homing capacity and clearance by macrophage efferocytosis; therefore, dysfunctional neutrophils could remain in the circulation and liver. Depletion of both HDNs and LDNs in vivo prevented alcohol-induced NET production and liver damage in mice. Granulocyte-colony stimulating factor treatment also ameliorated alcohol-induced liver injury in mice. CONCLUSION Neutrophils contribute to liver damage through increased NET formation which increases defective LDNs in AH. Alcohol induces phenotypic changes in neutrophils; HDNs are activated whereas LDNs are defective. Our findings provide mechanistic insights that could guide the development of therapeutic interventions for AH. IMPACT AND IMPLICATIONS In this study we discovered heterogeneity of neutrophils in alcohol-associated hepatitis, including high-density and low-density neutrophils that show hyper-activated or exhausted transcriptomic profiles, respectively. We found that alcohol induces neutrophil extracellular trap (NET) formation, which contributes to liver damage. NET release by high-density neutrophils resulted in low-density neutrophils that reside in the liver and escape clean-up by macrophages. Our findings help to understand the opposing neutrophil phenotypes observed in individuals with alcohol-associated hepatitis and provide mechanistic insights that could guide therapeutic strategies targeting neutrophils.
Collapse
Affiliation(s)
- Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| | - Terence Ndonyi Bukong
- Armand-Frappier Sante Biotechnologie Research Center, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - David Tornai
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| | - Ioannis S Vlachos
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleni Kanata
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Ramon Bataller
- From the Liver Unit, Hospital Clínic de Barcelona, Barcelona (R.B.); Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago (J.P.A.); the Division of Gastroenterology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, and London Health Sciences Centre, London, ON, Canada (J.P.A.); and the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN (V.H.S.)
| | - Juan Pablo Arab
- From the Liver Unit, Hospital Clínic de Barcelona, Barcelona (R.B.); Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago (J.P.A.); the Division of Gastroenterology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, and London Health Sciences Centre, London, ON, Canada (J.P.A.); and the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN (V.H.S.)
| | - Vijay H Shah
- From the Liver Unit, Hospital Clínic de Barcelona, Barcelona (R.B.); Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago (J.P.A.); the Division of Gastroenterology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, and London Health Sciences Centre, London, ON, Canada (J.P.A.); and the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN (V.H.S.)
| |
Collapse
|
19
|
Argemi J, Kedia K, Gritsenko MA, Clemente-Sanchez A, Asghar A, Herranz JM, Liu ZX, Atkinson SR, Smith RD, Norden-Krichmar TM, Day LZ, Stolz A, Tayek JA, Bataller R, Morgan TR, Jacobs JM. Integrated Transcriptomic and Proteomic Analysis Identifies Plasma Biomarkers of Hepatocellular Failure in Alcohol-Associated Hepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1658-1669. [PMID: 36243044 PMCID: PMC9765311 DOI: 10.1016/j.ajpath.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
Alcohol-associated hepatitis (AH) is a form of liver failure with high short-term mortality. Recent studies have shown that defective function of hepatocyte nuclear factor 4 alpha (HNF4a) and systemic inflammation are major disease drivers of AH. Plasma biomarkers of hepatocyte function could be useful for diagnostic and prognostic purposes. Herein, an integrative analysis of hepatic RNA sequencing and liquid chromatography-tandem mass spectrometry was performed to identify plasma protein signatures for patients with mild and severe AH. Alcohol-related liver disease cirrhosis, nonalcoholic fatty liver disease, and healthy subjects were used as comparator groups. Levels of identified proteins primarily involved in hepatocellular function were decreased in patients with AH, which included hepatokines, clotting factors, complement cascade components, and hepatocyte growth activators. A protein signature of AH disease severity was identified, including thrombin, hepatocyte growth factor α, clusterin, human serum factor H-related protein, and kallistatin, which exhibited large abundance shifts between severe and nonsevere AH. The combination of thrombin and hepatocyte growth factor α discriminated between severe and nonsevere AH with high sensitivity and specificity. These findings were correlated with the liver expression of genes encoding secreted proteins in a similar cohort, finding a highly consistent plasma protein signature reflecting HNF4A and HNF1A functions. This unbiased proteomic-transcriptome analysis identified plasma protein signatures and pathways associated with disease severity, reflecting HNF4A/1A activity useful for diagnostic assessment in AH.
Collapse
Affiliation(s)
- Josepmaria Argemi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Hepatology Program, Centro de Investigación Médica Aplicada, Liver Unit, Clinica Universidad de Navarra, Instituto de Investigacion de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Komal Kedia
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co, Inc., West Point, Pennsylvania
| | - Marina A Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Ana Clemente-Sanchez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aliya Asghar
- Gasteroenterology Service, VA Long Beach Healthcare System, Long Beach, California
| | - Jose M Herranz
- Hepatology Program, Centro de Investigación Médica Aplicada, Liver Unit, Clinica Universidad de Navarra, Instituto de Investigacion de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Zhang-Xu Liu
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Stephen R Atkinson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Trina M Norden-Krichmar
- Department of Epidemiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Le Z Day
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - John A Tayek
- Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R Morgan
- Gasteroenterology Service, VA Long Beach Healthcare System, Long Beach, California.
| | - Jon M Jacobs
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington.
| |
Collapse
|
20
|
Bajaj JS, Nagy LE. Natural History of Alcohol-Associated Liver Disease: Understanding the Changing Landscape of Pathophysiology and Patient Care. Gastroenterology 2022; 163:840-851. [PMID: 35598629 PMCID: PMC9509416 DOI: 10.1053/j.gastro.2022.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 12/02/2022]
Abstract
Alcohol use and consequent liver disease are major burdens that have worsened during the COVID-19 pandemic. There are several facets to the pathophysiology and clinical consequences of alcohol-use disorder (AUD) and progression to alcohol-associated liver disease (ALD) that require a concerted effort by clinicians and translational and basic science investigators. Several recent advances from bedside to bench and bench to bedside have been made in ALD. We focused this review on a case-based approach that provides a human context to these important advances across the spectrum of ALD.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, Virginia; Central Virginia Veterans Healthcare System, Richmond, Virginia.
| | - Laura E Nagy
- Center for Liver Disease Research, Departments of Inflammation and Immunity and Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
21
|
Yang X, Chang T, Yuan Q, Wei W, Wang P, Song X, Yuan H. Changes in the composition of gut and vaginal microbiota in patients with postmenopausal osteoporosis. Front Immunol 2022; 13:930244. [PMID: 36032115 PMCID: PMC9411790 DOI: 10.3389/fimmu.2022.930244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Postmenopausal osteoporosis (PMO) is influenced by estrogen metabolism and immune response, which are modulated by several factors including the microbiome and inflammation. Therefore, there is increasing interest in understanding the role of microbiota in PMO. Objectives To investigate variations in gut microbiota (GM) and vaginal microbiota (VM) in postmenopausal women with osteoporosis. Methods A total of 132 postmenopausal women were recruited for the study and divided into osteoporosis (n = 34), osteopenia (n = 47), and control (n = 51) groups based on their T score. The serum levels of interleukin (IL)-10, tumor necrosis factor (TNF)-α, and lipopolysaccharide-binding protein were determined via enzyme-linked immunosorbent assay. Additionally, 16S rRNA gene V3-V4 region sequencing was performed to investigate the GM and VM of the participants. Results Significant differences were observed in the microbial compositions of fecal and vaginal samples between groups (p < 0.05). It was noted that for GM, Romboutsia, unclassified_Mollicutes, and Weissella spp. were enriched in the control group, whereas the abundances of Fusicatenibacter, Lachnoclostridium, and Megamonas spp. were higher in the osteoporosis group than in the other groups. Additionally, for VM, Lactobacillus was enriched in the control group, whereas the abundances of Peptoniphilus, Propionimicrobium, and Gallicola spp. were higher in the osteoporosis group than in the other groups. The predicted functional capacities of GM and VM were different in the various groups. We also found that the serum level of IL-10 in the osteoporosis group was significantly lower than that in the control group and osteopenia group, while TNF-α was significantly higher in the osteoporosis group than that in the control group (p < 0.05). Conclusion The results show that changes in BMD in postmenopausal women are associated with the changes in GM and VM; however, changes in GM are more closely correlated with PMO than VM.
Collapse
Affiliation(s)
- Xueli Yang
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Tian Chang
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
- Department of Medical and Health, Zhengzhou University Press, Zhengzhou, China
| | - Qian Yuan
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Wei Wei
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Pingping Wang
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaojian Song
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
- *Correspondence: Huijuan Yuan,
| |
Collapse
|
22
|
Alcohol Induces Zebrafish Skeletal Muscle Atrophy through HMGB1/TLR4/NF-κB Signaling. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081211. [PMID: 36013390 PMCID: PMC9410481 DOI: 10.3390/life12081211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Excessive alcohol consumption can cause alcoholic myopathy, but the molecular mechanism is still unclear. In this study, zebrafish were exposed to 0.5% alcohol for eight weeks to investigate the effect of alcohol on skeletal muscle and its molecular mechanism. The results showed that the body length, body weight, cross-sectional area of the skeletal muscle fibers, Ucrit, and MO2max of the zebrafish were significantly decreased after alcohol exposure. The expression of markers of skeletal muscle atrophy and autophagy was increased, and the expression of P62 was significantly reduced. The content of ROS, the mRNA expression of sod1 and sod2, and the protein expression of Nox2 were significantly increased. In addition, we found that the inflammatory factors Il1β and Tnfα were significantly enriched in skeletal muscle, and the expression of the HMGB1/TLR4/NF-κB signaling axis was also significantly increased. In summary, in this study, we established a zebrafish model of alcohol-induced skeletal muscle atrophy and further elucidated its pathogenesis.
Collapse
|
23
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
24
|
Szabo G, Thursz M, Shah VH. Therapeutic advances in alcohol-associated hepatitis. J Hepatol 2022; 76:1279-1290. [PMID: 35589250 DOI: 10.1016/j.jhep.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
In recent years, there have been important advances in our understanding of alcohol-associated hepatitis (AH), which have occurred in parallel with a surge in clinical trial activity. Meanwhile, the broader medical field has seen a transformation in care paradigms based on emerging digital technologies. This review focuses on breakthroughs in our understanding of AH and how these breakthroughs are leading to new paradigms for biomarker discovery, clinical trial activity, and care models for patients. It portends a future in which multimodal data from genetic, radiomic, histologic, and environmental sources can be integrated and synthesised to generate personalised biomarkers and therapies for patients with AH.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Carol M. Gatton Chairman of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mark Thursz
- Division of Digestive Diseases, Imperial College, London, UK.
| | - Vijay H Shah
- Mitchell T. Rabkin, M.D. Chair, Professor of Medicine, Harvard Medical School, Chief Academic Officer, Beth Israel Deaconess Medical Center and Beth Israel Lahey Health, Boston, MA, USA
| |
Collapse
|
25
|
Raszeja-Wyszomirska J, Niewiński G, Graczyńska A, Morawiec S, Janik MK, Kornasiewicz O. Clinical Implication of Plasma CD163 in Patients With Acute-on-Chronic Liver Failure. Transplant Proc 2022; 54:1011-1016. [PMID: 35523597 DOI: 10.1016/j.transproceed.2022.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND It was postulated that CD163 plasma level should be incorporated into existing predictive systems to improve prognostic performance in patients with acute-on-chronic liver failure (ACLF). PATIENTS AND METHODS Plasma CD163 was assessed in 24 consecutive patients with ACLF (17 male, 7 female; mean age 54.9 years; 50% with alcohol-related liver disease) and compered with the existing scoring tools to predict the availability of transplantation or survival without liver transplant (LT). RESULTS There were no differences in plasma CD163 levels between graft recipients and deceased patients on the waiting list or transplant survivors vs nonsurvivors. CD163 did not correlate with CLIF-ACLF, CLIF Consortium organ failure score (CLIF-OF), and ACLF grades (all P < .05). However, sequential organ failure assessment (SOFA), CLIF Consortium acute-on-chronic liver failure score (CLIF-C) ACLF, and CLIF-C OF scores correlated significantly with mortality (P < .01) in contrast to Child-Pugh scale and Model for End-Stage Liver Disease score (all P > .05). Transplanted survivors and deceased individuals differed robustly with respect to the SOFA and CLIF-SOFA scores and the CLIF-C OF, CLIF-C Grade, and CLIF-C ACLF scales (all P < .05). CLIF-C performed well in ACLF prognostication with an area under receiver operating characteristic curve (AUROC) 0.893 (95% CI, 0.766-1), surpassing in that respect CD163 with AUROC of 0.664 (95% CI, 0417-0.911). CONCLUSIONS Our preliminary results showed that the plasma CD163 level in patients with ACLF played only a minor role in predicting LT futility/benefit, with no impact on the narrow transplant window. Moreover, to optimize LT outcomes, newly developed CLIF-C scales showed superior predictive value.
Collapse
Affiliation(s)
| | - Grzegorz Niewiński
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.
| | | | | | - Maciej K Janik
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland.
| | - Oskar Kornasiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
26
|
Shang Y, Jiang M, Chen N, Jiang XL, Zhan ZY, Zhang ZH, Zuo RM, Wang H, Lan XQ, Ren J, Wu YL, Cui ZY, Nan JX, Lian LH. Inhibition of HMGB1/TLR4 Signaling Pathway by Digitoflavone: A Potential Therapeutic Role in Alcohol-Associated Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2968-2983. [PMID: 35212223 DOI: 10.1021/acs.jafc.2c00195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Digitoflavone (DG) is a natural flavonoid abundant in many fruits, vegetables, and medicinal plants. We investigated whether DG inhibits lipid accumulation and inflammatory responses in alcoholic liver disease (ALD) in vivo and in vitro. The mouse ALD model was established by chronically feeding male C57BL/6 mice an ethanol-containing Lieber-DeCarli liquid diet. In vitro, mouse peritoneal macrophages (MPMs) and mouse bone marrow-derived macrophages (BMDMs) were stimulated with LPS/ATP, whereas HepG2 cells and mouse primary hepatocytes were treated with ethanol. DG reduced the serum levels of transaminase and serum and hepatic levels of triglycerides and malondialdehyde in ALD mice. DG downregulated SREBP1 and its target genes and upregulated PPARα and its target genes in the liver of mice with ALD. DG inhibited TLR4-mediated NLRP3 inflammasome activation, consequently reversing the inflammatory response, including the production of HMGB1, IL-1β, and IL-36γ, as well as the infiltration of macrophages and neutrophils. DG blocked NLRP3/ASC/caspase-1 inflammasome activation and HMGB1 release in LPS/ATP-stimulated MPMs. When Tlr4 was knocked in LPS/ATP-stimulated BMDMs, HMGB1 production and release were blocked, and NLRP3-mediated cleavage and release of IL-1β was suppressed in Hmgb1-silenced BMDMs. DG amplified these inhibitory effects in Tlr4 or Hmgb1 knockdown BMDMs. In ethanol-exposed hepatocytes, DG reduced lipogenesis and promoted lipid oxidation by inhibiting the HMGB1-TLR4 signaling pathway while suppressing the inflammatory response induced by ethanol exposure. Our data demonstrated that DG inhibited the occurrence of lipid accumulation and the inflammatory response via the HMGB1-TLR4 axis, underscoring a promising approach and utility of DG for the treatment of ALD.
Collapse
Affiliation(s)
- Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai Campus, Yantai, Shandong 264000, China
| | - Nan Chen
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xue-Li Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Rong-Mei Zuo
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hui Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiao-Qi Lan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jie Ren
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
27
|
Zeng P, Zhang X, Xiang T, Ling Z, Lin C, Diao H. Secreted phosphoprotein 1 as a potential prognostic and immunotherapy biomarker in multiple human cancers. Bioengineered 2022; 13:3221-3239. [PMID: 35067176 PMCID: PMC8973783 DOI: 10.1080/21655979.2021.2020391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Secreted phosphoprotein 1 (SPP1) is involved in immune regulation, cell survival, and tumor progression. Studies have demonstrated that SPP1 plays an important role in certain individual tumors. However, the expression profile and oncogenic features of SPP1 in diverse cancers are remaining unknown. Therefore, we performed a comprehensive analysis using The Cancer Genome Atlas (TCGA) database. Raw data of 33 cancer types were download from the University of California Santa Cruz (UCSC) Xena website. The expression of SPP1 and its relationship with tumor prognosis, immune invasion, tumor microenvironment, and immunotherapy were analyzed using the R language. The function analysis was conducted using Gene Set Enrichment Analysis (GSEA). The oncogenic features of SPP1 was validated by wound-healing assay and EdU staining assay. SPP1 highly expressed in most cancers. The expression of SPP1 was significant related to prognosis, tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoint genes, suggested that SPP1 plays an essential role in the tumor immune microenvironment and immune cell infiltration. The immune/stromal scores correlated positively with the SPP1 expression, and the relationship was affected by tumor heterogeneity and immunotherapy. In addition, SPP1 could predict the response of tumor immunotherapy. Functional analysis revealed the SPP1-associated terms and pathways. Finally, SPP1 significantly elevated cell proliferation and migration in A549, Huh7, HT-29, A2780 tumor cell lines. In conclusion, this study indicated that SPP1 involved in tumorigenesis, tumor progression, and regulated tumor immune microenvironment, revealing SPP1 might be a potential target for evaluating prognosis and immunotherapy in multiple cancers.
Collapse
Affiliation(s)
- Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Helsley RN, Miyata T, Kadam A, Varadharajan V, Sangwan N, Huang EC, Banerjee R, Brown AL, Fung KK, Massey WJ, Neumann C, Orabi D, Osborn LJ, Schugar RC, McMullen MR, Bellar A, Poulsen KL, Kim A, Pathak V, Mrdjen M, Anderson JT, Willard B, McClain CJ, Mitchell M, McCullough AJ, Radaeva S, Barton B, Szabo G, Dasarathy S, Garcia-Garcia JC, Rotroff DM, Allende DS, Wang Z, Hazen SL, Nagy LE, Brown JM. Gut microbial trimethylamine is elevated in alcohol-associated hepatitis and contributes to ethanol-induced liver injury in mice. eLife 2022; 11:e76554. [PMID: 35084335 PMCID: PMC8853661 DOI: 10.7554/elife.76554] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we treated mice with non-lethal bacterial choline TMA lyase (CutC/D) inhibitors to blunt gut microbe-dependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. We show the gut microbial choline metabolite TMA is elevated in AH patients and correlates with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial CutC/D activity protects mice from ethanol-induced liver injury. CutC/D inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome and host liver transcriptome. The microbial metabolite TMA is elevated in patients with AH, and inhibition of TMA production from gut microbes can protect mice from ethanol-induced liver injury.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of KentuckyLexingtonUnited States
| | - Tatsunori Miyata
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anagha Kadam
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Emily C Huang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Kevin K Fung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Chase Neumann
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Rebecca C Schugar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Megan R McMullen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Kyle L Poulsen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Adam Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Vai Pathak
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Marko Mrdjen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - James T Anderson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Belinda Willard
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Craig J McClain
- Department of Medicine, University of LouisvilleLouisvilleUnited States
| | - Mack Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Arthur J McCullough
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and AlcoholismBethesdaUnited States
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | | | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland ClinicClevelandUnited States
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Cardiovascular Medicine, Heart and Vascular and Thoracic Institute, Cleveland ClinicClevelandUnited States
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
29
|
Xie L, Huang W, Li J, Chen G, Xiao Q, Zhang Y, He H, Wang Q, He J. The protective effects and mechanisms of modified Lvdou Gancao decoction on acute alcohol intoxication in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114593. [PMID: 34480998 DOI: 10.1016/j.jep.2021.114593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute alcohol intoxication (AAI) is a ubiquitous emergency worldwide, whereas the searching for both effective and safe drugs is still a task to be completed. Modified Lvdou Gancao decoction (MLG), a traditional Chinese medicine decoction, has been confirmed to be valid to alcohol-induced symptoms and hepatotoxicity clinically, whereas its protective mechanisms have not been determined. MATERIALS AND METHODS AAI mice model was established by alcohol gavage (13.25 mL/kg) and MLG (5, 10, 20 g/kg BW) was administered to mice 2 h before and 30 min after the alcohol exposure. Assay kits for alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamine transferase (GGT), total superoxide dismutase (T-SOD), malondialdehyde (MDA), nitric oxide (NO), and glutathione peroxidase (GSH-Px), as well as histopathology were used to explore the effects of MLG on acute alcohol-induced intoxication and hepatotoxicity. Mechanisms of MLG on oxidative stress and inflammatory were evaluated with RT-qPCR and Western Blot. RESULTS MLG remarkably decreased the drunkenness rate, prolonged the tolerance time and shortened the sober-up time of AAI mice. After acute alcohol exposure, MLG treatment induced significant increment of ADH, ALDH, T-SOD and GSH-Px activities in liver, while serum ALT, AST, GGT and NO levels as well as hepatic MDA activity were reduced, in a dose-dependent manner. In contrast to the model group, the mRNA expression of TNFα, IL-1β and NF-κB in the MLG treated groups had a downward trend while the Nrf-2 showed an upward trend simultaneously. Furthermore, the protein levels of p65, p-p65, p-IκBα in the MLG treated groups were considerably diminished, with HO-1 and Nrf2 elevated. To sum up, our results suggested that MLG could efficaciously ameliorate AAI via accelerating the metabolism of alcohol, alleviating acute hepatotoxicity, and weakening the oxidative stress coupled with inflammation response, which might be attributed to the inhibition of the NF-κB signaling pathway and the activation of the Nrf2/HO-1 signaling pathway. CONCLUSIONS Taken together, our present study verified the protective effect and mechanisms of MLG to AAI mice, and we further conclude that MLG may be a potent and reliable candidate for the prevention and treatment of AAI.
Collapse
Affiliation(s)
- Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, China.
| | - Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, China.
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, China.
| | - Guirong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, China.
| | - Qiao Xiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, China.
| | - Yan Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, China.
| | - Haolan He
- Guangzhou Eighth People's Hospital, Guangzhou, 510080, Guangdong, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, China.
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
30
|
Gao B, Wu TC, Lang S, Jiang L, Duan Y, Fouts DE, Zhang X, Tu XM, Schnabl B. Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis. Metabolites 2022; 12:41. [PMID: 35050163 PMCID: PMC8781791 DOI: 10.3390/metabo12010041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we used gradient boosting, random forest, support vector machine and logistic regression analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed better performance than the currently used model for end-stage liver disease (MELD) score.
Collapse
Affiliation(s)
- Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (L.J.); (Y.D.)
| | - Tsung-Chin Wu
- Department of Mathematics, University of California San Diego, San Diego, CA 92093, USA;
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health, University of California San Diego, San Diego, CA 92093, USA; (X.Z.); (X.-M.T.)
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (L.J.); (Y.D.)
| | - Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (L.J.); (Y.D.)
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (L.J.); (Y.D.)
| | | | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health, University of California San Diego, San Diego, CA 92093, USA; (X.Z.); (X.-M.T.)
| | - Xin-Ming Tu
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health, University of California San Diego, San Diego, CA 92093, USA; (X.Z.); (X.-M.T.)
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (L.J.); (Y.D.)
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
31
|
Zhang ZC, Guo JN, Zhang N, Wang ZQ, Lou G, Cui BB, Yang C. Identification and Validation of Immune-Related Gene for Predicting Prognosis and Therapeutic Response in Ovarian Cancer. Front Immunol 2021; 12:763791. [PMID: 34880862 PMCID: PMC8645858 DOI: 10.3389/fimmu.2021.763791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer (OC) is a devastating malignancy with a poor prognosis. The complex tumor immune microenvironment results in only a small number of patients benefiting from immunotherapy. To explore the different factors that lead to immune invasion and determine prognosis and response to immune checkpoint inhibitors (ICIs), we established a prognostic risk scoring model (PRSM) with differential expression of immune-related genes (IRGs) to identify key prognostic IRGs. Patients were divided into high-risk and low-risk groups according to their immune and stromal scores. We used a bioinformatics method to identify four key IRGs that had differences in expression between the two groups and affected prognosis. We evaluated the sensitivity of treatment from three aspects, namely chemotherapy, targeted inhibitors (TIs), and immunotherapy, to evaluate the value of prediction models and key prognostic IRGs in the clinical treatment of OC. Univariate and multivariate Cox regression analyses revealed that these four key IRGs were independent prognostic factors of overall survival in OC patients. In the high-risk group comprising four genes, macrophage M0 cells, macrophage M2 cells, and regulatory T cells, observed to be associated with poor overall survival in our study, were higher. The high-risk group had a high immunophenoscore, indicating a better response to ICIs. Taken together, we constructed a PRSM and identified four key prognostic IRGs for predicting survival and response to ICIs. Finally, the expression of these key genes in OC was evaluated using RT-qPCR. Thus, these genes provide a novel predictive biomarker for immunotherapy and immunomodulation.
Collapse
Affiliation(s)
- Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
32
|
van der Zande HJP, Nitsche D, Schlautmann L, Guigas B, Burgdorf S. The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Front Immunol 2021; 12:765034. [PMID: 34721436 PMCID: PMC8551360 DOI: 10.3389/fimmu.2021.765034] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 01/27/2023] Open
Abstract
The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.
Collapse
Affiliation(s)
| | - Dominik Nitsche
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Laura Schlautmann
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Sven Burgdorf
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
34
|
Vannier AGL, Wardwell B, Fomin V, PeBenito A, Wolczynski N, Piaker S, Kedrin D, Chung RT, Schaefer E, Goodman R, Patel SJ, Luther J. Serum HMGB1 associates with liver disease and predicts readmission and mortality in patients with alcohol use disorder. Alcohol 2021; 95:37-43. [PMID: 34118353 DOI: 10.1016/j.alcohol.2021.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/05/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022]
Abstract
Identifying the minority of patients with alcohol use disorder (AUD) who develop the wide spectrum of alcohol-associated liver disease (ALD), and risk-stratifying these patients, is of critical importance. High-Mobility Group Box 1 protein (HMGB1) is an alarmin that has been implicated in the pathogenesis of multiple liver diseases. Its use as a biomarker for liver disease in those with AUD has not been studied. In this report, we investigated the association between serum HMGB1 and the presence, severity, and progression of ALD in two well-characterized cohorts of patients with AUD. In our discovery cohort of 80 patients, we found that patients with AUD and ALD exhibited higher serum HMGB1 levels compared to patients with AUD only (p = 0.0002). Additionally, serum HMGB1 levels were positively associated with liver disease severity (p < 0.0001). We found that index serum HMGB1 levels were associated with liver disease progression, defined by an increase in MELD score at 120 days (p = 0.0397). Serum HMGB1 was notable for its diagnostic and prognostic ability; it proved able to distinguish accurately between severe and non-severe forms of ALD in both our discovery cohort (AUC = 0.8199, p = 0.0003) and an independent validation cohort of 74 patients with AUD (AUC = 0.8818, p < 0.0001). Moreover, serum HMGB1 levels effectively predicted both liver-related readmission (AUC = 0.8849, p < 0.0001) and transplantation/death (AUC = 0.8614, p = 0.0002) at 90 days. The predictive potential of HMGB1 was also validated in an independent cohort of patients with AUD. Taken together, our results suggest that serum HMGB1 shows promise as a biologically relevant biomarker for ALD in patients with AUD.
Collapse
Affiliation(s)
- Augustin G L Vannier
- MGH Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Ben Wardwell
- MGH Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Vladislav Fomin
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Amanda PeBenito
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Nicholas Wolczynski
- MGH Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Samuel Piaker
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02114, United States
| | - Dmitriy Kedrin
- MGH Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Raymond T Chung
- MGH Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Esperance Schaefer
- MGH Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Russell Goodman
- MGH Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Suraj J Patel
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Jay Luther
- MGH Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
35
|
Zhang X, Yuan S, Zhang X, Zhang T, Meng C, Zhuang K, Dang S. ANGPTL4 regulates CD163 expression and Kuppfer cell polarization induced cirrhosis via TLR4/NF-κB pathway. Exp Cell Res 2021; 405:112706. [PMID: 34146541 DOI: 10.1016/j.yexcr.2021.112706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Angiopoietin like 4 (ANGPTL4) has been proved to play an important role in lipid and glucose metabolism disorders and related cardiovascular diseases, but its role in the formation of cirrhosis still needs to be further explored. Therefore, the aim of this study was to investigate the role of ANGPTL4 in the development of liver cirrhosis and its mechanism, as well as its effect on Kupffer cell polarization and hepatic stellate cell activation. The ELISA and RT-qPCR assay were used to detect the content of ANGPTL4 in serum and mRNA expression in cells and tissues respectively. The expression of ANGPTL4, Arg1 and Mrc2 in Kupffer cells was measured by Western blot. The percentage of CD163+ and CD206+ cells was measured by flow cytometry. Mice cirrhosis model was established, and the expression of ANGPTL4 was interfered by injecting sh-ANGPTL4 lentiviral vector into caudal vein. The results revealed that ANGPTL4 was significantly up-regulated in liver cirrhosis patients and HBV induced liver injury cell models. Further studies found that interference with ANGPTL4 regulated CD163 and inhibited the polarization and proinflammatory effects of KCs,as well as inhibited the activation of hepatic stellate cells (HSCs) and fibrosis. More importantly, Interference with ANGPTL4 inhibits the progression of liver cirrhosis in mice. What's more, TLR4/NF-κB pathway was involved in the molecular mechanism of ANGPTL4 on Kupffer cells and hepatic stellate cells. It is suggested that the mechanism of sh-ANGPTL4 suppressing the polarization of KCs and the activation of hepatic stellate cells (HSCs) is to regulate the TLR4/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Gastroenterology, Xi'a Central Hospital, Xi'an, 710061, Shaanxi, China
| | - Shanshan Yuan
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Gastroenterology, Xi'a Central Hospital, Xi'an, 710061, Shaanxi, China
| | - Xin Zhang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Tao Zhang
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an, 710061, Shaanxi, China
| | - Cunying Meng
- Department of Gastroenterology, The First Affiliated Hospital of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Kun Zhuang
- Department of Gastroenterology, Xi'a Central Hospital, Xi'an, 710061, Shaanxi, China
| | - Shuangsuo Dang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
36
|
Fuster D, Garcia-Calvo X, Farré O, Zuluaga P, Bolao F, Leis A, Hernández-Rubio A, Rivas I, Muga R. Markers of Monocyte Activation, Inflammation, and Microbial Translocation Are Associated with Liver Fibrosis in Alcohol Use Disorder. J Clin Med 2021; 10:3496. [PMID: 34441792 PMCID: PMC8396829 DOI: 10.3390/jcm10163496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The association between markers of inflammation (interleukin (IL)-6 and IL-10), monocyte activation (sCD163 and sCD14), and microbial translocation (lipopolysaccharide (LPS) and LPS binding protein) and liver fibrosis in patients with alcohol use disorder (AUD) and no overt liver disease is not well established. METHODS We studied patients admitted for treatment of AUD at two hospitals in Barcelona. Advanced liver fibrosis (ALF) was defined as FIB-4 > 3.25. RESULTS A total of 353 participants (76.3% male) were included and 94 (26.5%) had ALF. In adjusted correlation analyses, sCD163, sCD14, IL-6, IL-10, and LPS binding protein levels directly correlated with FIB-4 values (adjusted correlation coefficients 0.214, 0.452, 0.317, 0.204, and 0.171, respectively). However, LPS levels were inversely associated with FIB-4 (-0.283). All plasma marker levels in the highest quartile, except LPS, were associated with ALF (sCD163, sCD14, IL-6, IL-10, and LPS binding protein: adjusted odds ratio (aOR) 11.49 (95% confidence interval 6.42-20.56), 1.87 (1.11-3.16), 2.99 (1.79-5.01), 1.84 (1.11-3.16), and 2.13 (1.30-3.50), respectively). Conversely, LPS levels in the lowest quartile were associated with ALF (aOR 2.58 (1.48-4.58), p < 0.01). CONCLUSION In AUD patients, plasma levels of the markers of inflammation, monocyte activation, and microbial translocation are associated with ALF.
Collapse
Affiliation(s)
- Daniel Fuster
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Xavier Garcia-Calvo
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Oriol Farré
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
| | - Paola Zuluaga
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Ferran Bolao
- Department of Internal Medicine, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Alba Leis
- Department of Biochemistry, Hospital Universitari Germans Trias i Pujol de Badalona, 08916 Badalona, Barcelona, Spain;
| | - Anna Hernández-Rubio
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Inmaculada Rivas
- Mental Health and Addiction Service, Badalona Serveis Assistencials-BSA, 08911 Badalona, Barcelona, Spain;
| | - Robert Muga
- Addiction Unit, Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (X.G.-C.); (O.F.); (P.Z.); (A.H.-R.); (R.M.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
37
|
Mitra A, Myers L, Ahn J. Assessing the Severity and Prognosis of Alcoholic Hepatitis. Clin Liver Dis 2021; 25:585-593. [PMID: 34229841 DOI: 10.1016/j.cld.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute alcoholic hepatitis is a clinical entity with significant consequences. Those with severe disease can have high short-term mortality, and considerations for liver transplant candidacy may be raised. Estimating prognosis and mortality is of the utmost importance, as it can guide decision making for corticosteroid therapy and help patients gain an understanding of their illness. Maddrey's discriminant function and MELD score are 2 commonly used static models validated to help estimate severity and prognosis in acute alcoholic hepatitis. This article reviews the 2 models and others used in this difficult setting to assess these patients and guide decision making.
Collapse
Affiliation(s)
- Arnab Mitra
- Division of Gastroenterology and Hepatology, Department of Medicine, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, L461, Portland, OR 97239-3098, USA.
| | - Lauren Myers
- Division of Gastroenterology and Hepatology, Department of Medicine, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, L461, Portland, OR 97239-3098, USA
| | - Joseph Ahn
- Division of Gastroenterology and Hepatology, Department of Medicine, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, L461, Portland, OR 97239-3098, USA
| |
Collapse
|
38
|
Soluble mannose receptor induces proinflammatory macrophage activation and metaflammation. Proc Natl Acad Sci U S A 2021; 118:2103304118. [PMID: 34326259 DOI: 10.1073/pnas.2103304118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Proinflammatory activation of macrophages in metabolic tissues is critically important in the induction of obesity-induced metaflammation. Here, we demonstrate that the soluble mannose receptor (sMR) plays a direct functional role in both macrophage activation and metaflammation. We show that sMR binds CD45 on macrophages and inhibits its phosphatase activity, leading to an Src/Akt/NF-κB-mediated cellular reprogramming toward an inflammatory phenotype both in vitro and in vivo. Remarkably, increased serum sMR levels were observed in obese mice and humans and directly correlated with body weight. Importantly, enhanced sMR levels increase serum proinflammatory cytokines, activate tissue macrophages, and promote insulin resistance. Altogether, our results reveal sMR as regulator of proinflammatory macrophage activation, which could constitute a therapeutic target for metaflammation and other hyperinflammatory diseases.
Collapse
|
39
|
Penrice DD, Shah S, Kezer CA, Peeraphatdit TB, Sanyal AJ, Davis B, Mara KC, Shah VH, Kamath PS, Simonetto DA. Risk Prediction of Nosocomial and Posthospital Discharge Infections in Alcohol-Associated Hepatitis. Hepatol Commun 2021; 5:2096-2103. [PMID: 34558860 PMCID: PMC8631091 DOI: 10.1002/hep4.1786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol‐associated hepatitis (AAH) is a severe form of liver injury with mortality as high as 30%‐40% at 90 days. As a result of altered immune function in AAH, bacterial infections are common and are associated with poor outcomes. However, determining the risk and subsequent development of infection in patients with AAH remain challenging. We performed a retrospective study of consecutive patients admitted with a diagnosis of AAH at two independent tertiary centers from 1998 to 2018 (test cohort, n = 286) who developed infections following hospitalization. The diagnosis of AAH was confirmed by manual chart review according to the recent National Institute on Alcohol Abuse and Alcoholism definition. Infections were categorized by location and time of diagnosis as hospital‐acquired infection (48 hours after admission until discharge) and posthospital infections (up to 6 months following discharge). The cohort was 66% men, and the median age was 48 (21‐83) years. Corticosteroids were used in 32% of all patients with AAH. The overall infection rate was 24%. Of those with infections, 46% were hospital acquired and 54% were acquired after hospitalization. Variables found to be significant risk factors for bacterial infection included the presence of ascites on admission (hazard ratio [HR], 2.06), corticosteroid administration (HR, 1.70), Model for End‐Stage Liver Disease (MELD) >23 (HR, 2.61), and white blood cell (WBC) count on admission per point (HR, 1.02). Conclusion: In this multicenter cohort study of patients hospitalized with AAH, MELD score, ascites, WBC count, and use of corticosteroids were identified as significant predictors of the development of bacterial infection. We created a novel predictive equation that may be used to aid in the identification of patients with AAH at high risk of infection.
Collapse
Affiliation(s)
- Daniel D Penrice
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Serena Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Camille A Kezer
- Department of Internal Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | - Brian Davis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | - Kristin C Mara
- Division of Biostatistics, Mayo Clinic Rochester, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Douglas A Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, USA
| |
Collapse
|
40
|
Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Durán-González P, Morales-García JÁ, Segovia-Rodríguez L, Rodríguez de Fonseca F, Giné E, López-Moreno JA. The Immune System through the Lens of Alcohol Intake and Gut Microbiota. Int J Mol Sci 2021; 22:ijms22147485. [PMID: 34299105 PMCID: PMC8303153 DOI: 10.3390/ijms22147485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system.
Collapse
Affiliation(s)
- Javier Calleja-Conde
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Victor Echeverry-Alzate
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
- Universidad Nebrija, Campus Madrid-Princesa, 28015 Madrid, Spain
| | - Kora-Mareen Bühler
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Pedro Durán-González
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Jose Ángel Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lucía Segovia-Rodríguez
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Jose Antonio López-Moreno
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Correspondence:
| |
Collapse
|
41
|
Transition to decompensation and acute-on-chronic liver failure: Role of predisposing factors and precipitating events. J Hepatol 2021; 75 Suppl 1:S36-S48. [PMID: 34039491 DOI: 10.1016/j.jhep.2020.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
The transition from compensated to decompensated cirrhosis results from a complex interplay of predisposing and precipitating factors and represents an inflection point in the probability of a patient surviving. With the progression of cirrhosis, patients accumulate multiple disorders (e.g. altered liver architecture, portal hypertension, local and systemic inflammation, bacterial translocation, gut dysbiosis, kidney vasoconstriction) that predispose them to decompensation. On the background of these factors, precipitating events (e.g. bacterial infection, alcoholic hepatitis, variceal haemorrhage, drug-induced liver injury, flare of liver disease) lead to acute decompensation (ascites, hepatic encephalopathy, variceal bleeding, jaundice) and/or organ failures, which characterise acute-on-chronic liver failure. In this review paper, we will discuss the current hypotheses and latest evidences regarding predisposing and precipitating factors associated with the transition to decompensated liver disease.
Collapse
|
42
|
Deribe K, Mackenzie CD, Newport MJ, Argaw D, Molyneux DH, Davey G. Podoconiosis: key priorities for research and implementation. Trans R Soc Trop Med Hyg 2021; 114:889-895. [PMID: 33169167 PMCID: PMC7738650 DOI: 10.1093/trstmh/traa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Podoconiosis is a non-infectious tropical lymphoedema causing swelling of the lower legs. Podoconiosis is associated with stigma, depression and reduced productivity, resulting in significant socio-economic impacts for affected individuals, families and communities. It is caused by barefoot exposure to soils and affects disadvantaged populations. Evidence from the past 5 y suggests that podoconiosis is amenable to public health interventions, e.g. footwear and hygiene-based morbidity management, which reduce acute clinical episodes. Although much has been learned in recent years, advances in care for these patients and worldwide control requires further reliable and relevant research. To develop a comprehensive global control strategy, the following key research priorities are important: better understanding of the global burden of podoconiosis through extended worldwide mapping, development of new point-of-care diagnostic methods and approaches to define the presence of the environmental characteristics that contribute to the development of the condition, improving treatment through an increased understanding of the pathogenesis of dermal changes over time, improved understanding of optimal ways of providing patient care at the national level, including research to optimize behavioural change strategies, determine the optimum package of care and integrate approaches to deliver robust surveillance, monitoring and evaluation of control programmes.
Collapse
Affiliation(s)
- Kebede Deribe
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton BN1 9PX, UK.,School of Public Health, College of Health Sciences, Addis Ababa University, PO Box 9086, Addis Ababa, Ethiopia
| | | | - Melanie J Newport
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton BN1 9PX, UK
| | - Daniel Argaw
- World Health Organization, Control of Neglected Tropical Diseases, Geneva 1211, Switzerland
| | | | - Gail Davey
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton BN1 9PX, UK.,School of Public Health, College of Health Sciences, Addis Ababa University, PO Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
43
|
Bruha R, Vitek L, Smid V. Osteopontin - A potential biomarker of advanced liver disease. Ann Hepatol 2021; 19:344-352. [PMID: 32005637 DOI: 10.1016/j.aohep.2020.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Cirrhosis is a primary cause of liver-related mortality and morbidity. The basic process driving chronic liver disease to cirrhosis is accelerated fibrogenesis. Although the pathogenesis of liver cirrhosis is a multifactorial process, the essential step in the evolution of liver fibrosis is the activation of hepatic stellate cells, which are the main source of collagen produced in the extracellular matrix. This activation process is mediated by multiple growth factors, cytokines, and chemokines. One of the hepatic stellate cell-activating signaling molecules (and also one associated with cell injury and fibrosis) is osteopontin (OPN). OPN concentration in the plasma has been found to be predictive of liver fibrosis in various liver diseases. OPN concentrations correlate significantly with the stage of fibrosis, liver insufficiency, portal hypertension, and the presence of hepatocellular cancer. However, due to its versatile signaling functions, OPN not only contributes to the development of liver cirrhosis, but is also implicated in the pathogenesis of other chronic hepatic diseases such as viral hepatitis, both alcoholic and non-alcoholic steatohepatitis, drug-induced liver injury, and hepatocellular cancer. Thus, the targeting of OPN pathways seems to be a promising approach in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Radan Bruha
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, 4th Department of Internal Medicine, U Nemocnice 2, Prague, Czech Republic.
| | - Libor Vitek
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Institute of Medical Biochemistry and Laboratory Diagnostics, U Nemocnice 2, Prague, Czech Republic
| | - Vaclav Smid
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, 4th Department of Internal Medicine, U Nemocnice 2, Prague, Czech Republic
| |
Collapse
|
44
|
Singanayagam A, Triantafyllou E. Macrophages in Chronic Liver Failure: Diversity, Plasticity and Therapeutic Targeting. Front Immunol 2021; 12:661182. [PMID: 33868313 PMCID: PMC8051585 DOI: 10.3389/fimmu.2021.661182] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury results in immune-driven progressive fibrosis, with risk of cirrhosis development and impact on morbidity and mortality. Persistent liver cell damage and death causes immune cell activation and inflammation. Patients with advanced cirrhosis additionally experience pathological bacterial translocation, exposure to microbial products and chronic engagement of the immune system. Bacterial infections have a high incidence in cirrhosis, with spontaneous bacterial peritonitis being the most common, while the subsequent systemic inflammation, organ failure and immune dysregulation increase the mortality risk. Tissue-resident and recruited macrophages play a central part in the development of inflammation and fibrosis progression. In the liver, adipose tissue, peritoneum and intestines, diverse macrophage populations exhibit great phenotypic and functional plasticity determined by their ontogeny, epigenetic programming and local microenvironment. These changes can, at different times, promote or ameliorate disease states and therefore represent potential targets for macrophage-directed therapies. In this review, we discuss the evidence for macrophage phenotypic and functional alterations in tissue compartments during the development and progression of chronic liver failure in different aetiologies and highlight the potential of macrophage modulation as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Arjuna Singanayagam
- Infection and Immunity Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Umbaugh DS, Jaeschke H. Biomarkers of drug-induced liver injury: a mechanistic perspective through acetaminophen hepatotoxicity. Expert Rev Gastroenterol Hepatol 2021; 15:363-375. [PMID: 33242385 PMCID: PMC8026489 DOI: 10.1080/17474124.2021.1857238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Introduction: Liver injury induced by drugs is a serious clinical problem. Many circulating biomarkers for identifying and predicting drug-induced liver injury (DILI) have been proposed.Areas covered: Biomarkers are mainly predicated on the mechanistic understanding of the underlying DILI, often in the context of acetaminophen overdose. New panels of biomarkers have emerged that are related to recovery/regeneration rather than injury following DILI. We explore the clinical relevance and limitations of these new biomarkers including recent controversies. Extracellular vesicles have also emerged as a promising vector of biomarkers, although the biological role for EVs may limit their clinical usefulness. New technological approaches for biomarker discovery are also explored.Expert opinion: Recent clinical studies have validated the efficacy of some of these new biomarkers, cytokeratin-18, macrophage colony-stimulating factor receptor, and osteopontin for DILI prognosis. Low prevalence of DILI is an inherent limitation to DILI biomarker development. Furthering mechanistic understanding of DILI and leveraging technological advances (e.g. machine learning/omics) is necessary to improve upon the newest generation of biomarkers. The integration of omics approaches with machine learning has led to novel insights in cancer research and DILI research is poised to leverage these technologies for biomarker discovery and development.
Collapse
Affiliation(s)
- David S. Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
46
|
Yang J, Syed F, Xia Y, Sanyal A, Shah V, Chalasani N, Zheng X, Yu Q, Lou Y, Li W. Blood Biomarkers of Intestinal Epithelium Damage Regenerating Islet-derived Protein 3α and Trefoil Factor 3 Are Persistently Elevated in Patients with Alcoholic Hepatitis. Alcohol Clin Exp Res 2021; 45:720-731. [PMID: 33587293 PMCID: PMC8076084 DOI: 10.1111/acer.14579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heavy alcohol consumption disrupts gut epithelial integrity, leading to increased permeability of the gastrointestinal tract and subsequent translocation of microbes. Regenerating islet-derived protein 3α (REG3α) and Trefoil factor 3 (TFF3) are mainly secreted to the gut lumen by Paneth and Goblet cells, respectively, and are functionally linked to gut barrier integrity. Circulating levels of REG3α and TFF3 have been identified as biomarkers for gut damage in several human diseases. We examined whether plasma levels of REG3α and TFF3 were dysregulated and correlated with conventional markers of microbial translocation (MT) and pro-inflammatory mediators in heavy drinkers with and without alcoholic hepatitis (AH). METHODS Cross-sectional and longitudinal studies were performed to monitor plasma levels of REG3α and TFF3 in 79 AH patients, 66 heavy drinkers without liver disease (HDC), and 46 healthy controls (HC) at enrollment and at 6- and 12-month follow-ups. Spearman correlation was used to measure the relationships of REG3α and TFF3 levels with MT, disease severity, inflammation, and effects of abstinence from alcohol. RESULTS At enrollment, AH patients had significantly higher levels of REG3α and TFF3 than HDC and HC. The elevated REG3α levels were positively correlated with the 30-day fatality rate. Plasma levels of REG3α and TFF3 in AH patients differentially correlated with conventional MT markers (sCD14, sCD163, and LBP) and several highly up-regulated inflammatory cytokines/chemokines/growth factors. At follow-ups, although REG3α and TFF3 levels were decreased in AH patients with alcohol abstinence, they did not fully return to baseline levels. CONCLUSIONS Circulating levels of REG3α and TFF3 were highly elevated in AH patients and differentially correlated with AH disease severity, MT, and inflammation, thereby serving as potential biomarkers of MT and gut epithelial damage in AH patients.
Collapse
Affiliation(s)
- Jing Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fahim Syed
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ying Xia
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5175
| | - Xiaoqun Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
47
|
Fan X, McCullough RL, Huang E, Bellar A, Kim A, Poulsen KL, McClain CJ, Mitchell M, McCullough AJ, Radaeva S, Barton B, Szabo G, Dasarathy S, Rotroff DM, Nagy LE. Diagnostic and Prognostic Significance of Complement in Patients With Alcohol-Associated Hepatitis. Hepatology 2021; 73:983-997. [PMID: 32557728 PMCID: PMC8005264 DOI: 10.1002/hep.31419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Given the lack of effective therapies and high mortality in acute alcohol-associated hepatitis (AH), it is important to develop rationally designed biomarkers for effective disease management. Complement, a critical component of the innate immune system, contributes to uncontrolled inflammatory responses leading to liver injury, but is also involved in hepatic regeneration. Here, we investigated whether a panel of complement proteins and activation products would provide useful biomarkers for severity of AH and aid in predicting 90-day mortality. APPROACH AND RESULTS Plasma samples collected at time of diagnosis from 254 patients with moderate and severe AH recruited from four medical centers and 31 healthy persons were used to quantify complement proteins by enzyme-linked immunosorbent assay and Luminex arrays. Components of the classical and lectin pathways, including complement factors C2, C4b, and C4d, as well as complement factor I (CFI) and C5, were reduced in AH patients compared to healthy persons. In contrast, components of the alternative pathway, including complement factor Ba (CFBa) and factor D (CFD), were increased. Markers of complement activation were also differentially evident, with C5a increased and the soluble terminal complement complex (sC5b9) decreased in AH. Mannose-binding lectin, C4b, CFI, C5, and sC5b9 were negatively correlated with Model for End-Stage Liver Disease score, whereas CFBa and CFD were positively associated with disease severity. Lower CFI and sC5b9 were associated with increased 90-day mortality in AH. CONCLUSIONS Taken together, these data indicate that AH is associated with a profound disruption of complement. Inclusion of complement, especially CFI and sC5b9, along with other laboratory indicators, could improve diagnostic and prognostic indications of disease severity and risk of mortality for AH patients.
Collapse
Affiliation(s)
- Xiude Fan
- Department of Inflammation and ImmunityCleveland ClinicClevelandOHUSA
- Department of Infectious DiseasesFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Rebecca L McCullough
- Department of Pharmaceutical SciencesSkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Emily Huang
- Department of Inflammation and ImmunityCleveland ClinicClevelandOHUSA
| | - Annette Bellar
- Department of Inflammation and ImmunityCleveland ClinicClevelandOHUSA
| | - Adam Kim
- Department of Inflammation and ImmunityCleveland ClinicClevelandOHUSA
| | - Kyle L Poulsen
- Department of Inflammation and ImmunityCleveland ClinicClevelandOHUSA
| | - Craig J McClain
- Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Mack Mitchell
- Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | | | | | - Bruce Barton
- Department of Population and Quantitative Health SciencesUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Gyongyi Szabo
- Department of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Srinivasan Dasarathy
- Department of Inflammation and ImmunityCleveland ClinicClevelandOHUSA
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOHUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOHUSA
| | - Daniel M Rotroff
- Department of Quantitative Health SciencesCleveland ClinicClevelandOHUSA
| | - Laura E Nagy
- Department of Inflammation and ImmunityCleveland ClinicClevelandOHUSA
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOHUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
48
|
Støy S, Laursen TL, Eriksen LL, Grønbæk H, Vilstrup H, Sandahl TD. No Effect in Alcoholic Hepatitis of Gut-Selective, Broad-Spectrum Antibiotics on Bacterial Translocation or Hepatic and Systemic Inflammation. Clin Transl Gastroenterol 2021; 12:e00306. [PMID: 33566559 PMCID: PMC7846454 DOI: 10.14309/ctg.0000000000000306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION In alcoholic hepatitis (AH), translocation of gut bacteria may drive hepatic macrophage activation and systemic inflammation. We investigated the effect of oral non-absorbable, broad-spectrum antibiotic treatment on bacterial translocation and liver and systemic inflammation in AH. METHODS We consecutively recruited 31 patients with AH. Fourteen were given vancomycin 500 mg, gentamycin 40 mg, and meropenem 500 mg once daily for 7 days. Seventeen patients were a reference group receiving standard-of-care. Circulating markers of bacterial translocation and inflammation were measured at baseline, by day 7 and 90. Gut bacteriome profiling was performed before the intervention and at day 7. RESULTS At study entry, blood lipopolysaccharide-binding protein was multifold higher than normal, remained unchanged at day 7, but decreased at day 90 (P < 0.001) with no difference between the study groups. The macrophage activation markers sCD163 and sCD206 showed the same pattern (P < 0.001, day 90), still without group differences. The systemic inflammation markers tumor necrosis factor-alpha, interleukin (IL)-6, IL-8, and IL-10 showed similar dynamics without group differences. There was no difference in 90-day mortality (total of 6 deaths) between the groups. The remnant gut bacteriome was markedly diversified by the intervention with growth of bacterial species rare for human flora. DISCUSSION In patients with AH, gut-targeted antibiotic treatment does not change markers of bacterial translocation and liver and systemic inflammation. This suggests that bacterial translocation is less important once the inflammatory process is established or that bacteriome reduction is less important than composition.
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
49
|
Yoshio S, Kanto T. Macrophages as a source of fibrosis biomarkers for non-alcoholic fatty liver disease. Immunol Med 2021; 44:175-186. [PMID: 33444517 DOI: 10.1080/25785826.2020.1868664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) are becoming major liver diseases worldwide. Liver fibrosis and cirrhosis are among the most significant risk factors of hepatocellular carcinoma (HCC) and associated with the long-term prognosis of NAFLD patients. To stratify the risk of HCC in NAFLD patients clinically, the discovery of non-invasive fibrosis markers is needed urgently. Liver macrophages play critical roles in the regulation of inflammation and fibrosis by interacting with hepatic stellate cells (HSCs) and other immune cells. Thus, it is rational to explore feasible biomarkers for liver fibrosis by focusing on macrophage-related factors. We examined serum factors comprehensively in multiple cohorts of NAFLD/NASH patients to determine whether they were correlated with the biopsy-proven fibrosis stage. We found that the serum levels of interleukin (IL)-34, YKL-40 and soluble Siglec-7 (sSiglec7) were closely associated with liver fibrosis and served as diagnostic biomarkers in patients with NAFLD/NASH. In the NAFLD liver, IL-34 was produced by activated fibroblasts, and YKL-40 and sSiglec-7 were secreted from macrophages. The sensitivity and specificity of these markers to detect advanced liver fibrosis varied, supporting the notion that the combination of these markers with other modalities is an option for clinical application.
Collapse
Affiliation(s)
- Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
50
|
Gantzel RH, Kjær MB, Laursen TL, Kazankov K, George J, Møller HJ, Grønbæk H. Macrophage Activation Markers, Soluble CD163 and Mannose Receptor, in Liver Fibrosis. Front Med (Lausanne) 2021; 7:615599. [PMID: 33490096 PMCID: PMC7820116 DOI: 10.3389/fmed.2020.615599] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are essential components of the human host immune system, which upon activation facilitates a broad pallet of immunomodulatory events including release of pro- or anti-inflammatory cytokines and chemokines, restoration of immune homeostasis and/or wound healing. Moreover, some macrophage phenotypes are crucially involved in fibrogenesis through stimulation of myofibroblasts, while others promote fibrolysis. During the last decades, the role of resident liver macrophages viz. Kupffer cells and recruited monocytes/macrophages in acute and chronic liver diseases has gained interest and been extensively investigated. Specifically, the scavenger receptors CD163 and mannose receptor (CD206), expressed by macrophages, are of utmost interest since activation by various stimuli induce their shedding to the circulation. Thus, quantifying concentrations of these soluble biomarkers may be of promising clinical relevance in estimating the severity of inflammation and fibrosis and to predict outcomes such as survival. Here, we review the existing literature on soluble CD163 and soluble mannose receptor in liver diseases with a particular focus on their relationship to hepatic fibrosis in metabolic associated fatty liver disease, as well as in chronic hepatitis B and C.
Collapse
Affiliation(s)
| | - Mikkel Breinholt Kjær
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.,Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|