1
|
Gilfarb RA, Ranade S, Dybas E, Biddle A, Stewart M, Rajesh A, Leuner B, Lenz KM. Hormonal contraceptives in adolescence impact the neuroimmune environment of the medial prefrontal cortex and hippocampus in female rats. Brain Behav Immun 2025; 127:315-328. [PMID: 39978694 DOI: 10.1016/j.bbi.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Adolescence is a period of protracted neurodevelopment, during which the prefrontal cortex (PFC) undergoes significant remodeling. Microglia are integral to neurodevelopment and are sensitive to gonadal hormones, which increase during adolescence. Microglia and gonadal hormones can interact to influence adolescent development of the PFC (or medial prefrontal cortex [mPFC] in rodents). In females, gonadal hormones can be perturbed by using hormonal contraceptives (HCs). We predicted that HC administration over adolescence could affect microglia, other immunocompetent cells, and the neuroimmune environment of the developing mPFC. We also assessed HC effects on neuroimmune measures in the hippocampus, as the hippocampus also matures throughout adolescence and is sensitive to ovarian hormones. Intact post-pubertal female Sprague-Dawley rats received daily subcutaneous injections of vehicle or 10 ug ethinyl estradiol + 20 ug levonorgestrel (HCs) throughout adolescence from postnatal day (PND) 35-56. On PND 57 or 58, brains were collected for immunohistochemistry and qPCR. In the mPFC, HC-treated rats showed less Iba1 (microglia) immunolabeling and fewer Iba1+ cells. HC treatment also altered microglia morphology and reduced the spacing between microglia in the mPFC. In the hippocampus, HC-treated rats had reduced Iba1 immunolabeling in the dorsal CA1 and reductions in microglial cell complexity in dorsal CA1, ventral CA1, and ventral CA3. There were no effects of HCs on GFAP (astrocyte) immunolabeling in the mPFC or on astrocytes in any hippocampal subregion analyzed, except an increase in astrocyte number in the dorsal dentate gyrus. mPFC expression of genes related to phagocytosis (Cd68, Trem2) and neuroimmune signaling (Cx3cr1, Cx3cl1) were reduced in rats treated with HCs, but no gene expression changes were seen in the hippocampus. These data provide the first evidence that HCs given during the critical developmental period of adolescence can affect microglia properties in limbic brain regions.
Collapse
Affiliation(s)
- Rachel A Gilfarb
- Neuroscience Graduate Program, 460 Medical Center Drive, The Ohio State University, Columbus, OH 43210, USA
| | - Sanjana Ranade
- Department of Psychology, 1835 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth Dybas
- Neuroscience Graduate Program, 460 Medical Center Drive, The Ohio State University, Columbus, OH 43210, USA
| | - Abigail Biddle
- Department of Psychology, 1835 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| | - Meredith Stewart
- Department of Psychology, 1835 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| | - Abhishek Rajesh
- Department of Psychology, 1835 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| | - Benedetta Leuner
- Department of Psychology, 1835 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, 460 W. 12th Ave, Columbus, OH 43210, The Ohio State University, USA
| | - Kathryn M Lenz
- Department of Psychology, 1835 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, 460 Medical Center Drive, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, 460 W. 12th Ave, Columbus, OH 43210, The Ohio State University, USA.
| |
Collapse
|
2
|
Maroteaux MJ, Noccioli CT, Daniel JM, Schrader LA. Rapid and local neuroestrogen synthesis supports long-term potentiation of hippocampal Schaffer collaterals-cornu ammonis 1 synapse in ovariectomized mice. J Neuroendocrinol 2024; 36:e13450. [PMID: 39351868 DOI: 10.1111/jne.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
In aging women, cognitive decline and increased risk of dementia have been associated with the cessation of ovarian hormones production at menopause. In the brain, presence of the key enzyme aromatase required for the synthesis of 17-β-estradiol (E2) allows for local production of E2 in absence of functional ovaries. Understanding how aromatase activity is regulated could help alleviate the cognitive symptoms. In female rodents, genetic or pharmacological reduction of aromatase activity over extended periods of time impair memory formation, decreases spine density, and hinders long-term potentiation (LTP) in the hippocampus. Conversely, increased excitatory neurotransmission resulting in rapid N-methyl-d-aspartic acid (NMDA) receptor activation rapidly promotes neuroestrogen synthesis. This rapid modulation of aromatase activity led us to address the hypothesis that acute neuroestrogens synthesis is necessary for LTP at the Schaffer collateral-cornu ammonis 1 (CA1) synapse in absence of circulating ovarian estrogens. To test this hypothesis, we did electrophysiological recordings of field excitatory postsynaptic potential (fEPSPs) in hippocampal slices obtained from ovariectomized mice. To assess the impact of neuroestrogens synthesis on LTP, we applied the specific aromatase inhibitor, letrozole, before the induction of LTP with a theta burst stimulation protocol. We found that blocking aromatase activity prevented LTP. Interestingly, exogenous E2 application, while blocking aromatase activity, was not sufficient to recover LTP in our model. Our results indicate the critical importance of rapid, activity-dependent local neuroestrogens synthesis, independent of circulating hormones for hippocampal synaptic plasticity in female rodents.
Collapse
Affiliation(s)
- Matthieu J Maroteaux
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire T Noccioli
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Laura A Schrader
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
3
|
Perez-Rando M, Guirado R, Tellez-Merlo G, Carceller H, Nacher J. Estradiol Regulates Polysialylated Form of the Neural Cell Adhesion Molecule Expression and Connectivity of O-LM Interneurons in the Hippocampus of Adult Female Mice. Neuroendocrinology 2022; 112:51-67. [PMID: 33550289 DOI: 10.1159/000515052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022]
Abstract
The estrous cycle is caused by the changing concentration of ovarian hormones, particularly 17β-estradiol, a hormone whose effect on excitatory circuits has been extensively reported. However, fewer studies have tried to elucidate how this cycle, or this hormone, affects the plasticity of inhibitory networks and the structure of interneurons. Among these cells, somatostatin-expressing O-LM neurons of the hippocampus are especially interesting. They have a role in the modulation of theta oscillations, and they receive direct input from the entorhinal cortex, which place them in the center of hippocampal function. In this study, we report that the expression of polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus, a molecule involved in the plasticity of somatostatin-expressing interneurons in the adult brain, fluctuated through the different stages of the estrous cycle. Likewise, these stages and the expression of PSA-NCAM affected the density of dendritic spines of O-LM cells. We also describe that 17β-estradiol replacement of adult ovariectomized female mice caused an increase in the perisomatic inhibitory puncta in O-LM interneurons as well as an increase in their axonal bouton density. Interestingly, this treatment also induced a decrease in their dendritic spine density, specifically in O-LM interneurons lacking PSA-NCAM expression. Finally, using an ex vivo real-time assay with entorhinal-hippocampal organotypic cultures, we show that this hormone decreased the dynamics in spinogenesis, altogether highlighting the modulatory effect that 17β-estradiol has on inhibitory circuits.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Ramon Guirado
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- Dirección General de Universidades, Gobierno de Aragón, Zaragoza, Spain
| | - Guillermina Tellez-Merlo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Hector Carceller
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain
| |
Collapse
|
4
|
Li X, Johann S, Rune GM, Bender RA. Sex-specific Regulation of Spine Density and Synaptic Proteins by G-protein-coupled Estrogen Receptor (GPER)1 in Developing Hippocampus. Neuroscience 2021; 472:35-50. [PMID: 34364953 DOI: 10.1016/j.neuroscience.2021.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
G-protein-coupled-estrogen-receptor 1 (GPER1) is a membrane-bound receptor that mediates estrogen signaling via intracellular signaling cascades. We recently showed that GPER1 promotes the distal dendritic enrichment of hyperpolarization activated and cyclic nucleotide-gated (HCN)1 channels in CA1 stratum lacunosum-moleculare (SLM), suggesting a role of GPER1-mediated signaling in neuronal plasticity. Here we studied whether this role involves processes of structural plasticity, such as the regulation of spine and synapse density in SLM. In organotypic entorhino-hippocampal cultures from mice expressing eGFP, we analyzed spine densities in SLM after treatment with GPER1 agonist G1 (20 nM). G1 significantly increased the density of "non-stubby" spines (maturing spines with a spine head and a neck), but did so only in cultures from female mice. In support of this finding, the expression of synaptic proteins was sex-specifically altered in the cultures: G1 increased the protein (but not mRNA) expression of PSD95 and reduced the p-/n-cofilin ratio only in cultures from females. Application of E2 (2 nM) reproduced the sex-specific effect on spine density in SLM, but only partially on the expression of synaptic proteins. Spine synapse density was, however, not altered after G1-treatment, suggesting that the increased spine density did not translate into an increased spine synapse density in the culture model. Taken together, our results support a role of GPER1 in mediating structural plasticity in CA1 SLM, but suggest that in developing hippocampus, this role is sex-specific.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Neuroanatomy, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Roland A Bender
- Institute of Neuroanatomy, University Medical Center Hamburg, 20246 Hamburg, Germany.
| |
Collapse
|
5
|
Abotalebi H, Ebrahimi B, Shahriyari R, Shafieian R. Sex steroids-induced neurogenesis in adult brain: a better look at mechanisms and mediators. Horm Mol Biol Clin Investig 2021; 42:209-221. [PMID: 34058796 DOI: 10.1515/hmbci-2020-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
Adult neurogenesis is the production of new nerve cells in the adult brain. Neurogenesis is a clear example of the neuroplasticity phenomenon which can be observed in most of mammalian species, including human beings. This phenomenon occurs, at least, in two regions of the brain: the subgranular zone of the dentate gyrus in hippocampus and the ventricular zone of lateral ventricles. Numerous studies have investigated the relationship between sex steroid hormones and neurogenesis of adult brain; of which, mostly concentrated on the role of estradiol. It has been shown that estrogen plays a significant role in this process through both classic and non-classic mechanisms, including a variety of different growth factors. Therefore, the objective of this review is to investigate the role of female sex steroids with an emphasis on estradiol and also its potential implications for regulating the neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Hamideh Abotalebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raziyeh Shahriyari
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Tozzi A, Durante V, Manca P, Di Mauro M, Blasi J, Grassi S, Calabresi P, Kawato S, Pettorossi VE. Bidirectional Synaptic Plasticity Is Driven by Sex Neurosteroids Targeting Estrogen and Androgen Receptors in Hippocampal CA1 Pyramidal Neurons. Front Cell Neurosci 2019; 13:534. [PMID: 31866827 PMCID: PMC6904272 DOI: 10.3389/fncel.2019.00534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022] Open
Abstract
Neuroactive estrogenic and androgenic steroids influence synaptic transmission, finely modulating synaptic plasticity in several brain regions including the hippocampus. While estrogens facilitate long-term potentiation (LTP), androgens are involved in the induction of long-term depression (LTD) and depotentiation (DP) of synaptic transmission. To examine sex neurosteroid-dependent LTP and LTD in single cells, patch-clamp recordings from hippocampal CA1 pyramidal neurons of male rats and selective antagonists for estrogen receptors (ERs) and androgen (AR) receptors were used. LTP induced by high-frequency stimulation (HFS) depended on activation of ERs since it was prevented by the ER antagonist ICI 182,780 in most of the neurons. Application of the selective antagonists for ERα (MPP) or ERβ (PHTPP) caused a reduction of the LTP amplitude, while these antagonists in combination, prevented LTP completely. LTP was never affected by blocking AR with the specific antagonist flutamide. Conversely, LTD and DP, elicited by low-frequency stimulation (LFS), were impeded by flutamide, but not by ICI 182,780, in most neurons. In few cells, LTD was even reverted to LTP by flutamide. Moreover, the combined application of both ER and AR antagonists completely prevented both LTP and LTD/DP in the same neuron. The current study demonstrates that the activation of ERs is necessary for inducing LTP in hippocampal pyramidal neurons, whereas the activation of ARs is required for LTD and DP. Moreover, both estrogen- and androgen-dependent LTP and LTD can be expressed in the same pyramidal neurons, suggesting that the activation of sex neurosteroids signaling pathways is responsible for bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Valentina Durante
- Department of Medicine, Section of Neurological Clinic, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | - Paolo Manca
- Department de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Michela Di Mauro
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Juan Blasi
- Department de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Silvarosa Grassi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Department of Medicine, Section of Neurological Clinic, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | - Suguru Kawato
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Vito Enrico Pettorossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Wang YX, Zhu L, Li LX, Xu HN, Wang HG, An D, Heng B, Zhao Q, Liu YQ. Postnatal Expression Patterns of Estrogen Receptor Subtypes and Choline Acetyltransferase in Different Regions of the Papez Circuit. Dev Neurosci 2019; 41:203-211. [PMID: 31536986 DOI: 10.1159/000502686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
The Papez circuit is crucial for several brain functions, including long-term memory and emotion. Estradiol modulates cognitive functions based on the expression pattern of its receptor subtypes including estrogen receptor (ER) α, β, and G protein-coupled receptor 30 (GPR30). Similarly, the activity in the cholinergic system correlates with several brain functions, such as learning and memory. In this study, we used immunofluorescence to examine the expression patterns of ERβ and Western blotting to analyze GPR30 and choline acetyltransferase (ChAT) expression, in different regions of the Papez circuit, including the prefrontal cortex, hippocampus, hypothalamus, anterior nucleus of the thalamus, and cingulum in female rats at postnatal days (PND) 1, 10, and 56. Our main finding was that the highest expression of ERβ and GPR30 was noted in each brain area of the Papez circuit in the PND1 rats, whereas the expression of ChAT was the highest in PND10 rats. These results provide vital information on the postnatal expression patterns of ER subtypes and ChAT in different regions of the Papez circuit.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Zhu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Li-Xia Li
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Hui-Nan Xu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Hong-Gang Wang
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Di An
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Heng
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Qiang Liu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China,
| |
Collapse
|
8
|
Duarte-Guterman P, Lieblich SE, Wainwright SR, Chow C, Chaiton JA, Watson NV, Galea LAM. Androgens Enhance Adult Hippocampal Neurogenesis in Males but Not Females in an Age-Dependent Manner. Endocrinology 2019; 160:2128-2136. [PMID: 31219567 PMCID: PMC6736050 DOI: 10.1210/en.2019-00114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/24/2019] [Indexed: 01/27/2023]
Abstract
Androgens (testosterone and DHT) increase adult hippocampal neurogenesis by increasing survival of new neurons in male rats and mice via an androgen receptor pathway, but it is not known whether androgens regulate neurogenesis in female rats and whether the effect is age-dependent. We investigated the effects of DHT, a potent androgen, on neurogenesis in young adult and middle-aged male and female rats. Rats were gonadectomized and injected with the DNA synthesis marker bromodeoxyuridine (BrdU). The following day, rats began receiving daily injections of oil or DHT for 30 days. We evaluated cell proliferation (Ki67) and survival of new neurons (BrdU and BrdU/NeuN) in the hippocampus of male and female rats by using immunohistochemistry. As expected, DHT increased the number of BrdU+ cells in young males but surprisingly not in middle-aged males or in young and middle-aged females. In middle age, DHT increased the proportion of BrdU/NeuN cells, an effect driven by females. Androgen receptor expression also increased with aging in both female and male rats, which may contribute to a lack of DHT neurogenic effect in middle age. Our results indicate that DHT regulates adult hippocampal neurogenesis in a sex- and age-dependent manner.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven R Wainwright
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Chow
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Chaiton
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil V Watson
- Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Correspondence: Liisa A. M. Galea, PhD, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada. E-mail:
| |
Collapse
|
9
|
Mohajeri M, Martín-Jiménez C, Barreto GE, Sahebkar A. Effects of estrogens and androgens on mitochondria under normal and pathological conditions. Prog Neurobiol 2019; 176:54-72. [DOI: 10.1016/j.pneurobio.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
10
|
Pottoo FH, Javed MN, Barkat MA, Alam MS, Nowshehri JA, Alshayban DM, Ansari MA. Estrogen and Serotonin: Complexity of Interactions and Implications for Epileptic Seizures and Epileptogenesis. Curr Neuropharmacol 2019; 17:214-231. [PMID: 29956631 PMCID: PMC6425080 DOI: 10.2174/1570159x16666180628164432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the injunction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the activation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of steroid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on serotonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk between estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogenesis.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Address correspondence to these authors at the Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia; E-mail: and Department of Pharmacology, College of Clinical Pharmacy, 31441 Imam Abdulrahman Bin Faisal University, (Formerly University of Dammam), Dammam, Saudi Arabia; E-mail:
| | | | | | | | | | | | - Mohammad Azam Ansari
- Address correspondence to these authors at the Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia; E-mail: and Department of Pharmacology, College of Clinical Pharmacy, 31441 Imam Abdulrahman Bin Faisal University, (Formerly University of Dammam), Dammam, Saudi Arabia; E-mail:
| |
Collapse
|
11
|
Hyer MM, Khantsis S, Venezia AC, Madison FN, Hallgarth L, Adekola E, Glasper ER. Estrogen-dependent modifications to hippocampal plasticity in paternal California mice (Peromyscus californicus). Horm Behav 2017; 96:147-155. [PMID: 28954216 DOI: 10.1016/j.yhbeh.2017.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022]
Abstract
In many biparental species, mothers and fathers experience similar modifications to circulating hormones. With these modifications come alterations in neural structure and function suggesting that neuroendocrine mechanisms may underlie postpartum plasticity in both males and females. In the biparental California mouse (Peromyscus californicus), adult neurogenesis is maintained and anxiety-like behavior is attenuated in fathers during the mid-postpartum period. Given a causal relationship between estrogen and regulation of both adult neurogenesis and anxiety, we aimed to elucidate the role of estrogen-dependent mechanisms in paternal experience-related modifications to hippocampal neuroplasticity in California mice. In Experiment 1, hippocampal estrogen receptor beta (ERβ) mRNA expression, along with circulating estradiol concentrations, were determined throughout the postpartum period. An upregulation in ERβ expression was observed in postnatal day 16 males compared to virgins. Additionally, a rise in circulating estradiol concentrations was detected on postnatal day 2 compared to virgins; levels began to decline toward virgin levels on postnatal day 16 and postnatal day 30. In Experiment 2, we determined the role of estrogen-dependent mechanisms in adult neurogenesis and anxiety-like behavior by treating virgin and paternal males with saline or the selective estrogen receptor modulator, tamoxifen (TMX), during the time of axon extension (i.e., one week after bromodeoxyuridine injection). While TMX failed to alter elevated plus maze performance, TMX treatment inhibited survival of adult born neurons but only in paternal mice. These findings highlight the potential for estrogen-dependent pathways to mediate hippocampal adult neurogenesis in paternal mice.
Collapse
Affiliation(s)
- Molly M Hyer
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, MD 20742, USA
| | - Sabina Khantsis
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Andrew C Venezia
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, MD 20742, USA
| | - Farrah N Madison
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, MD 20742, USA; Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Luke Hallgarth
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Enoch Adekola
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Erica R Glasper
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, MD 20742, USA; Department of Psychology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
12
|
Di Mauro M, Tozzi A, Calabresi P, Pettorossi VE, Grassi S. Different synaptic stimulation patterns influence the local androgenic and estrogenic neurosteroid availability triggering hippocampal synaptic plasticity in the male rat. Eur J Neurosci 2017; 45:499-509. [DOI: 10.1111/ejn.13455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Michela Di Mauro
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| | - Alessandro Tozzi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
- Fondazione Santa Lucia – I.R.C.C.S. Rome Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia – I.R.C.C.S. Rome Italy
- Dipartimento di Medicina Clinica Neurologica Università di Perugia Perugia Italy
| | - Vito Enrico Pettorossi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| |
Collapse
|
13
|
Lubec G, Korz V. Concerted Gene Expression of Hippocampal Steroid Receptors during Spatial Learning in Male Wistar Rats: A Correlation Analysis. Front Behav Neurosci 2016; 10:94. [PMID: 27242463 PMCID: PMC4868845 DOI: 10.3389/fnbeh.2016.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/29/2016] [Indexed: 11/29/2022] Open
Abstract
Adrenal and gonadal steroid receptor activities are significantly involved and interact in the regulation of learning, memory and stress. Thus, a coordinated expression of steroid receptor genes during a learning task can be expected. Although coexpression of steroid receptors in response to behavioral tasks has been reported the correlative connection is unclear. According to the inverted U-shape model of the impact of stress upon learning and memory we hypothesized that glucocorticoid (GR) receptor expression should be correlated to corticosterone levels in a linear or higher order manner. Other cognition modulating steroid receptors like estrogen receptors (ER) should be correlated to GR receptors in a quadratic manner, which describes a parabola and thus a U-shaped connection. Therefore, we performed a correlational meta-analyis of data of a previous study (Meyer and Korz, 2013a) of steroid receptor gene expressions during spatial learning, which provides a sufficient data basis in order to perform such correlational connections. In that study male rats of different ages were trained in a spatial holeboard or remained untrained and the hippocampal gene expression of different steroid receptors as well as serum corticosterone levels were measured. Expressions of mineralocorticoid (MR) and GR receptors were positively and linearly correlated with blood serum corticosterone levels in spatially trained but not in untrained animals. Training induced a cubic (best fit) relationship between mRNA levels of estrogen receptor α (ERα) and androgen receptor (AR) with MR mRNA. GR gene expression was linearly correlated with MR expression under both conditions. ERα m RNA levels were negatively and linearily and MR and GR gene expressions were cubicely correlated with reference memory errors (RME). Due to only three age classes correlations with age could not be performed. The findings support the U-shape theory of steroid receptor interaction, however the cubic fit suggest a more complex situation, which mechanisms may be revealed in further studies.
Collapse
Affiliation(s)
- Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Vienna, Austria
| | - Volker Korz
- Department of Pediatrics, Medical University of Vienna Vienna, Austria
| |
Collapse
|
14
|
Velíšková J, Iacobas D, Iacobas S, Sidyelyeva G, Chachua T, Velíšek L. Oestradiol Regulates Neuropeptide Y Release and Gene Coupling with the GABAergic and Glutamatergic Synapses in the Adult Female Rat Dentate Gyrus. J Neuroendocrinol 2015; 27:911-20. [PMID: 26541912 DOI: 10.1111/jne.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous modulator of neuronal activity affecting both GABAergic and glutamatergic transmission. Previously, we found that oestradiol modifies the number of NPY immunoreactive neurones in the hippocampal dentate gyrus. In the present study, we investigated which oestrogen receptor type is responsible for these changes in the number of NPY-positive neurones. Furthermore, we determined the effects of oestrogen receptor activation on NPY release. Finally, we examined the contribution of oestrogen toward the remodelling of the GABAergic and glutamatergic gene networks in terms of coupling with Npy gene expression in ovariectomised rats. We found that activation of either oestrogen receptor type (ERα or ERβ) increases the number of NPY-immunopositive neurones and enhances NPY release in the dentate gyrus. We also found that, compared to oestrogen-lacking ovariectomised rats, oestrogen replacement increases the probability of synergistic/antagonistic coupling between the Npy and GABAergic synapse genes, whereas the glutamatergic synapse genes are less likely to be coupled with Npy under similar conditions. The data together suggest that oestrogens play a critical role in the regulation of NPY system activity and are also involved in the coupling/uncoupling of the Npy gene with the GABAergic and glutamatergic synapses in the female rat dentate gyrus.
Collapse
Affiliation(s)
- J Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - D Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - G Sidyelyeva
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - T Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - L Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
15
|
Di Mauro M, Tozzi A, Calabresi P, Pettorossi VE, Grassi S. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat. Front Cell Neurosci 2015; 9:376. [PMID: 26483631 PMCID: PMC4591489 DOI: 10.3389/fncel.2015.00376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 11/17/2022] Open
Abstract
Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.
Collapse
Affiliation(s)
- Michela Di Mauro
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Alessandro Tozzi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy ; Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy ; Dipartimento di Medicina, Clinica Neurologica, Università di Perugia Perugia, Italy
| | - Vito Enrico Pettorossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| |
Collapse
|
16
|
Cooper MA, Koleske AJ. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex. J Comp Neurol 2014; 522:3351-62. [PMID: 24752666 DOI: 10.1002/cne.23615] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
Abstract
Dendritic spine loss is observed in many psychiatric disorders, including schizophrenia, and likely contributes to the altered sense of reality, disruption of working memory, and attention deficits that characterize these disorders. ErbB4, a member of the EGF family of receptor tyrosine kinases, is genetically associated with schizophrenia, suggesting that alterations in ErbB4 function contribute to the disease pathology. Additionally, ErbB4 functions in synaptic plasticity, leading us to hypothesize that disruption of ErbB4 signaling may affect dendritic spine development. We show that dendritic spine density is reduced in the dorsomedial prefrontal cortex of ErbB4 conditional whole-brain knockout mice. We find that ErbB4 localizes to dendritic spines of excitatory neurons in cortical neuronal cultures and is present in synaptic plasma membrane preparations. Finally, we demonstrate that selective ablation of ErbB4 from excitatory neurons leads to a decrease in the proportion of mature spines and an overall reduction in dendritic spine density in the prefrontal cortex of weanling (P21) mice that persists at 2 months of age. These results suggest that ErbB4 signaling in excitatory pyramidal cells is critical for the proper formation and maintenance of dendritic spines in excitatory pyramidal cells.
Collapse
Affiliation(s)
- Margaret A Cooper
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | | |
Collapse
|
17
|
Wang TJ, Chen JR, Wang WJ, Wang YJ, Tseng GF. Genistein partly eases aging and estropause-induced primary cortical neuronal changes in rats. PLoS One 2014; 9:e89819. [PMID: 24587060 PMCID: PMC3934964 DOI: 10.1371/journal.pone.0089819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/26/2014] [Indexed: 01/11/2023] Open
Abstract
Gonadal hormones can modulate brain morphology and behavior. Recent studies have shown that hypogonadism could result in cortical function deficits. To this end, hormone therapy has been used to ease associated symptoms but the risk may outweigh the benefits. Here we explored whether genistein, a phytoestrogen, is effective in restoring the cognitive and central neuronal changes in late middle age and surgically estropause female rats. Both animal groups showed poorer spatial learning than young adults. The dendritic arbors and spines of the somatosensory cortical and CA1 hippocampal pyramidal neurons were revealed with intracellular dye injection and analyzed. The results showed that dendritic spines on these neurons were significantly decreased. Remarkably, genistein treatment rescued spatial learning deficits and restored the spine density on all neurons in the surgically estropause young females. In late middle age females, genistein was as effective as estradiol in restoring spines; however, the recovery was less thorough than on young OHE rats. Neither genistein nor estradiol rectified the shortened dendritic arbors of the aging cortical pyramidal neurons suggesting that dendritic arbors and spines are differently modulated. Thus, genistein could work at central level to restore excitatory connectivity and appears to be potent alternative to estradiol for easing aging and menopausal syndromes.
Collapse
Affiliation(s)
- Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Wen-Jay Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
18
|
Pettorossi VE, Di Mauro M, Scarduzio M, Panichi R, Tozzi A, Calabresi P, Grassi S. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats. Physiol Rep 2013; 1:e00185. [PMID: 24744863 PMCID: PMC3970743 DOI: 10.1002/phy2.185] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/16/2023] Open
Abstract
Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long‐term depression (LTD) and depotentiation (DP) by low‐frequency stimulation (LFS) and long‐term potentiation (LTP) by high‐frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS‐dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N‐methyl‐d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired‐pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity‐dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively. This study shows a crucial and opposite role of estrogenic and androgenic neurosteroids in guiding the direction of synaptic plasticity in the hippocampus CA1 region of male rat, through activation of their specific receptors. In fact, by using selective antagonists for estrogen receptors (ICI 182,730) or androgen receptors (flutamide), we show that long‐term potentiation (LTP) induced by high‐frequency stimulation (HFS) depends on estrogenic signals, while long‐term depression (LTD) and depotentiation induced by low‐frequency stimulation (LFS) require activation of androgenic pathway. We suggest that different stimulation frequencies may lead to LTD or LTP depending on activation of specific neurosteroid pathway.
Collapse
Affiliation(s)
- Vito Enrico Pettorossi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| | - Michela Di Mauro
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| | - Mariangela Scarduzio
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| | - Roberto Panichi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| | - Alessandro Tozzi
- Clinica Neurologica, Ospedale S. Maria della Misericordia, Università di Perugia, Perugia, 06156, Italy ; Fondazione Santa Lucia, I.R.C.C.S, Roma, 00143, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Ospedale S. Maria della Misericordia, Università di Perugia, Perugia, 06156, Italy ; Fondazione Santa Lucia, I.R.C.C.S, Roma, 00143, Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| |
Collapse
|
19
|
Influence of acute tryptophan depletion on verbal declarative episodic memory in young adult females. Amino Acids 2013; 45:1207-19. [DOI: 10.1007/s00726-013-1582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
|
20
|
Mott NN, Pak TR. Estrogen signaling and the aging brain: context-dependent considerations for postmenopausal hormone therapy. ISRN ENDOCRINOLOGY 2013; 2013:814690. [PMID: 23936665 PMCID: PMC3725729 DOI: 10.1155/2013/814690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/21/2013] [Indexed: 02/08/2023]
Abstract
Recent clinical studies have spurred rigorous debate about the benefits of hormone therapy (HT) for postmenopausal women. Controversy first emerged based on a sharp increase in the risk of cardiovascular disease in participants of the Women's Health Initiative (WHI) studies, suggesting that decades of empirical research in animal models was not necessarily applicable to humans. However, a reexamination of the data from the WHI studies suggests that the timing of HT might be a critical factor and that advanced age and/or length of estrogen deprivation might alter the body's ability to respond to estrogens. Dichotomous estrogenic effects are mediated primarily by the actions of two high-affinity estrogen receptors alpha and beta (ER α & ER β ). The expression of the ERs can be overlapping or distinct, dependent upon brain region, sex, age, and exposure to hormone, and, during the time of menopause, there may be changes in receptor expression profiles, post-translational modifications, and protein:protein interactions that could lead to a completely different environment for E2 to exert its effects. In this review, factors affecting estrogen-signaling processes will be discussed with particular attention paid to the expression and transcriptional actions of ER β in brain regions that regulate cognition and affect.
Collapse
Affiliation(s)
- Natasha N. Mott
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Avenue, Maywood, IL 60153, USA
| | - Toni R. Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
21
|
Wang H, Meyer K, Korz V. Stress induced hippocampal mineralocorticoid and estrogen receptor β gene expression and long-term potentiation in male adult rats is sensitive to early-life stress experience. Psychoneuroendocrinology 2013; 38:250-62. [PMID: 22776422 DOI: 10.1016/j.psyneuen.2012.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/06/2023]
Abstract
Glucocorticoid hormones and their receptors have been identified to be involved in emotional and cognitive disorders in early stressed subjects during adulthood. However, the impact of other steroid hormones and receptors has been considered less. Especially, functional roles of estrogen and estrogen receptors in male subjects are largely unknown. Therefore, we measured hippocampal concentrations of 17β-estradiol, corticosterone and testosterone, as well as the gene expression of estrogen receptor α and β (ERα, β), androgen receptor (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors after stress in adulthood in maternally separated (MS+; at postnatal days 14-16 for 6h each day) and control (MS-) male rats. In vivo hippocampal long-term potentiation (LTP) serves as a cellular model of learning and memory formation. Population spike- (PSA) and the fEPSP-LTP within the dentate gyrus (DG) were reinforced by elevated-platform-stress (EP-stress) in MS- but not in MS+ rats. MR- and ERβ-mRNA were upregulated 1h after EP-stress in MS- but not in MS+ rats as compared to non-stressed littermates. Infusion of an MR antagonist before LTP induction blocked early- and late-PSA- and -fEPSP-LTP, whereas blockade of ERβ impaired only the late PSA-LTP. Application of a DNA methyltransferase (DNMT) inhibitor partly restored the LTP-reinforcement in MS+ rats, accompanied by a retrieval of ERβ- but not MR-mRNA upregulation. Basal ERβ gene promoter methylation was similar between groups, whereas MS+ and MS- rats showed different methylation patterns across CpG sites after EP-stress. These findings indicate a key role of ERβ in early-stress mediated emotionality and emotion-induced late-LTP in adult male rats via DNA methylation mechanisms.
Collapse
Affiliation(s)
- Han Wang
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany
| | | | | |
Collapse
|
22
|
Meyer K, Korz V. Age dependent differences in the regulation of hippocampal steroid hormones and receptor genes: relations to motivation and cognition in male rats. Horm Behav 2013; 63:376-84. [PMID: 23238103 DOI: 10.1016/j.yhbeh.2012.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 11/16/2022]
Abstract
Estrogen and estrogenic functions are age-dependently involved in the modulation of learning, memory and mood in female humans and animals. However, the investigation of estrogenic effects in males has been largely neglected. Therefore, we investigated the hippocampal gene expression of estrogen receptors α and β (ERα, β) in 8-week-old, 12-week-old and 24-week-old male rats. To control for possible interactions between the expression of the estrogen receptor genes and other learning-related steroid receptors, androgen receptors (AR), corticosterone-binding glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) were also measured. Furthermore, the concentrations of the ligands 17β-estradiol, testosterone and corticosterone were measured. The spatial training was conducted in a hole-board. The 8-week-old rats exhibited higher levels of general activity and exploration during the training and performed best with respect to spatial learning and memory, whereas no difference was found between the 12-week-old and 24-week-old rats. The trained 8-week-old rats exhibited increased gene expression of ERα compared with the untrained rats in this age group as well as the trained 12-week-old and 24-week-old rats. The concentrations of estradiol and testosterone, however, were generally higher in the 24-week-old rats than in the 8-week-old and 12-week-old rats. The ERα mRNA concentrations correlated positively with behavior that indicate general learning motivation. These results suggest a specific role of ERα in the age-related differences in motivation and subsequent success in the task. Thus, estrogen and estrogenic functions may play a more prominent role in young male behavior and development than has been previously assumed.
Collapse
Affiliation(s)
- K Meyer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
23
|
Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 2012; 239:46-66. [PMID: 23276673 DOI: 10.1016/j.neuroscience.2012.12.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
Collapse
|
24
|
Fester L, Prange-Kiel J, Zhou L, Blittersdorf BV, Böhm J, Jarry H, Schumacher M, Rune GM. Estrogen-regulated synaptogenesis in the hippocampus: sexual dimorphism in vivo but not in vitro. J Steroid Biochem Mol Biol 2012; 131:24-9. [PMID: 22138012 DOI: 10.1016/j.jsbmb.2011.11.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/08/2011] [Accepted: 11/14/2011] [Indexed: 11/16/2022]
Abstract
Hippocampal neurons are capable of synthesizing estradiol de novo. Estradiol synthesis can be suppressed by aromatase inhibitors and by knock-down of steroid acute regulatory protein (StAR), whereas elevated levels of substrates of steroidogenesis enhance estradiol synthesis. In rat hippocampal cultures, the expression of estrogen receptors (ERs) and synaptic proteins, as well as synapse density, correlated positively with aromatase activity, regardless of whether the cultures originated from males or females. All effects induced by the inhibition of aromatase activity were rescued by application of estradiol to the cultures. In vivo, however, systemic application of letrozole, an aromatase inhibitor, induced synapse loss in female rats, but not in males. Furthermore, in the female hippocampus, density of spines and spine synapses varied with the estrus cycle. In addressing this in vivo-in vitro discrepancy, we found that gonadotropin-releasing hormone (GnRH) regulated estradiol synthesis via an aromatase-mediated mechanism and consistently regulated spine synapse density and the expression of synaptic proteins. Along these lines, GnRH receptor density was higher in the hippocampus than in the cortex and hypothalamus, and estrus cyclicity of spinogenesis was found in the hippocampus, but not in the cortex. Since GnRH receptor expression also varies with the estrus cycle, the sexual dimorphism in estrogen-regulated spine synapse density in the hippocampus very likely results from differences in the GnRH responsiveness of the male and the female hippocampus. This article is part of a Special Issue entitled 'Neurosteroids'.
Collapse
Affiliation(s)
- Lars Fester
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xiao X, Yang Y, Zhang Y, Zhang XM, Zhao ZQ, Zhang YQ. Estrogen in the Anterior Cingulate Cortex Contributes to Pain-Related Aversion. Cereb Cortex 2012; 23:2190-203. [DOI: 10.1093/cercor/bhs201] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Characterization of the "sporadically lurking HAP1-immunoreactive (SLH) cells" in the hippocampus, with special reference to the expression of steroid receptors, GABA, and progenitor cell markers. Neuroscience 2012; 210:67-81. [PMID: 22421101 DOI: 10.1016/j.neuroscience.2012.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/29/2012] [Accepted: 02/14/2012] [Indexed: 02/02/2023]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neural huntingtin interactor that is widely expressed as a core molecule of the stigmoid body (a neurocytoplasmic inclusion) in the limbic and hypothalamic regions and has putative protective functions against some neurodegenerative diseases (HAP1 protection hypothesis). Although HAP1 has been reported to be intimately associated with several steroid receptors, HAP1-immunoreactive (HAP1-ir) cells remain to be identified in the hippocampus, which is one of the major steroidal targets. In this study, we determined the distribution of hippocampal HAP1-ir cells in light and fluorescence microscopy and characterized their morphological relationships with steroid receptors, markers of adult neurogenesis, and the GABAergic system in adult male and female Wistar rats. HAP1-ir cells, which were sporadically distributed particularly in the subgranular zone (SGZ) of the dentate gyrus and in the interface between the stratum lacunosum-moleculare and stratum radiatum of Ammon's horn, were identified as the "sporadically lurking HAP1-ir (SLH)" cells. The SLH cells showed no clear association with neural progenitor/proliferating or migrating cell markers of adult neurogenesis, such as Ki-67, proliferating cell nuclear antigen, doublecortin, and glial fibrillary acidic protein in the SGZ, whereas all the SLH cells expressed a neuronal specific nuclear protein (NeuN). More than 90% of the SLH cells expressed nuclear estrogen receptor (ER) α but neither ERβ nor the androgen receptor, whereas glucocorticoid receptor was differently stained in the SLH cells depending on the antibodies. More than 60% of them exhibited GABA immunoreactivity in the SGZ, suggestive of basket cells, but they were distinct from the ones expressing cholecystokinin or parvalbumin. We conclude that SLH cells, which should be stable against apoptosis due to putative HAP1 protectivity, might be involved in estrogen-dependent maturation, remodeling and activation of hippocampal memory and learning functions via ERα and partly through GABAergic regulation.
Collapse
|
27
|
Bali N, Arimoto JM, Iwata N, Lin SW, Zhao L, Brinton RD, Morgan TE, Finch CE. Differential responses of progesterone receptor membrane component-1 (Pgrmc1) and the classical progesterone receptor (Pgr) to 17β-estradiol and progesterone in hippocampal subregions that support synaptic remodeling and neurogenesis. Endocrinology 2012; 153:759-69. [PMID: 22147012 PMCID: PMC3275384 DOI: 10.1210/en.2011-1699] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Progesterone (P4) and estradiol (E2) modulate neurogenesis and synaptic remodeling in the hippocampus during the rat estrous cycle and in response to deafferenting lesions, but little is known about the steroidal regulation of hippocampal progesterone receptors associated with these processes. We examined the neuronal expression of progesterone receptor membrane component-1 (Pgrmc1) and the classical progesterone receptor (Pgr), by in situ hybridization and immunohistochemistry. Pgr, a transcription factor, has been associated with synaptic remodeling and other major actions of P4, whereas Pgrmc1 is implicated in P4-dependent proliferation of adult neuroprogenitor cells and with rapid P4 effects on membranes. Ovariectomized adult rats were given E2, P4, or E2+P4 on two schedules: a 4-d model of the rodent estrous cycle and a 30-d model of postmenopausal hormone therapy. Pgr was hormonally responsive only in CA1 pyramidal neurons, and the induction of Pgr by E2 was partly antagonized by P4 only on the 30-d schedule. In CA3 pyramidal and dentate gyrus (DG) neurons, Pgr was largely unresponsive to all hormone treatments. In contrast to Pgr, Pgrmc1 was generally induced by E2 and/or P4 throughout the hippocampus in CA1, CA3, and DG neurons. In neuroprogenitor cells of the DG (immunopositive for bromodeoxyuridine and doublecortin), both Pgrmc1 and Pgr were detected. The differential regulation of hippocampal Pgrmc1 and Pgr by E2 and P4 may guide drug development in hormonal therapy for support of neurogenesis and synaptic regeneration.
Collapse
Affiliation(s)
- Namrata Bali
- University of Southern California Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089-0191, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
17β-Oestradiol (E(2)) is an important hormone signal that regulates multiple tissues and functions in the body. This review focuses on the neuroprotective actions of E(2) in the brain against cerebral ischaemia and the potential underlying mechanisms. A particular focus of the review will be on the role of E(2) to attenuate NADPH oxidase activation, superoxide and reactive oxygen species generation and reduce oxidative stress in the ischaemic brain as a potentially key neuroprotective mechanism. Evidence of a potential novel role of extranuclear oestrogen receptors in mediating E(2) signalling and neuroprotective actions is also discussed. An additional subject is the growing evidence indicating that periods of long-term oestrogen deprivation, such as those occurring after menopause or surgical menopause, may lead to loss or attenuation of E(2) signalling and neuroprotective actions in the brain, as well as enhanced sensitivity of the hippocampus to ischaemic stress damage. These findings have important implications with respect to the 'critical period hypothesis', which proposes that oestrogen replacement must be initiated at peri-menopause in humans to exert its beneficial cardiovascular and neural effects. The insights gained from these various studies will prove valuable for guiding future directions in the field.
Collapse
Affiliation(s)
- Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Corresponding author: Dr. Darrell W. Brann, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| | - Limor Raz
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
| | - Ruimin Wang
- Hebei United University, Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio TX 78229
| | - Quanguang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Co-Corresponding author: Dr. Quanguang Zhang, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| |
Collapse
|
29
|
Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33:85-104. [PMID: 22079780 PMCID: PMC3288697 DOI: 10.1016/j.yfrne.2011.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (estradiol or E2) is implicated as a neuroprotective factor in a variety of neurodegenerative disorders. This review focuses on the mechanisms underlying E2 neuroprotection in cerebral ischemia, as well as emerging evidence from basic science and clinical studies, which suggests that there is a "critical period" for estradiol's beneficial effect in the brain. Potential mechanisms underlying the critical period are discussed, as are the neurological consequences of long-term E2 deprivation (LTED) in animals and in humans after natural menopause or surgical menopause. We also summarize the major clinical trials concerning postmenopausal hormone therapy (HT), comparing their outcomes with respect to cardiovascular and neurological disease and discussing their relevance to the critical period hypothesis. Finally, potential caveats, controversies and future directions for the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Erin Scott
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
30
|
Fester L, Prange-Kiel J, Jarry H, Rune GM. Estrogen synthesis in the hippocampus. Cell Tissue Res 2011; 345:285-94. [DOI: 10.1007/s00441-011-1221-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/17/2011] [Indexed: 12/31/2022]
|
31
|
Grassi S, Tozzi A, Costa C, Tantucci M, Colcelli E, Scarduzio M, Calabresi P, Pettorossi VE. Neural 17β-estradiol facilitates long-term potentiation in the hippocampal CA1 region. Neuroscience 2011; 192:67-73. [PMID: 21749911 DOI: 10.1016/j.neuroscience.2011.06.078] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
In the hippocampal formation many neuromodulators are possibly implied in the synaptic plasticity such as the long-term potentiation (LTP) induced by high-frequency stimulation (HFS) of afferent fibers. We investigated the involvement of locally synthesized neural 17β-estradiol (nE(2)) in the induction of HFS-LTP in hippocampal slices from male rats by stimulating the Schaffer collateral fibers and recording the evoked field excitatory postsynaptic potential (fEPSP) in the CA1 region. We demonstrated that either the blockade of nE(2) synthesis by the aromatase inhibitor letrozole, or the antagonism of E(2) receptors (ERs) by ICI 182,780 did not prevent the induction of HFS-LTP, but reduced its amplitude by ∼60%, without influencing its maintenance. Moreover, letrozole and ICI 182,780 did not affect the first short-term post-tetanic component of LTP and the paired-pulse facilitation (PPF). These findings demonstrate that nE(2) plays an important role in the induction phase of HFS-dependent LTP. Since the basal responses were not affected by the blocking agents, we suggest that the synthesis of nE(2) is induced or enhanced by HFS through aromatase activation. In this context, the local production of nE(2) seems to be a very effective mechanism to modulate the amplitude of LTP.
Collapse
Affiliation(s)
- S Grassi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Via del Giochetto, I-06126 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Underlying mechanisms mediating the antidepressant effects of estrogens. Biochim Biophys Acta Gen Subj 2010; 1800:1136-44. [DOI: 10.1016/j.bbagen.2009.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/14/2009] [Accepted: 11/02/2009] [Indexed: 12/12/2022]
|
33
|
Yang LC, Zhang QG, Zhou CF, Yang F, Zhang YD, Wang RM, Brann DW. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS One 2010; 5:e9851. [PMID: 20479872 PMCID: PMC2866326 DOI: 10.1371/journal.pone.0009851] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/04/2010] [Indexed: 11/26/2022] Open
Abstract
Background 17β-estradiol (E2) has been implicated to exert neuroprotective effects in the brain following cerebral ischemia. Classically, E2 is thought to exert its effects via genomic signaling mediated by interaction with nuclear estrogen receptors. However, the role and contribution of extranuclear estrogen receptors (ER) is unclear and was the subject of the current study. Methodology/Principal Findings To accomplish this goal, we employed two E2 conjugates (E2 dendrimer, EDC, and E2-BSA) that can interact with extranuclear ER and exert rapid nongenomic signaling, but lack the ability to interact with nuclear ER due to their inability to enter the nucleus. EDC or E2-BSA (10 µM) was injected icv 60 min prior to global cerebral ischemia (GCI). FITC-tagged EDC or E2-BSA revealed high uptake in the hippocampal CA1 region after icv injection, with a membrane (extranuclear) localization pattern in cells. Both EDC and E2-BSA exerted robust neuroprotection in the CA1 against GCI, and the effect was blocked by the ER antagonist, ICI182,780. EDC and E2-BSA both rapidly enhanced activation of the prosurvival kinases, ERK and Akt, while attenuating activation of the proapoptotic kinase, JNK following GCI, effects that were blocked by ICI182,780. Administration of an MEK or PI3K inhibitor blocked the neuroprotective effects of EDC and E2-BSA. Further studies showed that EDC increased p-CREB and BDNF in the CA1 region in an ERK- and Akt-dependent manner, and that cognitive outcome after GCI was preserved by EDC in an ER-dependent manner. Conclusions/Significance In conclusion, the current study demonstrates that activation of extranuclear ER results in induction of ERK-Akt-CREB-BDNF signaling in the hippocampal CA1 region, which significantly reduces ischemic neuronal injury and preserves cognitive function following GCI. The study adds to a growing literature that suggests that extranuclear ER can have important actions in the brain.
Collapse
Affiliation(s)
- Li-cai Yang
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
| | - Quan-Guang Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Cai-feng Zhou
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
| | - Fang Yang
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
| | - Yi-dong Zhang
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
| | - Rui-min Wang
- Experimental and Research Center, North China Coal Medical University, Tangshan, Hebei, People's Republic of China
- * E-mail: (RMW); (DWB)
| | - Darrell W. Brann
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail: (RMW); (DWB)
| |
Collapse
|
34
|
Barker JM, Galea LAM. Males show stronger contextual fear conditioning than females after context pre-exposure. Physiol Behav 2010; 99:82-90. [PMID: 19879284 DOI: 10.1016/j.physbeh.2009.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/17/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Estradiol affects the structure and function of the hippocampus. We have found that repeated estradiol affects neurogenesis and cell death in the hippocampus of adult female, but not male rats. In the present study we sought to determine whether using the same regimen of estradiol would influence hippocampus-dependent behaviour. Adult male and female rats were given estradiol or sesame oil for 15 days, and then tested using a contextual pre-exposure paradigm in which performance depends on the hippocampus. The time spent freezing displayed by rats was scored on subsequent days in (1) the training context, (2) a novel context in which rats had never been shocked, and (3) the training context a second time. Irrespective of treatment, males showed stronger memory for the context by exhibiting greater freezing in both the training context exposures and the novel context. Previous estradiol treatment, in either sex, did not affect the ability to learn and retain information about the training context. However, female rats treated with estradiol and exposed to a novel context after fear conditioning exhibited less freezing behaviour than controls. Taken together, our results demonstrate that gonadectomized male rats outperform females, regardless of previous treatment with estradiol, on a hippocampus-contextual fear conditioning test, and that previous estradiol treatment has a subtle effect on performance in female but not male rats.
Collapse
Affiliation(s)
- Jennifer M Barker
- Graduate Program in Neuroscience, Brain Research Centre, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
35
|
Snyder MA, Smejkalova T, Forlano PM, Woolley CS. Multiple ERbeta antisera label in ERbeta knockout and null mouse tissues. J Neurosci Methods 2010; 188:226-34. [PMID: 20170675 DOI: 10.1016/j.jneumeth.2010.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/27/2022]
Abstract
In the process of characterizing a custom-made affinity-purified antiserum for estrogen receptor beta (ERbeta), ck5912, we used a number of common tests for specificity of ck5912 along with that of 8 commercially available ERbeta antisera: Affinity Bioreagents PA1-310B, Invitrogen D7N, Upstate 06-629, Santa Cruz H150, Y19, L20, 1531, and Abcam 9.88. We tested their recognition of recombinant ERbeta (rERbeta) versus rERalpha, ERbeta versus ERalpha transfected into cell lines, as well as labeling in wildtype (WT) versus estrogen receptor beta knockout (betaERKO) and null (ERbeta(ST)(L-/L-)) mouse ovary, hypothalamus, and hippocampus. To our surprise, we found that while most of these antisera passed some tests, giving the initial impression of specificity, western blot analysis showed that all of them recognized apparently identical protein bands in WT, betaERKO and ERbeta(ST)(L-/L-) tissues. We share these results with the goal of helping other researchers avoid pitfalls in interpretation that could come from use of these ERbeta antisera.
Collapse
Affiliation(s)
- Melissa A Snyder
- Department of Neurobiology and Physiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
36
|
Riedemann T, Patchev AV, Cho K, Almeida OFX. Corticosteroids: way upstream. Mol Brain 2010; 3:2. [PMID: 20180948 PMCID: PMC2841592 DOI: 10.1186/1756-6606-3-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/11/2010] [Indexed: 01/20/2023] Open
Abstract
Studies into the mechanisms of corticosteroid action continue to be a rich bed of research, spanning the fields of neuroscience and endocrinology through to immunology and metabolism. However, the vast literature generated, in particular with respect to corticosteroid actions in the brain, tends to be contentious, with some aspects suffering from loose definitions, poorly-defined models, and appropriate dissection kits. Here, rather than presenting a comprehensive review of the subject, we aim to present a critique of key concepts that have emerged over the years so as to stimulate new thoughts in the field by identifying apparent shortcomings. This article will draw on experience and knowledge derived from studies of the neural actions of other steroid hormones, in particular estrogens, not only because there are many parallels but also because 'learning from differences' can be a fruitful approach. The core purpose of this review is to consider the mechanisms through which corticosteroids might act rapidly to alter neural signaling.
Collapse
Affiliation(s)
- Therese Riedemann
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Alexandre V Patchev
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Osborne FX Almeida
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
| |
Collapse
|
37
|
Chamniansawat S, Chongthammakun S. Genomic and non-genomic actions of estrogen on synaptic plasticity in SH-SY5Y cells. Neurosci Lett 2009; 470:49-54. [PMID: 20036314 DOI: 10.1016/j.neulet.2009.12.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/21/2009] [Accepted: 12/18/2009] [Indexed: 01/10/2023]
Abstract
Estrogen modulates synaptic plasticity, an important mechanism of memory storage. Previously, we have reported that estrogen rapidly increases the expression of Arc (activity-regulated cytoskeleton associated protein), a key protein for synaptic plasticity, via non-genomic phosphoinositide-3 kinase (PI-3K)-, mitogen-activated protein kinase (MAPK)-, and estrogen receptor (ER)-dependent pathways in SH-SY5Y cells. The present study aimed to investigate the role of each ER subtype, alpha and beta, in synaptic plasticity in SH-SY5Y cells. The specific agonist of ER beta (DPN) markedly induced Arc expression that mimics treatment with estrogen, but not ER alpha (PTT). Determination of subcellular localization of ER beta using immunocytochemistry shows that ER beta was retained in the cytoplasm of the untreated cells. In estrogen-treated cells, the membrane and cytosolic ER beta gradually decreased, while nuclear ER beta progressively increased in time-dependent manner, suggesting estrogen-dependent nuclear translocation of ER beta. Nuclear accumulation of ER beta at 6-12h post-estrogen treatment, leads to increased PSD-95 and SYP mRNA expression, indicating the classical genomic estrogenic action on synaptic plasticity. However, the block of PI-3K signaling by Wortmannin partially suppressed estrogen (48 h)-induced PSD-95 and SYP expression, suggesting a crosstalk mechanism between genomic and non-genomic actions of estrogen on synaptic plasticity. Therefore, the estrogen-enhanced synaptic plasticity is ER beta-dependent and involves the crosstalk mechanism of non-genomic and genomic estrogenic actions.
Collapse
Affiliation(s)
- Siriporn Chamniansawat
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | |
Collapse
|
38
|
Fester L, Zhou L, Voets C, Ossig C, Disteldorf E, Bläute F, Prange-Kiel J, Dudzinski D, Jarry H, Rune GM, Rune GM. The opposing roles of estradiol on synaptic protein expression in hippocampal cultures. Psychoneuroendocrinology 2009; 34 Suppl 1:S123-9. [PMID: 19781860 DOI: 10.1016/j.psyneuen.2009.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/13/2009] [Accepted: 08/22/2009] [Indexed: 11/29/2022]
Abstract
Estrogen-induced synaptic plasticity was frequently shown by an increase of spines at apical dendrites of CA1 pyramidal neurons after systemic application of estradiol to ovariectomized rats. Surprisingly, exogenous application of estradiol to hippocampal cultures had no effect on spines and on spine synapses, although quantitative immunohistochemistry revealed an upregulation of spinophilin and of synaptophysin, in these cultures. The role of synaptophysin as a presynaptic marker and of spinophilin as a postsynaptic marker, appears questionable from these discrepancies. In contrast, synaptopodin, a marker protein of "mature" mushroom-shaped spines, was downregulated after treatment of hippocampal cultures with estradiol. Synaptopodin is strongly associated to the spine apparatus, a spine-specific cell organelle, which is present in 80% of all mushroom-shaped spines. Consistently, we found a reduction in the number of spines, containing a spine apparatus in response to estradiol, suggesting that the presence of a spine apparatus in many but not all spines is very likely a result of their dynamic character. In summary, synaptic proteins appear to be regulated by estradiol, independent of its function on spine and spine synapse formation.
Collapse
Affiliation(s)
- Lars Fester
- Institute of Anatomy I: Cellular Neurobiology, University Medical Center, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Barker JM, Galea LAM. Sex and regional differences in estradiol content in the prefrontal cortex, amygdala and hippocampus of adult male and female rats. Gen Comp Endocrinol 2009; 164:77-84. [PMID: 19457436 DOI: 10.1016/j.ygcen.2009.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/09/2009] [Accepted: 05/12/2009] [Indexed: 12/11/2022]
Abstract
In general, the behavioral and neural effects of estradiol administration to males and females differ. While much attention has been paid to the potential structural, cellular and sub-cellular mechanisms that may underlie such differences, as of yet there has been no examination of whether the differences observed may be related to differential uptake or storage of estradiol within the brain itself. We administered estradiol benzoate to gonadectomized male and female rats, and compared the concentration of estradiol in serum and brain tissue found in these rats to those of gonadectomized, oil-treated rats and intact rats of both sexes. Long-term gonadectomy (3 weeks) reduced estradiol concentration in the male and female hippocampus, but not in the male or female amygdala or in the female prefrontal cortex. Furthermore, exogenous treatment with estradiol increased estradiol content to levels above intact animals in the amygdala, prefrontal cortex and the male hippocampus. Levels of estradiol were undetectable in the prefrontal cortex of intact males, but were detectable in all other brain regions of intact rats. Here we demonstrate (1) that serum concentrations of estradiol are not necessarily reflective of brain tissue concentrations, (2) that within the brain, there are regional differences in the effects of gonadectomy and estradiol administration, and (3) that there is less evidence for local production of estradiol in males than females, particularly in the prefrontal cortex and perhaps the hippocampus. Thus there are regional differences in estradiol concentration in the prefrontal cortex, amygdala and hippocampus that are influenced by sex and hormone status.
Collapse
Affiliation(s)
- Jennifer M Barker
- Graduate Program in Neuroscience, Brain Research Centre, Department of Psychology, University of British Columbia, British Columbia, Canada
| | | |
Collapse
|
40
|
Micevych P, Dominguez R. Membrane estradiol signaling in the brain. Front Neuroendocrinol 2009; 30:315-27. [PMID: 19416735 PMCID: PMC2720427 DOI: 10.1016/j.yfrne.2009.04.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 12/16/2022]
Abstract
While the physiology of membrane-initiated estradiol signaling in the nervous system has remained elusive, a great deal of progress has been made toward understanding the activation of cell signaling. Membrane-initiated estradiol signaling activates G proteins and their downstream cascades, but the identity of membrane receptors and the proximal signaling mechanism(s) have been more difficult to elucidate. Mounting evidence suggests that classical intracellular estrogen receptor-alpha (ERalpha) and ERbeta are trafficked to the membrane to mediate estradiol cell signaling. Moreover, an interaction of membrane ERalpha and ERbeta with metabotropic glutamate receptors has been identified that explains the pleomorphic actions of membrane-initiated estradiol signaling. This review focuses on the mechanism of actions initiated by membrane estradiol receptors and discusses the role of scaffold proteins and signaling cascades involved in the regulation of nociception, sexual receptivity and the synthesis of neuroprogesterone, an important component in the central nervous system signaling.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology and the Laboratory of Neuroendocrinology David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
41
|
Quintela T, Gonçalves I, Baltazar G, Alves CH, Saraiva MJ, Santos CRA. 17beta-estradiol induces transthyretin expression in murine choroid plexus via an oestrogen receptor dependent pathway. Cell Mol Neurobiol 2009; 29:475-83. [PMID: 19130215 PMCID: PMC11506150 DOI: 10.1007/s10571-008-9339-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
Abstract
Oestrogen protects against AD by multiple mechanisms, including the enhancement of Abeta clearance. Transthyretin (TTR) is a homotetrameric protein mainly synthesized by the liver and choroid plexus (CP) of the brain that sequesters the amyloid beta (Abeta) peptide. In this study we examined the effects of 17beta-estradiol (E2) on TTR protein and mRNA levels, in primary cultures of rat CP epithelial cells (CPEC) by Western blot and Real Time PCR, respectively. Moreover, the localization of oestrogen receptors alpha (ERalpha) and beta (ERbeta) in response to E2 treatment was analysed by confocal microscopy in these cells. The expression of TTR, ERalpha and ERbeta was also compared in the CP of castrated female mice treated with E2 to vehicle-treated animals by Real Time PCR. TTR concentration in the CSF of all these animals was measured by radioimmunoassay. E2 treatment induced TTR transcription and increased TTR protein content in CPEC. Pre-treatment with ICI 182,780 (ICI) abrogated E2-induced TTR expression suggesting that, TTR is up-regulated via an ER-dependent pathway. Confocal microscopy demonstrated extranuclear ERalpha and ERbeta localization in untreated CPEC. Upon E2 treatment, translocation of ERalpha to the nucleus occurred, while ERbeta remained in the cytosol. These data was concurrent with the up-regulation of TTR expression detected in the CP of castrated female mice subjected to E2 treatment. Our results highlight the importance of E2 on the regulation of TTR, which may participate in the oestrogen-induced decrease in Abeta levels and deposition described in the literature.
Collapse
Affiliation(s)
- T. Quintela
- Health Sciences Research Centre – CICS, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - I. Gonçalves
- Health Sciences Research Centre – CICS, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - G. Baltazar
- Health Sciences Research Centre – CICS, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C. H. Alves
- Health Sciences Research Centre – CICS, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M. J. Saraiva
- Department of Molecular Neurobiology, Institute of Molecular and Cellular Biology–IBMC, Porto and ICBAS, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - C. R. A. Santos
- Health Sciences Research Centre – CICS, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
42
|
Chen JR, Yan YT, Wang TJ, Chen LJ, Wang YJ, Tseng GF. Gonadal Hormones Modulate the Dendritic Spine Densities of Primary Cortical Pyramidal Neurons in Adult Female Rat. Cereb Cortex 2009; 19:2719-27. [DOI: 10.1093/cercor/bhp048] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
43
|
Barha CK, Lieblich SE, Galea LAM. Different forms of oestrogen rapidly upregulate cell proliferation in the dentate gyrus of adult female rats. J Neuroendocrinol 2009; 21:155-66. [PMID: 19076272 DOI: 10.1111/j.1365-2826.2008.01809.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oestrogens are known to exert significant structural and functional effects in the hippocampus of adult rodents. The dentate gyrus of the hippocampus retains the ability to produce neurones throughout adulthood and 17beta-oestradiol has been shown to influence hippocampal neurogenesis in adult female rats. The effects of other oestrogens, such as oestrone and 17alpha-oestradiol, on neurogenesis have not been investigated. The present study aimed to investigate the effects of 17beta-oestradiol, oestradiol benzoate, oestrone, and 17alpha-oestradiol on cell proliferation in ovariectomised adult female rats at two different time points. Young ovariectomised female rats were injected with one of the oestrogens at one of three doses. In Experiment 1, rats were exposed to the hormone for 4 h and, in Experiment 2, rats were exposed to the hormone for 30 min prior to 5-bromo-2-deoxyuridine injection to label proliferating cells and their progeny. We found that young ovariectomised females responded with increased cell proliferation to most oestrogens, except oestradiol benzoate, after 30 min of exposure. However, administration of oestrogens for a longer time interval was ineffective at increasing cell proliferation. After 30 min, 17beta-oestradiol and oestrone increased cell proliferation at low (0.3 microg) and high (10 microg) doses, whereas 17alpha-oestradiol increased cell proliferation at medium (1 microg) and high doses. The results of the present study indicate that different oestrogens rapidly increase cell proliferation in a dose-dependent manner, possibly through a nonclassical, nongenomic mechanism. Future experiments should focus on further elucidating the specific pathways utilised by each oestrogen. These results have important therapeutic implications because it may be possible to use 17alpha-oestradiol and lower doses of oestrogens in hormone replacement therapies.
Collapse
Affiliation(s)
- C K Barha
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
44
|
Morissette M, Le Saux M, Di Paolo T. Effect of oestrogen receptor alpha and beta agonists on brain N-methyl-D-aspartate receptors. J Neuroendocrinol 2008; 20:1006-14. [PMID: 18510708 DOI: 10.1111/j.1365-2826.2008.01754.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Previous studies have shown the oestradiol modulation of brain N-methyl-D-aspartate (NMDA) receptors composed of the NR1/2B subunits. The contribution of oestrogen receptor subtypes in this oestradiol modulation of NMDA receptors and its subunits is not known. The following experiments investigated whether an oestrogenic receptor subtype is involved in the oestradiol effect on NMDA receptor specific binding and subunit mRNA levels. Ovariectomised Sprague-Dawley rats were treated 2 days after ovariectomy for 2 weeks with 17beta-oestradiol, an agonist for oestrogen receptor (ER)alpha 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) or an agonist for ER beta 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and compared with control vehicle-treated ovariectomised and intact rats. Uterus weights, used as a peripheral measure of oestrogenic activity, decreased after ovariectomy and increased by oestradiol and PPT but not DPN treatment. In the hippocampal CA1 oriens and CA1 radiatum, [(3)H]Ro 25-6981 specific binding, a NMDA/NR2B ligand, was decreased in ovariectomised compared to intact rats and this was prevented by 17beta-oestradiol or PPT but not DPN treatments; a similar pattern was observed in the CA2/3 and dentate gyrus but did not reach statistical significance. In situ hybridisation of the mRNA of the NMDA/2B subunit in the hippocampus CA1, CA2/3 and dentate gyrus showed a decrease in ovariectomised rats compared to controls and this was also prevented by 17beta-oestradiol and PPT but not DPN treatments. In cingulate and prefrontal cortices, ovariectomy increased [(3)H]Ro 25-6981 specific binding compared to intact controls, which was corrected by 17beta-oestradiol treatment but neither by PPT, nor DPN. In the cortical regions, the lack of effect of the ER alpha or ER beta agonist whereas 17beta-oestradiol was active, suggesting that the oestradiol modulation of cortical NMDA receptors requires both ERs or that this modulation does not involve ERs. In the hippocampus, the results obtained suggest an oestrogenic genomic modulation of NMDA receptors containing the NR2B subunit, implicating an ER alpha.
Collapse
Affiliation(s)
- M Morissette
- Molecular Endocrinology and Oncology Research Center, CHUQ, CHUL Pavillon, Quebec and Faculty of Pharmacy, Laval University, Quebec, Canada
| | | | | |
Collapse
|
45
|
Activation of ERbeta increases levels of phosphorylated nNOS and NO production through a Src/PI3K/Akt-dependent pathway in hypothalamic neurons. Neuropharmacology 2008; 55:878-85. [PMID: 18652836 DOI: 10.1016/j.neuropharm.2008.06.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/06/2008] [Accepted: 06/26/2008] [Indexed: 11/22/2022]
Abstract
Estrogen plays a role in restoring homeostatic balance during the stress response by altering hypothalamic function and NO production in the brain. While we know that estrogen acts on the hypothalamus to stimulate the NO system through an ERbeta-dependent mechanism in neurons, the molecular mechanisms responsible for these effects are unknown. Because phosphorylation of nNOS at Ser(1412) increases nNOS activity which leads to increased NO production, we investigated the effects of ERbeta activation on nNOS phosphorylation at Ser(1412) and NO production in primary hypothalamic neurons. Using the selective ERbeta agonist, DPN (10nM), we show that activation of ERbeta rapidly increases phosphorylation levels of nNOS at Ser(1412) and NO production. We also show that the PI3K pathway, but not the MAPK pathway, mediates the increases in levels of Ser(1412) phosphorylation and NO production induced by ERbeta activation, as the selective PI3K inhibitor, LY294002 (10microM), blocked the effects of ERbeta activation. Finally, we demonstrate that Src kinase acts upstream of the PI3K/Akt pathway based on our finding that the selective Src inhibitor, PP2 (10microM), blocked the increases in nNOS phosphorylation levels, NO production, and PI3K/Akt activity induced by ERbeta activation. Together, our results show that Src kinase mediates ERbeta-induced increases in phosphorylation levels of nNOS at Ser(1412) and NO production by activating the PI3K/Akt pathway. These findings provide novel insight into the signaling mechanisms through which E2 stimulates the NO system in hypothalamic neurons.
Collapse
|
46
|
Sakuma S, Tokuhara D, Hattori H, Matsuoka O, Yamano T. Expression of estrogen receptor alpha and beta in reactive astrocytes at the male rat hippocampus after status epilepticus. Neuropathology 2008; 29:55-62. [PMID: 18627487 DOI: 10.1111/j.1440-1789.2008.00946.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Estrogen is neuroprotective against status epilepticus (SE)-induced hippocampal damage in female animals. In male animals, estrogen is converted from testosterone via aromatization the activity of which is upregulated by brain damage. However, it is controversial whether estrogen is neuroprotective or neuroinvasive against male hippocampal damage after SE. In order to understand the role of estrogen, it is important to elucidate the distribution manner of estrogen receptor (ER)alpha and beta as the targets of estrogen. In this study, we examined the time course changes of ERs in adult male rat hippocampus after SE using anti-ERalpha antibodies (MC-20 and PA1-309) and anti-ERbeta antibodies (PA1-310B and PA1-311). In control rats, both ERalpha and beta were expressed in the pyramidal cells predominantly at CA1 and CA3. ERalpha was expressed in the cytoplasm and the nucleus, whereas ERbeta was expressed in the cytoplasm of the pyramidal cells. After SE, according to the pyramidal cell loss at CA1, the number of ERalpha- and beta-immunoreactive pyramidal cells decreased up to day 21. On the other hand, reactive astrocytes, which newly appeared after SE and formed gliosis at CA1, were confirmed to express both ERs in the nucleus, cytoplasm, and process. There were no differences in immunoreactivity between antibodies. Our results indicate that endogenous estrogen affects the pyramidal cells through ERalpha and beta under normal circumstances in adult male rats, whereas the targets of estrogen shift to the reactive astrocytes through ERalpha and beta after SE.
Collapse
Affiliation(s)
- Satoru Sakuma
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | |
Collapse
|
47
|
Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS. Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol 2008; 29:219-37. [PMID: 18078984 PMCID: PMC2440702 DOI: 10.1016/j.yfrne.2007.08.006] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 08/14/2007] [Indexed: 01/06/2023]
Abstract
Estrogens have direct effects on the brain areas controlling cognition. One of the most studied of these regions is the dorsal hippocampal formation, which governs the formation of spatial and episodic memories. In laboratory animals, most investigators report that estrogen enhances synaptic plasticity and improves performance on hippocampal-dependent cognitive behaviors. This review summarizes work conducted in our laboratory and others toward identifying estrogen's actions in the hippocampal formation, and the mechanisms for these actions. Physiologic and pharmacologic estrogen affects cognitive behavior in mammals, which may be applicable to human health and disease. The effects of estrogen in the hippocampal formation that lead to modulation of hippocampal function include effects on cell morphology, synapse formation, signaling, and excitability that have been studied in laboratory mice, rats, and primates. Finally, estrogen may signal through both nuclear and extranuclear hippocampal estrogen receptors to achieve its downstream effects.
Collapse
Affiliation(s)
- Joanna L Spencer
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
48
|
Bukulmez O, Hardy DB, Carr BR, Word RA, Mendelson CR. Inflammatory status influences aromatase and steroid receptor expression in endometriosis. Endocrinology 2008; 149:1190-204. [PMID: 18048499 PMCID: PMC2275353 DOI: 10.1210/en.2007-0665] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aberrant up-regulation of aromatase in eutopic endometrium and implants from women with endometriosis has been reported. Aromatase induction may be mediated by increased cyclooxygenase-2 (COX-2). Recently, we demonstrated that progesterone receptor (PR)-A and PR-B serve an antiinflammatory role in the uterus by antagonizing nuclear factor kappaB activation and COX-2 expression. PR-C, which antagonizes PR-B, is up-regulated by inflammation. Although estrogen receptor alpha (ERalpha) is implicated in endometriosis, an antiinflammatory role of ERbeta has been suggested. We examined stage-specific expression of aromatase, COX-2, ER, and PR isoform expression in eutopic endometrium, implants, peritoneum, and endometrioma samples from endometriosis patients. Endometrial and peritoneal biopsies were obtained from unaffected women and those with fibroids. Aromatase expression in eutopic endometrium from endometriosis patients was significantly increased compared with controls. Aromatase expression in endometriosis implants was markedly increased compared with eutopic endometrium. Aromatase mRNA levels were increased significantly in red implants relative to black implants and endometrioma cyst capsule. Moreover, COX-2 expression was increased in implants and in eutopic endometrium of women with endometriosis as compared with control endometrium. As observed for aromatase mRNA, the highest levels of COX-2 mRNA were found in red implants. The ratio of ERbeta/ERalpha mRNA was significantly elevated in endometriomas compared with endometriosis implants and eutopic endometrium. Expression of PR-C mRNA relative to PR-A and PR-B mRNA was significantly increased in endometriomas compared with eutopic and control endometrium. PR-A protein was barely detectable in endometriomas. Thus, whereas PR-C may enhance disease progression, up-regulation of ERbeta may play an antiinflammatory and opposing role.
Collapse
Affiliation(s)
- Orhan Bukulmez
- Department of Obstetrics, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9032, USA
| | | | | | | | | |
Collapse
|
49
|
Galea LAM. Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. ACTA ACUST UNITED AC 2008; 57:332-41. [PMID: 17669502 DOI: 10.1016/j.brainresrev.2007.05.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 02/08/2023]
Abstract
Gonadal hormones modulate neurogenesis in the dentate gyrus differentially in male and female adult rodents. Neurogenesis is comprised of at least two components: cell proliferation (the production of new cells) and cell survival (the number of new neurons that survive to maturity). Previous studies have found sex differences in the level of cell proliferation in the dentate gyrus only when comparing females in a high estrogen state to males. This review focuses on the effects of acute and chronic levels of estrogens or androgens on hippocampal neurogenesis in the adult male and female rodent. Evidence is also reviewed for the co-localization of androgen receptors and estrogen receptors (ER) with markers for cell proliferation or immature new cell survival. Briefly, evidence suggests that acute estradiol initially enhances and subsequently suppresses cell proliferation in the dentate gyrus of adult female rodents but may have limited effects in male rodents. Both the two known ER subtypes, ERalpha and beta upregulate hippocampal neurogenesis via cell proliferation. Intriguingly, repeated exposure to estradiol modulates hippocampal neurogenesis and cell death in adult female, but not male, rodents. However short-term estradiol treatment (5 days) in male meadow voles enhances new cell survival in the dentate gyrus but only when administered during the 'axon extension' phase. Furthermore, evidence is also reviewed showing a difference in response to acute and chronic estradiol treatment in older female rats compared to younger female rats. Recent findings from our laboratory indicate that testosterone and dihydrotestosterone upregulate hippocampal neurogenesis (via cell survival), but not cell proliferation, in adult male rodents. Effects of endogenous fluctuations in gonadal hormones on adult neurogenesis are observed across the seasons in meadow voles and during pregnancy and lactation in the rat dam. Pregnancy and motherhood differentially regulate adult hippocampal neurogenesis in the adult female rodent, with primiparous rats displaying lower levels of hippocampal cell proliferation and survival after parturition. Few studies have compared males and females but existing research suggests a sex difference in the hormonal regulation of hippocampal neurogenesis in the adult. Clearly more work is needed to elucidate the effects of gonadal hormones on neurogenesis in the dentate gyrus of both male and female rodents across the lifespan, especially if we are to use our knowledge of how adult neurogenesis is regulated to develop strategies to repair neuron loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Liisa A M Galea
- Program in Neuroscience, Department of Psychology and Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
50
|
Sheldahl LC, Shapiro RA, Bryant DN, Koerner IP, Dorsa DM. Estrogen induces rapid translocation of estrogen receptor beta, but not estrogen receptor alpha, to the neuronal plasma membrane. Neuroscience 2008; 153:751-61. [PMID: 18406537 DOI: 10.1016/j.neuroscience.2008.02.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/28/2008] [Accepted: 02/03/2008] [Indexed: 10/22/2022]
Abstract
Estrogen receptors can activate transcription in the nucleus, and activate rapid signal transduction cascades in the cytosol. Multiple reports identify estrogen receptors at the plasma membrane, while others document the dynamic responses of estrogen receptor to ligand binding. However, the function and identity of membrane estrogen receptors remain controversial. We have used confocal microscopy and cell fractionation on the murine hippocampus-derived HT22 cell line and rat primary cortical neurons transfected with estrogen receptor-green fluorescent protein constructs to address the membrane localization of these receptors. We observe translocation of estrogen receptor beta (beta) to the plasma membrane 5 min after exposure to 17beta-estradiol, whereas estrogen receptor alpha (alpha) localization remains unchanged. Membrane localization of estrogen receptor beta is transient, selective for 17beta-estradiol, and is not blocked by ICI182,780. Inhibition of the mitogen-activated protein kinase pathway does not block estrogen-mediated estrogen receptor beta membrane translocation, and in fact prolongs membrane localization. These data suggest that while both estrogen receptor alpha and estrogen receptor beta can be present at the neuronal membrane, their presence is differentially regulated.
Collapse
Affiliation(s)
- L C Sheldahl
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|