1
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
2
|
Goyal NP, Xanthakos S, Schwimmer JB. Metabolic dysfunction-associated steatotic liver disease in children. Gut 2025; 74:669-677. [PMID: 39848671 DOI: 10.1136/gutjnl-2023-331090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/06/2024] [Indexed: 01/25/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, is the most common cause of chronic liver disease in children. MASLD encompasses a spectrum of liver disease and can be severe, with 10% of affected children presenting with advanced fibrosis. While biopsy remains the most accurate method for diagnosing and staging the disease, MRI proton density fat fraction and magnetic resonance elastography are the most reliable non-invasive measures for assessing steatosis and fibrosis, respectively. MASLD is associated with multiple comorbidities including type 2 diabetes, hypertension, dyslipidaemia, decreased bone mineral density, obstructive sleep apnoea, anxiety and depression. Currently, there are no pharmacological treatments available for children, highlighting the urgent need for paediatric clinical trials. A diet low in free sugars is promising for reducing steatosis and decreasing alanine aminotransferase, a surrogate marker for hepatic inflammation. Emerging data indicate that steatosis can be present in children under 6 years of age, which was previously considered rare. The intricate interplay of genetics may inform future therapeutics and prognostication, with the PNPLA3 gene showing the most evidence for association with the risk and severity of steatotic liver disease and steatohepatitis. MASLD is a complex disease affecting one in ten children and is associated with increased early mortality risk. More dedicated studies are needed in children to advance our understanding of this disease and find effective treatments.
Collapse
Affiliation(s)
- Nidhi P Goyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Stavra Xanthakos
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's, Cincinnati, Ohio, USA
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
3
|
Coyne ES, Nie Y, Lee D, Pandovski S, Yang T, Zhou H, Rosahl TW, Carballo-Jane E, Abdurrachim D, Zhou Y, Hendra C, Ali AAB, Meyers S, Blumenschein W, Gongol B, Liu Y, Zhou Y, Talukdar S. Loss of mitochondrial amidoxime-reducing component 1 (mARC1) prevents disease progression by reducing fibrosis in multiple mouse models of chronic liver disease. Hepatol Commun 2025; 9:e0637. [PMID: 39927988 PMCID: PMC11809980 DOI: 10.1097/hc9.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/02/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease is a prevalent disease that affects nearly one-third of the global population. Recent genome-wide association studies revealed that a common missense variant in the gene encoding mitochondrial amidoxime reducing component 1 (mARC1) is associated with protection from metabolic dysfunction-associated steatotic liver disease, all-cause cirrhosis, and liver-related mortality suggesting a role for mARC1 in liver pathophysiology; however, little is known about its function in the liver. In this study, we aimed to evaluate the impact of mARC1 hepatoprotective variants on protein function, the effect of loss of mARC1 on cellular lipotoxic stress response, and the effect of global or hepatocyte-specific loss of mARC1 in various mouse models of metabolic dysfunction-associated steatohepatitis and liver fibrosis. METHODS AND RESULTS Expression and characterization of mARC1 hepatoprotective variants in cells and mouse liver revealed that the mARC1 p.A165T exhibited lower protein levels but maintained its mitochondrial localization. In cells, the knockdown of mARC1 improved cellular bioenergetics and decreased mitochondrial superoxide production in response to lipotoxic stress. Global genetic deletion and hepatocyte-specific knockdown of mARC1 in mice significantly reduced liver steatosis and fibrosis in multiple mouse models of metabolic dysfunction-associated steatohepatitis and liver fibrosis. Furthermore, RNA-seq analysis revealed that the pathways involved in extracellular matrix remodeling and collagen formation were downregulated in the liver, and the plasma lipidome was significantly altered in response to the loss of mARC1 in mice. CONCLUSIONS Overall, we have demonstrated that loss of mARC1 alters hepatocyte response to lipotoxic stress and protects mice from diet-induced MASH and liver fibrosis consistent with findings from human genetics.
Collapse
Affiliation(s)
- Erin S. Coyne
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Yilin Nie
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Darwin Lee
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Sentibel Pandovski
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Tiffany Yang
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Heather Zhou
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Thomas W. Rosahl
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Ester Carballo-Jane
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Desiree Abdurrachim
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Yongqi Zhou
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Christopher Hendra
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Asad Abu Bakar Ali
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Stacey Meyers
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Wendy Blumenschein
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Brendan Gongol
- Department of Data, AI & Genome Sciences, MSD, Singapore
| | - Yang Liu
- Department of Data, AI & Genome Sciences, MSD, Singapore
| | - Yingjiang Zhou
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Saswata Talukdar
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| |
Collapse
|
4
|
Tie M, Ferguson D, Chen Y, He A. Letter regarding 'mitochondrial amidoxime-reducing component 1 p.Ala165Thr increases protein degradation mediated by the proteasome'. Liver Int 2024; 44:2091-2092. [PMID: 38888257 PMCID: PMC11709118 DOI: 10.1111/liv.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Meng Tie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Daniel Ferguson
- Division of Nutritional Science and Obesity Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yali Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Anyuan He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Hou W, Watson C, Cecconie T, Bolaki MN, Brady JJ, Lu Q, Gatto GJ, Day TA. Biochemical and functional characterization of the p.A165T missense variant of mitochondrial amidoxime-reducing component 1. J Biol Chem 2024; 300:107353. [PMID: 38723751 PMCID: PMC11190489 DOI: 10.1016/j.jbc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Recent genome-wide association studies have identified a missense variant p.A165T in mitochondrial amidoxime-reducing component 1 (mARC1) that is strongly associated with protection from all-cause cirrhosis and improved prognosis in nonalcoholic steatohepatitis. The precise mechanism of this protective effect is unknown. Substitution of alanine 165 with threonine is predicted to affect mARC1 protein stability and to have deleterious effects on its function. To investigate the mechanism, we have generated a knock-in mutant mARC1 A165T and a catalytically dead mutant C273A (as a control) in human hepatoma HepG2 cells, enabling characterization of protein subcellular distribution, stability, and biochemical functions of the mARC1 mutant protein expressed from its endogenous locus. Compared to WT mARC1, we found that the A165T mutant exhibits significant mislocalization outside of its traditional location anchored in the mitochondrial outer membrane and reduces protein stability, resulting in lower basal levels. We evaluated the involvement of the ubiquitin proteasome system in mARC1 A165T degradation and observed increased ubiquitination and faster degradation of the A165T variant. In addition, we have shown that HepG2 cells carrying the MTARC1 p.A165T variant exhibit lower N-reductive activity on exogenously added amidoxime substrates in vitro. The data from these biochemical and functional assays suggest a mechanism by which the MTARC1 p.A165T variant abrogates enzyme function which may contribute to its protective effect in liver disease.
Collapse
Affiliation(s)
- Wangfang Hou
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christian Watson
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Ted Cecconie
- MEDDesign-NCE-MD SPMB US, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | - Quinn Lu
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Gregory J Gatto
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Guo Y, Gao Z, LaGory EL, Kristin LW, Gupte J, Gong Y, Rardin MJ, Liu T, Nguyen TT, Long J, Hsu YH, Murray JK, Lade J, Jackson S, Zhang J. Liver-specific mitochondrial amidoxime-reducing component 1 (Mtarc1) knockdown protects the liver from diet-induced MASH in multiple mouse models. Hepatol Commun 2024; 8:e0419. [PMID: 38696369 PMCID: PMC11068142 DOI: 10.1097/hc9.0000000000000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/26/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.
Collapse
Affiliation(s)
- Yuanjun Guo
- Research Biomarkers, Amgen Research, South San Francisco, California, USA
| | - Zhengyu Gao
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Edward L. LaGory
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Lewis Wilson Kristin
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Jamila Gupte
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Yan Gong
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Matthew J. Rardin
- Discovery Technology Platforms, Amgen Research, South San Francisco, California, USA
| | - Tongyu Liu
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Thong T. Nguyen
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Jason Long
- RNA Therapeutics, Amgen Research, One Amgen Center Drive, Thousand Oaks, California, USA
| | - Yi-Hsiang Hsu
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Justin K. Murray
- RNA Therapeutics, Amgen Research, One Amgen Center Drive, Thousand Oaks, California, USA
| | - Julie Lade
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Simon Jackson
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Jun Zhang
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| |
Collapse
|
7
|
Wu M, Tie M, Hu L, Yang Y, Chen Y, Ferguson D, Chen Y, He A. Fatty liver disease protective MTARC1 p.A165T variant reduces the protein stability of MTARC1. Biochem Biophys Res Commun 2024; 702:149655. [PMID: 38340654 PMCID: PMC10940201 DOI: 10.1016/j.bbrc.2024.149655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease worldwide. MTARC1, encoded by the MTARC1 gene, is a mitochondrial outer membrane-anchored enzyme. Interestingly, the MTARC1 p.A165T (rs2642438) variant is associated with a decreased risk of NAFLD, indicating that MTARC1 might be an effective target. It has been reported that the rs2642438 variant does not have altered enzymatic activity so we reasoned that this variation may affect MTARC1 stability. In this study, MTARC1 mutants were generated and stability was assessed using a protein stability reporter system both in vitro and in vivo. We found that the MTARC1 p.A165T variant has dramatically reduced the stability of MTARC1, as assessed in several cell lines. In mice, the MTARC1 A168T mutant, the equivalent of human MTARC1 A165T, had diminished stability in mouse liver. Additionally, several MTARC1 A165 mutants, including A165S, A165 N, A165V, A165G, and A165D, had dramatically decreased stability as well, suggesting that the alanine residue of MTARC1 165 site is essential for MTARC1 protein stability. Collectively, our data indicates that the MTARC1 p.A165T variant (rs2642438) leads to reduced stability of MTARC1. Given that carriers of rs2642438 show a decreased risk of NAFLD, the findings herein support the notion that MTARC1 inhibition may be a therapeutic target to combat NAFLD.
Collapse
Affiliation(s)
- Mengyue Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Meng Tie
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liwei Hu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yunzhi Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yong Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Daniel Ferguson
- Division of Nutritional Science and Obesity Medicine, Washington University in St. Louis, United States
| | - Yali Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Anyuan He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China; Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Smagris E, Shihanian LM, Mintah IJ, Bigdelou P, Livson Y, Brown H, Verweij N, Hunt C, Johnson RO, Greer TJ, Hartford SA, Hindy G, Sun L, Nielsen JB, Halasz G, Lotta LA, Murphy AJ, Sleeman MW, Gusarova V. Divergent role of Mitochondrial Amidoxime Reducing Component 1 (MARC1) in human and mouse. PLoS Genet 2024; 20:e1011179. [PMID: 38437227 PMCID: PMC10939284 DOI: 10.1371/journal.pgen.1011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Recent human genome-wide association studies have identified common missense variants in MARC1, p.Ala165Thr and p.Met187Lys, associated with lower hepatic fat, reduction in liver enzymes and protection from most causes of cirrhosis. Using an exome-wide association study we recapitulated earlier MARC1 p.Ala165Thr and p.Met187Lys findings in 540,000 individuals from five ancestry groups. We also discovered novel rare putative loss of function variants in MARC1 with a phenotype similar to MARC1 p.Ala165Thr/p.Met187Lys variants. In vitro studies of recombinant human MARC1 protein revealed Ala165Thr substitution causes protein instability and aberrant localization in hepatic cells, suggesting MARC1 inhibition or deletion may lead to hepatoprotection. Following this hypothesis, we generated Marc1 knockout mice and evaluated the effect of Marc1 deletion on liver phenotype. Unexpectedly, our study found that whole-body Marc1 deficiency in mouse is not protective against hepatic triglyceride accumulation, liver inflammation or fibrosis. In attempts to explain the lack of the observed phenotype, we discovered that Marc1 plays only a minor role in mouse liver while its paralogue Marc2 is the main Marc family enzyme in mice. Our findings highlight the major difference in MARC1 physiological function between human and mouse.
Collapse
Affiliation(s)
- Eriks Smagris
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Lisa M. Shihanian
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Ivory J. Mintah
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Parnian Bigdelou
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Yuliya Livson
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Heather Brown
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Niek Verweij
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Charleen Hunt
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | | | - Tyler J. Greer
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | | | - George Hindy
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Luanluan Sun
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Jonas B. Nielsen
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Luca A. Lotta
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Andrew J. Murphy
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Mark W. Sleeman
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Viktoria Gusarova
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| |
Collapse
|
9
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
10
|
Kalveram L, Baumann U, De Bruyne R, Draijer L, Janczyk W, Kelly D, Koot BG, Lacaille F, Lefere S, Lev HM, Lubrecht J, Mann JP, Mosca A, Rajwal S, Socha P, Vreugdenhil A, Alisi A, Hudert CA. Noninvasive scores are poorly predictive of histological fibrosis in paediatric fatty liver disease. J Pediatr Gastroenterol Nutr 2024; 78:27-35. [PMID: 38291699 DOI: 10.1002/jpn3.12068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children. Roughly a quarter of paediatric patients with NAFLD develop nonalcoholic steatohepatitis and fibrosis. Here, we evaluated the diagnostic accuracy of previously published noninvasive fibrosis scores to predict liver fibrosis in a large European cohort of paediatric patients with NAFLD. METHODS The 457 patients with biopsy-proven NAFLD from 10 specialized centers were included. We assessed diagnostic accuracy for the prediction of any (F ≥ 1), moderate (F ≥ 2) or advanced (F ≥ 3) fibrosis for the AST/platelet ratio (APRI), Fibrosis 4 score (FIB-4), paediatric NAFLD fibrosis score (PNFS) and paediatric NAFLD fibrosis index (PNFI). RESULTS Patients covered the full spectrum of fibrosis (F0: n = 103; F1: n = 230; F2: n = 78; F3: n = 44; F4: n = 2). None of the scores were able to accurately distinguish the presence of any fibrosis from no fibrosis. For the detection of moderate fibrosis, area under the receiver operating characteristic curve (AUROC) were: APRI: 0.697, FIB-4: 0.663, PNFI: 0.515, PNFS: 0.665, while for detection of advanced fibrosis AUROCs were: APRI: 0.759, FIB-4: 0.611, PNFI: 0.521, PNFS: 0.712. Fibrosis scores showed no diagnostic benefit over using ALT ≤ 50/ > 50 IU/L as a cut-off. CONCLUSIONS Established fibrosis scores lack diagnostic accuracy to replace liver biopsy for staging of fibrosis, giving similar results as compared to using ALT alone. New diagnostic tools are needed for Noninvasive risk-stratification in paediatric NAFLD.
Collapse
Affiliation(s)
- Laura Kalveram
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu, Berlin, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases Hannover, Hannover Medical School, Hanover, Germany
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ruth De Bruyne
- Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University, Ghent, Belgium
| | - Laura Draijer
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Netherlands
| | - Wojciech Janczyk
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Deirdre Kelly
- Liver unit, Birmingham Children's Hospital, University of Birmingham, Birmingham, UK
| | - Bart G Koot
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Netherlands
| | - Florence Lacaille
- Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants maladies, Paris, France
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hadar Moran Lev
- Pediatric Gastroenterology Unit, Dana Dwek Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith Lubrecht
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jake P Mann
- Liver unit, Birmingham Children's Hospital, University of Birmingham, Birmingham, UK
| | - Antonella Mosca
- Hepatology, Gastroenterology, Nutrition, and Liver Transplantation Unit, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Sanjay Rajwal
- Children's Liver Unit, Leeds Teaching Hospitals NHS Trust, Leeds Children's Hospital, Leeds, UK
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Anita Vreugdenhil
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Anna Alisi
- Genetics of Complex Phenotypes Research Unit, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu, Berlin, Germany
| |
Collapse
|
11
|
Struwe MA, Scheidig AJ, Clement B. The mitochondrial amidoxime reducing component-from prodrug-activation mechanism to drug-metabolizing enzyme and onward to drug target. J Biol Chem 2023; 299:105306. [PMID: 37778733 PMCID: PMC10637980 DOI: 10.1016/j.jbc.2023.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is one of five known molybdenum enzymes in eukaryotes. mARC belongs to the MOSC domain superfamily, a large group of so far poorly studied molybdoenzymes. mARC was initially discovered as the enzyme activating N-hydroxylated prodrugs of basic amidines but has since been shown to also reduce a variety of other N-oxygenated compounds, for example, toxic nucleobase analogs. Under certain circumstances, mARC might also be involved in reductive nitric oxide synthesis through reduction of nitrite. Recently, mARC enzymes have received a lot of attention due to their apparent involvement in lipid metabolism and, in particular, because many genome-wide association studies have shown a common variant of human mARC1 to have a protective effect against liver disease. The mechanism linking mARC enzymes with lipid metabolism remains unknown. Here, we give a comprehensive overview of what is currently known about mARC enzymes, their substrates, structure, and apparent involvement in human disease.
Collapse
Affiliation(s)
- Michel A Struwe
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany; Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Axel J Scheidig
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
12
|
Lindén D, Romeo S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J Hepatol 2023; 79:1056-1064. [PMID: 37207913 DOI: 10.1016/j.jhep.2023.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
The identification of genetic variants associated with fatty liver disease (FLD) from genome-wide association studies started in 2008 when single nucleotide polymorphisms in PNPLA3, the gene encoding patatin-like phospholipase domain-containing 3, were found to be associated with altered hepatic fat content. Since then, several genetic variants associated with protection from, or an increased risk of, FLD have been identified. The identification of these variants has provided insight into the metabolic pathways that cause FLD and enabled the identification of potential therapeutic targets. In this mini-review, we will examine the therapeutic opportunities derived from genetically validated targets in FLD, including oligonucleotide-based therapies targeting PNPLA3 and HSD17B13 that are currently being evaluated in clinical trials for the treatment of NASH (non-alcoholic steatohepatitis).
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
13
|
Faccioli LAP, Cetin Z, Kocas-Kilicarslan ZN, Ortiz K, Sun Y, Hu Z, Kurihara T, Tafaleng EN, Florentino RM, Wang Z, Xia M, Miedel MT, Taylor DL, Behari J, Ostrowska A, Constantine R, Li A, Soto-Gutierrez A. Evaluation of Human Hepatocyte Drug Metabolism Carrying High-Risk or Protection-Associated Liver Disease Genetic Variants. Int J Mol Sci 2023; 24:13406. [PMID: 37686209 PMCID: PMC10487897 DOI: 10.3390/ijms241713406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD), which affects 30 million people in the US and is anticipated to reach over 100 million by 2030, places a significant financial strain on the healthcare system. There is presently no FDA-approved treatment for MASLD despite its public health significance and financial burden. Understanding the connection between point mutations, liver enzymes, and MASLD is important for comprehending drug toxicity in healthy or diseased individuals. Multiple genetic variations have been linked to MASLD susceptibility through genome-wide association studies (GWAS), either increasing MASLD risk or protecting against it, such as PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438. As the impact of genetic variants on the levels of drug-metabolizing cytochrome P450 (CYP) enzymes in human hepatocytes has not been thoroughly investigated, this study aims to describe the analysis of metabolic functions for selected phase I and phase II liver enzymes in human hepatocytes. For this purpose, fresh isolated primary hepatocytes were obtained from healthy liver donors (n = 126), and liquid chromatography-mass spectrometry (LC-MS) was performed. For the cohorts, participants were classified into minor homozygotes and nonminor homozygotes (major homozygotes + heterozygotes) for five gene polymorphisms. For phase I liver enzymes, we found a significant difference in the activity of CYP1A2 in human hepatocytes carrying MBOAT7 (p = 0.011) and of CYP2C8 in human hepatocytes carrying PNPLA3 (p = 0.004). It was also observed that the activity of CYP2C9 was significantly lower in human hepatocytes carrying HSD17B13 (p = 0.001) minor homozygous compared to nonminor homozygous. No significant difference in activity of CYP2E1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, ECOD, FMO, MAO, AO, and CES2 and in any of the phase II liver enzymes between human hepatocytes carrying genetic variants for PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438 were observed. These findings offer a preliminary assessment of the influence of genetic variations on drug-metabolizing cytochrome P450 (CYP) enzymes in healthy human hepatocytes, which may be useful for future drug discovery investigations.
Collapse
Affiliation(s)
- Lanuza A. P. Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zehra N. Kocas-Kilicarslan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Kimberly Ortiz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Yiyue Sun
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Takeshi Kurihara
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Edgar N. Tafaleng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
| | - Zi Wang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mengying Xia
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D. Lansing Taylor
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
| | - Jaideep Behari
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
| | | | - Albert Li
- Discovery Life Sciences, Huntsville, AL 35806, USA; (R.C.); (A.L.)
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
14
|
Huang Y, Stinson SE, Juel HB, Lund MAV, Holm LA, Fonvig CE, Nielsen T, Grarup N, Pedersen O, Christiansen M, Chabanova E, Thomsen HS, Krag A, Stender S, Holm JC, Hansen T. An adult-based genetic risk score for liver fat associates with liver and plasma lipid traits in children and adolescents. Liver Int 2023; 43:1772-1782. [PMID: 37208954 DOI: 10.1111/liv.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND & AIMS Genome-wide association studies have identified steatogenic variants that also showed pleiotropic effects on cardiometabolic traits in adults. We investigated the effect of eight previously reported genome-wide significant steatogenic variants, individually and combined in a weighted genetic risk score (GRS), on liver and cardiometabolic traits, and the predictive ability of the GRS for hepatic steatosis in children and adolescents. APPROACH & RESULTS Children and adolescents with overweight (including obesity) from an obesity clinic group (n = 1768) and a population-based group (n = 1890) were included. Cardiometabolic risk outcomes and genotypes were obtained. Liver fat was quantified using 1 H-MRS in a subset of 727 participants. Variants in PNPLA3, TM6SF2, GPAM and TRIB1 were associated with higher liver fat (p < .05) and with distinct patterns of plasma lipids. The GRS was associated with higher liver fat content, plasma concentrations of alanine transaminase (ALT), aspartate aminotransferase (AST) and favourable plasma lipid levels. The GRS was associated with higher prevalence of hepatic steatosis (defined as liver fat ≥5.0%) (odds ratio per 1-SD unit: 2.17, p = 9.7E-10). A prediction model for hepatic steatosis including GRS alone yielded an area under the curve (AUC) of 0.78 (95% CI 0.76-0.81). Combining the GRS with clinical measures (waist-to-height ratio [WHtR] SDS, ALT, and HOMA-IR) increased the AUC up to 0.86 (95% CI 0.84-0.88). CONCLUSIONS The genetic predisposition for liver fat accumulation conferred risk of hepatic steatosis in children and adolescents. The liver fat GRS has potential clinical utility for risk stratification.
Collapse
Affiliation(s)
- Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helene Baek Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten A V Lund
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbaek, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbaek, Copenhagen, Denmark
| | - Cilius E Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbaek, Copenhagen, Denmark
- Department of Pediatrics, Kolding Hospital a Part of Lillebaelt Hospital, Kolding, Denmark
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen University Hospital Herlev Gentofte, Copenhagen, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Elizaveta Chabanova
- Department of Diagnostic Radiology, Copenhagen University Hospital Herlev Gentofte, Copenhagen, Denmark
| | - Henrik S Thomsen
- Department of Diagnostic Radiology, Copenhagen University Hospital Herlev Gentofte, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbaek, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Clement B, Struwe MA. The History of mARC. Molecules 2023; 28:4713. [PMID: 37375270 DOI: 10.3390/molecules28124713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is the most recently discovered molybdoenzyme in humans after sulfite oxidase, xanthine oxidase and aldehyde oxidase. Here, the timeline of mARC's discovery is briefly described. The story begins with investigations into N-oxidation of pharmaceutical drugs and model compounds. Many compounds are N-oxidized extensively in vitro, but it turned out that a previously unknown enzyme catalyzes the retroreduction of the N-oxygenated products in vivo. After many years, the molybdoenzyme mARC could finally be isolated and identified in 2006. mARC is an important drug-metabolizing enzyme and N-reduction by mARC has been exploited very successfully for prodrug strategies, that allow oral administration of otherwise poorly bioavailable therapeutic drugs. Recently, it was demonstrated that mARC is a key factor in lipid metabolism and likely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The exact link between mARC and lipid metabolism is not yet fully understood. Regardless, many now consider mARC a potential drug target for the prevention or treatment of liver diseases. This article focusses on discoveries related to mammalian mARC enzymes. mARC homologues have been studied in algae, plants and bacteria. These will not be discussed extensively here.
Collapse
Affiliation(s)
- Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Michel A Struwe
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Zoologisches Institut-Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
16
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
17
|
Lewis LC, Chen L, Hameed LS, Kitchen RR, Maroteau C, Nagarajan SR, Norlin J, Daly CE, Szczerbinska I, Hjuler ST, Patel R, Livingstone EJ, Durrant TN, Wondimu E, BasuRay S, Chandran A, Lee WH, Hu S, Gilboa B, Grandi ME, Toledo EM, Erikat AH, Hodson L, Haynes WG, Pursell NW, Coppieters K, Fleckner J, Howson JM, Andersen B, Ruby MA. Hepatocyte mARC1 promotes fatty liver disease. JHEP Rep 2023; 5:100693. [PMID: 37122688 PMCID: PMC10133763 DOI: 10.1016/j.jhepr.2023.100693] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa R. Nagarajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | | | | | | | - Rahul Patel
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | | | | | | | | | | - Wan-Hung Lee
- Dicerna Pharmaceuticals Inc., Lexington, MA, USA
| | - Sile Hu
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | | | | | | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Smyk W, Papapostoli I, Żorniak M, Sklavounos P, Blukacz Ł, Madej P, Koutsou A, Weber SN, Friesenhahn-Ochs B, Cebula M, Bosowska J, Solomayer EF, Hartleb M, Milkiewicz P, Lammert F, Stokes CS, Krawczyk M. Liver phenotypes in PCOS: Analysis of exogenous and inherited risk factors for liver injury in two European cohorts. Liver Int 2023; 43:1080-1088. [PMID: 36683562 DOI: 10.1111/liv.15527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Fatty liver disease (FLD) is common in women with polycystic ovary syndrome (PCOS). Here, we use non-invasive tests to quantify liver injury in women with PCOS and analyse whether FLD-associated genetic variants contribute to liver phenotypes in PCOS. METHODS Prospectively, we recruited women with PCOS and controls at two university centres in Germany and Poland. Alcohol abuse was regarded as an exclusion criterion. Genotyping of variants associated with FLD was performed using TaqMan assays. Liver stiffness measurements (LSM), controlled attenuation parameters (CAP) and non-invasive HSI, FLI, FIB-4 scores were determined to assess hepatic steatosis and fibrosis. RESULTS A total of 42 German (age range 18-53 years) and 143 Polish (age range 18-40 years) women with PCOS, as well as 245 German and 289 Polish controls were recruited. In contrast to Polish patients, Germans were older, presented with more severe metabolic profiles and had significantly higher LSM (median 5.9 kPa vs. 3.8 kPa). In the German cohort, carriers of the PNPLA3 p.I148M risk variant had an increased LSM (p = .01). In the Polish cohort, the minor MTARC1 allele was linked with significantly lower serum aminotransferases activities, whereas the HSD17B13 polymorphism was associated with lower concentrations of 17-OH progesterone, total testosterone, and androstenedione (all p < .05). CONCLUSIONS FLD is common in women with PCOS. Its extent is modulated by both genetic and metabolic risk factors. Genotyping of variants associated with FLD might help to stratify the risk of liver disease progression in women suffering from PCOS.
Collapse
Affiliation(s)
- Wiktor Smyk
- Department of Gastroenterology and Hepatology, Medical University of Gdansk, Gdansk, Poland
| | - Ifigeneia Papapostoli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Michał Żorniak
- Department of Gastroenterology, Hepatology and Oncology, Center for Postgraduate Medical Education, Warsaw, Poland.,Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Panagiotis Sklavounos
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Łukasz Blukacz
- Department of Gynecological Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Paweł Madej
- Department of Gynecological Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Andreani Koutsou
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Bettina Friesenhahn-Ochs
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Maciej Cebula
- Department of Radiology and Nuclear Medicine, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Joanna Bosowska
- Department of Radiology and Nuclear Medicine, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Erich-Franz Solomayer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marek Hartleb
- Department of Gastroenterology, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland.,Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Hannover Medical School, Hannover, Germany
| | - Caroline S Stokes
- Food and Health Research Group, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Liu Y, Xu H, Zhao Z, Dong Y, Wang X, Niu J. No evidence for a causal link between Helicobacter pylori infection and nonalcoholic fatty liver disease: A bidirectional Mendelian randomization study. Front Microbiol 2022; 13:1018322. [PMID: 36406444 PMCID: PMC9669663 DOI: 10.3389/fmicb.2022.1018322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Although clinical studies have shown the possible relationship between Helicobacter pylori (H. pylori) infection and the development of nonalcoholic fatty liver disease (NAFLD), their causal relationship is still unknown. This bidirectional Mendelian randomization (MR) study aimed to investigate the causal link between H. pylori infection and NAFLD. Two previously reported genetic variants SNPs rs10004195 and rs368433 were used as the instrumental variables (IVs) of H. pylori infection. The genetic variants of NAFLD were extracted from the largest genome-wide association study (GWAS) summary data with 1,483 cases and 17,781 controls. The exposure and outcome data were obtained from the publicly available GWAS dataset. Then, a bidirectional MR was carried out to evaluate the causal relationship between H. pylori infection and NAFLD. In addition, the GWAS data were also collected to explore the causal relationship between H. pylori infection and relevant clinical traits of NAFLD, including triglycerides, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), and body mass index (BMI). Genetically predicted H. pylori infection showed no association with NAFLD both in FinnGen GWAS (OR, 1.048; 95% CI, 0.778-1.411; value of p = 0.759) and the GWAS conducted by Anstee (OR, 0.775; 95% CI, 0.475-1.265; value of p = 0.308). An inverse MR showed no causal effect of NAFLD on H. pylori infection (OR,0.978;95% CI, 0.909-1.052; value of p = 0.543). No significant associations were observed between H. pylori infection and the levels of triglycerides, LDL-C, HDL-C, or FBG, while H. pylori infection was associated with an increase in BMI. These results indicated that there was no genetic evidence for a causal link between H. pylori and NAFLD, suggesting that the eradication or prevention of H. pylori infection might not benefit NAFLD and vice versa.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - ZiHan Zhao
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yutong Dong
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xiaomei Wang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Hudert CA, Mann JP. Reply. Hepatol Commun 2022; 6:3279. [PMID: 35593156 PMCID: PMC9592745 DOI: 10.1002/hep4.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Christian A. Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic DiseasesCharité Universitätsmedizin BerlinBerlinGermany
| | - Jake P. Mann
- Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
21
|
Struwe MA, Clement B, Scheidig A. Letter to the editor: The clinically relevant MTARC1 p.Ala165Thr variant impacts neither the fold nor active site architecture of the human mARC1 protein. Hepatol Commun 2022; 6:3277-3278. [PMID: 35560545 PMCID: PMC9592780 DOI: 10.1002/hep4.1984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
A study recently published in Hepatology Communications provided insights into a variant of MTARC1 protein, which conveys protection against liver disease. Here, we report a crystal structure of the variant protein at near-atomic resolution and compare it to the structure of the wildtype protein.
Collapse
Affiliation(s)
- Michel A. Struwe
- Zoologisches Institut/StrukturbiologieChristian‐Albrechts‐Universität zu KielKielGermany
- Pharmazeutisches InstitutChristian‐Albrechts‐Universität zu KielKielGermany
| | - Bernd Clement
- Pharmazeutisches InstitutChristian‐Albrechts‐Universität zu KielKielGermany
| | - Axel Scheidig
- Zoologisches Institut/StrukturbiologieChristian‐Albrechts‐Universität zu KielKielGermany
| |
Collapse
|
22
|
Association of MARC1, ADCY5, and BCO1 Variants with the Lipid Profile, Suggests an Additive Effect for Hypertriglyceridemia in Mexican Adult Men. Int J Mol Sci 2022; 23:ijms231911815. [PMID: 36233117 PMCID: PMC9569691 DOI: 10.3390/ijms231911815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies have reported that the Mexican population is highly susceptible to dyslipidemia. The MARC1, ADCY5, and BCO1 genes have recently been involved in lipidic abnormalities. This study aimed to analyze the association of single nucleotide polymorphisms (SNPs) rs2642438, rs56371916, and rs6564851 on MARC1, ADCY5, and BCO1 genes, respectively, with the lipid profile in a cohort of Mexican adults. We included 1900 Mexican adults from the Health Workers Cohort Study. Demographic and clinical data were collected through a structured questionnaire and standardized procedures. Genotyping was performed using a predesigned TaqMan assay. A genetic risk score (GRS) was created on the basis of the three genetic variants. Associations analysis was estimated using linear and logistic regression. Our results showed that rs2642438-A and rs6564851-A alleles had a risk association for hypertriglyceridemia (OR = 1.57, p = 0.013; and OR = 1.33, p = 0.031, respectively), and rs56371916-C allele a trend for low HDL-c (OR = 1.27, p = 0.060) only in men. The GRS revealed a significant association for hypertriglyceridemia (OR = 2.23, p = 0.022). These findings provide evidence of an aggregate effect of the MARC1, ADCY5, and BCO1 variants on the risk of hypertriglyceridemia in Mexican men. This knowledge could represent a tool for identifying at-risk males who might benefit from early interventions and avoid secondary metabolic traits.
Collapse
|
23
|
Hudert CA, Adams LA, Alisi A, Anstee QM, Crudele A, Draijer LG, EU‐PNAFLD investigators, Furse S, Hengstler JG, Jenkins B, Karnebeek K, Kelly DA, Koot BG, Koulman A, Meierhofer D, Melton PE, Mori TA, Snowden SG, van Mourik I, Vreugdenhil A, Wiegand S, Mann JP. Variants in mitochondrial amidoxime reducing component 1 and hydroxysteroid 17-beta dehydrogenase 13 reduce severity of nonalcoholic fatty liver disease in children and suppress fibrotic pathways through distinct mechanisms. Hepatol Commun 2022; 6:1934-1948. [PMID: 35411667 PMCID: PMC9315139 DOI: 10.1002/hep4.1955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies in adults have identified variants in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) and mitochondrial amidoxime reducing component 1 (MTARC1) as protective against nonalcoholic fatty liver disease (NAFLD). We aimed to test their association with pediatric NAFLD liver histology and investigate their function using metabolomics. A total of 1450 children (729 with NAFLD, 399 with liver histology) were genotyped for rs72613567T>TA in HSD17B13, rs2642438G>A in MTARC1, and rs738409C>G in patatin-like phospholipase domain-containing protein 3 (PNPLA3). Genotype-histology associations were tested using ordinal regression. Untargeted hepatic proteomics and plasma lipidomics were performed in a subset of children. We found rs72613567T>TA in HSD17B13 to be associated with lower odds of NAFLD diagnosis (odds ratio, 0.7; 95% confidence interval, 0.6-0.9) and a lower grade of portal inflammation (p < 0.001). rs2642438G>A in MTARC1 was associated with a lower grade of hepatic steatosis (p = 0.02). Proteomics found reduced expression of HSD17B13 in carriers of the protective -TA allele. MTARC1 levels were unaffected by genotype. Both variants were associated with down-regulation of fibrogenic pathways. HSD17B13 perturbs plasma phosphatidylcholines and triglycerides. In silico modeling suggested p.Ala165Thr disrupts the stability and metal binding of MTARC1. Conclusion: Both HSD17B13 and MTARC1 variants are associated with less severe pediatric NAFLD. These results provide further evidence for shared genetic mechanisms between pediatric and adult NAFLD.
Collapse
Affiliation(s)
- Christian A. Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic DiseasesCharité Universitätsmedizin BerlinBerlinGermany
| | - Leon A. Adams
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of HepatologySir Charles Gairdner HospitalPerthAustralia
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital‐Istituto di Ricovero e Cura a Carattere ScientificoRomeItaly
| | - Quentin M. Anstee
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Newcastle National Institute for Health Research Biomedical Research CentreNewcastle upon Tyne Hospitals National Health Service Foundation TrustNewcastle upon TyneUK
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital‐Istituto di Ricovero e Cura a Carattere ScientificoRomeItaly
| | - Laura G. Draijer
- Department of Pediatric Gastroenterology and NutritionAmsterdam University Medical CenterEmma Children’s HospitalUniversity of AmsterdamAmsterdamthe Netherlands
| | | | - Samuel Furse
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Jan G. Hengstler
- Systems ToxicologyLeibniz Research Center for Working Environment and Human Factors at the Technical University DortmundDortmundGermany
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Kylie Karnebeek
- Center for Overweight Adolescent and Children's Health CareDepartment of PediatricsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Deirdre A. Kelly
- Liver UnitBirmingham Womens and Children’s Hospital TrustBirminghamUK
| | - Bart G. Koot
- Department of Pediatric Gastroenterology and NutritionAmsterdam University Medical CenterEmma Children’s HospitalUniversity of AmsterdamAmsterdamthe Netherlands
| | - Albert Koulman
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - David Meierhofer
- Max Planck Institute for Molecular GeneticsMass Spectrometry FacilityBerlinGermany
| | - Phillip E. Melton
- School of Global Population HealthFaculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
- School of Pharmacy and Biomedical SciencesFaculty of Health SciencesCurtin UniversityPerthAustralia
- Menzies Institute for Medical ResearchCollege of Health and MedicineUniversity of TasmaniaHobartAustralia
| | - Trevor A. Mori
- Medical SchoolUniversity of Western AustraliaPerthAustralia
| | - Stuart G. Snowden
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Indra van Mourik
- Liver UnitBirmingham Womens and Children’s Hospital TrustBirminghamUK
| | - Anita Vreugdenhil
- Center for Overweight Adolescent and Children's Health CareDepartment of PediatricsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Susanna Wiegand
- Center for Chronically Sick ChildrenCharité Universitätsmedizin BerlinBerlinGermany
| | - Jake P. Mann
- Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| |
Collapse
|