1
|
Ren T, Chen Q, Zhu C. The extrahepatic markers in postmenopausal women with metabolic dysfunction-associated steatotic liver disease: A systematic review. Clin Nutr ESPEN 2025; 68:22-31. [PMID: 40315986 DOI: 10.1016/j.clnesp.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent, multifactorial systemic metabolic disorder, now recognized as the most common chronic liver disease globally. Female susceptibility to MASLD varies across menstrual states, influenced by genetic factors, age, menopausal status, and physical activity. Postmenopausal women, experiencing a significant reduction in estrogen, are particularly vulnerable to metabolic imbalances, increasing their risk of MASLD, disease progression, liver fibrosis, insulin resistance, and adverse cardiovascular events compared to premenopausal women and age-matched men. This review systematically synthesizes current research on extrahepatic abnormalities associated with MASLD in postmenopausal women. This review identifies key extrahepatic markers associated with MASLD in postmenopausal women, highlighting gaps in current research and proposing targeted screening and management strategies. (Graphical Abstract).
Collapse
Affiliation(s)
- Tingting Ren
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qingling Chen
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China; Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Bourganou MV, Chondrogianni ME, Kyrou I, Flessa CM, Chatzigeorgiou A, Oikonomou E, Lambadiari V, Randeva HS, Kassi E. Unraveling Metabolic Dysfunction-Associated Steatotic Liver Disease Through the Use of Omics Technologies. Int J Mol Sci 2025; 26:1589. [PMID: 40004054 PMCID: PMC11855544 DOI: 10.3390/ijms26041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), is the most prevalent liver disorder globally, linked to obesity, type 2 diabetes, and cardiovascular risk. Understanding its potential progression from simple steatosis to cirrhosis and hepatocellular carcinoma (HCC) is crucial for patient management and treatment strategies. The disease's complexity requires innovative approaches for early detection and personalized care. Omics technologies-such as genomics, transcriptomics, proteomics, metabolomics, and exposomics-are revolutionizing the study of MASLD. These high-throughput techniques allow for a deeper exploration of the molecular mechanisms driving disease progression. Genomics can identify genetic predispositions, whilst transcriptomics and proteomics reveal changes in gene expression and protein profiles during disease evolution. Metabolomics offers insights into the metabolic alterations associated with MASLD, while exposomics links environmental exposures to MASLD progression and pathology. By integrating data from various omics platforms, researchers can map out the intricate biochemical pathways involved in liver disease progression. This review discusses the roles of omics technologies in enhancing the understanding of disease progression and highlights potential diagnostic and therapeutic targets within the MASLD spectrum, emphasizing the need for non-invasive tools in disease staging and treatment development.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 IGB, UK
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- 2nd Department of Internal-Medicine, Diabetes Centre, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Antwi SO, Jnr. Siaw AD, Armasu SM, Frank JA, Yan IK, Ahmed FY, Izquierdo-Sanchez L, Boix L, Rojas A, Banales JM, Reig M, Stål P, Gómez MR, Wangensteen KJ, Singal AG, Roberts LR, Patel T. Genome-Wide DNA Methylation Markers Associated With Metabolic Liver Cancer. GASTRO HEP ADVANCES 2025; 4:100621. [PMID: 40275933 PMCID: PMC12019016 DOI: 10.1016/j.gastha.2025.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 04/26/2025]
Abstract
Background and Aims Metabolic liver disease is the fastest-rising cause of hepatocellular carcinoma (HCC), but the underlying molecular processes that drive HCC development in the setting of metabolic perturbations are unclear. We investigated the role of aberrant DNA methylation in metabolic HCC development in a multicenter international study. Methods We used a case-control design, frequency-matched on age, sex, and study site. Genome-wide profiling of peripheral blood leukocyte DNA was performed using the 850k EPIC array. The study sample was split 80% and 20% for training and validation. Cell type proportions were estimated from the methylation data. Differential methylation analysis was performed adjusting for cell type, generating area under the receiver-operating characteristic curves (AUC-ROC). Results We enrolled 272 metabolic HCC patients and 316 control patients with metabolic liver disease from 6 sites. Fifty-five differentially methylated CpGs were identified; 33 hypermethylated and 22 hypomethylated in cases vs controls. The panel of 55 CpGs discriminated between the cases and controls with AUC = 0.79 (95% confidence interval [CI] = 0.71-0.87), sensitivity = 0.77 (95% CI = 0.66-0.89), and specificity = 0.74 (95% CI = 0.64-0.85). The 55-CpG classifier panel performed better than a base model that comprised age, sex, race, and diabetes mellitus (AUC = 0.65, 95% CI = 0.55-0.75; sensitivity = 0.62, 95% CI = 0.49-0.75; and specificity = 0.64, 95% CI = 0.52-0.75). A multifactorial model that combined the 55 CpGs with age, sex, race, and diabetes yielded AUC = 0.78 (95% CI = 0.70-0.86), sensitivity = 0.81 (95% CI = 0.71-0.92), and specificity = 0.67 (95% CI = 0.55-0.78). Conclusion A panel of 55 blood leukocyte DNA methylation markers differentiates patients with metabolic HCC from control patients with benign metabolic liver disease, with a slightly higher sensitivity when combined with demographic and clinical information.
Collapse
Affiliation(s)
- Samuel O. Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida
| | - Ampem Darko Jnr. Siaw
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| | - Sebastian M. Armasu
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jacob A. Frank
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Irene K. Yan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Fowsiyo Y. Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Loreto Boix
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona. Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD); Barcelona University, Barcelona, Spain
| | - Angela Rojas
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Reig
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona. Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD); Barcelona University, Barcelona, Spain
| | - Per Stål
- Department of Upper GI Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Romero Gómez
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Kirk J. Wangensteen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amit G. Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tushar Patel
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
4
|
Sogabe M, Okahisa T, Kagawa M, Kashihara T, Shinomiya R, Miyake T, Kawaguchi T, Yokoyama R, Kagemoto K, Kida Y, Okada Y, Tomonari T, Kawano Y, Sato Y, Nakasono M, Takayama T. The association between alcohol consumption and cardiometabolic factors and liver fibrosis in metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction and alcohol-associated liver disease. Aliment Pharmacol Ther 2024; 60:1587-1598. [PMID: 39310953 DOI: 10.1111/apt.18280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND The relationships between alcohol consumption, cardiometabolic factors, and liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease and those with metabolic dysfunction and alcohol-associated liver disease remain unclear. AIMS To investigate the longitudinal associations among alcohol consumption, cardiometabolic factors, and liver fibrosis in patients with these two liver diseases. METHODS This observational cohort study included 1866 patients with metabolic dysfunction-associated steatotic liver disease and 521 patients with metabolic dysfunction and alcohol-associated liver disease who underwent > two health checkups over >2 years. The associations of both liver diseases with worsening non-invasive liver fibrosis scores were assessed using the Cox regression analysis. RESULTS Both liver diseases independently worsened liver fibrosis in both sexes. However, the hazard ratio for worsening liver fibrosis in females was significantly higher with metabolic dysfunction and alcohol-associated liver disease than with metabolic dysfunction-associated steatotic liver disease. Worsening liver fibrosis was not associated with alcohol consumption. Among males with metabolic dysfunction-associated steatotic liver disease, the hazard ratio for worsening liver fibrosis was significantly higher in those with multiple cardiometabolic factors compared to those with a single cardiometabolic factor. CONCLUSIONS Although both metabolic steatotic liver disease and metabolic alcohol-associated liver disease were correlated with liver fibrosis progression in both sexes, the impact of alcohol consumption and cardiometabolic factors on fibrosis progression differed by sex. Cardiometabolic factors may have a stronger impact on liver fibrosis than alcohol consumption in males with metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Masahiro Sogabe
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, Shikokuchuo City, Ehime, Japan
| | - Toshiya Okahisa
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, Shikokuchuo City, Ehime, Japan
| | - Miwako Kagawa
- Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, Shikokuchuo City, Ehime, Japan
| | - Takanori Kashihara
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, Shikokuchuo City, Ehime, Japan
| | - Ryo Shinomiya
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takanori Miyake
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Reiko Yokoyama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kaizo Kagemoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshifumi Kida
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasuyuki Okada
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsu Tomonari
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yutaka Kawano
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiko Nakasono
- Department of Internal Medicine, Tsurugi Municipal Handa Hospital, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
5
|
Antwi SO, Siaw ADJ, Armasu SM, Frank JA, Yan IK, Ahmed FY, Izquierdo-Sanchez L, Boix L, Rojasti A, Banales JM, Reig M, Stål P, Romero Gómez M, Wangensteen KJ, Singal AG, Roberts LR, Patel T. Genome-wide DNA methylation markers associated with metabolic liver cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.15.24317378. [PMID: 39606355 PMCID: PMC11601684 DOI: 10.1101/2024.11.15.24317378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background and Aims Metabolic liver disease is the fastest rising cause of hepatocellular carcinoma (HCC) worldwide, but the underlying molecular processes that drive HCC development in the setting of metabolic perturbations are unclear. We investigated the role of aberrant DNA methylation in metabolic HCC development in a multicenter international study. Methods We used a case-control design, frequency-matched on age, sex, and study site. Genome-wide profiling of peripheral blood leukocyte DNA was performed using the 850k EPIC array. Cell type proportions were estimated from the methylation data. The study samples were split 80% and 20% for training and validation. Differential methylation analysis was performed with adjustment for cell type, and we generated area under the receiver-operating curves (ROC-AUC). Results We enrolled 272 metabolic HCC patients and 316 control patients with metabolic liver disease from six sites. Fifty-five differentially methylated CpGs were identified; 33 hypermethylated and 22 hypomethylated in cases versus controls. The panel of 55 CpGs discriminated between cases and controls with AUC=0.79 (95%CI=0.71-0.87), sensitivity=0.77 (95%CI=0.66-0.89), and specificity=0.74 (95%CI=0.64-0.85). The 55-CpG classifier panel performed better than a base model that comprised age, sex, race, and diabetes mellitus (AUC=0.65, 95%CI=0.55-0.75, sensitivity=0.62 (95%CI=0.49-0.75) and specificity=0.64 (95%CI=0.52-0.75). A multifactorial model that combined the 55 CpGs with age, sex, race, and diabetes, yielded AUC=0.78 (95%CI=0.70-0.86), sensitivity=0.81 (95%CI=0.71-0.92), and specificity=0.67 (95%CI=0.55-0.78). Conclusions A panel of 55 blood leukocyte DNA methylation markers differentiates patients with metabolic HCC from control patients with benign metabolic liver disease, with a slightly higher sensitivity when combined with demographic and clinical information.
Collapse
Affiliation(s)
- Samuel O. Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Ampem Darko Jnr. Siaw
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Sebastian M. Armasu
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jacob A. Frank
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Irene K. Yan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Fowsiyo Y. Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, San Sebastian, Spain
| | - Loreto Boix
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain. Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Barcelona University, Barcelona, Spain
| | - Angela Rojasti
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Reig
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain. Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Barcelona University, Barcelona, Spain
| | - Per Stål
- Department of Upper GI Diseases, Karolinska University Hospital, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Romero Gómez
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Kirk J. Wangensteen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amit G. Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
6
|
Elguezabal Rodelo RG, Porchia LM, Torres‐Rasgado E, López-Bayghen E, Gonzalez-Mejia ME. Visceral and subcutaneous abdominal fat is associated with non-alcoholic fatty liver disease while augmenting Metabolic Syndrome's effect on non-alcoholic fatty liver disease: A cross-sectional study of NHANES 2017-2018. PLoS One 2024; 19:e0298662. [PMID: 38394065 PMCID: PMC10889905 DOI: 10.1371/journal.pone.0298662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The aim was to evaluate the effect different types of abdominal fat have on NAFLD development and the effects of abdominal fat has on the association between Metabolic Syndrome (MetS) and NALFD. METHODS Data was collected from the cross-sectional NHANES dataset (2017-2018 cycle). Using the controlled attenuation parameter (USG CAP, dB/m), which measures the level of steatosis, the cohort was stratified into two groups: NAFLD(+) (≥274 dB/m) and NAFLD(-). Using complex samples analyses, associations between liver steatosis or NAFLD and types of abdominal fat area [Total abdominal (TAFA), subcutaneous (SAT), and visceral (VAT)] were determined. Pearson's correlation coefficient (r) was calculated to evaluate the associations between adipose tissues and NAFLD. Logistic regression was used to determine the risk [odds ratio (OR) and 95% confidence interval (95%CI)]. Participants were also classified by MetS, using the Harmonizing Definition criteria. RESULTS Using 1,980 participants (96,282,896 weighted), there was a significant (p<0.001) correlation between USG CAP and TAFA (r = 0.569), VAT (r = 0.645), and SAT (r = 0.479). Additionally, the risk of developing NAFLD was observed for total abdominal obesity (OR = 19.9, 95%CI: 5.1-77.8, p<0.001), visceral obesity (OR = 9.1, 95%CI: 6.2-13.5, p<0.001) and subcutaneous obesity (OR = 4.8, 95%CI: 3.2-6.9, p<0.001). Using 866 participants (44,399,696 weighted), for visceral obesity, participants with MetS and visceral obesity (OR = 18.1, 95%CI: 8.0-41.3, p<0.001) were shown to have a greater risk than participants with MetS only (OR = 6.3, 95%CI: 2.6-15.2, p<0.001). For subcutaneous obesity, again, participants with MetS and subcutaneous obesity (OR = 18.3, 95%CI: 8.0-41.9, p<0.001) were shown to have a greater risk than the MetS-only group (OR = 10.3, 95%CI: 4.8-22.4, p<0.001). CONCLUSION TAFA, VAT, and SAT were positively associated with USG CAP values and increased the risk of developing NAFLD. Also, the type of abdominal fat depots did affect the association between MetS and NAFLD.
Collapse
Affiliation(s)
| | - Leonardo M. Porchia
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | | | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
7
|
Zhang J, Huang X, Dong L, Yang Y, Kong D. Epidemiology of lean/non-obese nonalcoholic fatty liver disease in China: A systematic review and meta-analysis. Saudi Med J 2023; 44:848-863. [PMID: 37717964 PMCID: PMC10505295 DOI: 10.15537/smj.2023.44.9.20230021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVES To assess the prevalence and metabolic characteristics of lean/non-obese (L/NO) nonalcoholic fatty liver disease (NAFLD) in China. METHODS The databses, inlcuding PubMed, Web of Science, EMBASE, as well as Cochrane databases, were retrieved for eligible studies. The prevalence together with clinical features of L/NO-NAFLD in China were analyzed using a random/fixed effects model. Lean or nonobese participants were characterized by the cut-offs of body mass index used in original studies. Heterogeneity was identified using meta-regression and subgroup analyses. RESULTS We included 25 studies for the final analysis comprising 229091 L/NO Chinese adults and 22641 diagnosed with NAFLD, with the NAFLD prevalence of 8.98% (95% confidence interval [CI]: [5.55-13.13] for L-NAFLD Chinese participants and 13.77% (95% CI: [11.13-16.63]) for NO-NAFLD Chinese participants. This prevalence gradually increased during the past few years. The community and health checkup populations presented similar prevalence (14.19% vs. 13.55%). Meanwhile, L/NO patients with NAFLD showed lower blood pressure (128.86/80.48 vs. 136.09/84.98 mmHg), waist circumference (80.63 vs. 92.73 cm), fasting blood glucose (5.53 vs. 5.69 mmol/L), uric acid (339.14 vs. 365.46 μmol/L), triglyceride levels (1.63 vs. 1.94 mmol/L), alanine transaminase (30.28 vs. 33.12 IU/L), and γ-glutamyl transferase (29.9 vs. 43.68 IU/L), but higher levels of high-density lipoprotein cholesterol (1.33 vs. 1.26 mmol/L) compared to overweight/obese (OW/O) patients with NAFLD. CONCLUSION Prevalence of NAFLD was slightly lower among the L/NO-NAFLD Chinese population than the global level but has obviously increased recently. In addition, the metabolic profile of L/NO-NAFLD patients was generally better compared to OW/O-NAFLD patients.PROSPERO Reg. No.: CRD42022327240.
Collapse
Affiliation(s)
- Jianmei Zhang
- From the Department of Endocrinology and Metabolism (Zhang, Yang); from the Department of Geriatrics (Zhang); from the Department of Health Examination (Huang, Dong), Weihai Municipal Hospital, Shandong University, and from the Department of Endocrinology and Metabolism (Kong), Taian City Central Hospital, Shandong, China.
| | - Xiaocheng Huang
- From the Department of Endocrinology and Metabolism (Zhang, Yang); from the Department of Geriatrics (Zhang); from the Department of Health Examination (Huang, Dong), Weihai Municipal Hospital, Shandong University, and from the Department of Endocrinology and Metabolism (Kong), Taian City Central Hospital, Shandong, China.
| | - Luying Dong
- From the Department of Endocrinology and Metabolism (Zhang, Yang); from the Department of Geriatrics (Zhang); from the Department of Health Examination (Huang, Dong), Weihai Municipal Hospital, Shandong University, and from the Department of Endocrinology and Metabolism (Kong), Taian City Central Hospital, Shandong, China.
| | - Yachao Yang
- From the Department of Endocrinology and Metabolism (Zhang, Yang); from the Department of Geriatrics (Zhang); from the Department of Health Examination (Huang, Dong), Weihai Municipal Hospital, Shandong University, and from the Department of Endocrinology and Metabolism (Kong), Taian City Central Hospital, Shandong, China.
| | - Dehuan Kong
- From the Department of Endocrinology and Metabolism (Zhang, Yang); from the Department of Geriatrics (Zhang); from the Department of Health Examination (Huang, Dong), Weihai Municipal Hospital, Shandong University, and from the Department of Endocrinology and Metabolism (Kong), Taian City Central Hospital, Shandong, China.
| |
Collapse
|
8
|
Kim Y, Chang Y, Ryu S, Park S, Cho Y, Sohn W, Kang J, Wild SH, Byrne CD. Nonalcoholic fatty liver disease and risk of incident young-onset hypertension: Effect modification by sex. Nutr Metab Cardiovasc Dis 2023; 33:1608-1616. [PMID: 37357078 DOI: 10.1016/j.numecd.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND AIMS Although nonalcoholic fatty liver disease (NAFLD) and hypertension are increasingly common among young adults, it is uncertain if NAFLD affects incidence of young-onset hypertension, and if the association is modified by sex. We investigated potential effect modification by sex on the association between NAFLD and incident hypertension in young adults (<40 years). METHOD AND RESULTS This cohort study comprised 85,789 women and 67,553 men aged <40 years without hypertension at baseline. Hepatic steatosis was assessed by liver ultrasound and classified as mild or moderate/severe. Hypertension was defined as blood pressure (BP) ≥130/80 mmHg; self-reported history of physician-diagnosed hypertension; or current use of BP-lowering medications. Cox proportional hazard models were used to estimate hazard ratios (HRs; 95% confidence intervals [CIs]) for incident hypertension by NAFLD status (median follow-up 4.5 years). A total of 25,891 participants developed incident hypertension (incidence rates per 103 person-years: 15.6 for women and 63.5 for men). Multivariable-adjusted HRs (95% CIs) for incident hypertension comparing no NAFLD (reference) with mild or moderate/severe NAFLD were 1.68 (1.56-1.80) and 1.83 (1.60-2.09) for women and 1.21 (1.17-1.25) and 1.23 (1.17-1.30) for men, respectively. Stronger associations were consistently observed between NAFLD and incident hypertension in women, regardless of obesity/central obesity (all p-values for interaction by sex <0.001). CONCLUSIONS NAFLD is a potential risk factor for young-onset hypertension with a relatively greater impact in women and in those with more severe hepatic steatosis.
Collapse
Affiliation(s)
- Yejin Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Soyoung Park
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Yoosun Cho
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Won Sohn
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jeonggyu Kang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Sarah H Wild
- Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
| |
Collapse
|
9
|
Lim GY, Chang Y, Kim I, Ryu S, Kwon R, Song J. Long working hours and increased risks of lean non-alcoholic fatty liver disease among Korean men and women. Sci Rep 2023; 13:12230. [PMID: 37507409 PMCID: PMC10382542 DOI: 10.1038/s41598-023-39154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the increasing prevalence of lean nonalcoholic fatty liver disease (NAFLD), its risk factors are not well established. We examined the association between long working hours and incident NAFLD in lean Korean workers with emphasis on sex-based effect modification. This cohort study involved 46,113 non-overweight (BMI < 23 kg/m2) and NAFLD-free Korean workers (mean age, 35.5 years). Working hours were categorized into 35-40 (reference), 41-52, and ≥ 53 h. The presence of fatty liver and its severity were determined using ultrasonography and NAFLD fibrosis score (NFS), respectively. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using parametric proportional hazards models. Incident cases of 5901 lean NAFLD developed over a median follow-up of 3.8 years. The incidence of lean NAFLD increased with increasing working hours with a stronger association in men than in women (P for interaction < 0.001). For men, multivariable-adjusted HRs (95% CIs) for lean NAFLD in time-dependent models comparing working hours of 41-52 and ≥ 53 h compared to the reference category were 1.17 (1.07-1.28) and 1.25 (1.12-1.39), respectively. The excess relative risk of developing lean NAFLD with intermediate/high NFS was observed in working hours of 41-52 and ≥ 53 h with a corresponding HR of 1.66 (1.13-2.43) and 1.54 (0.94-2.51), respectively. Conversely, no significant associations were found between working hours and incidence of lean NAFLD in women. In conclusion, long working hours were significantly associated with an increased incidence of lean NAFLD and its severe form in men but not in women.
Collapse
Affiliation(s)
- Ga-Young Lim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Korea
- Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Korea.
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Samsung Main Building B2, 250, Taepyung-Ro 2Ga, Jung-Gu, Seoul, 04514, Korea.
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06355, Korea.
| | - Inah Kim
- Hanyang University Graduate School of Public Health, Seoul, 04763, Korea
- Department of Occupational and Environmental Medicine, Hanyang University College of Medicine, Seoul, 04763, Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Samsung Main Building B2, 250, Taepyung-Ro 2Ga, Jung-Gu, Seoul, 04514, Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06355, Korea
| | - Ria Kwon
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Korea
- Institute of Medical Research, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Jaechul Song
- Department of Occupational and Environmental Medicine, College of Medicine and Graduate School of Public Health, Hanyang University, 222 Wangshimni-Ro, Seoul, 04763, Korea.
| |
Collapse
|
10
|
Vasconcellos C, Ferreira O, Lopes MF, Ribeiro AF, Vasques J, Guerreiro CS. Nutritional Genomics in Nonalcoholic Fatty Liver Disease. Biomedicines 2023; 11:biomedicines11020319. [PMID: 36830856 PMCID: PMC9953045 DOI: 10.3390/biomedicines11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic condition associated with genetic and environmental factors in which fat abnormally accumulates in the liver. NAFLD is epidemiologically associated with obesity, type 2 diabetes, and dyslipidemia. Environmental factors, such as physical inactivity and an unbalanced diet, interact with genetic factors, such as epigenetic mechanisms and polymorphisms for the genesis and development of the condition. Different genetic polymorphisms seem to be involved in this context, including variants in PNPLA3, TM6SF2, PEMT, and CHDH genes, playing a role in the disease's susceptibility, development, and severity. From carbohydrate intake and weight loss to omega-3 supplementation and caloric restriction, different dietary and nutritional factors appear to be involved in controlling the onset and progression of NAFLD conditions influencing metabolism, gene, and protein expression. The polygenic risk score represents a sum of trait-associated alleles carried by an individual and seems to be associated with NAFLD outcomes depending on the dietary context. Understanding the exact extent to which lifestyle interventions and genetic predispositions can play a role in the prevention and management of NAFLD can be crucial for the establishment of a personalized and integrative approach to patients.
Collapse
Affiliation(s)
- Carolina Vasconcellos
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Oureana Ferreira
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Marta Filipa Lopes
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - André Filipe Ribeiro
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Vasques
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
11
|
He L, Wang X, Ding Z, Liu L, Cheng H, Bily D, Wu C, Zhang K, Xie L. Deleting Gata4 in hepatocytes promoted the progression of NAFLD via increasing steatosis and apoptosis, and desensitizing insulin signaling. J Nutr Biochem 2023; 111:109157. [PMID: 36150682 DOI: 10.1016/j.jnutbio.2022.109157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022]
Abstract
Gata4 is a member of the zinc finger GATA transcription factor family and is required for liver development during the embryonic stage. Gata4 expression is repressed during NAFLD progression, however how it functions in this situation remains unclear. Here, Gata4 was deleted specifically in hepatocytes via Cre recombinase driven by the Alb promoter region. Under a high-fat diet (HFD) or methionine and choline deficient diet (MCD), Gata4 knockout (KO) male, but not female, mice displayed more severe NAFLD or NASH, evidenced by increased steatosis, fibrosis, as well as a higher NAS score and serum ALT level. The Gata4KO male liver exposed to a HFD or MCD had a reduced ratio of pACC/ACC, similar to the Gata4KO hepatocytes treated with palmitic acid. More cell apoptosis, which is associated with activated JNK signaling and inhibited NFκB signaling, was observed in the Gata4KO male liver and isolated hepatocytes. However, the inflammatory status in the Gata4KO male liver was similar to the control liver. Importantly, lower activation of AKT signaling in the liver, which is consistent with de-sensitized insulin signaling in isolated hepatocytes, was found in the Gata4KO male. In summary, our data demonstrated that loss of Gata4 in hepatocytes promoted NAFLD progression in male mice.
Collapse
Affiliation(s)
- Leya He
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xian Wang
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Zehuan Ding
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Lin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Henghui Cheng
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Donalyn Bily
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA; Institute of Biosciences & Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
Kim Y, Chang Y, Ryu S, Wild SH, Byrne CD. NAFLD improves risk prediction of type 2 diabetes: with effect modification by sex and menopausal status. Hepatology 2022; 76:1755-1765. [PMID: 35514152 DOI: 10.1002/hep.32560] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/19/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS The effects of sex and menopausal status on the association between NAFLD and incident type 2 diabetes (T2D) remain unclear. We investigated the effect modification by sex and menopause in the association between NAFLD and T2D; also, the added predictive ability of NAFLD for the risk of T2D was assessed. APPROACH AND RESULTS This cohort study comprised 245,054 adults without diabetes (109,810 premenopausal women; 4958 postmenopausal women; 130,286 men). Cox proportional hazard models were used to estimate hazard ratios (HRs; 95% confidence intervals [CIs]) for incident T2D according to NAFLD status. The incremental predictive role of NAFLD for incident T2D was assessed using the area under the receiver operating characteristic curve, net reclassification improvement, and integrated discrimination improvement. A total of 8381 participants developed T2D (crude incidence rate/103 person-years: 2.9 premenopausal women; 12.2 postmenopausal women; 9.3 men) during median follow-up of 5.3 years. NAFLD was positively associated with incident T2D in all groups. After adjustment for potential confounders, the multivariable-adjusted HRs (95% CIs) for incident T2D comparing NAFLD to no NAFLD were 4.63 (4.17-5.14), 2.65 (2.02-3.48), and 2.16 (2.04-2.29) in premenopausal women, postmenopausal women, and men, respectively. The risks of T2D increased with NAFLD severity as assessed by serum fibrosis markers, and the highest relative excess risks were observed in premenopausal women. The addition of NAFLD to conventional risk factors improved risk prediction for incident T2D in both sexes, with a greater improvement in women than men. CONCLUSIONS NAFLD, including more severe NAFLD, is a stronger risk factor for incident T2D in premenopausal women than in postmenopausal women or men; protection against T2D is lost in premenopausal women with NAFLD.
Collapse
Affiliation(s)
- Yejin Kim
- Center for Cohort StudiesTotal Healthcare CenterKangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Yoosoo Chang
- Center for Cohort StudiesTotal Healthcare CenterKangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea.,Department of Occupational and Environmental MedicineKangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea.,Department of Clinical Research Design & EvaluationSAIHSTSungkyunkwan UniversitySeoulRepublic of Korea
| | - Seungho Ryu
- Center for Cohort StudiesTotal Healthcare CenterKangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea.,Department of Occupational and Environmental MedicineKangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea.,Department of Clinical Research Design & EvaluationSAIHSTSungkyunkwan UniversitySeoulRepublic of Korea
| | - Sarah H Wild
- Usher InstituteUniversity of EdinburghEdinburghUK
| | - Christopher D Byrne
- Nutrition and MetabolismFaculty of MedicineUniversity of SouthamptonSouthamptonUK.,National Institute for Health and Care Research Southampton Biomedical Research CentreUniversity Hospital SouthamptonSouthamptonUK
| |
Collapse
|
13
|
Arai T, Atsukawa M, Tsubota A, Mikami S, Haruki U, Yoshikata K, Ono H, Kawano T, Yoshida Y, Tanabe T, Okubo T, Hayama K, Nakagawa‐Iwashita A, Itokawa N, Kondo C, Kaneko K, Nagao M, Inagaki K, Fukuda I, Sugihara H, Iwakiri K. Antifibrotic effect and long-term outcome of SGLT2 inhibitors in patients with NAFLD complicated by diabetes mellitus. Hepatol Commun 2022; 6:3073-3082. [PMID: 36039537 PMCID: PMC9592771 DOI: 10.1002/hep4.2069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this retrospective multicenter study was to clarify the antifibrotic effect and long-term outcome of sodium glucose cotransporter 2 inhibitors (SGLT2-Is) in patients with nonalcoholic fatty liver disease (NAFLD) complicated by type 2 diabetes mellitus (T2DM). Of the 1262 consecutive patients with T2DM who recently received SGLT2-Is, 202 patients with NAFLD had been receiving SGLT2-Is for more than 48 weeks and were subjected to this analysis. Furthermore, 109 patients who had been on SGLT2-I therapy for more than 3 years at the time of analysis were assessed for the long-term effects of SGLT2-Is. Significant decreases in body weight, liver transaminases, plasma glucose, hemoglobin A1c, and Fibrosis-4 (FIB-4) index were found at week 48. Overall, the median value of FIB-4 index decreased from 1.42 at baseline to 1.25 at week 48 (p < 0.001). In the low-risk group (FIB-4 index < 1.3), there was no significant change in the FIB-4 index. In the intermediate-risk (≥1.3 and <2.67) and high-risk (≥2.67) groups, the median levels significantly decreased from 1.77 and 3.33 at baseline to 1.58 and 2.75 at week 48, respectively (p < 0.001 for both). Improvements in body weight, glucose control, liver transaminases, and FIB-4 index were found at 3 years of SGLT2-I treatment. In the intermediate-risk and high-risk groups (≥1.3 FIB-4 index), the FIB-4 index maintained a significant reduction from baseline throughout the 3 years of treatment. Conclusion: This study showed that SGLT2-Is offered a favorable effect on improvement in FIB-4 index as a surrogate marker of liver fibrosis in patient with NAFLD complicated by T2DM, especially those with intermediate and high risks of advanced fibrosis, and this antifibrotic effect is sustained for the long term.
Collapse
Affiliation(s)
- Taeang Arai
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Masanori Atsukawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Akihito Tsubota
- Core Research Facilities for Basic Science, Research Center for Medical SciencesThe Jikei University School of MedicineTokyoJapan
| | - Shigeru Mikami
- Division of Gastroenterology, Department of Internal MedicineKikkoman General HospitalMiyazaki NodaJapan
| | - Uojima Haruki
- Department of Gastroenterology, Internal MedicineKitasato University School of MedicineSagamiharaJapan
| | | | - Hiroki Ono
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tadamichi Kawano
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Yuji Yoshida
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Tomohide Tanabe
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tomomi Okubo
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Korenobu Hayama
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | | | - Norio Itokawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Chisa Kondo
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Keiko Kaneko
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Mototsugu Nagao
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Kyoko Inagaki
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Izumi Fukuda
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Hitoshi Sugihara
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| |
Collapse
|
14
|
Chai H, Hu W, Dai Y, Zhu X, Qian P, Zhu J. Environmental exposure to organophosphate esters and suspected non-alcoholic fatty liver disease among US adults: A mixture analysis. Front Public Health 2022; 10:995649. [PMID: 36339157 PMCID: PMC9631026 DOI: 10.3389/fpubh.2022.995649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 01/26/2023] Open
Abstract
Objectives Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. We evaluated NAFLD using the US FLI to determine whether there is an association between urinary organophosphorus (OPE) levels and the "prevalence" of NAFLD in US individuals. Methods The current study included 1,102 people aged 20 years and older with information from the 2011-2014 U.S. National Health and Nutrition Examination Survey. NAFLD was assessed using the U.S. FLI. Individual OPE metabolites and OPE combinations were linked to NAFLD using logistic regression and weighted quantile sum (WQS) regression. All analyzes were carried out separately on males and females. The possible impacts of age, serum total testosterone (TT), and menopausal state, as well as the importance of the interaction term with exposure, were investigated using stratified analysis. Results Bis (2-chloroethyl) phosphate and bis (1,3-dichloro-2-propyl) phosphate were associated with NAFLD in all males after adjusting for covariates (P < 0.05). A combination of OPEs (OPE index) was positively linked with NAFLD in the WQS analysis of all males (odds ratio for OPE index: 1.52; 95% CI: 1.06, 2.19). Stratified analyzes for males revealed that considerable connections were largely confined to individuals over 60 years old or with low total testosterone. In women, the connection was limited and inconsistent, except for the OPE index, which was positively linked with NAFLD in post-menopausal women. Conclusions In this study, environmental exposure to OPE was linked to an elevated risk of NAFLD in males, particularly those over 60 years old or with low TT levels. Aside from the continuous positive connection of a combination of OPEs with NAFLD risk in post-menopausal women, these correlations were weaker in women. However, these findings should be taken with caution and verified in future investigations by collecting numerous urine samples in advance to strengthen OPE exposure estimates.
Collapse
Affiliation(s)
- Haisheng Chai
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaoyao Dai
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohan Zhu
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping'an Qian
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Junfeng Zhu
| | - Junfeng Zhu
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Hepatology, Yueyang Integrated Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Ping'an Qian
| |
Collapse
|
15
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
16
|
Wu H, He X, Li Q, Zheng Y, Rayamajhi S, Thapa A, Meng G, Zhang Q, Liu L, Wu H, Gu Y, Zhang S, Zhang T, Wang X, Zhang J, Cao Z, Dong J, Zheng X, Zhang X, Dong X, Sun S, Wang X, Zhou M, Jia Q, Song K, Chang H, Niu K. Relationship between the consumption of wholegrain and nonalcoholic fatty liver disease: The TCLSIH cohort study. Clin Nutr 2022; 41:1483-1490. [PMID: 35667264 DOI: 10.1016/j.clnu.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 11/03/2022]
|
17
|
Li K, Li J, Cheng X, Wang J, Li J. Association between the atherogenic index of plasma and new-onset non-alcoholic fatty liver disease in non-obese participants. Front Endocrinol (Lausanne) 2022; 13:969783. [PMID: 36060971 PMCID: PMC9433643 DOI: 10.3389/fendo.2022.969783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) in the non-obese population accounts for a large proportion of NAFLD. Atherogenic index of plasma (AIP, defined as the logarithm of the triglyceride/high-density lipoprotein cholesterol ratio.) can provide a stronger reflection of dyslipidemia and studies on the longitudinal association between AIP and NAFLD were limited in non-obese participants, especially in different BMI groups. METHODS We performed a post-hoc analysis of data obtained from the Dryad data repository (Dryad is a nonprofit open database of medicine.) and explored the predictive value of AIP on the risk of NAFLD among non-obese participants. RESULTS This study included 16173 participants with AIP, of which 2322(14.4%) non-obese participants developed into individuals with NAFLD with the 5-year follow-up examination. The difference between AIP quartiles in the cumulative estimation of new-onset NAFLD was significant, and with increased AIP, the cumulative new-onset NAFLD gradually increased. Participants in higher AIP quartiles had a significantly increased risk of NAFLD. In the fully adjusted model 3, hazard ratios of the new-onset NAFLD for subjects in Q2, Q3, and Q4 of AIP were 2.00 (1.59, 2.53), 2.61 (2.09, 3.72), and 4.49 (3.62, 5.57) respectively. Meanwhile, the trend test for the association between AIP quartiles and the new-onset NAFLD presented that AIP quartile was positively and strongly associated with the new-onset NAFLD (adjusted hazard ratio (95%CI) in Model 3: 1.59 (1.51, 1.67), P<0.001). We found that AIP was also positively and strongly associated with new-onset NAFLD in different sex groups and different age groups in female patients. Moreover, the predictive ability of AIP was no significant difference in different sex groups and different age groups in female patients. In the subgroup analysis, we found that in the low BMI population, the predictive effect of AIP for new-onset NAFLD was expanded by 2-3 times for each quality increase of AIP. CONCLUSION This study found that AIP was a strong independent risk factor for new-onset NAFLD among non-obese individuals especially in the low BMI participants, and screening for AIP in this population can be used to prevent future NAFLD.
Collapse
Affiliation(s)
- Kemin Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyun Cheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jingnan Li,
| |
Collapse
|