1
|
Zou YX, Kantapan J, Wang HL, Li JC, Su HW, Dai J, Dechsupa N, Wang L. Iron-Quercetin complex enhances mesenchymal stem cell-mediated HGF secretion and c-Met activation to ameliorate acute kidney injury through the prevention of tubular cell apoptosis. Regen Ther 2025; 28:169-182. [PMID: 39802634 PMCID: PMC11720445 DOI: 10.1016/j.reth.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Background Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms. Methods A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSCIronQ). Renal function, histology, and tubular cell apoptosis were analyzed three days post-treatment. In vitro, apoptosis was induced in mouse tubular epithelial cells (mTECs) using cisplatin, followed by treatment with MSCs or MSCIronQ conditioned medium (CM). Apoptosis was evaluated using TUNEL assay, RT-PCR, and western blotting. Furthermore, RNA sequencing (RNA-seq) was performed on MSCIronQ to explore the underlying mechanisms. Results Compared to MSC-treated AKI mice, those treated with MSCIronQ showed significantly improved renal function and histological outcomes, with reduced tubular cell apoptosis. A similar effect was observed in cisplatin-treated mTECs exposed to MSCIronQ-CM. Mechanistically, RNA-seq and subsequent validation revealed that IronQ treatment markedly upregulated the expression and secretion of hepatocyte growth factor (HGF) in MSCs. Furthermore, RNA interference or antibody-mediated neutralization of HGF effectively abolished the anti-apoptotic effects of MSCIronQ on mTECs. This mechanistic insight was reinforced by pharmacological inhibition of c-Met, the specific receptor of HGF, in both in vitro and in vivo models. Conclusions IronQ pretreatment enhances MSCs efficacy in AKI by promoting HGF expression and secretion, activating the HGF/c-Met pathway to suppress tubular cell apoptosis. These findings indicate that IronQ improves MSC-based therapies and offers insights into molecular mechanisms, supporting the development of better AKI treatments.
Collapse
Affiliation(s)
- Yuan-Xia Zou
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Children's Diagnosis and Treatment Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hong-Lian Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian-Chun Li
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Hong-Wei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian Dai
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Neurology, The Third People's Hospital, Luzhou, 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Li Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
2
|
Lemmer P, Sowa J, Bulut Y, Strnad P, Canbay A. Mechanisms and aetiology-dependent treatment of acute liver failure. Liver Int 2025; 45:e15739. [PMID: 37752801 PMCID: PMC11815625 DOI: 10.1111/liv.15739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
This review compiles the mechanisms of acute liver failure (ALF) as well as the current and potential therapeutic approaches, including aetiology-specific treatment, and the issues encountered with such approaches. On a cellular level, ALF is characterized by massive hepatocyte death due to different types of cellular demise. Compensatory hyperplasia and functional recovery are possible when the regenerative capacity is sufficient to sustain hepatic function. ALF has a high mortality of about 30% and can lead to death in a very short time despite maximum therapeutic intervention. Besides aetiology-specific therapy and intensive care, the therapeutic option of emergency liver transplantation has significantly improved the prognosis of patients with ALF. However, due to limiting factors such as organ shortage, many patients die on the waiting list. In addition to graft assessment, machine perfusion may have the potential to recondition marginal organs and thus expand the organ donor pool.
Collapse
Affiliation(s)
- Peter Lemmer
- Department of Gastroenterology, Hepatology, and Infectious DiseasesOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Jan‐Peter Sowa
- Department of MedicineUniversitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University BochumBochumGermany
| | - Yesim Bulut
- Department of MedicineUniversitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University BochumBochumGermany
| | - Pavel Strnad
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Ali Canbay
- Department of MedicineUniversitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University BochumBochumGermany
| |
Collapse
|
3
|
Li Y, Xing Y, Liu N, Liu B, Wang Z. SOX9: a key transcriptional regulator in organ fibrosis. Front Pharmacol 2025; 16:1507282. [PMID: 39974732 PMCID: PMC11835943 DOI: 10.3389/fphar.2025.1507282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
The SOX9 gene locus is not only extensive but also intricate, and it could promote fibrosis in different organs or tissues, including cardiac fibrosis, liver fibrosis, kidney fibrosis, pulmonary fibrosis, as well as other organ fibrosis. Many disorders are associated with the process of fibrosis; moreover, fibrosis is a common symptom of chronic inflammatory diseases, characterized by the accumulation of excessive components in the extracellular matrix through different signaling pathways. The advanced stage of the fibrotic process leads to organ dysfunction and, ultimately, death. In this review, we first give an overview of the original structure and functions of SOX9. Second, we will discuss the role of SOX9 in fibrosis in various organs or tissues. Third, we describe and reveal the possibility of SOX9 as an antifibrotic treatment target. Finally, we will focus on the application of novel technologies for SOX9 and the subsequent investigation of fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Zhihui Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Magnani E, Macchi F, Randic T, Chen C, Madakashira B, Ranjan S, Eski SE, Singh SP, Sadler KC. Epigenetic Disordering Drives Stemness, Senescence Escape and Tumor Heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.629346. [PMID: 39763773 PMCID: PMC11703240 DOI: 10.1101/2024.12.29.629346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tumor heterogeneity is the substrate for tumor evolution and the linchpin of treatment resistance. Cancer cell heterogeneity is largely attributed to distinct genetic changes within each cell population. However, the widespread epigenome repatterning that characterizes most cancers is also highly heterogenous within tumors and could generate cells with diverse identities and malignant features. We show that high levels of the epigenetic regulator and oncogene, UHRF1, in zebrafish hepatocytes rapidly induced methylome disordering, loss of heterochromatin, and DNA damage, resulting in cell cycle arrest, senescence, and acquisition of stemness. Reducing UHRF1 expression transitions these cells from senescent to proliferation-competent. The expansion of these damaged cells results in hepatocellular carcinomas (HCC) that have immature cancer cells intermingled with fibroblasts, immune and senescent cells expressing high UHRF1 levels, which serve as reservoirs for new cancer cells. This defines a distinct and heterogenous HCC subtype resulting from epigenetic changes, stemness and senescence escape.
Collapse
Affiliation(s)
- Elena Magnani
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tijana Randic
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Charlene Chen
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Bhavani Madakashira
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Shashi Ranjan
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Sema Elif Eski
- Laboratory of Regeneration and Stress Biology, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM-Jacques E. Dumont), Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Sumeet P. Singh
- Laboratory of Regeneration and Stress Biology, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM-Jacques E. Dumont), Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Kirsten C. Sadler
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Liu Z, Ren J, Qiu C, Wang Y, Zhang T. Application of mesenchymal stem cells in liver fibrosis and regeneration. LIVER RESEARCH 2024; 8:246-258. [PMID: 39958916 PMCID: PMC11771278 DOI: 10.1016/j.livres.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 02/18/2025]
Abstract
Liver transplantation remains the most effective treatment for end-stage liver disease (ESLD), but it is fraught with challenges such as immunosuppression, high risk and cost, and donor shortage. In recent years, stem cell transplantation has emerged as a promising new strategy for ESLD treatment, with mesenchymal stem cells (MSCs) gaining significant attention because of their unique properties. MSCs can regulate signaling pathways, including hepatocyte growth factor/c-Met, Wnt/beta (β)-catenin, Notch, transforming growth factor-β1/Smad, interleukin-6/Janus kinase/signal transducer and activator of transcription 3, and phosphatidylinositol 3-kinase/PDK/Akt, thereby influencing the progression of liver fibrosis and regeneration. As a promising stem cell type, MSCs offer numerous advantages in liver disease treatment, including low immunogenicity; ease of acquisition; unlimited proliferative ability; pluripotent differentiation potential; immunomodulatory function; and anti-inflammatory, antifibrotic, and antiapoptotic biological characteristics. This review outlines the mechanisms by which MSCs reverse liver fibrosis and promote liver regeneration. MSCs are crucial in reversing liver fibrosis and repairing liver damage through the secretion of growth factors, regulation of signaling pathways, and modulation of immune responses. MSCs have shown good therapeutic effects in preclinical and clinical studies, providing new strategies for liver disease treatment. However, challenges still exist in the clinical application of MSCs, including low differentiation efficiency and limited sources. This review provides a reference for MSC application in liver disease treatment. With the continuous progress in MSC research, MSCs are expected to achieve breakthroughs in liver disease treatment, thereby improving patient treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junkai Ren
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cheng Qiu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ying Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tong Zhang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Mo D, Lv M, Mao X. Using different zebrafish models to explore liver regeneration. Front Cell Dev Biol 2024; 12:1485773. [PMID: 39544362 PMCID: PMC11560876 DOI: 10.3389/fcell.2024.1485773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
The liver possesses an impressive capability to regenerate following various injuries. Given its profound implications for the treatment of liver diseases, which afflict millions globally, liver regeneration stands as a pivotal area of digestive organ research. Zebrafish (Danio rerio) has emerged as an ideal model organism in regenerative medicine, attributed to their remarkable ability to regenerate tissues and organs, including the liver. Many fantastic studies have been performed to explore the process of liver regeneration using zebrafish, especially the extreme hepatocyte injury model. Biliary-mediated liver regeneration was first discovered in the zebrafish model and then validated in mammalian models and human patients. Considering the notable expansion of biliary epithelial cells in many end-stage liver diseases, the promotion of biliary-mediated liver regeneration might be another way to treat these refractory liver diseases. To date, a comprehensive review discussing the current advancements in zebrafish liver regeneration models is lacking. Therefore, this review aims to investigate the utility of different zebrafish models in exploring liver regeneration, highlighting the genetic and cellular insights gained and discussing the potential translational impact on human health.
Collapse
Affiliation(s)
- Dashuang Mo
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing, China
| |
Collapse
|
7
|
Sun T, Li S, Li X, Lei Y, Wang B, Liu X, Yu S, Li N. Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stress. Biochem Biophys Res Commun 2024; 721:150130. [PMID: 38761750 DOI: 10.1016/j.bbrc.2024.150130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Apigenin (API) is a natural flavonoid compound with antioxidant, anti fibrotic, anti-inflammatory and other effects, but there is limited research on the effect of API on liver fibrosis. This study aims to explore the effect and potential mechanism of API on liver fibrosis induced by CCl4 in mice. The results indicate that API reduces oxidative stress levels, inhibits hepatic stellate cell (HSC) activation, and exerts anti liver fibrosis effects by regulating the PKM2-HIF-1α pathway. We observed that API alleviated liver tissue pathological damage and collagen deposition in CCl4 induced mouse liver fibrosis model, promoting the recovery of liver function in mice with liver fibrosis. In addition, the API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer formation by regulating the EGFR-MEK1/2-ERK1/2 pathway, thereby preventing dimer from entering the nucleus and blocking PKM2-HIF-1α access. This change leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of liver fibrosis mice. At the same time, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis, inhibited the activation of HSC, and reduced collagen deposition. These results indicate that API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress, laying an important foundation for the development and clinical application of API as a novel drug for treating liver fibrosis.
Collapse
Affiliation(s)
- Tao Sun
- Department of Internal Medicine, Henan Medical College, Zhengzhou, China
| | - Saifei Li
- Henan University of Chinese Medicine, School of Pharmacy, Zhengzhou, China
| | - Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Yanfei Lei
- Department of Internal Medicine, Henan Medical College, Zhengzhou, China
| | - Baoying Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xianghua Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China.
| |
Collapse
|
8
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
9
|
Ambrosio EMG, Bailey CSL, Unterweger IA, Christensen JB, Bruchez MP, Lundegaard PR, Ober EA. LiverZap: a chemoptogenetic tool for global and locally restricted hepatocyte ablation to study cellular behaviours in liver regeneration. Development 2024; 151:dev202217. [PMID: 38381702 DOI: 10.1242/dev.202217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
The liver restores its mass and architecture after injury. Yet, investigating morphogenetic cell behaviours and signals that repair tissue architecture at high spatiotemporal resolution remains challenging. We developed LiverZap, a tuneable chemoptogenetic liver injury model in zebrafish. LiverZap employs the formation of a binary FAP-TAP photosensitiser followed by brief near-infrared illumination inducing hepatocyte-specific death and recapitulating mammalian liver injury types. The tool enables local hepatocyte ablation and extended live imaging capturing regenerative cell behaviours, which is crucial for studying cellular interactions at the interface of healthy and damaged tissue. Applying LiverZap, we show that targeted hepatocyte ablation in a small region of interest is sufficient to trigger local liver progenitor-like cell (LPC)-mediated regeneration, challenging the current understanding of liver regeneration. Surprisingly, the LPC response is also elicited in adjacent uninjured tissue, at up to 100 µm distance to the injury. Moreover, dynamic biliary network rearrangement suggests active cell movements from uninjured tissue in response to substantial hepatocyte loss as an integral step of LPC-mediated liver regeneration. This precisely targetable liver cell ablation tool will enable the discovery of key molecular and morphogenetic regeneration paradigms.
Collapse
Affiliation(s)
- Elizabeth M G Ambrosio
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Charlotte S L Bailey
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Iris A Unterweger
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jens B Christensen
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge CB2 1NQ, UK
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Pia R Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Elke A Ober
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Lee S, Memon A, Chae SC, Shin D, Choi TY. Epcam regulates intrahepatic bile duct reconstruction in zebrafish, providing a potential model for primary cholangitis model. Biochem Biophys Res Commun 2024; 696:149512. [PMID: 38224664 DOI: 10.1016/j.bbrc.2024.149512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Epithelial cell adhesion molecules (EpCAMs) have been identified as surface markers of proliferating ductal cells, which are referred to as liver progenitor cells (LPCs), during liver regeneration and correspond to malignancies. These cells can differentiate into hepatocytes and biliary epithelial cells (BECs) in vitro. EpCAM-positive LPCs are involved in liver regeneration following severe liver injury; however, the in vivo function of EpCAMs in the regenerating liver remains unclear. In the present study, we used a zebrafish model of LPC-driven liver regeneration to elucidate the function of EpCAMs in the regenerating liver in vivo. Proliferating ductal cells were observed after severe hepatocyte loss in the zebrafish model. Analyses of the liver size as well as hepatocyte and BEC markers revealed successful conversion of LPCs to hepatocytes and BECs in epcam mutants. Notably, epcam mutants exhibited severe defects in intrahepatic duct maturation and bile acid secretion in regenerating hepatocytes, suggesting that epcam plays a critical role in intrahepatic duct reconstruction during LPC-driven liver regeneration. Our findings provide insights into human diseases involving non-parenchymal cells, such as primary biliary cholangitis, by highlighting the regulatory effect of epcam on intrahepatic duct reconstruction.
Collapse
Affiliation(s)
- Siyeo Lee
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Azra Memon
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tae-Young Choi
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
11
|
Zhou M, Lin B, Wu P, Ke Y, Huang S, Zhang F, Hei X, Mao Z, Li X, Wan P, Chen T, Yang H, Huang D. SOX9 Induces Orbital Fibroblast Activation in Thyroid Eye Disease Via MAPK/ERK1/2 Pathway. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 38345552 PMCID: PMC10866156 DOI: 10.1167/iovs.65.2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose To evaluate the expression of sry-box transcription factor 9 (SOX9) in orbital fibroblasts (OFs) of thyroid eye disease (TED) and to find its potential role and underlying mechanism in orbital fibrosis. Methods OFs were cultured from orbital connective tissues obtained from patients with TED (n = 10) and healthy controls (n = 6). SOX9 was depleted by small interfering RNA or overexpressed through lentivirus transduction in OFs. Fibroblast contractile activity was measured by collagen gel contraction assay and proliferation was examined by EdU assay. Transcriptomic changes were assessed by RNA sequencing. Results The mRNA and protein levels of SOX9 were significantly higher in OFs cultured from patients with TED than those from healthy controls. Extracellular matrix-related genes were down-regulated by SOX9 knockdown and up-regulated by SOX9 overexpression in TED-OFs. SOX9 knockdown significantly decrease the contraction and the antiapoptotic ability of OFs, whereas the overexpression of SOX9 increased the ability of transformation, migration, and proliferation of OFs. SOX9 knockdown suppressed the expression of phosphorylated ERK1/2, whereas its overexpression showed the opposite effect. Epidermal growth factor receptor (EGFR) is one of the notably down-regulated genes screened out by RNA sequencing. Chromatin immunoprecipitation-qPCR demonstrated SOX9 binding to the EGFR promoter. Conclusions A high expression of SOX9 was found in TED-OFs. SOX9 can activate OFs via MAPK/ERK1/2 signaling pathway, which in turn promotes proliferation and differentiation of OFs. EGFR was a downstream target gene of SOX9. SOX9/EGFR can be considered as therapeutic targets for the treatment of orbital fibrosis in TED.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Jiang M, Ren J, Belmonte JCI, Liu GH. Hepatocyte reprogramming in liver regeneration: Biological mechanisms and applications. FEBS J 2023; 290:5674-5688. [PMID: 37556833 DOI: 10.1111/febs.16930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
The liver is one of the few organs that retain the capability to regenerate in adult mammals. This regeneration process is mainly facilitated by the dynamic behavior of hepatocytes, which are the major functional constituents in the liver. In response to liver injury, hepatocytes undergo remarkable alterations, such as reprogramming, wherein they lose their original identity and acquire properties from other cells. This phenomenon of hepatocyte reprogramming, coupled with hepatocyte expansion, plays a central role in liver regeneration, and its underlying mechanisms are complex and multifaceted. Understanding the fate of reprogrammed hepatocytes and the mechanisms of their conversion has significant implications for the development of innovative therapeutics for liver diseases. Herein, we review the plasticity of hepatocytes in response to various forms of liver injury, with a focus on injury-induced hepatocyte reprogramming. We provide a comprehensive summary of current knowledge on the molecular and cellular mechanisms governing hepatocyte reprogramming, specifically in the context of liver regeneration, providing insight into potential applications of this process in the treatment of liver disorders, including chronic liver diseases and liver cancer.
Collapse
Affiliation(s)
- Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Kim M, So J, Shin D. PPARα activation promotes liver progenitor cell-mediated liver regeneration by suppressing YAP signaling in zebrafish. Sci Rep 2023; 13:18312. [PMID: 37880271 PMCID: PMC10600117 DOI: 10.1038/s41598-023-44935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Despite the robust regenerative capacity of the liver, prolonged and severe liver damage impairs liver regeneration, leading to liver failure. Since the liver co-opts the differentiation of liver progenitor cells (LPCs) into hepatocytes to restore functional hepatocytes, augmenting LPC-mediated liver regeneration may be beneficial to patients with chronic liver diseases. However, the molecular mechanisms underlying LPC-to-hepatocyte differentiation have remained largely unknown. Using the zebrafish model of LPC-mediated liver regeneration, Tg(fabp10a:pt-β-catenin), we present that peroxisome proliferator-activated receptor-alpha (PPARα) activation augments LPC-to-hepatocyte differentiation. We found that treating Tg(fabp10a:pt-β-catenin) larvae with GW7647, a potent PPARα agonist, enhanced the expression of hepatocyte markers and simultaneously reduced the expression of biliary epithelial cell (BEC)/LPC markers in the regenerating livers, indicating enhanced LPC-to-hepatocyte differentiation. Mechanistically, PPARα activation augments the differentiation by suppressing YAP signaling. The differentiation phenotypes resulting from GW7647 treatment were rescued by expressing a constitutively active form of Yap1. Moreover, we found that suppression of YAP signaling was sufficient to promote LPC-to-hepatocyte differentiation. Treating Tg(fabp10a:pt-β-catenin) larvae with the TEAD inhibitor K-975, which suppresses YAP signaling, phenocopied the effect of GW7647 on LPC differentiation. Altogether, our findings provide insights into augmenting LPC-mediated liver regeneration as a regenerative therapy for chronic liver diseases.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
14
|
Song Y, Lu Z, Shu W, Xiang Z, Wang Z, Wei X, Xu X. Arouse potential stemness: Intrinsic and acquired stem cell therapeutic strategies for advanced liver diseases. CELL INSIGHT 2023; 2:100115. [PMID: 37719773 PMCID: PMC10502372 DOI: 10.1016/j.cellin.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.
Collapse
Affiliation(s)
- Yisu Song
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University Shanghai, 200040, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
15
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
16
|
Ma J, Yang Z, Huang Z, Li L, Huang J, Chen J, Ni R, Luo L, He J. Rngtt governs biliary-derived liver regeneration initiation by transcriptional regulation of mTORC1 and Dnmt1 in zebrafish. Hepatology 2023; 78:167-178. [PMID: 36724876 DOI: 10.1097/hep.0000000000000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023]
Abstract
In cases of end-stage liver diseases, the proliferation of existing hepatocytes is compromised, a feature of human chronic liver disease, in which most hepatocytes are dysfunctional. So far, liver transplantation represents the only curative therapeutic solution for advanced liver diseases, and the shortage of donor organs leads to high morbidity and mortality worldwide. The promising treatment is to prompt the biliary epithelial cells (BECs) transdifferentiation. However, the critical factors governing the initiation of BEC-derived liver regeneration are largely unknown. The zebrafish has advantages in large-scale genetic screens to identify the critical factors involved in liver regeneration. Here, we combined N-ethyl-N-nitrosourea screen, positional cloning, transgenic lines, antibody staining, and in situ hybridization methods and identified a liver regeneration defect mutant ( lrd ) using the zebrafish extensive liver injury model. Through positional cloning and genomic sequencing, we mapped the mutation site to rngtt . Loss of rngtt leads to the defects of BEC dedifferentiation, bipotential progenitor cell activation, and cell proliferation in the initiation stage of liver regeneration. The transdifferentiation from BECs to hepatocytes did not occur even at the late stage of liver regeneration. Mechanically, Rngtt transcriptionally regulates the attachment of mRNA cap to mTOR complex 1 (mTORC1) components and dnmt1 to maintain the activation of mTORC1 and DNA methylation in BECs after severe liver injury and prompt BEC to hepatocyte conversion. Furthermore, rptor and dnmt1 mutants displayed the same liver regeneration defects as rngtt mutation. In conclusion, our results suggest Rngtt is a new factor that initiates BEC-derived liver regeneration.
Collapse
Affiliation(s)
- Jianlong Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuolin Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Linke Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jingliang Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
17
|
Ajouaou Y, Magnani E, Madakashira B, Jenkins E, Sadler KC. atm Mutation and Oxidative Stress Enhance the Pre-Cancerous Effects of UHRF1 Overexpression in Zebrafish Livers. Cancers (Basel) 2023; 15:cancers15082302. [PMID: 37190230 DOI: 10.3390/cancers15082302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
The ataxia-telangiectasia mutated (atm) gene is activated in response to genotoxic stress and leads to activation of the tp53 tumor suppressor gene which induces either senescence or apoptosis as tumor suppressive mechanisms. Atm also serves non-canonical functions in the response to oxidative stress and chromatin reorganization. We previously reported that overexpression of the epigenetic regulator and oncogene Ubiquitin Like with PHD and Ring Finger Domains 1 (UHRF1) in zebrafish hepatocytes resulted in tp53-dependent hepatocyte senescence, a small liver and larval lethality. We investigated the role of atm on UHRF1-mediated phenotypes by generating zebrafish atm mutants. atm-/- adults were viable but had reduction in fertility. Embryos developed normally but were protected from lethality caused by etoposide or H2O2 exposure and failed to fully upregulate Tp53 targets or oxidative stress response genes in response to these treatments. In contrast to the finding that Tp53 prevents the small liver phenotype caused by UHRF1 overexpression, atm mutation and exposure to H2O2 further reduced the liver size in UHRF1 overexpressing larvae whereas treatment with the antioxidant N-acetyl cysteine suppressed this phenotype. We conclude that UHRF1 overexpression in hepatocytes causes oxidative stress, and that loss of atm further enhances this, triggering elimination of these precancerous cells, leading to a small liver.
Collapse
Affiliation(s)
- Yousra Ajouaou
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Bhavani Madakashira
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Eleanor Jenkins
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| |
Collapse
|
18
|
Pu W, Zhu H, Zhang M, Pikiolek M, Ercan C, Li J, Huang X, Han X, Zhang Z, Lv Z, Li Y, Liu K, He L, Liu X, Heim MH, Terracciano LM, Tchorz JS, Zhou B. Bipotent transitional liver progenitor cells contribute to liver regeneration. Nat Genet 2023; 55:651-664. [PMID: 36914834 PMCID: PMC10101857 DOI: 10.1038/s41588-023-01335-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Following severe liver injury, when hepatocyte-mediated regeneration is impaired, biliary epithelial cells (BECs) can transdifferentiate into functional hepatocytes. However, the subset of BECs with such facultative tissue stem cell potential, as well as the mechanisms enabling transdifferentiation, remains elusive. Here we identify a transitional liver progenitor cell (TLPC), which originates from BECs and differentiates into hepatocytes during regeneration from severe liver injury. By applying a dual genetic lineage tracing approach, we specifically labeled TLPCs and found that they are bipotent, as they either differentiate into hepatocytes or re-adopt BEC fate. Mechanistically, Notch and Wnt/β-catenin signaling orchestrate BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively. Together, our study provides functional and mechanistic insights into transdifferentiation-assisted liver regeneration.
Collapse
Affiliation(s)
- Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingjun Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Monika Pikiolek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jie Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuzhen Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiuxiu Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Markus H Heim
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Luigi M Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
19
|
Kim M, Rizvi F, Shin D, Gouon-Evans V. Update on Hepatobiliary Plasticity. Semin Liver Dis 2023; 43:13-23. [PMID: 36764306 PMCID: PMC10005859 DOI: 10.1055/s-0042-1760306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The liver field has been debating for decades the contribution of the plasticity of the two epithelial compartments in the liver, hepatocytes and biliary epithelial cells (BECs), to derive each other as a repair mechanism. The hepatobiliary plasticity has been first observed in diseased human livers by the presence of biphenotypic cells expressing hepatocyte and BEC markers within bile ducts and regenerative nodules or budding from strings of proliferative BECs in septa. These observations are not surprising as hepatocytes and BECs derive from a common fetal progenitor, the hepatoblast, and, as such, they are expected to compensate for each other's loss in adults. To investigate the cell origin of regenerated cell compartments and associated molecular mechanisms, numerous murine and zebrafish models with ability to trace cell fates have been extensively developed. This short review summarizes the clinical and preclinical studies illustrating the hepatobiliary plasticity and its potential therapeutic application.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fatima Rizvi
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Valerie Gouon-Evans
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
20
|
Oderberg IM, Goessling W. Biliary epithelial cells are facultative liver stem cells during liver regeneration in adult zebrafish. JCI Insight 2023; 8:163929. [PMID: 36625346 PMCID: PMC9870093 DOI: 10.1172/jci.insight.163929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
The liver is a highly regenerative organ, yet the presence of a dedicated stem cell population remains controversial. Here, we interrogate a severe hepatocyte injury model in adult zebrafish to define that regeneration involves a stem cell population. After near-total hepatocyte ablation, single-cell transcriptomic and high-resolution imaging analyses throughout the entire regenerative timeline reveal that biliary epithelial cells undergo transcriptional and morphological changes to become hepatocytes. As a population, biliary epithelial cells give rise to both hepatocytes and biliary epithelial cells. Biliary epithelial cells proliferate and dedifferentiate to express hepatoblast transcription factors prior to hepatocyte differentiation. This process is characterized by increased MAPK, PI3K, and mTOR signaling, and chemical inhibition of these pathways impairs biliary epithelial cell proliferation and fate conversion. We conclude that, upon severe hepatocyte ablation in the adult liver, biliary epithelial cells act as facultative liver stem cells in an EGFR-PI3K-mTOR-dependent manner.
Collapse
Affiliation(s)
- Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
22
|
Chawla S, Das A. Preclinical-to-clinical innovations in stem cell therapies for liver regeneration. Curr Res Transl Med 2023; 71:103365. [PMID: 36427419 DOI: 10.1016/j.retram.2022.103365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Acute and chronic liver diseases are the major cause of high morbidity and mortality globally. Liver transplantation is a widely used therapeutic option for liver failure. However, the shortage of availability of liver donors has encouraged research on the alternative approach to liver regeneration. Cell-based regenerative medicine is the best alternative therapy to cater to this need. To date, advanced preclinical approaches have been undertaken on stem cell differentiation and their use in liver tissue engineering for generating efficacious and promising regenerative therapies. Advancements in the bioengineering of stem cells, and organoid generation are the way forward to efficient therapies against liver injury. This review summarizes the recent approaches for stem cell therapy-based liver regeneration and their proof of concepts for clinical application, bioengineering liver organoids to alleviate the liver failure caused due to chronic liver diseases.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
23
|
Zhao C, Matalonga J, Lancman JJ, Liu L, Xiao C, Kumar S, Gates KP, He J, Graves A, Huisken J, Azuma M, Lu Z, Chen C, Ding BS, Dong PDS. Regenerative failure of intrahepatic biliary cells in Alagille syndrome rescued by elevated Jagged/Notch/Sox9 signaling. Proc Natl Acad Sci U S A 2022; 119:e2201097119. [PMID: 36469766 PMCID: PMC9897440 DOI: 10.1073/pnas.2201097119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/21/2022] [Indexed: 12/08/2022] Open
Abstract
Despite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the JAG1 haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating jag1b and jag2b allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities. Although regenerating IHD cells proliferate, they remain clustered in mutants that fail to recover due to a blunted elevation of Notch signaling in the distal-most IHD cells. Increased Notch signaling is required for regenerating IHD cells to branch and segregate into the peripheral region of the growing liver, where biliary paucity is commonly observed in ALGS. Mosaic loss- and-gain-of-function analysis reveals Sox9b to be a key Notch transcriptional effector required cell autonomously to regulate these cellular dynamics during IHD regeneration. Treatment with a small-molecule putative Notch agonist stimulates Sox9 expression in ALGS patient fibroblasts and enhances hepatic sox9b expression, rescues IHD paucity and cholestasis, and increases survival in zebrafish mutants, thereby providing a proof-of-concept therapeutic avenue for this disorder.
Collapse
Affiliation(s)
- Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Jonathan Matalonga
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Joseph J. Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Lu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
| | - Shiv Kumar
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Keith P. Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Jiaye He
- Morgridge Institute for Research, Madison, WI53715
| | | | - Jan Huisken
- Morgridge Institute for Research, Madison, WI53715
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53706
| | - Mizuki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66045
| | - Zhenghao Lu
- Chengdu Organoidmed Medical Laboratory Ltd., Sichuan, 610041People’s Republic of China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
| | - P. Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| |
Collapse
|
24
|
Cao J, Zhang Y, Zhang P, Zhang Z, Zhang B, Feng Y, Li Z, Yang Y, Meng Q, He L, Cai Y, Wang Z, Li J, Chen X, Liu H, Hong A, Zheng W, Chen X. Turning gray selenium into a nanoaccelerator of tissue regeneration by PEG modification. Bioact Mater 2022; 15:131-144. [PMID: 35386336 PMCID: PMC8940942 DOI: 10.1016/j.bioactmat.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in nearly all human physiological processes but suffers from a narrow margin between benefit and toxicity. The nanoform of selenium has been proven shown to be more bioavailable and less toxic, yet significant challenges remain regarding the efficient and feasible synthesis of biologically active nanoselenium. In addition, although nanoselenium has shown a variety of biological activities, more interesting nanoselenium features are expected. In this work, hydrosoluble nanoselenium termed Nano-Se in the zero oxidation state was synthesized between gray Se and PEG. A zebrafish screen was carried out in zebrafish larvae cocultured with Nano-Se. Excitingly, Nano-Se promoted the action of the FGFR, Wnt, and VEGF signaling pathways, which play crucial roles in tissue regeneration. As expected, Nano-Se not only achieved the regeneration of zebrafish tail fins and mouse skin but also promoted the repair of skin in diabetic mice while maintaining a profitable safe profile. In brief, the Nano-Se reported here provided an efficient and feasible method for bioactive nanoselenium synthesis and not only expanded the application of nanoselenium to regenerative medicine but also likely reinvigorated efforts for discovering more peculiarunique biofunctions of nanoselenium in a great variety of human diseases. It was found that selenium nanoparticles through FGFR、Wnt、VEGFR signal pathway to promote tissue regeneration; Development a new water-soluble, bio-compatible, zero oxidation state Nano-Se; Development a new efficient and safe nano-biologic agent for promoting tissue regeneration.
Collapse
Affiliation(s)
- Jieqiong Cao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zilei Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zhixin Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qilin Meng
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jie Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xue Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Corresponding author.
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
- Corresponding author.
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510240, China
- Corresponding author. Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
| |
Collapse
|
25
|
DNA methylation maintenance at the p53 locus initiates biliary-mediated liver regeneration. NPJ Regen Med 2022; 7:21. [PMID: 35351894 PMCID: PMC8964678 DOI: 10.1038/s41536-022-00217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
In cases of extensive liver injury, biliary epithelial cells (BECs) dedifferentiate into bipotential progenitor cells (BPPCs), then redifferentiate into hepatocytes and BECs to accomplish liver regeneration. Whether epigenetic regulations, particularly DNA methylation maintenance enzymes, play a role in this biliary-mediated liver regeneration remains unknown. Here we show that in response to extensive hepatocyte damages, expression of dnmt1 is upregulated in BECs to methylate DNA at the p53 locus, which represses p53 transcription, and in turn, derepresses mTORC1 signaling to activate BEC dedifferentiation. After BEC dedifferentiation and BPPC formation, DNA methylation at the p53 locus maintains in BPPCs to continue blocking p53 transcription, which derepresses Bmp signaling to induce BPPC redifferentiation. Thus, this study reveals promotive roles and mechanisms of DNA methylation at the p53 locus in both dedifferentiation and redifferentiation stages of biliary-mediated liver regeneration, implicating DNA methylation and p53 as potential targets to stimulate regeneration after extensive liver injury.
Collapse
|
26
|
Liver Regeneration and Cell Transplantation for End-Stage Liver Disease. Biomolecules 2021; 11:biom11121907. [PMID: 34944550 PMCID: PMC8699389 DOI: 10.3390/biom11121907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is the only curative option for end-stage liver disease; however, the limitations of liver transplantation require further research into other alternatives. Considering that liver regeneration is prevalent in liver injury settings, regenerative medicine is suggested as a promising therapeutic strategy for end-stage liver disease. Upon the source of regenerating hepatocytes, liver regeneration could be divided into two categories: hepatocyte-driven liver regeneration (typical regeneration) and liver progenitor cell-driven liver regeneration (alternative regeneration). Due to the massive loss of hepatocytes, the alternative regeneration plays a vital role in end-stage liver disease. Advances in knowledge of liver regeneration and tissue engineering have accelerated the progress of regenerative medicine strategies for end-stage liver disease. In this article, we generally reviewed the recent findings and current knowledge of liver regeneration, mainly regarding aspects of the histological basis of regeneration, histogenesis and mechanisms of hepatocytes' regeneration. In addition, this review provides an update on the regenerative medicine strategies for end-stage liver disease. We conclude that regenerative medicine is a promising therapeutic strategy for end-stage liver disease. However, further studies are still required.
Collapse
|
27
|
Cai P, Mao X, Zhao J, Nie L, Jiang Y, Yang Q, Ni R, He J, Luo L. Farnesoid X Receptor Is Required for the Redifferentiation of Bipotential Progenitor Cells During Biliary-Mediated Zebrafish Liver Regeneration. Hepatology 2021; 74:3345-3361. [PMID: 34320243 DOI: 10.1002/hep.32076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Liver regeneration after extreme hepatocyte loss occurs through transdifferentiation of biliary epithelial cells (BECs), which includes dedifferentiation of BECs into bipotential progenitor cells (BPPCs) and subsequent redifferentiation into nascent hepatocytes and BECs. Although multiple molecules and signaling pathways have been implicated to play roles in the BEC-mediated liver regeneration, mechanisms underlying the dedifferentiation-redifferentiation transition and the early phase of BPPC redifferentiation that is pivotal for both hepatocyte and BEC directions remain largely unknown. APPROACH AND RESULTS The zebrafish extreme liver damage model, genetic mutation, pharmacological inhibition, transgenic lines, whole-mount and fluorescent in situ hybridizations and antibody staining, single-cell RNA sequencing, quantitative real-time PCR, and heat shock-inducible overexpression were used to investigate roles and mechanisms of farnesoid X receptor (FXR; encoded by nuclear receptor subfamily 1, group H, member 4 [nr1h4]) in regulating BPPC redifferentiation. The nr1h4 expression was significantly up-regulated in response to extreme liver injury. Genetic mutation or pharmacological inhibition of FXR was ineffective to BEC-to-BPPC dedifferentiation but blocked the redifferentiation of BPPCs to both hepatocytes and BECs, leading to accumulation of undifferentiated or less-differentiated BPPCs. Mechanistically, induced overexpression of extracellular signal-related kinase (ERK) 1 (encoded by mitogen-activated protein kinase 3) rescued the defective BPPC-to-hepatocyte redifferentiation in the nr1h4 mutant, and ERK1 itself was necessary for the BPPC-to-hepatocyte redifferentiation. The Notch activities in the regenerating liver of nr1h4 mutant attenuated, and induced Notch activation rescued the defective BPPC-to-BEC redifferentiation in the nr1h4 mutant. CONCLUSIONS FXR regulates BPPC-to-hepatocyte and BPPC-to-BEC redifferentiations through ERK1 and Notch, respectively. Given recent applications of FXR agonists in the clinical trials for liver diseases, this study proposes potential underpinning mechanisms by characterizing roles of FXR in the stimulation of dedifferentiation-redifferentiation transition and BPPC redifferentiation.
Collapse
Affiliation(s)
- Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Xiaoyu Mao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jieqiong Zhao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Li Nie
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
28
|
Jung K, Kim M, So J, Lee SH, Ko S, Shin D. Farnesoid X Receptor Activation Impairs Liver Progenitor Cell-Mediated Liver Regeneration via the PTEN-PI3K-AKT-mTOR Axis in Zebrafish. Hepatology 2021; 74:397-410. [PMID: 33314176 PMCID: PMC8605479 DOI: 10.1002/hep.31679] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/15/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Following mild liver injury, pre-existing hepatocytes replicate. However, if hepatocyte proliferation is compromised, such as in chronic liver diseases, biliary epithelial cells (BECs) contribute to hepatocytes through liver progenitor cells (LPCs), thereby restoring hepatic mass and function. Recently, augmenting innate BEC-driven liver regeneration has garnered attention as an alternative to liver transplantation, the only reliable treatment for patients with end-stage liver diseases. Despite this attention, the molecular basis of BEC-driven liver regeneration remains poorly understood. APPROACH AND RESULTS By performing a chemical screen with the zebrafish hepatocyte ablation model, in which BECs robustly contribute to hepatocytes, we identified farnesoid X receptor (FXR) agonists as inhibitors of BEC-driven liver regeneration. Here we show that FXR activation blocks the process through the FXR-PTEN (phosphatase and tensin homolog)-PI3K (phosphoinositide 3-kinase)-AKT-mTOR (mammalian target of rapamycin) axis. We found that FXR activation blocked LPC-to-hepatocyte differentiation, but not BEC-to-LPC dedifferentiation. FXR activation also suppressed LPC proliferation and increased its death. These defects were rescued by suppressing PTEN activity with its chemical inhibitor and ptena/b mutants, indicating PTEN as a critical downstream mediator of FXR signaling in BEC-driven liver regeneration. Consistent with the role of PTEN in inhibiting the PI3K-AKT-mTOR pathway, FXR activation reduced the expression of pS6, a marker of mTORC1 activation, in LPCs of regenerating livers. Importantly, suppressing PI3K and mTORC1 activities with their chemical inhibitors blocked BEC-driven liver regeneration, as did FXR activation. CONCLUSIONS FXR activation impairs BEC-driven liver regeneration by enhancing PTEN activity; the PI3K-AKT-mTOR pathway controls the regeneration process. Given the clinical trials and use of FXR agonists for multiple liver diseases due to their beneficial effects on steatosis and fibrosis, the detrimental effects of FXR activation on LPCs suggest a rather personalized use of the agonists in the clinic.
Collapse
Affiliation(s)
- Kyounghwa Jung
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Minwook Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Sungjin Ko
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA;,Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
29
|
Liu Y, Xin B, Yamamoto M, Goto M, Ooshio T, Kamikokura Y, Tanaka H, Meng L, Okada Y, Mizukami Y, Nishikawa Y. Generation of combined hepatocellular-cholangiocarcinoma through transdifferentiation and dedifferentiation in p53-knockout mice. Cancer Sci 2021; 112:3111-3124. [PMID: 34051011 PMCID: PMC8353893 DOI: 10.1111/cas.14996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
The two principal histological types of primary liver cancers, hepatocellular carcinoma (HCC) and cholangiocarcinoma, can coexist within a tumor, comprising combined hepatocellular‐cholangiocarcinoma (cHCC‐CCA). Although the possible involvement of liver stem/progenitor cells has been proposed for the pathogenesis of cHCC‐CCA, the cells might originate from transformed hepatocytes that undergo ductular transdifferentiation or dedifferentiation. We previously demonstrated that concomitant introduction of mutant HRASV12 (HRAS) and Myc into mouse hepatocytes induced dedifferentiated tumors that expressed fetal/neonatal liver genes and proteins. Here, we examine whether the phenotype of HRAS‐ or HRAS/Myc‐induced tumors might be affected by the disruption of the Trp53 gene, which has been shown to induce biliary differentiation in mouse liver tumors. Hepatocyte‐derived liver tumors were induced in heterozygous and homozygous p53‐knockout (KO) mice by hydrodynamic tail vein injection of HRAS‐ or Myc‐containing transposon cassette plasmids, which were modified by deleting loxP sites, with a transposase‐expressing plasmid. The HRAS‐induced and HRAS/Myc‐induced tumors in the wild‐type mice demonstrated histological features of HCC, whereas the phenotype of the tumors generated in the p53‐KO mice was consistent with cHCC‐CCA. The expression of fetal/neonatal liver proteins, including delta‐like 1, was detected in the HRAS/Myc‐induced but not in the HRAS‐induced cHCC‐CCA tissues. The dedifferentiation in the HRAS/Myc‐induced tumors was more marked in the homozygous p53‐KO mice than in the heterozygous p53‐KO mice and was associated with activation of Myc and YAP and suppression of ERK phosphorylation. Our results suggest that the loss of p53 promotes ductular differentiation of hepatocyte‐derived tumor cells through either transdifferentiation or Myc‐mediated dedifferentiation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Bing Xin
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masahiro Yamamoto
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masanori Goto
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takako Ooshio
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Kamikokura
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Tanaka
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Lingtong Meng
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoko Okada
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Department of Medicine, Cancer Genomics and Precision Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuji Nishikawa
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
30
|
Kiseleva YV, Antonyan SZ, Zharikova TS, Tupikin KA, Kalinin DV, Zharikov YO. Molecular pathways of liver regeneration: A comprehensive review. World J Hepatol 2021; 13:270-290. [PMID: 33815672 PMCID: PMC8006075 DOI: 10.4254/wjh.v13.i3.270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is a unique parenchymal organ with a regenerative capacity allowing it to restore up to 70% of its volume. Although knowledge of this phenomenon dates back to Greek mythology (the story of Prometheus), many aspects of liver regeneration are still not understood. A variety of different factors, including inflammatory cytokines, growth factors, and bile acids, promote liver regeneration and control the final size of the organ during typical regeneration, which is performed by mature hepatocytes, and during alternative regeneration, which is performed by recently identified resident stem cells called "hepatic progenitor cells". Hepatic progenitor cells drive liver regeneration when hepatocytes are unable to restore the liver mass, such as in cases of chronic injury or excessive acute injury. In liver maintenance, the body mass ratio is essential for homeostasis because the liver has numerous functions; therefore, a greater understanding of this process will lead to better control of liver injuries, improved transplantation of small grafts and the discovery of new methods for the treatment of liver diseases. The current review sheds light on the key molecular pathways and cells involved in typical and progenitor-dependent liver mass regeneration after various acute or chronic injuries. Subsequent studies and a better understanding of liver regeneration will lead to the development of new therapeutic methods for liver diseases.
Collapse
Affiliation(s)
- Yana V Kiseleva
- International School "Medicine of the Future", I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Sevak Z Antonyan
- Department of Emergency Surgical Gastroenterology, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow 129010, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Kirill A Tupikin
- Laboratory of Minimally Invasive Surgery, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery of the Russian Ministry of Healthcare, Moscow 117997, Russia
| | - Yuri O Zharikov
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia.
| |
Collapse
|
31
|
Zhang W, Chen J, Ni R, Yang Q, Luo L, He J. Contributions of biliary epithelial cells to hepatocyte homeostasis and regeneration in zebrafish. iScience 2021; 24:102142. [PMID: 33665561 PMCID: PMC7900353 DOI: 10.1016/j.isci.2021.102142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/03/2020] [Accepted: 01/29/2021] [Indexed: 12/27/2022] Open
Abstract
Whether transdifferentiation of the biliary epithelial cells (BECs) to hepatocytes occurs under physiological conditions and contributes to liver homeostasis remains under long-term debate. Similar questions have been raised under pathological circumstances if a fibrotic liver is suffered from severe injuries. To address these questions in zebrafish, we established a sensitive lineage tracing system specific for the detection of BEC-derived hepatocytes. The BEC-to-hepatocyte transdifferentiation occurred and became minor contributors to hepatocyte homeostasis in a portion of adult individuals. The BEC-derived hepatocytes distributed in clusters in the liver. When a fibrotic liver underwent extreme hepatocyte damages, BEC-to-hepatocyte transdifferentiation acted as the major origin of regenerating hepatocytes. In contrast, partial hepatectomy failed to induce the BEC-to-hepatocyte conversion. In conclusion, based on a sensitive lineage tracing system, our results suggest that BECs are able to transdifferentiate into hepatocytes and contribute to both physiological hepatocyte homeostasis and pathological regeneration. Developed sensitivity system to trace BECs derived hepatocytes in liver homeostasis BECs convert to hepatocytes in liver homeostasis but are individually heterogeneous BECs are the primary regeneration sources in the extreme injury of the fibrotic liver BECs fail to contribute to new hepatocytes after partial hepatectomy
Collapse
Affiliation(s)
- Wenfeng Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 2 Tiansheng Road, Beibei, 400715 Chongqing, China
| | - Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 2 Tiansheng Road, Beibei, 400715 Chongqing, China.,University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, 400714 Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 2 Tiansheng Road, Beibei, 400715 Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 2 Tiansheng Road, Beibei, 400715 Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 2 Tiansheng Road, Beibei, 400715 Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 2 Tiansheng Road, Beibei, 400715 Chongqing, China
| |
Collapse
|
32
|
Gao C, Peng J. All routes lead to Rome: multifaceted origin of hepatocytes during liver regeneration. CELL REGENERATION 2021; 10:2. [PMID: 33403526 PMCID: PMC7785766 DOI: 10.1186/s13619-020-00063-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Liver is the largest internal organ that serves as the key site for various metabolic activities and maintenance of homeostasis. Liver diseases are great threats to human health. The capability of liver to regain its mass after partial hepatectomy has widely been applied in treating liver diseases either by removing the damaged part of a diseased liver in a patient or transplanting a part of healthy liver into a patient. Vast efforts have been made to study the biology of liver regeneration in different liver-damage models. Regarding the sources of hepatocytes during liver regeneration, convincing evidences have demonstrated that different liver-damage models mobilized different subtype hepatocytes in contributing to liver regeneration. Under extreme hepatocyte ablation, biliary epithelial cells can undergo dedifferentiation to liver progenitor cells (LPCs) and then LPCs differentiate to produce hepatocytes. Here we will focus on summarizing the progresses made in identifying cell types contributing to producing new hepatocytes during liver regeneration in mice and zebrafish.
Collapse
Affiliation(s)
- Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
So J, Kim A, Lee SH, Shin D. Liver progenitor cell-driven liver regeneration. Exp Mol Med 2020; 52:1230-1238. [PMID: 32796957 PMCID: PMC8080804 DOI: 10.1038/s12276-020-0483-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
The liver is a highly regenerative organ, but its regenerative capacity is compromised in severe liver diseases. Hepatocyte-driven liver regeneration that involves the proliferation of preexisting hepatocytes is a primary regeneration mode. On the other hand, liver progenitor cell (LPC)-driven liver regeneration that involves dedifferentiation of biliary epithelial cells or hepatocytes into LPCs, LPC proliferation, and subsequent differentiation of LPCs into hepatocytes is a secondary mode. This secondary mode plays a significant role in liver regeneration when the primary mode does not effectively work, as observed in severe liver injury settings. Thus, promoting LPC-driven liver regeneration may be clinically beneficial to patients with severe liver diseases. In this review, we describe the current understanding of LPC-driven liver regeneration by exploring current knowledge on the activation, origin, and roles of LPCs during regeneration. We also describe animal models used to study LPC-driven liver regeneration, given their potential to further deepen our understanding of the regeneration process. This understanding will eventually contribute to developing strategies to promote LPC-driven liver regeneration in patients with severe liver diseases.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Angie Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|