1
|
Dai Q, Ain Q, Seth N, Rooney M, Zipprich A. Liver sinusoidal endothelial cells: Friend or foe in metabolic dysfunction- associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Dig Liver Dis 2025; 57:493-503. [PMID: 39904692 DOI: 10.1016/j.dld.2025.01.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the predominant liver disease and is becoming the paramount contributor to end-stage liver disease and liver-related deaths. Liver sinusoidal endothelial cells (LSECs) located between the hepatic parenchyma and blood from viscera and gastrointestinal tract are the gatekeepers for the hepatic microenvironment and normal function. In normal physiological conditions, LSECs govern the substance exchange between hepatic parenchyma and blood through dynamic regulation of fenestration and maintain the quiescent state of Kupffer cells (KCs) and hepatic stellate cells. In MASLD, lipotoxicity, insulin resistance, gastrointestinal microbiota dysbiosis, and mechanical compression caused by fat-laden hepatocytes result in LSECs capillarization and dysfunction. The altered LSECs progressively shift from healer to injurer, exacerbating liver inflammation and advancing liver fibrosis. This review focuses on the deteriorative roles of LSECs and related molecular mechanisms involved in MASLD and their contribution to metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis development and progression. Furthermore, in this review, we propose that targeting LSECs dysfunction is a prospective therapeutic strategy to restore the physiological function of LSECs and mitigate MASLD progression.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Navodita Seth
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany.
| |
Collapse
|
2
|
Ojha U, Kim S, Rhee CY, You J, Choi YH, Yoon SH, Park SY, Lee YR, Kim JK, Bae SC, Lee YM. Endothelial RUNX3 controls LSEC dysfunction and angiocrine LRG1 signaling to prevent liver fibrosis. Hepatology 2025; 81:1228-1243. [PMID: 39042837 PMCID: PMC11902585 DOI: 10.1097/hep.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/23/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND AIMS Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 ( LRG1 ) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated HSCs throughTGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.
Collapse
Affiliation(s)
- Uttam Ojha
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Chang Yun Rhee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jihye You
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Soo-Hyun Yoon
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Ning M, Lu D, Liang D, Ren PG. Single-cell RNA sequencing advances in revealing the development and progression of MASH: the identifications and interactions of non-parenchymal cells. Front Mol Biosci 2025; 12:1513993. [PMID: 40201243 PMCID: PMC11976672 DOI: 10.3389/fmolb.2025.1513993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Developing drugs for the treatment of Metabolic Associated Steatohepatitis (MASH) has always been a significant challenge. Researchers have been dedicated to exploring drugs and therapeutic strategies to alleviate disease progression, but treatments remain limited. This is partly due to the complexity of the pathophysiological processes, and inadequate knowledge of the cellular and molecular mechanisms in MASH. Especially, the liver non-parenchymal cells (NPCs) like Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells which play critical roles in live function, immune responses, fibrosis and disease progression. Deciphering how these cells function in MASH, would help understand the pathophysiological processes and find potential drug targets. In recent years, new technologies have been developed for single-cell transcriptomic sequencing, making cell-specific transcriptome profiling a reality in healthy and diseased livers. In this review, we discussed how the use of single-cell transcriptomic sequencing provided us with an in-depth understanding of the heterogeneous, cellular interactions among non-parenchymal cells and tried to highlight recent discoveries in MASH by this technology. It is hoped that the summarized features and markers of various subclusters in this review could provide a technical reference for further experiments and a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Meng Ning
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Donghui Lu
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dong Liang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-Gen Ren
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Yang R, Yang L, Zhang N, Wan Y, Chen S, Xiao Y, Liang X, Yang S, Zhong Y, Huang D, Chen W, Zhao B. Targeted delivery of polymeric NO-donor micelles to hepatic stellate cells for restoration of liver function and inhibition of hepatic fibrosis. J Control Release 2025; 379:466-477. [PMID: 39824287 DOI: 10.1016/j.jconrel.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Liver fibrosis is a prevalent liver disease associated with significant morbidity, and the activation of hepatic stellate cells (HSCs) serves as the primary causative factor driving the progression of liver fibrosis. However, capillarization of liver sinusoidal endothelial cells (LSECs) induced by hepatic fibrosis can reduce nitric oxide (NO) production and bioavailability, which consequently loses the ability to retain HSCs dormant, leading to amplified HSCs activation. Herein, an elaborate micelle (VN-M@BN) loaded with benazepril (BN) was constructed by self-assembly of polymeric NO donor, aiming for the controlled release of NO in liver fibrosis lesions thereby impeding the progression of liver fibrosis. VN-M@BN with the vitamin A (VA) ligand modification was designed to target HSCs for efficient liver fibrosis inhibition. Controlled NO release significantly downregulated α-smooth muscle actin (α-SMA) and induced apoptosis of activated HSCs, thus enhancing the inhibition effects of BN towards HSCs. Furthermore, the in suit antifibrotic treatment results confirmed that VN-M@BN possessed good circulatory stability and targetability to liver fibrotic tissues, thereby effectively ameliorating the collagen deposition and fibrosis process in damaged liver tissues. The NO-based targeted nanodrug system enabled precise delivery of therapeutic drugs to activated HSCs, thereby synergizing the efficacy in treating liver fibrosis with minimal adverse effects.
Collapse
Affiliation(s)
- Rui Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Lifen Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ni Zhang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqing Wan
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shineng Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqing Xiao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoping Liang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shangjie Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Xu M, Xu H, Ling YW, Liu JJ, Song P, Fang ZQ, Yue ZS, Duan JL, He F, Wang L. Neutrophil extracellular traps-triggered hepatocellular senescence exacerbates lipotoxicity in non-alcoholic steatohepatitis. J Adv Res 2025:S2090-1232(25)00175-4. [PMID: 40068761 DOI: 10.1016/j.jare.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025] Open
Abstract
INTRODUCTION Neutrophils are initial responders in inflammation and contribute to non-alcoholic fatty liver disease (NAFLD) progression to steatohepatitis (NASH). Neutrophil extracellular traps (NETs) are implicated in liver injury, yet their precise mechanisms in NASH progression remains unclear. OBJECTIVES This study investigates how NETs drive NASH progression by exacerbating hepatocyte lipotoxicity and explore the regulatory mechanism of NETs formation and its downstream effects on liver pathology. METHODS Clinical samples from NASH patients and diet-induced NASH mice were analyzed for NET levels. NETs were pharmacologically inhibited, and senescent cells were selectively eliminated in mice. Myeloid-specific RBP-J knockout mice were generated to disrupt Notch signaling, with subsequent evaluation of NET formation, senescence markers, steatosis, fibrosis, and inflammation. RESULTS NETs were elevated in NASH patients and mice, correlating with hepatocyte senescence and lipotoxicity. Pharmacological NET disruption reduced hepatocyte senescence, accompanied by attenuated steatosis and fibrosis. Senescent cell clearance replicated these improvements, confirming liver senescence emerges is a vital step for NETs to promote the progression of NASH. Myeloid-specific Notch signaling ablation suppressed NET generation, concurrently decreasing lipid deposition and liver inflammation. CONCLUSION Our findings elucidate a novel mechanism by which neutrophil-derived Notch driven NETs exacerbate NASH by promoting cell senescence, thereby contributing to hepatic steatosis and fibrosis. This insight may provide potential intervention strategies and therapeutic targets for NASH treatment.
Collapse
Affiliation(s)
- Ming Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Wei Ling
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhen-Sheng Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juan-Li Duan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Fei He
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Cozzolino D, Nevola R, Ruggiero A, Romano C, Umano GR, Aitella E, Sardu C, Marrone A, Gentile S. The Cross-Talk Between the Heart and the Liver: The Involvement of the Mitral Valve as a Novel Actor upon the Ancient Scene of Liver Cirrhosis. J Cardiovasc Dev Dis 2025; 12:76. [PMID: 39997510 PMCID: PMC11856152 DOI: 10.3390/jcdd12020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND To date, little is known about correlations between liver dysfunction and circulatory and cardiac abnormalities (e.g.,: mitral valve, MV) in patients with chronic liver disease (CLD). This study aimed to assess a potential parallelism between liver dysfunction and cardiovascular involvement and identify the factors associated with structural and functional MV disorders. METHODS Among 995 patients with CLD, 346 were enrolled and compared with 168 controls without liver disease. According to the degree of liver disease, patients were classified as patients with chronic hepatitis (142) or with liver cirrhosis (Child-A: 70; Child-B: 65; Child-C: 69). RESULTS Among the chronic hepatitis group, resting heart rate (HR) and left ventricular (LV) mass were higher than in the control group (p = 0.0008), whereas systemic vascular resistance (SVR) was lower (p = 0.01). Among cirrhotic patients, resting HR, left atrium dimensions/volumes, LV walls thickness, LV mass, cardiac output (CO), isovolumetric relaxation time (IVRT), deceleration time (DT) and prevalence of aortic stenosis were higher than in non-cirrhotic patients (p = 0.02), whereas the e/a ratio and SVR were lower (p = 0.0001). Among Child-B/C, CO, IVRT, DT, prevalence of MV regurgitation and MV calcification score were higher than in the remaining patients (p = 0.02), whereas SVR was lower (p < 0.0001). Among cirrhotic patients with MV regurgitation, Child-Pugh score, liver disease duration, resting HR, left chambers dimensions/mass, CO, IVRT, DT and MV calcification score were higher compared to patients without regurgitation (p < 0.000), whereas mean blood pressure, e/a ratio and SVR were lower (p = 0.008). At multivariate analysis, Child-Pugh score, liver disease duration, left chambers volume/mass and MV calcification score were independently associated with MV regurgitation in cirrhotic patients. Child-Pugh score and MV calcification score strongly correlated in cirrhotic patients (r = 0.68, 95% CI 0.60-0.75, p < 0.0001). CONCLUSIONS The magnitude of cardiac morpho/functional abnormalities is associated with the severity of liver dysfunction. Structural and functional MV abnormalities could represent a novel sign of cardiac involvement in liver cirrhosis. The severity and duration of liver disease, the enlargement of cardiac chambers and leaflet calcium accumulation could play a key role.
Collapse
Affiliation(s)
- Domenico Cozzolino
- Department of Precision Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy;
| | - Riccardo Nevola
- Liver Unit, AORN S. G. Moscati, “A. Landolfi” Hospital, 83029 Solofra, Italy;
| | - Alberto Ruggiero
- Cardiology Unit, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy;
| | - Ciro Romano
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (C.S.); (A.M.)
| | - Giuseppina Rosaria Umano
- Department of the Woman, Child, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, 80138 Naples, Italy;
| | - Ernesto Aitella
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (C.S.); (A.M.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (C.S.); (A.M.)
| | | |
Collapse
|
7
|
Dai Q, Ain Q, Seth N, Zhao H, Rooney M, Zipprich A. Aging-Associated Liver Sinusoidal Endothelial Cells Dysfunction Aggravates the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Aging Cell 2025:e14502. [PMID: 39912563 DOI: 10.1111/acel.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
Aging increases the susceptibility to metabolic dysfunction-associated steatotic liver disease (MASLD). Liver sinusoidal endothelial cells (LSECs) help in maintaining hepatic homeostasis, but the contribution of age-associated LSECs dysfunction to MASLD is not clear. The aim of this study was to investigate the effect of aging-associated LSECs dysfunction on MASLD. Free fatty acid-treated AML12 cells were co-cultured with young and etoposide-induced senescent TSEC cells to evaluate the senescence-associated endothelial effects on the lipid accumulation in hepatocytes. In addition, young and aged rats were subjected to methionine-choline-deficient diet-induced metabolic dysfunction-associated steatohepatitis (MASH). Hepatic hemodynamics and endothelial dysfunction were evaluated by in situ liver perfusion. Liver tissue samples from young and aged healthy controls and MASH patients were also analyzed. Steatotic AML12 cells co-cultured with young TSEC cells showed less lipid accumulation, and such effect was abolished by eNOS inhibitor or with senescent TSEC cells. However, co-culture with resveratrol-treated senescent TSEC cells could partially resume the NO-mediated protective effects of endothelial cells. Furthermore, aged MASH rats showed more severe liver injury, steatosis, fibrosis, and endothelial and microcirculatory dysfunction. In addition, aged MASH patients showed more pronounced liver injury and fibrosis with lower hepatic eNOS, p-eNOS, and SIRT1 protein levels than in young patients. Senescence compromises the protective effects of LSECs against hepatocyte steatosis. In addition, aging aggravates not only liver steatosis and fibrosis but also intensifies LSECs dysfunction in MASH rats. Accordingly aged MASH patients also showed endothelial dysfunction with more severe liver injury and fibrosis.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Navodita Seth
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| |
Collapse
|
8
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Zhang MJ, Shi M, Yu Y, Ou R, Ge RS, Duan P. Curcuminoid PBPD induces cuproptosis and endoplasmic reticulum stress in cervical cancer via the Notch1/RBP-J/NRF2/FDX1 pathway. Mol Carcinog 2024; 63:1449-1466. [PMID: 38801356 DOI: 10.1002/mc.23735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
Curcumin has been shown to have antitumor properties, but its low potency and bioavailability has limited its clinical application. We designed a novel curcuminoid, [1-propyl-3,5-bis(2-bromobenzylidene)-4-piperidinone] (PBPD), which has higher antitumor strength and improves bioavailability. Cell counting kit-8 was used to detect cell activity. Transwell assay was used to detect cell invasion and migration ability. Western blot and quantitative polymerase chain reaction were used to detect protein levels and their messenger RNA expression. Immunofluorescence was used to detect the protein location. PBPD significantly inhibited the proliferation of cervical cancer cells, with an IC50 value of 4.16 μM for Hela cells and 3.78 μM for SiHa cells, leading to the induction of cuproptosis. Transcriptome sequencing analysis revealed that PBPD significantly inhibited the Notch1/Recombination Signal Binding Protein for Immunoglobulin kappa J Region (RBP-J) and nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathways while upregulating ferredoxin 1 (FDX1) expression. Knockdown of Notch1 or RBP-J significantly inhibited NRF2 expression and upregulated FDX1 expression, leading to the inhibition of nicotinamide adenine dinucleotide phosphate activity and the induction of oxidative stress, which in turn activated endoplasmic reticulum stress and induced cell death. The overexpression of Notch1 or RBP-J resulted in the enrichment of RBP-J within the NRF2 promoter region, thereby stimulating NRF2 transcription. NRF2 knockdown resulted in increase in FDX1 expression, leading to cuproptosis. In addition, PBPD inhibited the acidification of tumor niche and reduced cell metabolism to inhibit cervical cancer cell invasion and migration. In conclusion, PBPD significantly inhibits the proliferation, invasion, and migration of cervical cancer cells and may be a novel potential drug candidate for treatment of cervical cancer.
Collapse
Affiliation(s)
- Min-Jie Zhang
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Mengna Shi
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Chen J, Zhang J, Xia Y, Li J, Jia Q, Zhang Z, Jing X, Xu Y, Zou L, Wang L, Song H, Li J, Liu Q, Xiong Y, Tang Q, Chen W, Yang N, Xu H, Li Y, He J. Reactive Oxygen Species-Responsive Delivery of a Notch Inhibitor to Alleviate Nonalcoholic Steatohepatitis by Inhibiting Hepatic de Novo Lipogenesis and Inflammation. Mol Pharm 2024; 21:2922-2936. [PMID: 38751169 DOI: 10.1021/acs.molpharmaceut.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
With the increased prevalence of nonalcoholic steatohepatitis (NASH) in the world, effective pharmacotherapy in clinical practice is still lacking. Previous studies have shown that dibenzazepine (DBZ), a Notch inhibitor, could alleviate NASH development in a mouse model. However, low bioavailability, poor water solubility, and extrahepatic side effects restrict its clinical application. To overcome these barriers, we developed a reactive oxygen species (ROS)-sensitive nanoparticle based on the conjugation of bilirubin to poly(ethylene glycol) (PEG) chains, taking into account the overaccumulation of hepatic ROS in the pathologic state of nonalcoholic steatohepatitis (NASH). The PEGylated bilirubin can self-assemble into nanoparticles in an aqueous solution and encapsulate insoluble DBZ into its hydrophobic cavity. DBZ nanoparticles (DBZ Nps) had good stability, rapidly released DBZ in response to H2O2, and effectively scavenged intracellular ROS of hepatocytes. After systemic administration, DBZ Nps could accumulate in the liver of the NASH mice, extend persistence in circulation, and improve the bioavailability of DBZ. Furthermore, DBZ Nps significantly improved glucose intolerance, relieved hepatic lipid accumulation and inflammation, and ameliorated NASH-induced liver fibrosis. Additionally, DBZ Nps had no significant extrahepatic side effects. Taken together, our results highlight the potential of the ROS-sensitive DBZ nanoparticle as a promising therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ling Zou
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Lingling Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Haiying Song
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jingwei Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Wenfei Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Na Yang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Haixia Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
13
|
Buniatian GH, Schwinghammer U, Tremmel R, Cynis H, Weiss TS, Weiskirchen R, Lauschke VM, Youhanna S, Ramos I, Valcarcel M, Seferyan T, Rahfeld J, Rieckmann V, Klein K, Buadze M, Weber V, Kolak V, Gebhardt R, Friedman SL, Müller UC, Schwab M, Danielyan L. Consequences of Amyloid-β Deficiency for the Liver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307734. [PMID: 38430535 PMCID: PMC11095235 DOI: 10.1002/advs.202307734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/27/2024] [Indexed: 03/04/2024]
Abstract
The hepatic content of amyloid beta (Aβ) decreases drastically in human and rodent cirrhosis highlighting the importance of understanding the consequences of Aβ deficiency in the liver. This is especially relevant in view of recent advances in anti-Aβ therapies for Alzheimer's disease (AD). Here, it is shown that partial hepatic loss of Aβ in transgenic AD mice immunized with Aβ antibody 3D6 and its absence in amyloid precursor protein (APP) knockout mice (APP-KO), as well as in human liver spheroids with APP knockdown upregulates classical hallmarks of fibrosis, smooth muscle alpha-actin, and collagen type I. Aβ absence in APP-KO and deficiency in immunized mice lead to strong activation of transforming growth factor-β (TGFβ), alpha secretases, NOTCH pathway, inflammation, decreased permeability of liver sinusoids, and epithelial-mesenchymal transition. Inversely, increased systemic and intrahepatic levels of Aβ42 in transgenic AD mice and neprilysin inhibitor LBQ657-treated wild-type mice protect the liver against carbon tetrachloride (CCl4)-induced injury. Transcriptomic analysis of CCl4-treated transgenic AD mouse livers uncovers the regulatory effects of Aβ42 on mitochondrial function, lipid metabolism, and its onco-suppressive effects accompanied by reduced synthesis of extracellular matrix proteins. Combined, these data reveal Aβ as an indispensable regulator of cell-cell interactions in healthy liver and a powerful protector against liver fibrosis.
Collapse
Affiliation(s)
- Gayane Hrachia Buniatian
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Ute Schwinghammer
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Roman Tremmel
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
| | - Holger Cynis
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
- Junior Research Group, Immunomodulation in Pathophysiological ProcessesFaculty of MedicineMartin‐Luther‐University Halle‐WittenbergWeinbergweg 2206120Halle (Saale)Germany
| | - Thomas S. Weiss
- Children's University Hospital (KUNO)University Hospital RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical ChemistryRWTH University Hospital AachenPauwelsstr. 3052074AachenGermany
| | - Volker M. Lauschke
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
- Department of Physiology and Pharmacology Karolinska InstituteStockholm171 77Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology Karolinska InstituteStockholm171 77Sweden
| | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT)BizkaiaDerio48160Spain
| | - Maria Valcarcel
- Innovative Technologies in Biological Systems SL (INNOPROT)BizkaiaDerio48160Spain
| | - Torgom Seferyan
- H. Buniatian Institute of BiochemistryNational Academy of Sciences of the Republic of Armenia (NAS RA)5/1 Paruir Sevak St.Yerevan0014Armenia
| | - Jens‐Ulrich Rahfeld
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
| | - Vera Rieckmann
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
| | - Kathrin Klein
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
| | - Marine Buadze
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Victoria Weber
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Valentina Kolak
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Rolf Gebhardt
- Rudolf‐Schönheimer Institute of BiochemistryFaculty of MedicineUniversity of LeipzigJohannisstraße 3004103LeipzigGermany
| | - Scott L. Friedman
- Division of Liver DiseasesIcahn School of Medicine at Mount Sinai1425 Madison AveNew YorkNY10029USA
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology IPMBDepartment of Functional GenomicsUniversity of HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Matthias Schwab
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- Departments of Biochemistry and Clinical Pharmacologyand Neuroscience LaboratoryYerevan State Medical University2‐ Koryun StYerevan0025Armenia
- Cluster of Excellence iFIT (EXC2180) “Image‐guided and Functionally Instructed Tumor Therapies”University of Tübingen72076TübingenGermany
| | - Lusine Danielyan
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
- Departments of Biochemistry and Clinical Pharmacologyand Neuroscience LaboratoryYerevan State Medical University2‐ Koryun StYerevan0025Armenia
| |
Collapse
|
14
|
Wang F, Li S, Kong L, Feng K, Zuo R, Zhang H, Yu Y, Zhang K, Cao Y, Chai Y, Kang Q, Xu J. Tensile Stress-Activated and Exosome-Transferred YAP/TAZ-Notch Circuit Specifies Type H Endothelial Cell for Segmental Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309133. [PMID: 38225729 PMCID: PMC10966515 DOI: 10.1002/advs.202309133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The Ilizarov technique has been continuously innovated to utilize tensile stress (TS) for inducing a bone development-like regenerative process, aiming to achieve skeletal elongation and reconstruction. However, it remains uncertain whether this distraction osteogenesis (DO) process induced by TS involves the pivotal coupling of angiogenesis and osteogenesis mediated by type H endothelial cells (THECs). In this study, it is demonstrated that the Ilizarov technique induces the formation of a metaphysis-like architecture composed of THECs, leading to segmental bone regeneration during the DO process. Mechanistically, cell-matrix interactions-mediated activation of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcriptionally upregulates the expression of Notch1 and Delta-like ligand 4, which act as direct positive regulators of THECs phenotype, in bone marrow endothelial cells (BMECs) upon TS stimulation. Simultaneously, the Notch intracellular domain enhances YAP/TAZ activity by transcriptionally upregulating YAP expression and stabilizing TAZ protein, thus establishing the YAP/TAZ-Notch circuit. Additionally, TS-stimulated BMECs secrete exosomes enriched with vital molecules in this positive feedback pathway, which can be utilized to promote segmental bone defect healing, mimicking the therapeutic effects of Ilizarov technique. The findings advance the understanding of TS-induced segmental bone regeneration and establish the foundation for innovative biological therapeutic strategies aimed at activating THECs.
Collapse
Affiliation(s)
- Feng Wang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Shanyu Li
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lingchi Kong
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Kai Feng
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Rongtai Zuo
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Hanzhe Zhang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yifan Yu
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Kunqi Zhang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yuting Cao
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yimin Chai
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Qinglin Kang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jia Xu
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| |
Collapse
|
15
|
Wang W, Li G, Ma J, Fan X, Lu J, Sun Q, Yao J, He Q. Microvascular rarefaction caused by the NOTCH signaling pathway is a key cause of TKI-apatinib-induced hypertension and cardiac damage. Front Pharmacol 2024; 15:1346905. [PMID: 38405666 PMCID: PMC10885812 DOI: 10.3389/fphar.2024.1346905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
With the advancement of tumour-targeted therapy technology, the survival of cancer patients has continued to increase, and cardiovascular events have gradually become an important cause of death in cancer patients. This phenomenon occurs due to adverse cardiovascular reactions caused by the cardiovascular toxicity of antitumour therapy. Moreover, the increase in the proportion of elderly patients with cancer and cardiovascular diseases is due to the extension of life expectancy. Hypertension is the most common cardiovascular side effect of small molecule tyrosine kinase inhibitors (TKIs). The increase in blood pressure induced by TKIs and subsequent cardiovascular complications and events affect the survival and quality of life of patients and partly offset the benefits of antitumour therapy. Many studies have confirmed that in the pathogenesis of hypertension, arterioles and capillary thinness are involved in its occurrence and development. Our previous findings showing that apatinib causes microcirculation rarefaction of the superior mesenteric artery and impaired microvascular growth may inspire new therapeutic strategies for treating hypertension. Thus, by restoring microvascular development and branching patterns, total peripheral resistance and blood pressure are reduced. Therefore, exploring the key molecular targets of TKIs that inhibit the expression of angiogenic factors and elucidating the specific molecular mechanism involved are key scientific avenues for effectively promoting endothelial cell angiogenesis and achieving accurate repair of microcirculation injury in hypertension patients.
Collapse
Affiliation(s)
- WenJuan Wang
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Guodong Li
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jie Ma
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Fan
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianzhong Lu
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qiyin Sun
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jiafang Yao
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qingjian He
- Department of Breast and Thyroid Surgery, The First People’s Hospital of Huzhou City, Huzhou, China
| |
Collapse
|
16
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
17
|
Fernández-Iglesias A, Gracia-Sancho J. Role of liver sinusoidal endothelial cells in the diagnosis and treatment of liver diseases. SINUSOIDAL CELLS IN LIVER DISEASES 2024:467-481. [DOI: 10.1016/b978-0-323-95262-0.00023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Liu Y, Wang L. Extracellular vesicles targeting non-parenchymal cells: the therapeutical effect on liver fibrosis. EGASTROENTEROLOGY 2024; 2:e100040. [PMID: 39944750 PMCID: PMC11770438 DOI: 10.1136/egastro-2023-100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 04/12/2025]
Abstract
Liver fibrosis is the formation of a fibrous scar due to chronic liver disease including viral hepatitis, alcohol and non-alcoholic fatty liver disease. Without treatment, it will develop into cirrhosis and hepatocellular carcinoma. Up to now, there is no effective way to cure liver fibrosis. Extracellular vesicles (EVs) are biological nanoparticles with potential to be therapeutical agents or delivery tools. A lot of studies have demonstrated the therapeutical effect of EVs on liver fibrosis. In this review, we mainly pay attention to roles of liver non-parenchymal cells in pathology of fibrosis, the basic information about EVs and therapeutical effect on liver fibrosis of EVs when they act on non-parenchymal cells.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Hepatobiliary Surgery, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
19
|
Dai Q, Qing X, Jiang W, Wang S, Liu S, Liu X, Huang F, Zhao H. Aging aggravates liver fibrosis through downregulated hepatocyte SIRT1-induced liver sinusoidal endothelial cell dysfunction. Hepatol Commun 2024; 8:e0350. [PMID: 38126919 PMCID: PMC10749712 DOI: 10.1097/hc9.0000000000000350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Aging increases the susceptibility to chronic liver diseases and hastens liver fibrosis deterioration, but the underlying mechanisms remain partially understood. The aim of this study was to investigate the effect of aging and chronic liver diseases on hepatocyte Sirtuin 1 (SIRT1) and LSECs and their contribution to liver fibrosis pathogeneses. METHODS Young (8-12 wk) and aged (18-20 mo) mice were subjected to carbon tetrachloride-induced liver fibrosis. Primary HSCs and LSECs were isolated and cocultured for in vitro experiments. Liver tissues and blood samples from healthy controls and patients with liver fibrosis were analyzed. RESULTS Downregulated hepatocytes SIRT1 in aged mice increased high mobility group box 1 acetylation, cytoplasmic translocation, and extracellular secretion, causing LSECs dysfunction by means of the toll-like receptor 4/AK strain transforming (AKT)/endothelial nitric oxide synthase pathway, ultimately activating HSCs and increasing susceptibility to liver injury and fibrosis. Adeno-associated virus-mediated overexpression of SIRT1 in hepatocytes suppressed the abovementioned alterations and attenuated carbon tetrachloride-induced liver injury and fibrosis in liver fibrosis mice, and there were no significant differences in liver injury and fibrosis indicators between young and aged mice after SIRT1 overexpression treatment. In vitro experiments demonstrated that SIRT1 overexpression and endothelial nitric oxide synthase agonist YC-1 improved LSECs function and inhibited HSCs activation, mediated by nitric oxide. Similarly, downregulated hepatocytes SIRT1 and LSECs dysfunction were observed in the livers of aged individuals compared to young individuals and were more pronounced in aged patients with liver fibrosis. CONCLUSIONS Aging aggravates liver fibrosis through downregulated hepatocytes SIRT1-induced LSECs dysfunction, providing a prospective curative approach for preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Jiang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shouwen Wang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shengsheng Liu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
20
|
Velliou RI, Legaki AI, Nikolakopoulou P, Vlachogiannis NI, Chatzigeorgiou A. Liver endothelial cells in NAFLD and transition to NASH and HCC. Cell Mol Life Sci 2023; 80:314. [PMID: 37798474 PMCID: PMC11072568 DOI: 10.1007/s00018-023-04966-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, which is characterised by obesity, insulin resistance, hypercholesterolemia and hypertension. NAFLD is the most frequent liver disease worldwide and more than 10% of NAFLD patients progress to the inflammatory and fibrotic stage of non-alcoholic steatohepatitis (NASH), which can lead to end-stage liver disease including hepatocellular carcinoma (HCC), the most frequent primary malignant liver tumor. Liver sinusoidal endothelial cells (LSEC) are strategically positioned at the interface between blood and hepatic parenchyma. LSECs are highly specialized cells, characterised by the presence of transcellular pores, called fenestrae, and exhibit anti-inflammatory and anti-fibrotic characteristics under physiological conditions. However, during NAFLD development they undergo capillarisation and acquire a phenotype similar to vascular endothelial cells, actively promoting all pathophysiological aspects of NAFLD, including steatosis, inflammation, and fibrosis. LSEC dysfunction is critical for the progression to NASH and HCC while restoring LSEC homeostasis appears to be a promising approach to prevent NAFLD progression and its complications and even reverse tissue damage. In this review we present current information on the role of LSEC throughout the progressive phases of NAFLD, summarising in vitro and in vivo experimental evidence and data from human studies.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Nikolaos I Vlachogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
21
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
22
|
Song P, Duan J, Ding J, Liu J, Fang Z, Xu H, Li Z, Du W, Xu M, Ling Y, He F, Tao K, Wang L. Cellular senescence primes liver fibrosis regression through Notch-EZH2. MedComm (Beijing) 2023; 4:e346. [PMID: 37614965 PMCID: PMC10442476 DOI: 10.1002/mco2.346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023] Open
Abstract
Cellular senescence plays a pivotal role in wound healing. At the initiation of liver fibrosis regression, accumulated senescent cells were detected and genes of senescence were upregulated. Flow cytometry combined with single-cell RNA sequencing analyses revealed that most of senescent cells were liver nonparenchymal cells. Removing senescent cells by dasatinib and quercetin (DQ), alleviated hepatic cellular senescence, impeded fibrosis regression, and disrupted liver sinusoids. Clearance of senescent cells not only decreased senescent macrophages but also shrank the proportion of anti-inflammatory M2 macrophages through apoptotic pathway. Subsequently, macrophages were depleted by clodronate, which diminished hepatic senescent cells and impaired fibrosis regression. Mechanistically, the change of the epigenetic regulator enhancer of zeste homolog2 (EZH2) accompanied with the emergence of hepatic senescent cells while liver fibrosis regressed. Blocking EZH2 signaling by EPZ6438 reduced hepatic senescent cells and macrophages, decelerating liver fibrosis regression. Moreover, the promoter region of EZH2 was transcriptionally suppressed by Notch-Hes1 (hairy and enhancer of split 1) signaling. Disruption of Notch in macrophages using Lyz2 (lysozyme 2) Cre-RBP-J (recombination signal binding protein Jκ) f/f transgenic mice, enhanced hepatic cellular senescence, and facilitated fibrosis regression by upregulating EZH2 and blocking EZH2 abrogated the above effects caused by Notch deficiency. Ultimately, adopting Notch inhibitor Ly3039478 or exosome-mediated RBP-J decoy oligodeoxynucleotides accelerated liver fibrosis regression by augmenting hepatic cellular senescence.
Collapse
Affiliation(s)
- Ping Song
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Juan‐Li Duan
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Jian Ding
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Jing‐Jing Liu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhi‐Qiang Fang
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Hao Xu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhi‐Wen Li
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Wei Du
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Ming Xu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Yu‐Wei Ling
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Fei He
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Kai‐Shan Tao
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Lin Wang
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
23
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
24
|
Li ZW, Ruan B, Yang PJ, Liu JJ, Song P, Duan JL, Wang L. Oit3, a promising hallmark gene for targeting liver sinusoidal endothelial cells. Signal Transduct Target Ther 2023; 8:344. [PMID: 37696816 PMCID: PMC10495338 DOI: 10.1038/s41392-023-01621-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) play a pivotal role in maintaining liver homeostasis and influencing the pathological processes of various liver diseases. However, neither LSEC-specific hallmark genes nor a LSEC promoter-driven Cre mouse line has been introduced before, which largely restricts the study of liver diseases with vascular disorders. To explore LSEC-specific hallmark genes, we compared the top 50 marker genes between liver endothelial cells (ECs) and liver capillary ECs and identified 18 overlapping genes. After excluding globally expressed genes and those with low expression percentages, we narrowed our focus to two final candidates: Oit3 and Dnase1l3. Through single-cell RNA sequencing (scRNA-seq) and analysis of the NCBI database, we confirmed the extrahepatic expression of Dnase1l3. The paired-cell sequencing data further demonstrated that Oit3 was predominantly expressed in the midlobular liver ECs. Subsequently, we constructed inducible Oit3-CreERT2 transgenic mice, which were further crossed with ROSA26-tdTomato mice. Microscopy validated that the established Oit3-CreERT2-tdTomato mice exhibited significant fluorescence in the liver rather than in other organs. The staining analysis confirmed the colocalization of tdTomato and EC markers. Ex-vivo experiments further confirmed that isolated tdTomato+ cells exhibited well-differentiated fenestrae and highly expressed EC markers, confirming their identity as LSECs. Overall, Oit3 is a promising hallmark gene for tracing LSECs. The establishment of Oit3-CreERT2-tdTomato mice provides a valuable model for studying the complexities of LSECs in liver diseases.
Collapse
Affiliation(s)
- Zhi-Wen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
- Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Pei-Jun Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
25
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Cooper SA, Kostallari E, Shah VH. Angiocrine Signaling in Sinusoidal Health and Disease. Semin Liver Dis 2023; 43:245-257. [PMID: 37442155 PMCID: PMC10798369 DOI: 10.1055/a-2128-5907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are key players in maintaining hepatic homeostasis. They also play crucial roles during liver injury by communicating with liver cell types as well as immune cells and promoting portal hypertension, fibrosis, and inflammation. Cutting-edge technology, such as single cell and spatial transcriptomics, have revealed the existence of distinct LSEC subpopulations with a clear zonation in the liver. The signals released by LSECs are commonly called "angiocrine signaling." In this review, we summarize the role of angiocrine signaling in health and disease, including zonation in healthy liver, regeneration, fibrosis, portal hypertension, nonalcoholic fatty liver disease, alcohol-associated liver disease, aging, drug-induced liver injury, and ischemia/reperfusion, as well as potential therapeutic advances. In conclusion, sinusoidal endotheliopathy is recognized in liver disease and promising preclinical studies are paving the path toward LSEC-specific pharmacotherapies.
Collapse
Affiliation(s)
- Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
27
|
Wilhelmsen I, Amirola Martinez M, Stokowiec J, Wang C, Aizenshtadt A, Krauss S. Characterization of human stem cell-derived hepatic stellate cells and liver sinusoidal endothelial cells during extended in vitro culture. Front Bioeng Biotechnol 2023; 11:1223737. [PMID: 37560536 PMCID: PMC10408301 DOI: 10.3389/fbioe.2023.1223737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Background: There is a significant need for predictive and stable in vitro human liver representations for disease modeling and drug testing. Hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) are important non-parenchymal cell components of the liver and are hence of relevance in a variety of disease models, including hepatic fibrosis. Pluripotent stem cell- (PSC-) derived HSCs (scHSCs) and LSECs (scLSECs) offer an attractive alternative to primary human material; yet, the suitability of scHSCs and scLSECs for extended in vitro modeling has not been characterized. Methods: In this study, we describe the phenotypic and functional development of scHSCs and scLSECs during 14 days of 2D in vitro culture. Cell-specific phenotypes were evaluated by cell morphology, immunofluorescence, and gene- and protein expression. Functionality was assessed in scHSCs by their capacity for intracellular storage of vitamin A and response to pro-fibrotic stimuli induced by TGF-β. scLSECs were evaluated by nitric oxide- and factor VIII secretion as well as endocytic uptake of bioparticles and acetylated low-density lipoprotein. Notch pathway inhibition and co-culturing scHSCs and scLSECs were separately tested as options for enhancing long-term stability and maturation of the cells. Results and Conclusion: Both scHSCs and scLSECs exhibited a post-differentiation cell type-specific phenotype and functionality but deteriorated during extended culture with PSC line-dependent variability. Therefore, the choice of PSC line and experimental timeframe is crucial when designing in vitro platforms involving scHSCs and scLSECs. Notch inhibition modestly improved long-term monoculture in a cell line-dependent manner, while co-culturing scHSCs and scLSECs provides a strategy to enhance phenotypic and functional stability.
Collapse
Affiliation(s)
- Ingrid Wilhelmsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mikel Amirola Martinez
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chencheng Wang
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Yi Q, Yang J, Wu Y, Wang Y, Cao Q, Wen W. Immune microenvironment changes of liver cirrhosis: emerging role of mesenchymal stromal cells. Front Immunol 2023; 14:1204524. [PMID: 37539053 PMCID: PMC10395751 DOI: 10.3389/fimmu.2023.1204524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Cirrhosis is a progressive and diffuse liver disease characterized by liver tissue fibrosis and impaired liver function. This condition is brought about by several factors, including chronic hepatitis, hepatic steatosis, alcohol abuse, and other immunological injuries. The pathogenesis of liver cirrhosis is a complex process that involves the interaction of various immune cells and cytokines, which work together to create the hepatic homeostasis imbalance in the liver. Some studies have indicated that alterations in the immune microenvironment of liver cirrhosis are closely linked to the development and prognosis of the disease. The noteworthy function of mesenchymal stem cells and their paracrine secretion lies in their ability to promote the production of cytokines, which in turn enhance the self-repairing capabilities of tissues. The objective of this review is to provide a summary of the alterations in liver homeostasis and to discuss intercellular communication within the organ. Recent research on MSCs is yielding a blueprint for cell typing and biomarker immunoregulation. Hopefully, as MSCs researches continue to progress, novel therapeutic approaches will emerge to address cirrhosis.
Collapse
Affiliation(s)
- Qiuyun Yi
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
29
|
Zhou ZY, Chang TF, Lin ZB, Jing YT, Wen LS, Niu YL, Bai Q, Guo CM, Sun JX, Wang YS, Dou GR. Microglial Galectin3 enhances endothelial metabolism and promotes pathological angiogenesis via Notch inhibition by competitively binding to Jag1. Cell Death Dis 2023; 14:380. [PMID: 37369647 DOI: 10.1038/s41419-023-05897-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Microglia were considered as immune cells in inflammation until their angiogenic role was widely understood. Although the pro-inflammatory role of microglia in retinal angiogenesis has been explored, little is known about its role in pro-angiogenesis and the microglia-endothelia interaction. Here, we report that galectin-3 (Gal3) released by activated microglia functions as a communicator between microglia and endothelia and competitively binds to Jag1, thus inhibiting the Notch signaling pathway and enhancing endothelial angiogenic metabolism to promote angiogenesis. These results suggest that Gal3 may be a novel and effective target in the treatment of retinal angiogenesis.
Collapse
Affiliation(s)
- Zi-Yi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tian-Fang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Bin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Tong Jing
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Shi Wen
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Li Niu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Bai
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chang-Mei Guo
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
30
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
31
|
Lu C, Zhang J, Wang B, Gao Q, Ma K, Pei S, Li J, Cui S. Casein kinase 1α is required to maintain murine hypothalamic pro-opiomelanocortin expression. iScience 2023; 26:106670. [PMID: 37168577 PMCID: PMC10165255 DOI: 10.1016/j.isci.2023.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neuron development is considered to play an essential role in the development of obesity. However, the underlying mechanisms remain unclear. Casein kinase 1α (CK1α) was expressed in the embryonic mouse hypothalamus at high levels and colocalized with POMC neurons. CK1α deletion in POMC neurons caused weight gain, metabolic defects, and increased food intake. The number of POMC-expressing cells was considerably decreased in Csnk1a1fl/fl;POMCcre (PKO) mice from embryonic day 15.5 to postnatal day 60, while apoptosis of POMC neurons was not affected. Furthermore, unchanged POMC progenitor cells and a decreased POMC phenotype established CK1α function in hypothalamic POMC neuron development. CK1α deletion led to elevated Notch intracellular domain (NICD) protein expression, and NICD inhibition rescued the PKO mouse phenotype. In summary, CK1α is involved in hypothalamic POMC expression via NICD-POMC signaling, deepening our understanding of POMC neuron development and control of systemic metabolic functions.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Bingjie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Qiao Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Shaona Pei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People’s Republic of China
- Corresponding author
| |
Collapse
|
32
|
Chen L, Wang Y. Interdisciplinary advances reshape the delivery tools for effective NASH treatment. Mol Metab 2023; 73:101730. [PMID: 37142161 DOI: 10.1016/j.molmet.2023.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), a severe systemic and inflammatory subtype of nonalcoholic fatty liver disease, eventually develops into cirrhosis and hepatocellular carcinoma with few options for effective treatment. Currently potent small molecules identified in preclinical studies are confronted with adverse effects and long-term ineffectiveness in clinical trials. Nevertheless, highly specific delivery tools designed from interdisciplinary concepts may address the significant challenges by either effectively increasing the concentrations of drugs in target cell types, or selectively manipulating the gene expression in liver to resolve NASH. SCOPE OF REVIEW We focus on dissecting the detailed principles of the latest interdisciplinary advances and concepts that direct the design of future delivery tools to enhance the efficacy. Recent advances have indicated that cell and organelle-specific vehicles, non-coding RNA research (e.g. saRNA, hybrid miRNA) improve the specificity, while small extracellular vesicles and coacervates increase the cellular uptake of therapeutics. Moreover, strategies based on interdisciplinary advances drastically elevate drug loading capacity and delivery efficiency and ameliorate NASH and other liver diseases. MAJOR CONCLUSIONS The latest concepts and advances in chemistry, biochemistry and machine learning technology provide the framework and strategies for the design of more effective tools to treat NASH, other pivotal liver diseases and metabolic disorders.
Collapse
Affiliation(s)
- Linshan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health.
| |
Collapse
|
33
|
Singh PK, Donnenberg MS. High throughput and targeted screens for prepilin peptidase inhibitors do not identify common inhibitors of eukaryotic gamma-secretase. Expert Opin Drug Discov 2023; 18:563-573. [PMID: 37073444 PMCID: PMC11558661 DOI: 10.1080/17460441.2023.2203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Prepilin peptidases (PPP) are essential enzymes for the biogenesis of important virulence factors, such as type IV pili (T4P), type II secretion systems, and other T4P-related systems of bacteria and archaea. PPP inhibitors could be valuable pharmaceuticals, but only a few have been reported. Interestingly, PPP share similarities with presenilin enzymes from the gamma-secretase protease complex, which are linked to Alzheimer's disease. Numerous gamma-secretase inhibitors have been reported, and some have entered clinical trials, but none has been tested against PPP. OBJECTIVE The objective of this study is to develop a high-throughput screening (HTS) method to search for inhibitors of PPP from various chemical libraries and reported gamma-secretase inhibitors. METHOD More than 15,000 diverse compounds, including 13 reported gamma-secretase inhibitors and other reported peptidase inhibitors, were screened to identify potential PPP inhibitors. RESULTS The authors developed a novel screening method and screened 15,869 compounds. However, the screening did not identify a PPP inhibitor. Nevertheless, the study suggests that gamma-secretase is sufficiently different from PPP that specific inhibitors may exist in a larger chemical space. CONCLUSION The authors believe that the HTS method that they describe has numerous advantages and encourage others to consider its application in the search for PPP inhibitors.
Collapse
Affiliation(s)
- Pradip Kumar Singh
- Department of Internal Medicine, Virginia Commonwealth University, Sanger Hall, Richmond, VA, USA
| | - Michael S Donnenberg
- Department of Internal Medicine, Virginia Commonwealth University, Sanger Hall, Richmond, VA, USA
| |
Collapse
|
34
|
Wei Y, Gao C, Wang H, Zhang Y, Gu J, Zhang X, Gong X, Hao Z. Mori fructus aqueous extracts attenuates liver injury by inhibiting ferroptosis via the Nrf2 pathway. J Anim Sci Biotechnol 2023; 14:56. [PMID: 37032323 PMCID: PMC10084661 DOI: 10.1186/s40104-023-00845-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/31/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Liver fibrosis and hepatocellular carcinogenesis secondary to liver fibrosis are serious liver diseases with no effective treatments. Mori fructus aqueous extracts (MFAEs) have served as successful treatments for many types of liver injury including fibrosis although the molecular mechanisms are unknown at present. PURPOSE To investigate the effect of MFAEs in alleviating acute and chronic liver injury and tried to decipher the underlying mechanism. METHODS AND RESULTS Mice were divided into 5 groups (n = 8) for acute (groups: control, 0.3% CCl4, bifendate (BD), 100 and 200 mg/kg MFAEs, 7 d) and chronic (groups: control, 10% CCl4, BD, 100 and 200 mg/kg MFAEs, 4 weeks) liver injury study. Each mouse was injected intraperitoneally with 10 µL/g corn oil containing CCl4 expect the control group. HepG2 cells were used in vitro study. Eighteen communal components were identified by UPLC-LTQ-Orbitrap-MS. We utilized a mouse model for acute and chronic liver injury using CCl4 and MFAEs administration effectively blocked fibrosis and significantly inhibited inflammation in the liver. MFAEs activated the nuclear factor erythroid derived 2 like 2/heme oxygenase 1 (Nrf2/HO-1) pathway and promoted the synthesis of the antioxidants glutathione (GSH), superoxidedismutase (SOD) and glutathione peroxidase (GSH-Px) that resulted in reduced levels of CCl4-induced oxidative stress molecules including reactive oxygen species. These extracts administered to mice also inhibited ferroptosis in the liver by regulating the expression of Acyl-CoA synthetase long chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), thus reducing the occurrence of liver fibrosis. Both in vivo and in vitro tests indicated that the mechanism of MFAEs protection against liver fibrosis was linked to activation of Nrf2 signaling. These effects were blocked in vitro by the addition of a specific Nrf2 inhibitor. CONCLUSION MFAEs inhibited oxidative stress, ferroptosis and inflammation of the liver by activating Nrf2 signal pathway and provided a significant protective effect against CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Chen Gao
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Huiru Wang
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Yannan Zhang
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Jinhua Gu
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xiuying Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xuhao Gong
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Zhihui Hao
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China.
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China.
| |
Collapse
|
35
|
Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244:108372. [PMID: 36894027 PMCID: PMC10084912 DOI: 10.1016/j.pharmthera.2023.108372] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiaofang Tang
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Shahidul Islam
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alonso Tapia
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Samar H Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Yang Z, Wang L. Current, emerging, and potential therapies for non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1152042. [PMID: 37063264 PMCID: PMC10097909 DOI: 10.3389/fphar.2023.1152042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been identified as the most common chronic liver disease worldwide, with a growing incidence. NAFLD is considered the hepatic manifestation of a metabolic syndrome that emerges from multiple factors (e.g., oxidative stress, metabolic disorders, endoplasmic reticulum stress, cell death, and inflammation). Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, has been reported to be a leading cause of cirrhosis and hepatic carcinoma, and it is progressing rapidly. Since there is no approved pharmacotherapy for NASH, a considerable number of therapeutic targets have emerged with the deepening of the research on NASH pathogenesis. In this study, the therapeutic potential and properties of regulating metabolism, the gut microbiome, antioxidant, microRNA, inhibiting apoptosis, targeting ferroptosis, and stem cell-based therapy in NASH are reviewed and evaluated. Since the single-drug treatment of NASH is affected by individual heterogeneous responses and side effects, it is imperative to precisely carry out targeted therapy with low toxicity. Lastly, targeted therapeutic agent delivery based on exosomes is proposed in this study, such that drugs with different mechanisms can be incorporated to generate high-efficiency and low-toxicity individualized medicine.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
37
|
Duan JL, Liu JJ, Ruan B, Ding J, Fang ZQ, Xu H, Song P, Xu C, Li ZW, Du W, Xu M, Ling YW, He F, Wang L. Age-related liver endothelial zonation triggers steatohepatitis by inactivating pericentral endothelium-derived C-kit. NATURE AGING 2023; 3:258-274. [PMID: 37118422 DOI: 10.1038/s43587-022-00348-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 04/30/2023]
Abstract
Aging leads to systemic metabolic disorders, including steatosis. Here we show that liver sinusoidal endothelial cell (LSEC) senescence accelerates liver sinusoid capillarization and promotes steatosis by reprogramming liver endothelial zonation and inactivating pericentral endothelium-derived C-kit, which is a type III receptor tyrosine kinase. Specifically, inhibition of endothelial C-kit triggers cellular senescence, perturbing LSEC homeostasis in male mice. During diet-induced nonalcoholic steatohepatitis (NASH) development, Kit deletion worsens hepatic steatosis and exacerbates NASH-associated fibrosis and inflammation. Mechanistically, C-kit transcriptionally inhibits chemokine (C-X-C motif) receptor (CXCR)4 via CCAAT enhancer-binding protein α (CEBPA). Blocking CXCR4 signaling abolishes LSEC-macrophage-neutrophil cross-talk and leads to the recovery of C-kit-deficient mice with NASH. Of therapeutic relevance, infusing C-kit-expressing LSECs into aged mice or mice with diet-induced NASH counteracts age-associated senescence and steatosis and improves the symptoms of diet-induced NASH by restoring metabolic homeostasis of the pericentral liver endothelium. Our work provides an alternative approach that could be useful for treating aging- and diet-induced NASH.
Collapse
Affiliation(s)
- Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
- Center of Clinical Aerospace Medicine and Department of Aviation Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Wen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Du
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ming Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Wei Ling
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
38
|
Wang GY, Zhang XY, Wang CJ, Guan YF. Emerging novel targets for nonalcoholic fatty liver disease treatment: Evidence from recent basic studies. World J Gastroenterol 2023; 29:75-95. [PMID: 36683713 PMCID: PMC9850950 DOI: 10.3748/wjg.v29.i1.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a leading chronic disease worldwide, affects approximately a quarter of the global population. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD and is more likely to progress to liver fibrosis than simple steatosis. NASH is also identified as the most rapidly growing cause of hepatocellular carcinoma. Although in the past decade, several phase II/III clinical trials have shown promising results in the use of novel drugs targeting lipid synthase, farnesoid X receptor signaling, peroxisome proliferator-activated receptor signaling, hepatocellular injury, and inflammatory signaling, proven pharmaceutical agents to treat NASH are still lacking. Thus, continuous exploration of the mechanism underlying the pathogenesis of NAFLD and the identification of novel therapeutic targets remain urgent tasks in the field. In the current review, we summarize studies reported in recent years that not only provide new insights into the mechanisms of NAFLD development but also explore the possibility of treating NAFLD by targeting newly identified signaling pathways. We also discuss evidence focusing on the intrahepatic targets involved in the pathogenesis of NAFLD as well as extrahepatic targets affecting liver metabolism and function.
Collapse
Affiliation(s)
- Guang-Yan Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin 300070, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Chun-Jiong Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin 300070, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian 116044, Liaoning Province, China
| |
Collapse
|
39
|
Li Y, Xiu W, Xu J, Chen X, Wang G, Duan J, Sun L, Liu B, Xie W, Pu G, Wang Q, Wang C. Increased CHCHD2 expression promotes liver fibrosis in nonalcoholic steatohepatitis via Notch/osteopontin signaling. JCI Insight 2022; 7:162402. [PMID: 36477358 PMCID: PMC9746920 DOI: 10.1172/jci.insight.162402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is closely related to liver fibrosis. The role of coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) in NASH remains unknown. CHCHD2's functions as a transcription factor have received much less attention than those in mitochondria. Herein, we systematically characterized the role of CHCHD2 as a transcription factor by chromatin immunoprecipitation sequencing and found its target genes were enriched in nonalcoholic fatty liver disease (NAFLD). Overall, CHCHD2 expression was found to be increased in the livers of patients with NAFLD and those of NASH mice. In line with these findings, CHCHD2 deficiency ameliorated NASH- and thioacetamide-induced liver fibrosis, whereas hepatocyte-specific CHCHD2 overexpression promoted liver fibrosis in NASH mice via Notch signaling. Specifically, CHCHD2-overexpressing hepatocytes activated hepatic stellate cells by upregulating osteopontin levels, a downstream mediator of Notch signals. Moreover, Notch inhibition attenuated CHCHD2 overexpression-induced liver fibrosis in vivo and in vitro. Then we found lipopolysaccharide-induced CHCHD2 expression in hepatocytes was reverted by verteporfin, an inhibitor that disrupts the interaction between Yes-associated protein (YAP) and transcriptional enhanced associate domains (TEADs). In addition, CHCHD2 levels were positively correlated with those of TEAD1 in human samples. In conclusion, CHCHD2 is upregulated via YAP/TAZ-TEAD in NASH livers and consequently promotes liver fibrosis by activating the Notch pathway and enhancing osteopontin production.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Xiu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingwen Xu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiangmei Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guangyan Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jinjie Duan
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ben Liu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guangyin Pu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Lv W, Zhou H, Aazmi A, Yu M, Xu X, Yang H, Huang YYS, Ma L. Constructing biomimetic liver models through biomaterials and vasculature engineering. Regen Biomater 2022; 9:rbac079. [PMID: 36338176 PMCID: PMC9629974 DOI: 10.1093/rb/rbac079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 04/04/2024] Open
Abstract
The occurrence of various liver diseases can lead to organ failure of the liver, which is one of the leading causes of mortality worldwide. Liver tissue engineering see the potential for replacing liver transplantation and drug toxicity studies facing donor shortages. The basic elements in liver tissue engineering are cells and biomaterials. Both mature hepatocytes and differentiated stem cells can be used as the main source of cells to construct spheroids and organoids, achieving improved cell function. To mimic the extracellular matrix (ECM) environment, biomaterials need to be biocompatible and bioactive, which also help support cell proliferation and differentiation and allow ECM deposition and vascularized structures formation. In addition, advanced manufacturing approaches are required to construct the extracellular microenvironment, and it has been proved that the structured three-dimensional culture system can help to improve the activity of hepatocytes and the characterization of specific proteins. In summary, we review biomaterials for liver tissue engineering, including natural hydrogels and synthetic polymers, and advanced processing techniques for building vascularized microenvironments, including bioassembly, bioprinting and microfluidic methods. We then summarize the application fields including transplant and regeneration, disease models and drug cytotoxicity analysis. In the end, we put the challenges and prospects of vascularized liver tissue engineering.
Collapse
Affiliation(s)
- Weikang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | | | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Zhang LF, Wang XH, Zhang CL, Lee J, Duan BW, Xing L, Li L, Oh YK, Jiang HL. Sequential Nano-Penetrators of Capillarized Liver Sinusoids and Extracellular Matrix Barriers for Liver Fibrosis Therapy. ACS NANO 2022; 16:14029-14042. [PMID: 36036898 DOI: 10.1021/acsnano.2c03858] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During liver fibrogenesis, liver sinusoidal capillarization and extracellular matrix (ECM) deposition construct dual pathological barriers to drug delivery. Upon capillarization, the vanished fenestrae in liver sinusoidal endothelial cells (LSECs) significantly hinder substance exchange between blood and liver cells, while excessive ECM further hinders the delivery of nanocarriers to activated hepatic stellate cells (HSCs). Herein, an efficient nanodrug delivery system was constructed to sequentially break through the capillarized LSEC barrier and the deposited ECM barrier. For the first barrier, LSEC-targeting and fenestrae-repairing nanoparticles (named HA-NPs/SMV) were designed on the basis of the modification with hyaluronic acid and the loading of simvastatin (SMV). For the second barrier, collagenase I and vitamin A codecorated nanoparticles with collagen-ablating and HSC-targeting functions (named CV-NPs/siCol1α1) were prepared to deliver siCol1α1 with the goal of inhibiting collagen generation and HSC activation. Our in vivo results showed that upon encountering the capillarized LSEC barrier, HA-NPs/SMV rapidly released SMV and exerted a fenestrae-repairing function, which allowed more CV-NPs/siCol1α1 to enter the space of Disse to degrade deposited collagen and finally to achieve higher accumulation in activated HSCs. Scanning electronic microscopy images showed the recovery of liver sinusoids, and analysis of liver tissue sections demonstrated that HA-NPs/SMV and CV-NPs/siCol1α1 had a synergetic effect. Our pathological barrier-normalization strategy provides an antifibrotic therapeutic regimen.
Collapse
Affiliation(s)
- Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Huan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng-Lu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Bo-Wen Duan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
42
|
Du W, Wang L. The Crosstalk Between Liver Sinusoidal Endothelial Cells and Hepatic Microenvironment in NASH Related Liver Fibrosis. Front Immunol 2022; 13:936196. [PMID: 35837401 PMCID: PMC9274003 DOI: 10.3389/fimmu.2022.936196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic liver injury can be caused by many factors, including virus infection, alcohol intake, cholestasis and abnormal fat accumulation. Nonalcoholic steatohepatitis (NASH) has become the main cause of liver fibrosis worldwide. Recently, more and more evidences show that hepatic microenvironment is involved in the pathophysiological process of liver fibrosis induced by NASH. Hepatic microenvironment consists of various types of cells and intercellular crosstalk among different cells in the liver sinusoids. Liver sinusoidal endothelial cells (LSECs), as the gatekeeper of liver microenvironment, play an irreplaceable role in the homeostasis and alterations of liver microenvironment. Many recent studies have reported that during the progression of NASH to liver fibrosis, LSECs are involved in various stages mediated by a series of mechanisms. Therefore, here we review the key role of crosstalk between LSECs and hepatic microenvironment in the progression of NASH to liver fibrosis (steatosis, inflammation, and fibrosis), as well as promising therapeutic strategies targeting LSECs.
Collapse
Affiliation(s)
- Wei Du
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|