1
|
Geng Y, Chen Z, Luo T, Liu Y, Kong S, Yan X, Bai H, Wang Y. Innovative construction and application of bile duct organoids: Unraveling the complexity of bile duct diseases and potential therapeutic strategies. Cancer Lett 2025; 618:217619. [PMID: 40074068 DOI: 10.1016/j.canlet.2025.217619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The biliary system is crucial for liver function, regulating bile production, secretion, and transport. Dysfunctions within this system can lead to various diseases, such as cholangiopathies and biliary fibrosis, which may progress from benign to malignant states like cholangiocarcinoma. While liver organoid research is well-established and technologically advanced, bile duct organoids (BDOs) offer significant potential. BDOs can accurately simulate the physiological structure and function of bile ducts, making them valuable tools for in-vitro biliary disease research. Here, we review the development of BDO models, focusing on stem cell-derived organoids and tissue-derived organoids. We also illustrate the role of cultivation strategies and extracellular scaffolds in supporting organoid growth and stability, including the influence of cellular components of the microenvironment and physicochemical factors. Furthermore, we discuss the applications of BDOs in biliary development, disease modeling, regenerative medicine, and drug screening. Additionally, we emphasize the transformative potential in BDO biobanks and personalized medicine, which helps to pave the way for innovative therapeutic strategies and personalized medicine. Finally, we summarize the current and prospective advancements in BDO technologies, highlighting the integration of emerging technologies such as artificial intelligence, 3D bioprinting, and organoid-on-chip systems. These technologies hold great promise for significantly enhancing both clinical and research applications in the field of biliary diseases.
Collapse
Affiliation(s)
- Yadi Geng
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China; School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ziye Chen
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Tianzi Luo
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yakun Liu
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Siming Kong
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Hui Bai
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Giron-Michel J, Padelli M, Oberlin E, Guenou H, Duclos-Vallée JC. State-of-the-Art Liver Cancer Organoids: Modeling Cancer Stem Cell Heterogeneity for Personalized Treatment. BioDrugs 2025; 39:237-260. [PMID: 39826071 PMCID: PMC11906529 DOI: 10.1007/s40259-024-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment. These modifications enable CSCs to exhibit plasticity, differentiating into various resistant tumor cell types. Addressing this challenge requires urgent efforts to develop personalized treatments guided by biomarkers, with a specific focus on targeting CSCs. The lack of effective precision treatments for PLCs is partly due to the scarcity of ex vivo preclinical models that accurately capture the complexity of CSC-related tumors and can predict therapeutic responses. Fortunately, recent advancements in the establishment of patient-derived liver cancer cell lines and organoids have opened new avenues for precision medicine research. Notably, patient-derived organoid (PDO) cultures have demonstrated self-assembly and self-renewal capabilities, retaining essential characteristics of their respective in vivo tissues, including both inter- and intratumoral heterogeneities. The emergence of PDOs derived from PLCs serves as patient avatars, enabling preclinical investigations for patient stratification, screening of anticancer drugs, efficacy testing, and thereby advancing the field of precision medicine. This review offers a comprehensive summary of the advancements in constructing PLC-derived PDO models. Emphasis is placed on the role of CSCs, which not only contribute significantly to the establishment of PDO cultures but also faithfully capture tumor heterogeneity and the ensuing development of therapy resistance. The exploration of PDOs' benefits in personalized medicine research is undertaken, including a discussion of their limitations, particularly in terms of culture conditions, reproducibility, and scalability.
Collapse
Affiliation(s)
- Julien Giron-Michel
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France.
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
| | - Maël Padelli
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- Department of Biochemistry and Oncogenetics, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Hind Guenou
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jean-Charles Duclos-Vallée
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- INSERM UMR-S 1193, Paul Brousse Hospital, Villejuif, France
- Hepato-Biliary Department, Paul Brousse Hospital, APHP, Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hepatinov, Villejuif, France
| |
Collapse
|
3
|
Nagao M, Fukuda A, Kashima H, Matsuyama S, Iimori K, Nakayama S, Mizukoshi K, Kawai M, Yamakawa G, Omatsu M, Namikawa M, Masuda T, Hiramatsu Y, Muta Y, Maruno T, Nakanishi Y, Tsuruyama T, Seno H. Cholangiocyte organoids for disease, cancer, and regenerative medicine. Eur J Cell Biol 2025; 104:151472. [PMID: 39721346 DOI: 10.1016/j.ejcb.2024.151472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
The biliary tract is a ductal network comprising the intrahepatic (IHBDs) and extrahepatic bile duct (EHBDs). Biliary duct disorders include cholangitis, neoplasms, and injury. However, the underlying mechanisms are not fully understood. With advancements in 3D culture technology, cholangiocyte organoids (COs) derived from primary tissues or induced pluripotent stem cells (iPSCs) can accurately replicate the structural and functional properties of biliary tissues. These organoids have become powerful tools for studying the pathogenesis of biliary diseases, such as cystic fibrosis and primary sclerosing cholangitis, and for developing new therapeutic strategies for cholangiocarcinoma. Additionally, COs have the potential to repair bile duct injuries and facilitate transplantation therapies. This review also discusses the use of organoids in genetically engineered mouse models to provide mechanistic insights into tumorigenesis and cancer progression. Continued innovation and standardization of organoid technology are crucial for advancing precision medicine for biliary diseases and cancer.
Collapse
Affiliation(s)
- Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hirotaka Kashima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sho Matsuyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kei Iimori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinnosuke Nakayama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, The Japan Baptist Hospital, 47 Yamanomoto-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8273, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2025; 48:1-26. [PMID: 38806997 PMCID: PMC11850459 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Porwal M, Rastogi V, Chandra P, Sharma KK, Varshney P. Significance of Phytoconstituents in Modulating Cell Signalling Pathways for the Treatment of Pancreatic Cancer. REVISTA BRASILEIRA DE FARMACOGNOSIA 2024. [DOI: 10.1007/s43450-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 01/03/2025]
|
6
|
Luo X, Gong Y, Gong Z, Fan K, Suo T, Liu H, Ni X, Ni X, Abudureyimu M, Liu H. Liver and bile duct organoids and tumoroids. Biomed Pharmacother 2024; 178:117104. [PMID: 39024834 DOI: 10.1016/j.biopha.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Organoids refer to 3D cultures established to recapitulate histology, pathology, architecture, and genetic traits of various organs and tissues in the body, thereby replacing 2D cell cultures, xenograft, and animal models. Organoids form a 3D in vitro mimic of original tissues like the liver and are derived from embryonic or adult tissue stem cells. Liver and bile duct tumor organoids, also called, tumoroids capture genetic diversity, cellular, and pathophysiological properties of original tumors. Moreover, co-culture techniques along with genetic modulation of organoids allow for using tumoroids in liver and bile duct cancer research and drug screening/testing. Therefore, tumoroids are promising platforms for studying liver and bile duct cancer, which paves the way for the new era of personalized therapies. In the current review, we aimed to discuss liver and bile duct organoids with special emphasis on tumoroids and their applications, advantages, and shortcomings.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Yuda Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Zijun Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Kun Fan
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Han Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaoling Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaojian Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
8
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
9
|
Chen B, Du C, Wang M, Guo J, Liu X. Organoids as preclinical models of human disease: progress and applications. MEDICAL REVIEW (2021) 2024; 4:129-153. [PMID: 38680680 PMCID: PMC11046574 DOI: 10.1515/mr-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In the field of biomedical research, organoids represent a remarkable advancement that has the potential to revolutionize our approach to studying human diseases even before clinical trials. Organoids are essentially miniature 3D models of specific organs or tissues, enabling scientists to investigate the causes of diseases, test new drugs, and explore personalized medicine within a controlled laboratory setting. Over the past decade, organoid technology has made substantial progress, allowing researchers to create highly detailed environments that closely mimic the human body. These organoids can be generated from various sources, including pluripotent stem cells, specialized tissue cells, and tumor tissue cells. This versatility enables scientists to replicate a wide range of diseases affecting different organ systems, effectively creating disease replicas in a laboratory dish. This exciting capability has provided us with unprecedented insights into the progression of diseases and how we can develop improved treatments. In this paper, we will provide an overview of the progress made in utilizing organoids as preclinical models, aiding our understanding and providing a more effective approach to addressing various human diseases.
Collapse
Affiliation(s)
- Baodan Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cijie Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Guo
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
10
|
Bhatt S S, Krishna Kumar J, Laya S, Thakur G, Nune M. Scaffold-mediated liver regeneration: A comprehensive exploration of current advances. J Tissue Eng 2024; 15:20417314241286092. [PMID: 39411269 PMCID: PMC11475092 DOI: 10.1177/20417314241286092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
Collapse
Affiliation(s)
- Supriya Bhatt S
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayanthi Krishna Kumar
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shurthi Laya
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
11
|
Zhang Z, Hui L. Progress in patient-derived liver cancer cell models: a step forward for precision medicine. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1707-1717. [PMID: 37766458 PMCID: PMC10679880 DOI: 10.3724/abbs.2023224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of effective precision treatments for liver cancers has been hindered by the scarcity of preclinical models that accurately reflect the heterogeneity of this disease. Recent progress in developing patient-derived liver cancer cell lines and organoids has paved the way for precision medicine research. These expandable resources of liver cancer cell models enable a full spectrum of pharmacogenomic analysis for liver cancers. Moreover, patient-derived and short-term cultured two-dimensional tumor cells or three-dimensional organoids can serve as patient avatars, allowing for the prediction of patients' response to drugs and facilitating personalized treatment for liver cancer patients. Furthermore, the current novel techniques have expanded the scope of cancer research, including innovative organoid culture, gene editing and bioengineering. In this review, we provide an overview of the progress in patient-derived liver cancer cell models, focusing on their applications in precision and personalized medicine research. We also discuss the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Zhengtao Zhang
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Lijian Hui
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
12
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023; 20:462-480. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany
- Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
13
|
Chen L, Wei X, Gu D, Xu Y, Zhou H. Human liver cancer organoids: Biological applications, current challenges, and prospects in hepatoma therapy. Cancer Lett 2023; 555:216048. [PMID: 36603689 DOI: 10.1016/j.canlet.2022.216048] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Liver cancer and disease are among the most socially challenging global health concerns. Although organ transplantation, surgical resection and anticancer drugs are the main methods for the treatment of liver cancer, there are still no proven cures owing to the lack of donor livers and tumor heterogeneity. Recently, advances in tumor organoid technology have attracted considerable attention as they can simulate the spatial constructs and pathophysiological characteristics of tumorigenesis and metastasis in a more realistic manner. Organoids may further contribute to the development of tailored therapies. Combining organoids with other emerging techniques, such as CRISPR-HOT, organ-on-a-chip, and 3D bioprinting, may further develop organoids and address their bottlenecks to create more practical models that generalize different tissue or organ interactions in tumor progression. In this review, we summarize the various methods in which liver organoids may be generated and describe their biological and clinical applications, present challenges, and prospects for their integration with emerging technologies. These rapidly developing liver organoids may become the focus of in vitro clinical model development and therapeutic research for liver diseases in the near future.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Dayong Gu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong Xu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Abstract
Biliary tract cancer (BTC) is the second most common primary liver cancer after hepatocellular carcinoma and accounts for 2% of cancer-related deaths. BTCs are classified according to their anatomical origin into intrahepatic (iCCA), perihilar, or distal cholangiocarcinoma, as well as gall bladder carcinoma. While the mutational profiles in these anatomical BTC subtypes overlap to a large extent, iCCA is notable for the high frequency of IDH1/2 mutations (10-22%) and the nearly exclusive occurrence of FGFR2 fusions in 10-15% of patients. In recent years, FGFR2 fusions have become one of the most promising targets for precision oncology targeting BTC, with FGFR inhibitors already approved in Europe and the United States for patients with advanced, pretreated iCCA. While the therapeutic potential of nonfusion alterations is still under debate, it is expected that the field of FGFR2-directed therapies will be subject to rapid further evolution and optimization. The scope of this review is to provide an overview of oncogenic FGFR signaling in iCCA cells and highlight the pathophysiology, diagnostic testing strategies, and therapeutic promises and challenges associated with FGFR2-altered iCCA.
Collapse
Affiliation(s)
- Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; .,Center for Personalized Medicine (ZPM), Hannover Medical School, Hannover, Germany
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; .,Center for Personalized Medicine (ZPM), Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Liu S, Huang F, Ru G, Wang Y, Zhang B, Chen X, Chu L. Mouse Models of Hepatocellular Carcinoma: Classification, Advancement, and Application. Front Oncol 2022; 12:902820. [PMID: 35847898 PMCID: PMC9279915 DOI: 10.3389/fonc.2022.902820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.
Collapse
Affiliation(s)
- Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Chu,
| |
Collapse
|
16
|
Ramakrishna G, Babu PE, Singh R, Trehanpati N. Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids. Hepatol Int 2021; 15:1309-1317. [PMID: 34596864 DOI: 10.1007/s12072-021-10237-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
Two breakthrough techniques that have totally revolutionized biology in last 1 decade are the discovery of genome editing tools and growing the stem cells/primary tissue explants in defined 3D culture. In this regard the discovery of CRISPR-Cas9 as a specific gene editing tool and organoid culture from adult stem cell has provided easy handy tools to uncover the process of organ development and also modeling cancer. Genetically modified organoids have been developed by sequential knockout and knockin of driver mutations by genome editing followed by niche-based selection. The modified organoids when xenotransplanted in animal models faithfully recapitulate the neoplastic events of human tumors. The present review focuses on the merging of these two powerful technologies in understanding the complexities of colon and liver cancer.
Collapse
Affiliation(s)
- Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, Delhi, 110070, India.
| | - Preedia E Babu
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, Delhi, 110070, India
| | - Ravinder Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, Delhi, 110070, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, Delhi, 110070, India
| |
Collapse
|
17
|
Al Reza H, Okabe R, Takebe T. Organoid transplant approaches for the liver. Transpl Int 2021; 34:2031-2045. [PMID: 34614263 PMCID: PMC8602742 DOI: 10.1111/tri.14128] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Organoid technology is a state-of-the-art cell culture tool that has revolutionized study of development, regeneration, and diseases. Human liver organoids (HLOs) are now derived from either adult stem/progenitors or pluripotent stem cells (PSCs), emulating cellular diversity and structural symphony akin to the human liver. With the rapid rise in decompensated liver disease conditions only treated by liver transplant therapy, HLOs represent an alternate source for transplantation to address the ongoing shortage of grafts. Although ongoing advancements in bioengineering technology have moved the organoid transplant approach to the next level, sustained survival of the transplanted tissue still eludes us toward functional organ replacement. Herein, we review the development of HLOs and discuss promises and challenges on organoid transplant approaches.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Ryo Okabe
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
18
|
Kendre G, Marhenke S, Lorz G, Becker D, Reineke-Plaaß T, Poth T, Murugesan K, Kühnel F, Woller N, Wirtz RM, Pich A, Marquardt JU, Saborowski M, Vogel A, Saborowski A. The Co-mutational Spectrum Determines the Therapeutic Response in Murine FGFR2 Fusion-Driven Cholangiocarcinoma. Hepatology 2021; 74:1357-1370. [PMID: 33709535 DOI: 10.1002/hep.31799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and a highly lethal malignancy. Chemotherapeutic options are limited, but a considerable subset of patients harbors genetic lesions for which targeted agents exist. Fibroblast growth factor receptor 2 (FGFR2) fusions belong to the most frequent and therapeutically relevant alterations in ICC, and the first FGFR inhibitor was recently approved for the treatment of patients with progressed, fusion-positive ICC. Response rates of up to 35% indicate that FGFR-targeted therapies are beneficial in many but not all patients. Thus far, no established biomarkers exist that predict resistance or response to FGFR-targeted therapies in patients with ICC. APPROACH AND RESULTS In this study, we use an autochthonous murine model of ICC to demonstrate that FGFR2 fusions are potent drivers of malignant transformation. Furthermore, we provide preclinical evidence that the co-mutational spectrum acts not only as an accelerator of tumor development, but also modifies the response to targeted FGFR inhibitors. Using pharmacologic approaches and RNA-interference technology, we delineate that Kirsten rat sarcoma oncogene (KRAS)-activated mitogen-activated protein kinase signaling causes primary resistance to FGFR inhibitors in FGFR2 fusion-positive ICC. The translational relevance is supported by the observation that a subset of human FGFR2 fusion patients exhibits transcriptome profiles reminiscent of KRAS mutant ICC. Moreover, we demonstrate that combination therapy has the potential to overcome primary resistance and to sensitize tumors to FGFR inhibition. CONCLUSIONS Our work highlights the importance of the co-mutational spectrum as a significant modifier of response in tumors that harbor potent oncogenic drivers. A better understanding of the genetic underpinnings of resistance will be pivotal to improve biomarker-guided patient selection and to design clinically relevant combination strategies.
Collapse
Affiliation(s)
- Gajanan Kendre
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Georgina Lorz
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Diana Becker
- Department of Medicine I, Lichtenberg Research Group, Johannes Gutenberg University, Mainz, Germany
| | | | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Andreas Pich
- Core Unit Mass Spectrometry and Proteomics, Hannover Medical School, Hannover, Germany
| | - Jens U Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Cristinziano G, Porru M, Lamberti D, Buglioni S, Rollo F, Amoreo CA, Manni I, Giannarelli D, Cristofoletti C, Russo G, Borad MJ, Grazi GL, Diodoro MG, Giordano S, Sacconi A, Forcato M, Anastasi S, Leonetti C, Segatto O. FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma. J Hepatol 2021; 75:351-362. [PMID: 33741397 DOI: 10.1016/j.jhep.2021.02.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS About 15% of intrahepatic cholangiocarcinomas (iCCAs) express fibroblast growth factor receptor 2 (FGFR2) fusion proteins (FFs), usually alongside mutational inactivation of TP53, CDKN2A or BAP1. In FFs, FGFR2 residues 1-768 fuse to sequences encoded by a diverse array of partner genes (>60) causing oncogenic FF activation. While FGFR-specific tyrosine kinase inhibitors (F-TKI) provide clinical benefit in FF+ iCCA, responses are partial and/or limited by resistance mechanisms, such as the V565F substitution in the FGFR2 gatekeeper residue. Improving on FF targeting in iCCA therefore remains a critical unmet need. Herein, we aimed to generate a murine model of FF-driven iCCA and use this to uncover actionable FF-associated dependencies. METHODS Four iCCA FFs carrying different fusion sequences were expressed in Tp53-/- mouse liver organoids. Tumorigenic properties of genetically modified liver organoids were assessed by transplantation into immuno-deficient mice. Cellular models derived from neoplastic lesions were exploited for pre-clinical studies. RESULTS Transplantation of FF-expressing liver organoids yielded tumors diagnosed as CCA based on histological, phenotypic and transcriptomic analyses. The penetrance of this tumorigenic phenotype was influenced by FF identity. Tumor organoids and 2D cell lines derived from CCA lesions were addicted to FF signaling via Ras-Erk, regardless of FF identity or V565F mutation. Dual blockade of FF and the Ras-Erk pathway by concomitant pharmacological inhibition of FFs and Mek1/2 provided greater therapeutic efficacy than single agent F-TKI in vitro and in vivo. CONCLUSIONS FF-driven iCCA pathogenesis was successfully modeled on a Tp53-/- murine background, revealing biological heterogeneity among structurally different FFs. Double blockade of FF-ERK signaling deserves consideration for precision-based approaches against human FF+ iCCA. LAY SUMMARY Intrahepatic cholangiocarcinoma (iCCA) is a rare cancer that is difficult to treat. A subtype of iCCA is caused by genomic alterations that generate oncogenic drivers known as FGFR2 fusions. Patients with FGFR2 fusions respond to FGFR inhibitors, but clinical responses are often of modest duration. We used animal and cellular models to show that FGFR2 fusions require the activity of a downstream effector named Mek1/2. We found that dual blockade of FGFR2 fusions and Mek1/2 was more effective than isolated inhibition of FGFR2 fusions, pointing to the potential clinical utility of dual FGFR2-MEK1/2 blockade in patients with iCCA.
Collapse
Affiliation(s)
- Giulia Cristinziano
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Manuela Porru
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Dante Lamberti
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Rollo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carla Azzurra Amoreo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Diana Giannarelli
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Mitesh J Borad
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, USA
| | - Gian Luca Grazi
- Division of Hepatobiliary Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Anastasi
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Carlo Leonetti
- SAFU, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Oreste Segatto
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
20
|
Nguyen R, Da Won Bae S, Qiao L, George J. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research. Cancer Lett 2021; 508:13-17. [PMID: 33771683 DOI: 10.1016/j.canlet.2021.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Primary liver cancer (PLC) represents a significant proportion of all human cancers and constitutes a substantial health and economic burden to society. Traditional therapeutic approaches such as surgical resection and chemotherapy often fail due to tumour relapse or innate tumour chemoresistance. There is a dearth of efficient treatments for PLC in part due to the poor capacity of current laboratory models to reflect critical features of the native tumour in vivo. The increasing incorporation of organoid systems has led to a resurgence of interest in liver cancer research. Organoid systems show promise as the gold standard for recapitulating tumours in vitro. Further, developments in culturing techniques will improve the various shortcomings of the current systems. Induced pluripotent stem cell (iPSC)-derived liver organoids are a promising alternative to the conventional liver organoid model as it circumvents the need to rely on primary resections which are often scarce. In this concise review, we will discuss novel techniques for organoid culture with a focus on organoid co-cultures and their advantages over traditional organoid systems. A detailed technical protocol for the generation of iPSC-derived liver organoids is provided as an appendix.
Collapse
Affiliation(s)
- Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
21
|
Recent Advances in Implantation-Based Genetic Modeling of Biliary Carcinogenesis in Mice. Cancers (Basel) 2021; 13:cancers13102292. [PMID: 34064809 PMCID: PMC8151177 DOI: 10.3390/cancers13102292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Biliary tract cancer (BTC) is often refractory to conventional therapeutics and is difficult to diagnose in the early stages. In addition, the pathogenesis of BTC is not fully understood, despite recent advances in cancer genome analysis. To address these issues, the development of fine disease models is critical for BTC. Although still limited in number, there are various platforms for genetic models of BTC owing to newly emerging technology. Among these, implantation-based models have recently drawn attention for their convenience, flexibility, and scalability. To highlight the relevance of this approach, we comprehensively summarize the advantages and disadvantages of BTC models developed using diverse approaches. Currently available research data on intra- and extrahepatic cholangiocarcinoma and gallbladder carcinoma are presented in this review. This information will likely help in selecting the optimal models for various applications and develop novel innovative models based on these technologies. Abstract Epithelial cells in the biliary system can develop refractory types of cancers, which are often associated with inflammation caused by viruses, parasites, stones, and chemicals. Genomic studies have revealed recurrent genetic changes and deregulated signaling pathways in biliary tract cancer (BTC). The causal roles have been at least partly clarified using various genetically engineered mice. Technical advances in Cre-LoxP technology, together with hydrodynamic tail injection, CRISPR/Cas9 technology, in vivo electroporation, and organoid culture have enabled more precise modeling of BTC. Organoid-based genetic modeling, combined with implantation in mice, has recently drawn attention as a means to accelerate the development of BTC models. Although each model may not perfectly mimic the disease, they can complement one another, or two different approaches can be integrated to establish a novel model. In addition, a comparison of the outcomes among these models with the same genotype provides mechanistic insights into the interplay between genetic alterations and the microenvironment in the pathogenesis of BTCs. Here, we review the current status of genetic models of BTCs in mice to provide information that facilitates the wise selection of models and to inform the future development of ideal disease models.
Collapse
|
22
|
Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, Kanai T, Saya H, Arima Y. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci 2021; 112:1822-1838. [PMID: 33068050 PMCID: PMC8088913 DOI: 10.1111/cas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biliary tract cancer (BTC) arises from biliary epithelial cells (BECs) and includes intrahepatic cholangiocarcinoma (IHCC), gallbladder cancer (GC), and extrahepatic cholangiocarcinoma (EHCC). Although frequent KRAS mutations and epigenetic changes at the INK4A/ARF locus have been identified, the molecular pathogenesis of BTC is unclear and the development of corresponding anticancer agents remains inadequate. We isolated epithelial cell adhesion molecule (EpCAM)–positive BECs from the mouse intrahepatic bile duct, gallbladder, and extrahepatic bile duct, and established organoids derived from these cells. Introduction of activated KRAS and homozygous deletion of Ink4a/Arf in the cells of each organoid type conferred the ability to form lethal metastatic adenocarcinoma with differentiated components and a pronounced desmoplastic reaction on cell transplantation into syngeneic mice, indicating that the manipulated cells correspond to BTC–initiating cells. The syngeneic mouse models recapitulate the pathological features of human IHCC, GC, and EHCC, and they should therefore prove useful for the investigation of BTC carcinogenesis and the development of new therapeutic strategies. Tumor cells isolated from primary tumors formed organoids in three‐dimensional culture, and serial syngeneic transplantation of these cells revealed that their cancer stem cell properties were supported by organoid culture, but not by adherent culture. Adherent culture thus attenuated tumorigenic activity as well as the expression of both epithelial and stem cell markers, whereas the expression of epithelial‐mesenchymal transition (EMT)–related transcription factor genes and mesenchymal cell markers was induced. Our data show that organoid culture is important for maintenance of epithelial cell characteristics, stemness, and tumorigenic activity of BTC–initiating cells.
Collapse
Affiliation(s)
- Akiyoshi Kasuga
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Semba
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Thoracic Surgery, Kumamoto University, Kumamoto, Japan
| | - Ryo Sato
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiromasa Takaishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Abstract
Liver cancer is the second most lethal malignancy worldwide. Cell lines and murine models are the most common tools for modeling human liver carcinogenesis. Most recently, organoids with a three-dimensional structure derived from primary tissues or cells have been applied to liver cancer research. Organoids can be generated from induced pluripotent stem cells, embryonic or adult, healthy or diseased tissues. In particular, liver organoids have been widely employed in mechanistic studies aimed at delineating the molecular pathways responsible for hepatocarcinogenesis. The introduction of clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) and microengineered miniorganoid technologies into liver organoids for cancer study has significantly accelerated these investigations. Translational advances have been made by utilizing liver tumor organoids for anticancer drug screening, biobanking, omics profiling, and biomarker discovery. This review summarizes the latest advances and the remaining challenges in the use of organoid models for the study of liver cancer.
Collapse
Affiliation(s)
- Haichuan Wang
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| |
Collapse
|
24
|
Chaturantabut S, Shwartz A, Garnaas MK, LaBella K, Li CC, Carroll KJ, Cutting CC, Budrow N, Palaria A, Gorelick DA, Tremblay KD, North TE, Goessling W. Estrogen Acts Through Estrogen Receptor 2b to Regulate Hepatobiliary Fate During Vertebrate Development. Hepatology 2020; 72:1786-1799. [PMID: 32060934 PMCID: PMC8290048 DOI: 10.1002/hep.31184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS During liver development, bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells to ensure a functional liver required to maintain organismal homeostasis. The developmental cues controlling the differentiation of committed progenitors into these cell types, however, are incompletely understood. Here, we discover an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions. APPROACH AND RESULTS Exposure of zebrafish embryos to 17β-estradiol (E2) during liver development significantly decreased hepatocyte-specific gene expression, liver size, and hepatocyte number. In contrast, pharmacological blockade of estrogen synthesis or nuclear estrogen receptor (ESR) signaling enhanced liver size and hepatocyte marker expression. Transgenic reporter fish demonstrated nuclear ESR activity in the developing liver. Chemical inhibition and morpholino knockdown of nuclear estrogen receptor 2b (esr2b) increased hepatocyte gene expression and blocked the effects of E2 exposure. esr2b-/- mutant zebrafish exhibited significantly increased expression of hepatocyte markers with no impact on liver progenitors, other endodermal lineages, or vasculature. Significantly, E2-stimulated Esr2b activity promoted biliary epithelial differentiation at the expense of hepatocyte fate, whereas loss of esr2b impaired biliary lineage commitment. Chemical and genetic epistasis studies identified bone morphogenetic protein (BMP) signaling as a mediator of the estrogen effects. The divergent impact of estrogen on hepatobiliary fate was confirmed in a human hepatoblast cell line, indicating the relevance of this pathway for human liver development. CONCLUSIONS Our studies identify E2, esr2b, and downstream BMP activity as important regulators of hepatobiliary fate decisions during vertebrate liver development. These results have significant clinical implications for liver development in infants exposed to abnormal estrogen levels or estrogenic compounds during pregnancy.
Collapse
Affiliation(s)
| | - Arkadi Shwartz
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maija K. Garnaas
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyle LaBella
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chia-Cheng Li
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelli J. Carroll
- Stem Cell Program, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire C. Cutting
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nadine Budrow
- Stem Cell Program, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amrita Palaria
- Department of Animal and Veterinary Sciences, University of Massachusetts, Amherst, MA, USA
| | - Daniel A. Gorelick
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Kimberly D. Tremblay
- Department of Animal and Veterinary Sciences, University of Massachusetts, Amherst, MA, USA
| | - Trista E. North
- Stem Cell Program, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
25
|
Abstract
The organoid model represents a major breakthrough in cell biology that has revolutionised biomedical research. Organoids are 3D physiological in vitro structures that recapitulate morphological and functional features of in vivo tissues and offer significant advantages over traditional cell culture methods. Liver organoids are of particular interest because of the pleiotropy of functions exerted by the human liver, their utility to model different liver diseases, and their potential application as cell-based therapies in regenerative medicine. Moreover, because they can be derived from patient tissues, organoid models offer new perspectives in personalised medicine and drug discovery. In this review, we discuss the current liver organoid models for the study of liver disease.
Collapse
Key Words
- 3D cultures
- A1AT, alpha-1 antitrypsin
- ALD, alcohol-related liver disease
- CCA, cholangiocarcinoma
- CFTR, cystic fibrosis transmembrane conductance regulator
- CHC, combined hepato-cholangiocarcinoma
- CLD, chronic liver disease
- CTLN1, citrullinemia type 1
- Chol-orgs, cholangiocyte organoids
- Disease modelling
- EGF, epidermal growth factor
- ER, endoplasmic reticulum
- ESCs, embryonic stem cells
- FFAs, free fatty acids
- HCC, hepatocellular carcinoma
- HUVEC, human umbilical vein endothelial cells
- Hep-orgs, hepatocyte organoids
- IL-, interleukin-
- Liver disease
- MSC, mesenchymal stem cell
- NAFLD, non-alcoholic fatty liver disease
- Organoids
- PDO, patient-derived organoid
- PDX, patient-derived xenograft
- PHH, primary human hepatocyte
- PSC, primary sclerosing cholangitis
- Personalised medicine
- Preclinical models
- iPSC, induced pluripotent stem cell
Collapse
Affiliation(s)
- Sandro Nuciforo
- Department of Biomedicine, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland.,Clarunis, University Center for Gastrointestinal and Liver Diseases, CH-4002 Basel, Switzerland
| |
Collapse
|
26
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1459] [Impact Index Per Article: 291.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
27
|
Mishra A, Emamgholi F, Erlangga Z, Hartleben B, Unger K, Wolff K, Teichmann U, Kessel M, Woller N, Kühnel F, Dow LE, Manns MP, Vogel A, Lowe SW, Saborowski A, Saborowski M. Generation of focal mutations and large genomic deletions in the pancreas using inducible in vivo genome editing. Carcinogenesis 2020; 41:334-344. [PMID: 31170286 PMCID: PMC8204487 DOI: 10.1093/carcin/bgz108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/18/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
Beyond the nearly uniform presence of KRAS mutations, pancreatic cancer is increasingly recognized as a heterogeneous disease. Preclinical in vivo model systems exist, but with the advent of precision oncology, murine models with enhanced genetic flexibility are needed to functionally annotate genetic alterations found in the human malignancy. Here, we describe the generation of focal gene disruptions and large chromosomal deletions via inducible and pancreas-specific expression of Cas9 in adult mice. Experimental mice are derived on demand directly from genetically engineered embryonic stem cells, without the need for further intercrossing. To provide initial validation of our approach, we show that disruption of the E3 ubiquitin ligase Rnf43 accelerates KrasG12D-dependent tumourigenesis. Moreover, we demonstrate that this system can be used to rapidly interrogate the impact of complex cancer-associated alleles through the generation of a previously unstudied 1.2 megabase deletion surrounding the CDKN2A and CDKN2B tumour suppressors. Thus, our approach is capable of reproducibly generating biallelic and precise loss of large chromosomal fragments that, in conjunction with mutant Kras, leads to development of pancreatic ductal adenocarcinoma with full penetrance.
Collapse
Affiliation(s)
- Amrendra Mishra
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | - Fatemeh Emamgholi
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | - Zulrahman Erlangga
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | - Björn Hartleben
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, German Research Center for Environmental Health, Munich, Germany
| | - Katharina Wolff
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | | | - Michael Kessel
- Department for Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | - Lukas E Dow
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, USA
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, USA
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover, Germany
| |
Collapse
|
28
|
Cholangiocarcinoma Disease Modelling Through Patients Derived Organoids. Cells 2020; 9:cells9040832. [PMID: 32235647 PMCID: PMC7226733 DOI: 10.3390/cells9040832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer organoids are 3D phenotypic cultures that can be established from resected or biopsy tumour samples and can be grown as mini tumours in the dish. Flourishing evidence supports the feasibility of patient derived organoids (PDO) from a number of solid tumours. Evidence for cholangiocarcinoma (CCA) PDO is still sparse but growing. CCA PDO lines have been established from resected early stage disease, advanced cancers and highly chemorefractory tumours. Cancer PDO was shown to recapitulate the 3D morphology, genomic landscape and transcriptomic profile of the source counterpart. They proved to be a valued model for drug discovery and sensitivity testing, and they showed to mimic the drug response observed in vivo in the patients. However, PDO lack representation of the intratumour heterogeneity and the tumour-stroma interaction. The efficiency rate of CCA PDO within the three different subtypes, intrahepatic, perihilar and distal, is still to be explored. In this manuscript we will review evidence for CCA PDO highlighting advantages and limitations of this novel disease model.
Collapse
|
29
|
Novel patient-derived preclinical models of liver cancer. J Hepatol 2020; 72:239-249. [PMID: 31954489 DOI: 10.1016/j.jhep.2019.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Preclinical models of cancer based on the use of human cancer cell lines and mouse models have enabled discoveries that have been successfully translated into patients. And yet the majority of clinical trials fail, emphasising the urgent need to improve preclinical research to better interrogate the potential efficacy of each therapy and the patient population most likely to benefit. This is particularly important for liver malignancies, which lack highly efficient treatments and account for hundreds of thousands of deaths around the globe. Given the intricate network of genetic and environmental factors that contribute to liver cancer development and progression, the identification of new druggable targets will mainly depend on establishing preclinical models that mirror the complexity of features observed in patients. The development of new 3D cell culture systems, originating from cells/tissues isolated from patients, might create new opportunities for the generation of more specific and personalised therapies. However, these systems are unable to recapitulate the tumour microenvironment and interactions with the immune system, both proven to be critical influences on therapeutic outcomes. Patient-derived xenografts, in particular with humanised mouse models, more faithfully mimic the physiology of human liver cancer but are costly and time-consuming, which can be prohibitive for personalising therapies in the setting of an aggressive malignancy. In this review, we discuss the latest advances in the development of more accurate preclinical models to better understand liver cancer biology and identify paradigm-changing therapies, stressing the importance of a bi-directional communicative flow between clinicians and researchers to establish reliable model systems and determine how best to apply them to expanding our current knowledge.
Collapse
|
30
|
Liu HD, Xia BR, Jin MZ, Lou G. Organoid of ovarian cancer: genomic analysis and drug screening. Clin Transl Oncol 2020; 22:1240-1251. [PMID: 31939100 PMCID: PMC7316695 DOI: 10.1007/s12094-019-02276-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the most common malignant tumors of the female reproductive system, and its standard treatments are cytoreductive surgery and platinum-based adjuvant chemotherapy. Great advances have been achieved in novel treatment strategies, including targeted therapy and immunotherapy. However, ovarian cancer has the highest mortality rate among gynecological tumors due to therapeutic resistance and the gap between preclinical data and actual clinical efficacy. Organoids are a 3D culture model that markedly affects gene analysis, drug screening, and drug sensitivity determination of tumors, especially when used in targeted therapy and immunotherapy. In addition, organoid can lead to advances in the preclinical research of ovarian cancer due to its convenient cultivation, good genetic stability, and high homology with primary tumors.
Collapse
Affiliation(s)
- H-D Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People's Republic of China
| | - B-R Xia
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People's Republic of China
| | - M-Z Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - G Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
31
|
Underhill GH, Khetani SR. Emerging trends in modeling human liver disease in vitro. APL Bioeng 2019; 3:040902. [PMID: 31893256 PMCID: PMC6930139 DOI: 10.1063/1.5119090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The liver executes 500+ functions, such as protein synthesis, xenobiotic metabolism, bile production, and metabolism of carbohydrates/fats/proteins. Such functions can be severely degraded by drug-induced liver injury, nonalcoholic fatty liver disease, hepatitis B and viral infections, and hepatocellular carcinoma. These liver diseases, which represent a significant global health burden, are the subject of novel drug discovery by the pharmaceutical industry via the use of in vitro models of the human liver, given significant species-specific differences in disease profiles and drug outcomes. Isolated primary human hepatocytes (PHHs) are a physiologically relevant cell source to construct such models; however, these cells display a rapid decline in the phenotypic function within conventional 2-dimensional monocultures. To address such a limitation, several engineered platforms have been developed such as high-throughput cellular microarrays, micropatterned cocultures, self-assembled spheroids, bioprinted tissues, and perfusion devices; many of these platforms are being used to coculture PHHs with liver nonparenchymal cells to model complex cell cross talk in liver pathophysiology. In this perspective, we focus on the utility of representative platforms for mimicking key features of liver dysfunction in the context of chronic liver diseases and liver cancer. We further discuss pending issues that will need to be addressed in this field moving forward. Collectively, these in vitro liver disease models are being increasingly applied toward the development of new therapeutics that display an optimal balance of safety and efficacy, with a focus on expediting development, reducing high costs, and preventing harm to patients.
Collapse
Affiliation(s)
- Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Salman R. Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
32
|
Erice O, Vallejo A, Ponz-Sarvise M, Saborowski M, Vogel A, Calvisi DF, Saborowski A, Vicent S. Genetic Mouse Models as In Vivo Tools for Cholangiocarcinoma Research. Cancers (Basel) 2019; 11:cancers11121868. [PMID: 31769429 PMCID: PMC6966555 DOI: 10.3390/cancers11121868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a genetically and histologically complex disease with a highly dismal prognosis. A deeper understanding of the underlying cellular and molecular mechanisms of human CCA will increase our current knowledge of the disease and expedite the eventual development of novel therapeutic strategies for this fatal cancer. This endeavor is effectively supported by genetic mouse models, which serve as sophisticated tools to systematically investigate CCA pathobiology and treatment response. These in vivo models feature many of the genetic alterations found in humans, recapitulate multiple hallmarks of cholangiocarcinogenesis (encompassing cell transformation, preneoplastic lesions, established tumors and metastatic disease) and provide an ideal experimental setting to study the interplay between tumor cells and the surrounding stroma. This review is intended to serve as a compendium of CCA mouse models, including traditional transgenic models but also genetically flexible approaches based on either the direct introduction of DNA into liver cells or transplantation of pre-malignant cells, and is meant as a resource for CCA researchers to aid in the selection of the most appropriate in vivo model system.
Collapse
Affiliation(s)
- Oihane Erice
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
| | - Adrian Vallejo
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
| | - Mariano Ponz-Sarvise
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.V.)
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.V.)
| | - Diego F. Calvisi
- Institute for Pathology, Regensburg University, 93053 Regensburg, Germany;
| | - Anna Saborowski
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
- Correspondence: (A.S.); (S.V.); Tel.: +49-511-532-9590 (A.S.); +34-948194700 (ext. 812029) (S.V.)
| | - Silvestre Vicent
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (A.S.); (S.V.); Tel.: +49-511-532-9590 (A.S.); +34-948194700 (ext. 812029) (S.V.)
| |
Collapse
|