1
|
Rannap M, Ohara S, Winterstein J, Roth FC, Draguhn A, Egorov AV. Functional and structural organization of medial entorhinal cortex layer VI. iScience 2025; 28:112207. [PMID: 40235593 PMCID: PMC11999471 DOI: 10.1016/j.isci.2025.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Deep layers (V/VI) of the entorhinal cortex transfer hippocampal neuronal activity to downstream neocortical networks. In addition, neurons in layer VI (LVI) of the medial entorhinal cortex (MEC) project back to all hippocampal subregions and contribute to spatial coding and memory. Their role in the processing of hippocampal output signals and their interaction with LV neurons is, however, unknown. We show that spontaneously occurring hippocampal sharp wave-ripple complexes reliably propagate from area CA1 to MEC LVI. Using anterograde tracing and in vitro optogenetics, we confirm direct hippocampal projections to LVI and show that these follow a parallel dorsoventral topography. Further investigation of the MEC deep layer network revealed very sparse excitatory connections between LVI and LVb or LVI and LVa neurons in both directions. Together, our results establish organizational principles for the hippocampal-MEC LVI output circuit and suggest largely parallel signal processing through different cellular subpopulations in MEC deep layers.
Collapse
Affiliation(s)
- Märt Rannap
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Shinya Ohara
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
| | - Janis Winterstein
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian C. Roth
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexei V. Egorov
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Butola T, Hernández-Frausto M, Blankvoort S, Flatset MS, Peng L, Hairston A, Johnson CD, Elmaleh M, Amilcar A, Hussain F, Clopath C, Kentros C, Basu J. Hippocampus shapes entorhinal cortical output through a direct feedback circuit. Nat Neurosci 2025; 28:811-822. [PMID: 39966537 DOI: 10.1038/s41593-025-01883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/16/2025] [Indexed: 02/20/2025]
Abstract
Our brains integrate sensory, cognitive and internal state information with memories to extract behavioral relevance. Cortico-hippocampal interactions likely mediate this interplay, but underlying circuit mechanisms remain elusive. Unlike the entorhinal cortex-to-hippocampus pathway, we know little about the organization and function of the hippocampus-to-cortex feedback circuit. Here we report in mice, two functionally distinct parallel hippocampus-to-entorhinal cortex feedback pathways: the canonical disynaptic route via layer 5 and a novel monosynaptic input to layer 2/3. Circuit mapping reveals that hippocampal input predominantly drives excitation in layer 5 but feed-forward inhibition in layer 2/3. Upon repetitive pairing with cortical layer 1 inputs, hippocampal inputs undergo homosynaptic potentiation in layer 5, but induce heterosynaptic plasticity and spike output in layer 2/3. Behaviorally, hippocampal inputs to layer 5 and layer 2/3 support object memory encoding versus recall, respectively. Two-photon imaging during navigation reveals hippocampal suppression reduces spatially tuned cortical axonal activity. We present a model, where hippocampal feedback could iteratively shape ongoing cortical processing.
Collapse
Affiliation(s)
- Tanvi Butola
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | | | - Stefan Blankvoort
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcus Sandbukt Flatset
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lulu Peng
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Ariel Hairston
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Cara Deanna Johnson
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Margot Elmaleh
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Amanda Amilcar
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Fabliha Hussain
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK
| | - Clifford Kentros
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York City, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York City, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
3
|
Amakhin DV, Sinyak DS, Soboleva EB, Zaitsev AV. HCN channels promote Na/K-ATPase activity during slow afterhyperpolarization after seizure-like events in vitro. J Physiol 2025; 603:1197-1223. [PMID: 39918972 DOI: 10.1113/jp286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are strongly involved in the regulation of neuronal excitability, with their precise role being determined by their subcellular localization and interaction with other ion channels and transporters. Their role in causing epileptic seizures is not fully understood. Using whole-cell patch-clamp recordings of rat brain slices, we show that HCN channels constitute a substantial fraction of the membrane conductance of deep entorhinal principal neurons. Using the 4-aminopyridine model of epileptic seizures in vitro, we show that HCN channel blockade with ZD-7288 increases the frequency of seizure-like events (SLEs) and alters the time course of afterhyperpolarization after SLEs (post-SLE AHP), promoting its faster onset and making it more transient. Simultaneous whole-cell patch-clamp and K+ ion-selective electrode recordings revealed that the time course of changes in neuronal membrane potential and extracellular K+ concentration after SLEs in the presence of ZD-7288 differed from that in the control, which can be explained by altered Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium pump)] activity after SLEs. To confirm this hypothesis, we demonstrated the ouabain sensitivity of post-SLE AHP and showed that loading neurons with high intracellular Na+ concentration prevented the effect of HCN channel blockade on post-SLE AHP. Taken together, the results obtained suggest that during post-SLE AHP, the influx of Na+ through HCN channels helps to maintain Na/K-ATPase hyperactivity, resulting in the longer pauses between SLEs. Mathematical modelling confirmed the feasibility of the proposed mechanism. Such an interplay between Na/K-ATPase and HCN channels may be crucial for the regulation of seizure termination in epilepsy. KEY POINTS: HCN channels constitute a significant fraction of the resting membrane conductance of deep entorhinal principal neurons. HCN channels modulate the seizure-like events (SLEs) in the entorhinal cortex. The blockade of HCN channels increases the frequency of SLEs and reduces the duration of the afterhyperpolarization that follows them. The results suggest that HCN channels affect intracellular sodium ion concentration dynamics, prolonging the activity of the Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium) pump] after SLEs, which in turn results in longer pauses between them.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Denis S Sinyak
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| |
Collapse
|
4
|
Reznik D, Margulies DS, Witter MP, Doeller CF. Evidence for convergence of distributed cortical processing in band-like functional zones in human entorhinal cortex. Curr Biol 2024; 34:5457-5469.e2. [PMID: 39488200 DOI: 10.1016/j.cub.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown. In this study, we used precision neuroimaging to examine the distributed cortical anatomy associated with the human hippocampal-entorhinal system. Consistent with animal anatomy, our results associate different subregions of the entorhinal cortex with different parts of the hippocampus long axis. Furthermore, we find that the entorhinal cortex comprises three band-like zones that are associated with functionally distinct cortical networks. Importantly, the entorhinal cortex bands traverse the proposed human homologs of rodent lateral and medial entorhinal cortices. Finally, we show that the entorhinal cortex is a major convergence area of distributed cortical processing and that the topography of cortical networks associated with the anterior medial temporal lobe mirrors the macroscale structure of high-order cortical processing.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75016 Paris, France; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| |
Collapse
|
5
|
Omholt SW, Lejneva R, Donate MJL, Caponio D, Fang EF, Kobro-Flatmoen A. Bnip3 expression is strongly associated with reelin-positive entorhinal cortex layer II neurons. Brain Struct Funct 2024; 229:1617-1629. [PMID: 38916724 PMCID: PMC11374853 DOI: 10.1007/s00429-024-02816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
In layer II of the entorhinal cortex, the principal neurons that project to the dentate gyrus and the CA3/2 hippocampal fields markedly express the large glycoprotein reelin (Re + ECLII neurons). In rodents, neurons located at the dorsal extreme of the EC, which border the rhinal fissure, express the highest levels, and the expression gradually decreases at levels successively further away from the rhinal fissure. Here, we test two predictions deducible from the hypothesis that reelin expression is strongly correlated with neuronal metabolic rate. Since the mitochondrial turnover rate serves as a proxy for energy expenditure, the mitophagy rate arguably also qualifies as such. Because messenger RNA of the canonical promitophagic BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) is known to be highly expressed in the EC, we predicted that Bnip3 would be upregulated in Re + ECLII neurons, and that the degree of upregulation would strongly correlate with the expression level of reelin in these neurons. We confirm both predictions, supporting that the energy requirement of Re + ECLII neurons is generally high and that there is a systematic increase in metabolic rate as one moves successively closer to the rhinal fissure. Intriguingly, the systematic variation in energy requirement of the neurons that manifest the observed reelin gradient appears to be consonant with the level of spatial and temporal detail by which they encode information about the external environment.
Collapse
Affiliation(s)
- Stig W Omholt
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Raissa Lejneva
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- K. G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Maria Jose Lagartos Donate
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
- K. G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
6
|
Chen L, Christenson Wick Z, Vetere LM, Vaughan N, Jurkowski A, Galas A, Diego KS, Philipsberg PA, Soler I, Feng Y, Cai DJ, Shuman T. Progressive Excitability Changes in the Medial Entorhinal Cortex in the 3xTg Mouse Model of Alzheimer's Disease Pathology. J Neurosci 2023; 43:7441-7454. [PMID: 37714705 PMCID: PMC10621765 DOI: 10.1523/jneurosci.1204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in hippocampus, but less is known about changes in medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at 3 and 10 months of age in the 3xTg mouse model of AD pathology, using male and female mice. At 3 months of age, before the onset of memory impairments, we found early hyperexcitability in intrinsic properties of MECII stellate and pyramidal cells, but this was balanced by a relative reduction in synaptic excitation (E) compared with inhibition (I; E/I ratio), suggesting intact homeostatic mechanisms regulating MECII activity. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable, and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsic and synaptic hyperexcitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this postsymptomatic time point, which may contribute to the emergence of memory deficits in AD.SIGNIFICANCE STATEMENT AD causes cognitive deficits, but the specific neural circuits that are damaged to drive changes in memory remain unknown. Using a mouse model of AD pathology that expresses both amyloid and tau transgenes, we found that neurons in the MEC have altered excitability. Before the onset of memory impairments, neurons in layer 2 of MEC had increased intrinsic excitability, but this was balanced by reduced inputs onto the cell. However, after the onset of memory impairments, stellate cells in MEC became further hyperexcitable, with increased excitability exacerbated by increased synaptic inputs. Thus, it appears that MEC stellate cells are uniquely disrupted during the progression of memory deficits and may contribute to cognitive deficits in AD.
Collapse
Affiliation(s)
- Lingxuan Chen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Zoé Christenson Wick
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lauren M Vetere
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nick Vaughan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Albert Jurkowski
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Hunter College, City University of New York, New York, New York 10065
| | - Angelina Galas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- New York University, New York, New York 10012
| | - Keziah S Diego
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Paul A Philipsberg
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ivan Soler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yu Feng
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tristan Shuman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
7
|
Zhu JJ. Architectural organization of ∼1,500-neuron modular minicolumnar disinhibitory circuits in healthy and Alzheimer's cortices. Cell Rep 2023; 42:112904. [PMID: 37531251 DOI: 10.1016/j.celrep.2023.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/21/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Acquisition of neuronal circuit architectures, central to understanding brain function and dysfunction, remains prohibitively challenging. Here I report the development of a simultaneous and sequential octuple-sexdecuple whole-cell patch-clamp recording system that enables architectural reconstruction of complex cortical circuits. The method unveils the canonical layer 1 single bouquet cell (SBC)-led disinhibitory neuronal circuits across the mouse somatosensory, motor, prefrontal, and medial entorhinal cortices. The ∼1,500-neuron modular circuits feature the translaminar, unidirectional, minicolumnar, and independent disinhibition and optimize cortical complexity, subtlety, plasticity, variation, and redundancy. Moreover, architectural reconstruction uncovers age-dependent deficits at SBC-disinhibited synapses in the senescence-accelerated mouse prone 8, an animal model of Alzheimer's disease. The deficits exhibit the characteristic Alzheimer's-like cortical spread and correlation with cognitive impairments. These findings decrypt operations of the elementary processing units in healthy and Alzheimer's mouse cortices and validate the efficacy of octuple-sexdecuple patch-clamp recordings for architectural reconstruction of complex neuronal circuits.
Collapse
Affiliation(s)
- J Julius Zhu
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6500 GL Nijmegen, the Netherlands; Departments of Pharmacology and Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
8
|
Butola T, Hernández Frausto M, Blankvoort S, Flatset MS, Peng L, Elmaleh M, Hairston A, Hussain F, Clopath C, Kentros C, Basu J. Hippocampus shapes cortical sensory output and novelty coding through a direct feedback circuit. RESEARCH SQUARE 2023:rs.3.rs-3270016. [PMID: 37674706 PMCID: PMC10479401 DOI: 10.21203/rs.3.rs-3270016/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
To extract behaviorally relevant information from our surroundings, our brains constantly integrate and compare incoming sensory information with those stored as memories. Cortico-hippocampal interactions could mediate such interplay between sensory processing and memory recall1-4 but this remains to be demonstrated. Recent work parsing entorhinal cortex-to-hippocampus circuitry show its role in episodic memory formation5-7 and spatial navigation8. However, the organization and function of the hippocampus-to-cortex back-projection circuit remains uncharted. We combined circuit mapping, physiology and behavior with optogenetic manipulations, and computational modeling to reveal how hippocampal feedback modulates cortical sensory activity and behavioral output. Here we show a new direct hippocampal projection to entorhinal cortex layer 2/3, the very layer that projects multisensory input to the hippocampus. Our finding challenges the canonical cortico-hippocampal circuit model where hippocampal feedback only reaches entorhinal cortex layer 2/3 indirectly via layer 5. This direct hippocampal input integrates with cortical sensory inputs in layer 2/3 neurons to drive their plasticity and spike output, and provides an important novelty signal during behavior for coding objects and their locations. Through the sensory-memory feedback loop, hippocampus can update real-time cortical sensory processing, efficiently and iteratively, thereby imparting the salient context for adaptive learned behaviors with new experiences.
Collapse
Affiliation(s)
- T. Butola
- Neuroscience Institute, New York University Langone Health; New York City, 10016, USA
| | - M. Hernández Frausto
- Neuroscience Institute, New York University Langone Health; New York City, 10016, USA
| | - S. Blankvoort
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology; Trondheim, Norway
| | - M. S. Flatset
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology; Trondheim, Norway
| | - L. Peng
- Neuroscience Institute, New York University Langone Health; New York City, 10016, USA
| | - M. Elmaleh
- Neuroscience Institute, New York University Langone Health; New York City, 10016, USA
| | - A. Hairston
- Neuroscience Institute, New York University Langone Health; New York City, 10016, USA
| | - F. Hussain
- Neuroscience Institute, New York University Langone Health; New York City, 10016, USA
| | - C. Clopath
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, UK
| | - C. Kentros
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology; Trondheim, Norway
- Institute of Neuroscience, University of Oregon; Eugene, United States
| | - J. Basu
- Neuroscience Institute, New York University Langone Health; New York City, 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine; New York City, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine; New York City, 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
9
|
Traub RD, Whittington MA, Cunningham MO. Simulation of oscillatory dynamics induced by an approximation of grid cell output. Rev Neurosci 2023; 34:517-532. [PMID: 36326795 PMCID: PMC10329426 DOI: 10.1515/revneuro-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/06/2022] [Indexed: 07/20/2023]
Abstract
Grid cells, in entorhinal cortex (EC) and related structures, signal animal location relative to hexagonal tilings of 2D space. A number of modeling papers have addressed the question of how grid firing behaviors emerge using (for example) ideas borrowed from dynamical systems (attractors) or from coupled oscillator theory. Here we use a different approach: instead of asking how grid behavior emerges, we take as a given the experimentally observed intracellular potentials of superficial medial EC neurons during grid firing. Employing a detailed neural circuit model modified from a lateral EC model, we then ask how the circuit responds when group of medial EC principal neurons exhibit such potentials, simultaneously with a simulated theta frequency input from the septal nuclei. The model predicts the emergence of robust theta-modulated gamma/beta oscillations, suggestive of oscillations observed in an in vitro medial EC experimental model (Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J., Davies, C.H., Jones, R.S.G., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. U S A 103: 5597-5601). Such oscillations result because feedback interneurons tightly synchronize with each other - despite the varying phases of the grid cells - and generate a robust inhibition-based rhythm. The lack of spatial specificity of the model interneurons is consistent with the lack of spatial periodicity in parvalbumin interneurons observed by Buetfering, C., Allen, K., and Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci. 17: 710-718. If in vivo EC gamma rhythms arise during exploration as our model predicts, there could be implications for interpreting disrupted spatial behavior and gamma oscillations in animal models of Alzheimer's disease and schizophrenia. Noting that experimental intracellular grid cell potentials closely resemble cortical Up states and Down states, during which fast oscillations also occur during Up states, we propose that the co-occurrence of slow principal cell depolarizations and fast network oscillations is a general property of the telencephalon, in both waking and sleep states.
Collapse
Affiliation(s)
- Roger D. Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104, USA
| | | | - Mark O. Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, University of Dublin, 152-160 Pearse St., Dublin 2, Ireland
| |
Collapse
|
10
|
Shi Y, Cui H, Li X, Chen L, Zhang C, Zhao X, Li X, Shao Q, Sun Q, Yan K, Wang G. Laminar and dorsoventral organization of layer 1 interneuronal microcircuitry in superficial layers of the medial entorhinal cortex. Cell Rep 2023; 42:112782. [PMID: 37436894 DOI: 10.1016/j.celrep.2023.112782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/03/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) participate in various brain functions by gating information flow in the neocortex, but their role in the medial entorhinal cortex (MEC) is still unknown, largely due to scant knowledge of MEC L1 microcircuitry. Using simultaneous triple-octuple whole-cell recordings and morphological reconstructions, we comprehensively depict L1IN networks in the MEC. We identify three morphologically distinct types of L1INs with characteristic electrophysiological properties. We dissect intra- and inter-laminar cell-type-specific microcircuits of L1INs, showing connectivity patterns different from those in the neocortex. Remarkably, motif analysis reveals transitive and clustered features of L1 networks, as well as over-represented trans-laminar motifs. Finally, we demonstrate the dorsoventral gradient of L1IN microcircuits, with dorsal L1 neurogliaform cells receiving fewer intra-laminar inputs but exerting more inhibition on L2 principal neurons. These results thus present a more comprehensive picture of L1IN microcircuitry, which is indispensable for deciphering the function of L1INs in the MEC.
Collapse
Affiliation(s)
- Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chen Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
11
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Chen L, Wick ZC, Vetere LM, Vaughan N, Jurkowski A, Galas A, Diego KS, Philipsberg P, Cai DJ, Shuman T. Progressive excitability changes in the medial entorhinal cortex in the 3xTg mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542838. [PMID: 37398359 PMCID: PMC10312508 DOI: 10.1101/2023.05.30.542838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in the hippocampus, but less is known about what happens in the medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured the neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at early (3 months) and late (10 months) time points in the 3xTg mouse model of AD pathology. At 3 months of age, prior to the onset of memory impairments, we found early hyperexcitability in MECII stellate and pyramidal cells' intrinsic properties, but this was balanced by a relative reduction in synaptic excitation (E) compared to inhibition (I), suggesting intact homeostatic mechanisms regulating activity in MECII. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in the synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsically and synaptically generated excitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this post-symptomatic time point. Together, these data suggest that the breakdown in homeostatic excitability mechanisms in MECII stellate cells may contribute to the emergence of memory deficits in AD.
Collapse
Affiliation(s)
- Lingxuan Chen
- Icahn School of Medicine at Mount Sinai, New York NY
- University of California Irvine, Irvine CA
| | | | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York NY
| | - Albert Jurkowski
- Icahn School of Medicine at Mount Sinai, New York NY
- CUNY Hunter College, New York NY
| | - Angelina Galas
- Icahn School of Medicine at Mount Sinai, New York NY
- New York University, New York NY
| | | | | | - Denise J. Cai
- Icahn School of Medicine at Mount Sinai, New York NY
| | | |
Collapse
|
13
|
Gao L, Liu S, Wang Y, Wu Q, Gou L, Yan J. Single-neuron analysis of dendrites and axons reveals the network organization in mouse prefrontal cortex. Nat Neurosci 2023:10.1038/s41593-023-01339-y. [PMID: 37217724 DOI: 10.1038/s41593-023-01339-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
The structures of dendrites and axons form the basis for the connectivity of neural network, but their precise relationship at single-neuron level remains unclear. Here we report the complete dendrite and axon morphology of nearly 2,000 neurons in mouse prefrontal cortex (PFC). We identified morphological variations of somata, dendrites and axons across laminar layers and PFC subregions and the general rules of somatodendritic scaling with cytoarchitecture. We uncovered 24 morphologically distinguishable dendrite subtypes in 1,515 pyramidal projection neurons and 405 atypical pyramidal projection neurons and spiny stellate neurons with unique axon projection patterns. Furthermore, correspondence analysis among dendrites, local axons and long-range axons revealed coherent morphological changes associated with electrophysiological phenotypes. Finally, integrative dendrite-axon analysis uncovered the organization of potential intra-column, inter-hemispheric and inter-column connectivity among projection neuron types in PFC. Together, our study provides a comprehensive structural repertoire for the reconstruction and analysis of PFC neural network.
Collapse
Affiliation(s)
- Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Sang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Qiwen Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Lingfeng Gou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
14
|
Kobro-Flatmoen A, Hormann TM, Gouras G. Intracellular Amyloid-β in the Normal Rat Brain and Human Subjects and Its relevance for Alzheimer's Disease. J Alzheimers Dis 2023; 95:719-733. [PMID: 37574734 PMCID: PMC10578257 DOI: 10.3233/jad-230349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Amyloid-β (Aβ) is a normal product of neuronal activity, including that of the aggregation-prone Aβ42 variant that is thought to cause Alzheimer's disease (AD). Much knowledge about AD comes from studies of transgenic rodents expressing mutated human amyloid-β protein precursor (AβPP) to increase Aβ production or the Aβ42/40 ratio. Yet, little is known about the normal expression of Aβ42 in rodent brains. OBJECTIVE To characterize the brain-wide expression of Aβ42 throughout the life span of outbred Wistar rats, and to relate these findings to brains of human subjects without neurological disease. METHODS Aβ42 immunolabeling of 12 Wistar rat brains (3-18 months of age) and brain sections from six human subjects aged 20-88 years. RESULTS In healthy Wistar rats, we find intracellular Aβ42 (iAβ42) in neurons throughout the brain at all ages, but levels vary greatly between brain regions. The highest levels are in neurons of entorhinal cortex layer II, alongside hippocampal neurons at the CA1/subiculum border. Concerning entorhinal cortex layer II, we find similarly high levels of iAβ42 in the human subjects. CONCLUSION Expression of iAβ42 in healthy Wistar rats predominates in the same structures where iAβ accumulates and Aβ plaques initially form in the much used, Wistar based McGill-R-Thy1-APP rat model for AD. The difference between wild-type Wistar rats and these AD model rats, with respect to Aβ42, is therefore quantitative rather that qualitative. This, taken together with our human results, indicate that the McGill rat model in fact models the underlying wild-type neuronal population-specific vulnerability to Aβ42 accumulation.
Collapse
Affiliation(s)
- Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer’s Disease, NTNU, Trondheim, Norway
| | - Thea Meier Hormann
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gunnar Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Simonsen ØW, Czajkowski R, Witter MP. Retrosplenial and subicular inputs converge on superficially projecting layer V neurons of medial entorhinal cortex. Brain Struct Funct 2022; 227:2821-2837. [PMID: 36229654 PMCID: PMC9618507 DOI: 10.1007/s00429-022-02578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
The medial entorhinal cortex (MEC) plays a pivotal role in spatial processing together with hippocampal formation. The retrosplenial cortex (RSC) is also implicated in this process, and it is thus relevant to understand how these structures interact. This requires precise knowledge of their connectivity. Projections from neurons in RSC synapse onto principal neurons in layer V of MEC and some of these neurons send axons into superficial layers of MEC. Layer V of MEC is also the main target for hippocampal efferents from the subiculum and CA1 field. The aim of this study was to assess whether the population of cells targeted by RSC projections also receives input from the hippocampal formation and to compare the distribution of synaptic contacts on target dendrites. We labeled the cells in layer V of MEC by injecting a retrograde tracer into superficial layers. At the same time, we labeled RSC and subicular projections with different anterograde tracers. 3D-reconstruction of the labeled cells and axons revealed likely synaptic contacts between presynaptic boutons of both origins and postsynaptic MEC layer V basal dendrites. Moreover, these contacts overlapped on the same dendritic segments without targeting specific domains. Our results support the notion that MEC layer V neurons that project to the superficial layers receive convergent input from both RSC and subiculum. These data thus suggest that convergent subicular and RSC information contributes to the signal that neurons in superficial layers of EC send to the hippocampal formation.
Collapse
Affiliation(s)
- Øyvind Wilsgård Simonsen
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Faculty of Medicine and Health Sciences, Kavli Institute for Systems Neuroscience NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Menno P Witter
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Faculty of Medicine and Health Sciences, Kavli Institute for Systems Neuroscience NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Bergmann T, Liu Y, Skov J, Mogus L, Lee J, Pfisterer U, Handfield LF, Asenjo-Martinez A, Lisa-Vargas I, Seemann SE, Lee JTH, Patikas N, Kornum BR, Denham M, Hyttel P, Witter MP, Gorodkin J, Pers TH, Hemberg M, Khodosevich K, Hall VJ. Production of human entorhinal stellate cell-like cells by forward programming shows an important role of Foxp1 in reprogramming. Front Cell Dev Biol 2022; 10:976549. [PMID: 36046338 PMCID: PMC9420913 DOI: 10.3389/fcell.2022.976549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.
Collapse
Affiliation(s)
- Tobias Bergmann
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yong Liu
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jonathan Skov
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leo Mogus
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Julie Lee
- Novo Nordisk Foundation Center for Stem Cell Research, DanStem University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrea Asenjo-Martinez
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Lisa-Vargas
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jimmy Tsz Hang Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nikolaos Patikas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Hyttel
- Disease, Stem Cells and Embryology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tune H. Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vanessa Jane Hall
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
17
|
Szocs S, Henn-Mike N, Agocs-Laboda A, Szabo-Meleg E, Varga C. Neurogliaform cells mediate feedback inhibition in the medial entorhinal cortex. Front Neuroanat 2022; 16:779390. [PMID: 36003850 PMCID: PMC9393258 DOI: 10.3389/fnana.2022.779390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Layer I of the medial entorhinal cortex (MEC) contains converging axons from several brain areas and dendritic tufts originating from principal cells located in multiple layers. Moreover, specific GABAergic interneurons are also located in the area, but their inputs, outputs, and effect on local network events remain elusive. Neurogliaform cells are the most frequent and critically positioned inhibitory neurons in layer I. They are considered to conduct feed-forward inhibition via GABAA and GABAB receptors on pyramidal cells located in several cortical areas. Using optogenetic experiments, we showed that layer I neurogliaform cells receive excitatory inputs from layer II pyramidal cells, thereby playing a critical role in local feedback inhibition in the MEC. We also found that neurogliaform cells are evenly distributed in layer I and do not correlate with the previously described compartmentalization (“cell islands”) of layer II. We concluded that the activity of neurogliaform cells in layer I is largely set by layer II pyramidal cells through excitatory synapses, potentially inhibiting the apical dendrites of all types of principal cells in the MEC.
Collapse
Affiliation(s)
- Szilard Szocs
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Henn-Mike
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
- *Correspondence: Nora Henn-Mike,
| | - Agnes Agocs-Laboda
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Edina Szabo-Meleg
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Csaba Varga
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Csaba Varga,
| |
Collapse
|
18
|
Attili SM, Moradi K, Wheeler DW, Ascoli GA. Quantification of neuron types in the rodent hippocampal formation by data mining and numerical optimization. Eur J Neurosci 2022; 55:1724-1741. [PMID: 35301768 PMCID: PMC10026515 DOI: 10.1111/ejn.15639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Quantifying the population sizes of distinct neuron types in different anatomical regions is an essential step towards establishing a brain cell census. Although estimates exist for the total neuronal populations in different species, the number and definition of each specific neuron type are still intensively investigated. Hippocampome.org is an open-source knowledge base with morphological, physiological and molecular information for 122 neuron types in the rodent hippocampal formation. While such framework identifies all known neuron types in this system, their relative abundances remain largely unknown. This work quantitatively estimates the counts of all Hippocampome.org neuron types by literature mining and numerical optimization. We report the number of neurons in each type identified by main neurotransmitter (glutamate or GABA) and axonal-dendritic patterns throughout 26 subregions and layers of the dentate gyrus, Ammon's horn, subiculum and entorhinal cortex. We produce by sensitivity analysis reliable numerical ranges for each type and summarize the amounts across broad neuronal families defined by biomarkers expression and firing dynamics. Study of density distributions indicates that the number of dendritic-targeting interneurons, but not of other neuronal classes, is independent of anatomical volumes. All extracted values, experimental evidence and related software code are released on Hippocampome.org.
Collapse
Affiliation(s)
- Sarojini M Attili
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
| | - Keivan Moradi
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
| | - Diek W Wheeler
- Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, Virginia, USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
- Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
19
|
Vandrey B, Armstrong J, Brown CM, Garden DLF, Nolan MF. Fan cells in lateral entorhinal cortex directly influence medial entorhinal cortex through synaptic connections in layer 1. eLife 2022; 11:83008. [PMID: 36562467 PMCID: PMC9822265 DOI: 10.7554/elife.83008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Standard models for spatial and episodic memory suggest that the lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC) send parallel independent inputs to the hippocampus, each carrying different types of information. Here, we evaluate the possibility that information is integrated between divisions of the entorhinal cortex prior to reaching the hippocampus. We demonstrate that, in mice, fan cells in layer 2 (L2) of LEC that receive neocortical inputs, and that project to the hippocampal dentate gyrus, also send axon collaterals to layer 1 (L1) of the MEC. Activation of inputs from fan cells evokes monosynaptic glutamatergic excitation of stellate and pyramidal cells in L2 of the MEC, typically followed by inhibition that contains fast and slow components mediated by GABAA and GABAB receptors, respectively. Inputs from fan cells also directly activate interneurons in L1 and L2 of MEC, with synaptic connections from L1 interneurons accounting for slow feedforward inhibition of L2 principal cell populations. The relative strength of excitation and inhibition following fan cell activation differs substantially between neurons and is largely independent of anatomical location. Our results demonstrate that the LEC, in addition to directly influencing the hippocampus, can activate or inhibit major hippocampal inputs arising from the MEC. Thus, local circuits in the superficial MEC may combine spatial information with sensory and higher order signals from the LEC, providing a substrate for integration of 'what' and 'where' components of episodic memories.
Collapse
Affiliation(s)
- Brianna Vandrey
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Jack Armstrong
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Christina M Brown
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Derek LF Garden
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom,Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom,Centre for Statistics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
20
|
Ohara S, Yoshino R, Kimura K, Kawamura T, Tanabe S, Zheng A, Nakamura S, Inoue KI, Takada M, Tsutsui KI, Witter MP. Laminar Organization of the Entorhinal Cortex in Macaque Monkeys Based on Cell-Type-Specific Markers and Connectivity. Front Neural Circuits 2021; 15:790116. [PMID: 34949991 PMCID: PMC8688913 DOI: 10.3389/fncir.2021.790116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex (EC) is a major gateway between the hippocampus and telencephalic structures, and plays a critical role in memory and navigation. Through the use of various molecular markers and genetic tools, neuron types constituting EC are well studied in rodents, and their layer-dependent distributions, connections, and functions have also been characterized. In primates, however, such cell-type-specific understandings are lagging. To bridge the gap between rodents and primates, here we provide the first cell-type-based global map of EC in macaque monkeys. The laminar organization of the monkey EC was systematically examined and compared with that of the rodent EC by using immunohistochemistry for molecular markers which have been well characterized in the rodent EC: reelin, calbindin, and Purkinje cell protein 4 (PCP4). We further employed retrograde neuron labeling from the nucleus accumbens and amygdala to identify the EC output layer. This cell-type-based approach enabled us to apply the latest laminar definition of rodent EC to monkeys. Based on the similarity of the laminar organization, the monkey EC can be divided into two subdivisions: rostral and caudal EC. These subdivisions likely correspond to the lateral and medial EC in rodents, respectively. In addition, we found an overall absence of a clear laminar arrangement of layer V neurons in the rostral EC, unlike rodents. The cell-type-based architectural map provided in this study will accelerate the application of genetic tools in monkeys for better understanding of the role of EC in memory and navigation.
Collapse
Affiliation(s)
- Shinya Ohara
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Rintaro Yoshino
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kei Kimura
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Taichi Kawamura
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Soshi Tanabe
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Andi Zheng
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shinya Nakamura
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Laboratory of Systems Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Menno P Witter
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Laboratory of Systems Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Cholvin T, Hainmueller T, Bartos M. The hippocampus converts dynamic entorhinal inputs into stable spatial maps. Neuron 2021; 109:3135-3148.e7. [PMID: 34619088 PMCID: PMC8516433 DOI: 10.1016/j.neuron.2021.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The medial entorhinal cortex (MEC)-hippocampal network plays a key role in the processing, storage, and recall of spatial information. However, how the spatial code provided by MEC inputs relates to spatial representations generated by principal cell assemblies within hippocampal subfields remains enigmatic. To investigate this coding relationship, we employed two-photon calcium imaging in mice navigating through dissimilar virtual environments. Imaging large MEC bouton populations revealed spatially tuned activity patterns. MEC inputs drastically changed their preferred spatial field locations between environments, whereas hippocampal cells showed lower levels of place field reconfiguration. Decoding analysis indicated that higher place field reliability and larger context-dependent activity-rate differences allow low numbers of principal cells, particularly in the DG and CA1, to provide information about location and context more accurately and rapidly than MEC inputs. Thus, conversion of dynamic MEC inputs into stable spatial hippocampal maps may enable fast encoding and efficient recall of spatio-contextual information. MEC inputs to the DG, CA3, and CA1 show different spatial coding properties MEC inputs remap even more strongly than hippocampal principal cells Hippocampal principal cell activity is more reliable and stable than their MEC inputs Hippocampal principal cells allow improved spatial and contextual readout
Collapse
Affiliation(s)
- Thibault Cholvin
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg 79104, Germany
| | - Thomas Hainmueller
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY 10016, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg 79104, Germany.
| |
Collapse
|
22
|
Rueckemann JW, Sosa M, Giocomo LM, Buffalo EA. The grid code for ordered experience. Nat Rev Neurosci 2021; 22:637-649. [PMID: 34453151 PMCID: PMC9371942 DOI: 10.1038/s41583-021-00499-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Entorhinal cortical grid cells fire in a periodic pattern that tiles space, which is suggestive of a spatial coordinate system. However, irregularities in the grid pattern as well as responses of grid cells in contexts other than spatial navigation have presented a challenge to existing models of entorhinal function. In this Perspective, we propose that hippocampal input provides a key informative drive to the grid network in both spatial and non-spatial circumstances, particularly around salient events. We build on previous models in which neural activity propagates through the entorhinal-hippocampal network in time. This temporal contiguity in network activity points to temporal order as a necessary characteristic of representations generated by the hippocampal formation. We advocate that interactions in the entorhinal-hippocampal loop build a topological representation that is rooted in the temporal order of experience. In this way, the structure of grid cell firing supports a learned topology rather than a rigid coordinate frame that is bound to measurements of the physical world.
Collapse
Affiliation(s)
- Jon W Rueckemann
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA.
- Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
23
|
Liu Y, Bergmann T, Mori Y, Peralvo Vidal JM, Pihl M, Vasistha NA, Thomsen PD, Seemann SE, Gorodkin J, Hyttel P, Khodosevich K, Witter MP, Hall VJ. Development of the Entorhinal Cortex Occurs via Parallel Lamination During Neurogenesis. Front Neuroanat 2021; 15:663667. [PMID: 34025365 PMCID: PMC8139189 DOI: 10.3389/fnana.2021.663667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex (EC) is the spatial processing center of the brain and structurally is an interface between the three layered paleocortex and six layered neocortex, known as the periarchicortex. Limited studies indicate peculiarities in the formation of the EC such as early emergence of cells in layers (L) II and late deposition of LIII, as well as divergence in the timing of maturation of cell types in the superficial layers. In this study, we examine developmental events in the entorhinal cortex using an understudied model in neuroanatomy and development, the pig and supplement the research with BrdU labeling in the developing mouse EC. We determine the pig serves as an excellent anatomical model for studying human neurogenesis, given its long gestational length, presence of a moderate sized outer subventricular zone and early cessation of neurogenesis during gestation. Immunohistochemistry identified prominent clusters of OLIG2+ oligoprogenitor-like cells in the superficial layers of the lateral EC (LEC) that are sparser in the medial EC (MEC). These are first detected in the subplate during the early second trimester. MRI analyses reveal an acceleration of EC growth at the end of the second trimester. BrdU labeling of the developing MEC, shows the deeper layers form first and prior to the superficial layers, but the LV/VI emerges in parallel and the LII/III emerges later, but also in parallel. We coin this lamination pattern parallel lamination. The early born Reln+ stellate cells in the superficial layers express the classic LV marker, Bcl11b (Ctip2) and arise from a common progenitor that forms the late deep layer LV neurons. In summary, we characterize the developing EC in a novel animal model and outline in detail the formation of the EC. We further provide insight into how the periarchicortex forms in the brain, which differs remarkably to the inside-out lamination of the neocortex.
Collapse
Affiliation(s)
- Yong Liu
- Group of Brain Development and Disease, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Bergmann
- Group of Brain Development and Disease, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan Miguel Peralvo Vidal
- Group of Brain Development and Disease, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Pihl
- Disease Stem Cell Models and Embryology, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Navneet A. Vasistha
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Preben Dybdahl Thomsen
- Disease Stem Cell Models and Embryology, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Poul Hyttel
- Disease Stem Cell Models and Embryology, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vanessa Jane Hall
- Group of Brain Development and Disease, Section Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF. Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 2021; 67:101307. [PMID: 33621703 DOI: 10.1016/j.arr.2021.101307] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.
Collapse
|
25
|
Ohara S, Blankvoort S, Nair RR, Nigro MJ, Nilssen ES, Kentros C, Witter MP. Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex. eLife 2021; 10:e67262. [PMID: 33769282 PMCID: PMC8051944 DOI: 10.7554/elife.67262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems consolidation.
Collapse
Grants
- endowment Kavli Foundation
- infrastructure grant NORBRAIN,#197467 Norwegian Research Council
- the Centre of Excellence scheme - Centre for Neural Computation,#223262 Norwegian Research Council
- research grant,# 227769 Norwegian Research Council
- KAKENHI,#19K06917 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI (#19K06917) Ministry of Education, Culture, Sports, Science and Technology
- #197467 Norwegian Research Council
- #223262 Norwegian Research Council
- #227769 Norwegian Research Council
Collapse
Affiliation(s)
- Shinya Ohara
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life SciencesTohokuJapan
| | - Stefan Blankvoort
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Rajeevkumar Raveendran Nair
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Maximiliano J Nigro
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Eirik S Nilssen
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Clifford Kentros
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Menno P Witter
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
26
|
Parvalbumin Interneurons Are Differentially Connected to Principal Cells in Inhibitory Feedback Microcircuits along the Dorsoventral Axis of the Medial Entorhinal Cortex. eNeuro 2021; 8:ENEURO.0354-20.2020. [PMID: 33531369 PMCID: PMC8114875 DOI: 10.1523/eneuro.0354-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
The medial entorhinal cortex (mEC) shows a high degree of spatial tuning, predominantly grid cell activity, which is reliant on robust, dynamic inhibition provided by local interneurons (INs). In fact, feedback inhibitory microcircuits involving fast-spiking parvalbumin (PV) basket cells (BCs) are believed to contribute dominantly to the emergence of grid cell firing in principal cells (PrCs). However, the strength of PV BC-mediated inhibition onto PrCs is not uniform in this region, but high in the dorsal and weak in the ventral mEC. This is in good correlation with divergent grid field sizes, but the underlying morphologic and physiological mechanisms remain unknown. In this study, we examined PV BCs in layer (L)2/3 of the mEC characterizing their intrinsic physiology, morphology and synaptic connectivity in the juvenile rat. We show that while intrinsic physiology and morphology are broadly similar over the dorsoventral axis, PV BCs form more connections onto local PrCs in the dorsal mEC, independent of target cell type. In turn, the major PrC subtypes, pyramidal cell (PC) and stellate cell (SC), form connections onto PV BCs with lower, but equal probability. These data thus identify inhibitory connectivity as source of the gradient of inhibition, plausibly explaining divergent grid field formation along this dorsoventral axis of the mEC.
Collapse
|
27
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
28
|
Somatostatin expressing GABAergic interneurons in the medial entorhinal cortex preferentially inhibit layer III-V pyramidal cells. Commun Biol 2020; 3:754. [PMID: 33303963 PMCID: PMC7728756 DOI: 10.1038/s42003-020-01496-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022] Open
Abstract
GABA released from heterogeneous types of interneurons acts in a complex spatio-temporal manner on postsynaptic targets in the networks. In addition to GABA, a large fraction of GABAergic cells also express neuromodulator peptides. Somatostatin (SOM) containing interneurons, in particular, have been recognized as key players in several brain circuits, however, the action of SOM and its downstream network effects remain largely unknown. Here, we used optogenetics, electrophysiologic, anatomical and behavioral experiments to reveal that the dendrite-targeting, SOM+ GABAergic interneurons demonstrate a unique layer-specific action in the medial entorhinal cortex (MEC) both in terms of GABAergic and SOM-related properties. We show that GABAergic and somatostatinergic neurotransmission originating from SOM+ local interneurons preferentially inhibit layerIII-V pyramidal cells, known to be involved in memory formation. We propose that this dendritic GABA–SOM dual inhibitory network motif within the MEC serves to selectively modulate working-memory formation without affecting the retrieval of already learned spatial navigation tasks. Miklós Kecskés et al. show that somatostatin-expressing interneurons in the medial entorhinal cortex regulate deep-layer pyramidal neurons and impact short-term memory in mice.
Collapse
|
29
|
Processing of Hippocampal Network Activity in the Receiver Network of the Medial Entorhinal Cortex Layer V. J Neurosci 2020; 40:8413-8425. [PMID: 32978288 DOI: 10.1523/jneurosci.0586-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/10/2020] [Accepted: 09/20/2020] [Indexed: 11/21/2022] Open
Abstract
The interplay between hippocampus and medial entorhinal cortex (mEC) is of key importance for forming spatial representations. Within the hippocampal-entorhinal loop, the hippocampus receives context-specific signals from layers II/III of the mEC and feeds memory-associated activity back into layer V (LV). The processing of this output signal within the mEC, however, is largely unknown. We characterized the activation of the receiving mEC network by evoked and naturally occurring output patterns in mouse hippocampal-entorhinal cortex slices. Both types of glutamatergic neurons (mEC LVa and LVb) as well as fast-spiking inhibitory interneurons receive direct excitatory input from the intermediate/ventral hippocampus. Connections between the two types of excitatory neurons are sparse, and local processing of hippocampal output signals within mEC LV is asymmetric, favoring excitation of far projecting LVa neurons over locally projecting LVb neurons. These findings suggest a new role for mEC LV as a bifurcation gate for feedforward (telencephalic) and feedback (entorhinal-hippocampal) signal propagation.SIGNIFICANCE STATEMENT Patterned network activity in hippocampal networks plays a key role in the formation and consolidation of spatial memories. It is, however, largely unclear how information is transferred to the neocortex for long-term engrams. Here, we elucidate the propagation of network activity from the hippocampus to the medial entorhinal cortex. We show that patterned output from the hippocampus reaches both major cell types of deep entorhinal layers. These cells are, however, only weakly connected, giving rise to two parallel streams of activity for local and remote signal propagation, respectively. The relative weight of both pathways is regulated by local inhibitory interneurons. Our data reveal important insights into the hippocampal-neocortical dialogue, which is of key importance for memory consolidation in the mammalian brain.
Collapse
|
30
|
Witter MP, Amaral DG. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. J Comp Neurol 2020; 529:828-852. [DOI: 10.1002/cne.24983] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Menno P. Witter
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| |
Collapse
|
31
|
Spike Afterpotentials Shape the In Vivo Burst Activity of Principal Cells in Medial Entorhinal Cortex. J Neurosci 2020; 40:4512-4524. [PMID: 32332120 DOI: 10.1523/jneurosci.2569-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 11/21/2022] Open
Abstract
Principal neurons in rodent medial entorhinal cortex (MEC) generate high-frequency bursts during natural behavior. While in vitro studies point to potential mechanisms that could support such burst sequences, it remains unclear whether these mechanisms are effective under in vivo conditions. In this study, we focused on the membrane-potential dynamics immediately following action potentials (APs), as measured in whole-cell recordings from male mice running in virtual corridors (Domnisoru et al., 2013). These afterpotentials consisted either of a hyperpolarization, an extended ramp-like shoulder, or a depolarization reminiscent of depolarizing afterpotentials (DAPs) recorded in vitro in MEC principal neurons. Next, we correlated the afterpotentials with the cells' propensity to fire bursts. All DAP cells with known location resided in Layer II, generated bursts, and their interspike intervals (ISIs) were typically between 5 and 15 ms. The ISI distributions of Layer-II cells without DAPs peaked sharply at around 4 ms and varied only minimally across that group. This dichotomy in burst behavior is explained by cell-group-specific DAP dynamics. The same two groups of bursting neurons also emerged when we clustered extracellular spike-train autocorrelations measured in real 2D arenas (Latuske et al., 2015). Apart from slight variations in grid spacing, no difference in the spatial coding properties of the grid cells across all three groups was discernible. Layer III neurons were only sparsely bursting (SB) and had no DAPs. As various mechanisms for modulating ion-channels underlying DAPs exist, our results suggest that temporal features of MEC activity can be altered while maintaining the cells' overall spatial tuning characteristics.SIGNIFICANCE STATEMENT Depolarizing afterpotentials (DAPs) are frequently observed in principal neurons from slice preparations of rodent medial entorhinal cortex (MEC), but their functional role in vivo is unknown. Analyzing whole-cell data from mice running on virtual tracks, we show that DAPs do occur during behavior. Cells with prominent DAPs are found in Layer II; their interspike intervals (ISIs) reflect DAP time-scales. In contrast, neither the rarely bursting cells in Layer III, nor the high-frequency bursters in Layer II, have a DAP. Extracellular recordings from mice exploring real 2D arenas demonstrate that grid cells within these three groups have similar spatial coding properties. We conclude that DAPs shape the temporal response characteristics of principal neurons in MEC with little effect on spatial properties.
Collapse
|
32
|
Dawitz J, Kroon T, Hjorth JJJ, Mansvelder HD, Meredith RM. Distinct Synchronous Network Activity During the Second Postnatal Week of Medial Entorhinal Cortex Development. Front Cell Neurosci 2020; 14:91. [PMID: 32372917 PMCID: PMC7186407 DOI: 10.3389/fncel.2020.00091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/26/2020] [Indexed: 01/01/2023] Open
Abstract
The medial entorhinal cortex (MEC) contains specialized cell types whose firing is tuned to aspects of an animal’s position and orientation in the environment, reflecting a neuronal representation of space. The spatially tuned firing properties of these cells quickly emerge during the third postnatal week of development in rodents. Spontaneous synchronized network activity (SSNA) has been shown to play a crucial role in the development of neuronal circuits prior to week 3. SSNA in MEC is well described in rodents during the first postnatal week, but there are little data about its development immediately prior to eye opening and spatial exploration. Furthermore, existing data lack single-cell resolution and are not integrated across layers. In this study, we addressed the question of whether the characteristics and underlying mechanisms of SSNA during the second postnatal week resemble that of the first week or whether distinct features emerge during this period. Using a combined calcium imaging and electrophysiology approach in vitro, we confirm that in mouse MEC during the second postnatal week, SSNA persists and in fact peaks, and is dependent on ionotropic glutamatergic signaling. However, SSNA differs from that observed during the first postnatal week in two ways: First, EC does not drive network activity in the hippocampus but only in neighboring neocortex (NeoC). Second, GABA does not drive network activity but influences it in a manner that is dependent both on age and receptor type. Therefore, we conclude that while there is a partial mechanistic overlap in SSNA between the first and second postnatal weeks, unique mechanistic features do emerge during the second week, suggestive of different or additional functions of MEC within the hippocampal-entorhinal circuitry with increasing maturation.
Collapse
Affiliation(s)
- Julia Dawitz
- Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim Kroon
- Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J J Johannes Hjorth
- Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Huib D Mansvelder
- Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rhiannon M Meredith
- Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Pastoll H, Garden DL, Papastathopoulos I, Sürmeli G, Nolan MF. Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex. eLife 2020; 9:52258. [PMID: 32039761 PMCID: PMC7067584 DOI: 10.7554/elife.52258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/04/2020] [Indexed: 01/28/2023] Open
Abstract
Distinctions between cell types underpin organizational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and the synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we found that integrative properties vary between mice and, in contrast to the modularity of grid cell spatial scales, have a continuous dorsoventral organization. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit-level set points that vary within and between animals.
Collapse
Affiliation(s)
- Hugh Pastoll
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Derek L Garden
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Papastathopoulos
- The Alan Turing Institute, London, United States.,School of Mathematics, Maxwell Institute and Centre for Statistics, University of Edinburgh, Edinburgh, United Kingdom
| | - Gülşen Sürmeli
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Komendantov AO, Venkadesh S, Rees CL, Wheeler DW, Hamilton DJ, Ascoli GA. Quantitative firing pattern phenotyping of hippocampal neuron types. Sci Rep 2019; 9:17915. [PMID: 31784578 PMCID: PMC6884469 DOI: 10.1038/s41598-019-52611-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Systematically organizing the anatomical, molecular, and physiological properties of cortical neurons is important for understanding their computational functions. Hippocampome.org defines 122 neuron types in the rodent hippocampal formation based on their somatic, axonal, and dendritic locations, putative excitatory/inhibitory outputs, molecular marker expression, and biophysical properties. We augmented the electrophysiological data of this knowledge base by collecting, quantifying, and analyzing the firing responses to depolarizing current injections for every hippocampal neuron type from published experiments. We designed and implemented objective protocols to classify firing patterns based on 5 transients (delay, adapting spiking, rapidly adapting spiking, transient stuttering, and transient slow-wave bursting) and 4 steady states (non-adapting spiking, persistent stuttering, persistent slow-wave bursting, and silence). This automated approach revealed 9 unique (plus one spurious) families of firing pattern phenotypes while distinguishing potential new neuronal subtypes. Novel statistical associations emerged between firing responses and other electrophysiological properties, morphological features, and molecular marker expression. The firing pattern parameters, experimental conditions, spike times, references to the original empirical evidences, and analysis scripts are released open-source through Hippocampome.org for all neuron types, greatly enhancing the existing search and browse capabilities. This information, collated online in human- and machine-accessible form, will help design and interpret both experiments and model simulations.
Collapse
Affiliation(s)
- Alexander O Komendantov
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA.
| | - Siva Venkadesh
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Christopher L Rees
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Diek W Wheeler
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - David J Hamilton
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA.
| |
Collapse
|
35
|
Ohara S, Gianatti M, Itou K, Berndtsson CH, Doan TP, Kitanishi T, Mizuseki K, Iijima T, Tsutsui KI, Witter MP. Entorhinal Layer II Calbindin-Expressing Neurons Originate Widespread Telencephalic and Intrinsic Projections. Front Syst Neurosci 2019; 13:54. [PMID: 31680885 PMCID: PMC6803526 DOI: 10.3389/fnsys.2019.00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/30/2019] [Indexed: 12/02/2022] Open
Abstract
In the present study we provide the first systematic and quantitative hodological study of the calbindin-expressing (CB+) principal neurons in layer II of the entorhinal cortex and compared the respective projections of the lateral and medial subdivisions of the entorhinal cortex. Using elaborate quantitative retrograde tracing, complemented by anterograde tracing, we report that the layer II CB+ population comprises neurons with diverse, mainly excitatory projections. At least half of them originate local intrinsic and commissural projections which distribute mainly to layer I and II. We further show that long-range CB+ projections from the two entorhinal subdivisions differ substantially in that MEC projections mainly target field CA1 of the hippocampus, whereas LEC CB+ projections distribute much more widely to a substantial number of known forebrain targets. This connectional difference between the CB+ populations in LEC and MEC is reminiscent of the overall projection pattern of the two entorhinal subdivisions.
Collapse
Affiliation(s)
- Shinya Ohara
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Michele Gianatti
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kazuki Itou
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Christin H Berndtsson
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Takuma Kitanishi
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Toshio Iijima
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
36
|
Venkadesh S, Komendantov AO, Wheeler DW, Hamilton DJ, Ascoli GA. Simple models of quantitative firing phenotypes in hippocampal neurons: Comprehensive coverage of intrinsic diversity. PLoS Comput Biol 2019; 15:e1007462. [PMID: 31658260 PMCID: PMC6837624 DOI: 10.1371/journal.pcbi.1007462] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/07/2019] [Accepted: 10/07/2019] [Indexed: 12/02/2022] Open
Abstract
Patterns of periodic voltage spikes elicited by a neuron help define its dynamical identity. Experimentally recorded spike trains from various neurons show qualitatively distinguishable features such as delayed spiking, spiking with or without frequency adaptation, and intrinsic bursting. Moreover, the input-dependent responses of a neuron not only show different quantitative features, such as higher spike frequency for a stronger input current injection, but can also exhibit qualitatively different responses, such as spiking and bursting under different input conditions, thus forming a complex phenotype of responses. In previous work, the comprehensive knowledge base of hippocampal neuron types Hippocampome.org systematically characterized various spike pattern phenotypes experimentally identified from 120 neuron types/subtypes. In this paper, we present a complete set of simple phenomenological models that quantitatively reproduce the diverse and complex phenotypes of hippocampal neurons. In addition to point-neuron models, we created compact multi-compartment models with up to four compartments, which will allow spatial segregation of synaptic integration in network simulations. Electrotonic compartmentalization observed in our compact multi-compartment models is qualitatively consistent with experimental observations. The models were created using an automated pipeline based on evolutionary algorithms. This work maps 120 neuron types/subtypes in the rodent hippocampus to a low-dimensional model space and adds another dimension to the knowledge accumulated in Hippocampome.org. Computationally efficient representations of intrinsic dynamics, along with other pieces of knowledge available in Hippocampome.org, provide a biologically realistic platform to explore the large-scale interactions of various neuron types at the mesoscopic level.
Collapse
Affiliation(s)
- Siva Venkadesh
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States of America
| | - Alexander O. Komendantov
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States of America
| | - Diek W. Wheeler
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States of America
| | - David J. Hamilton
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States of America
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States of America
| |
Collapse
|
37
|
Postnatal Development of Functional Projections from Parasubiculum and Presubiculum to Medial Entorhinal Cortex in the Rat. J Neurosci 2019; 39:8645-8663. [PMID: 31511428 DOI: 10.1523/jneurosci.1623-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
Neurons in parasubiculum (PaS), presubiculum (PrS), and medial entorhinal cortex (MEC) code for place (grid cells) and head direction. Directional input has been shown to be important for stable grid cell properties in MEC, and PaS and PrS have been postulated to provide this information to MEC. In line with this, head direction cells in those brain areas are present at postnatal day 11 (P11), having directional tuning that stabilizes shortly after eye opening, which is before premature grid cells emerge in MEC at P16. Whether functional connectivity between these structures exists at those early postnatal stages is unclear. Using anatomical tracing, voltage-sensitive dye imaging and single-cell patch recordings in female and male rat brain slices between P2 and P61, we determined when the pathways from PaS and PrS to MEC emerge, become functional, and how they develop. Anatomical connections from PaS and PrS to superficial MEC emerge between P4 and P6. Monosynaptic connectivity from PaS and PrS to superficial MEC was measurable from P9 to P10 onward, whereas connectivity with deep MEC was measurable from P11 to P12. From P14/P15 on, reactivity of MEC neurons to parasubicular and presubicular inputs becomes adult-like and continues to develop until P28-P30. The maturation of the efficacy of both inputs between P9 and P21 is paralleled by maturation of morphological properties, changes in intrinsic properties of MEC principal neurons, and changes in the GABAergic network of MEC. In conclusion, synaptic projections from PaS and PrS to MEC become functional and adult-like before the emergence of grid cells in MEC.SIGNIFICANCE STATEMENT Head direction information, crucial for grid cells in medial entorhinal cortex (MEC), is thought to enter MEC via parasubiculum (PaS) and presubiculum (PrS). Unraveling the development of functional connections between PaS, PrS, and MEC is key to understanding how spatial navigation, an important cognitive function, may evolve. To gain insight into the development, we used anatomical tracing techniques, voltage-sensitive dye imaging, and single-cell recordings. The combined data led us to conclude that synaptic projections from PaS and PrS to MEC become functional and adult-like before eye opening, allowing crucial head direction information to influence place encoding before the emergence of grid cells in rat MEC.
Collapse
|
38
|
Nilssen ES, Doan TP, Nigro MJ, Ohara S, Witter MP. Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 2019; 29:1238-1254. [PMID: 31408260 DOI: 10.1002/hipo.23145] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022]
Abstract
In this review, we aim to reappraise the organization of intrinsic and extrinsic networks of the entorhinal cortex with a focus on the concept of parallel cortical connectivity streams. The concept of two entorhinal areas, the lateral and medial entorhinal cortex, belonging to two parallel input-output streams mediating the encoding and storage of respectively what and where information hinges on the claim that a major component of their cortical connections is with the perirhinal cortex and postrhinal or parahippocampal cortex in, respectively, rodents or primates. In this scenario, the lateral entorhinal cortex and the perirhinal cortex are connectionally associated and likewise the postrhinal/parahippocampal cortex and the medial entorhinal cortex are partners. In contrast, here we argue that the connectivity matrix emphasizes the potential of substantial integration of cortical information through interactions between the two entorhinal subdivisions and between the perirhinal and postrhinal/parahippocampal cortices, but most importantly through a new observation that the postrhinal/parahippocampal cortex projects to both lateral and medial entorhinal cortex. We suggest that entorhinal inputs provide the hippocampus with high-order complex representations of the external environment, its stability, as well as apparent changes either as an inherent feature of a biological environment or as the result of navigating the environment. This thus indicates that the current connectional model of the parahippocampal region as part of the medial temporal lobe memory system needs to be revised.
Collapse
Affiliation(s)
- Eirik S Nilssen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano J Nigro
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Shinya Ohara
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
39
|
Li H, Hu B, Zhang HP, Boyle CA, Lei S. Roles of K + and cation channels in ORL-1 receptor-mediated depression of neuronal excitability and epileptic activities in the medial entorhinal cortex. Neuropharmacology 2019; 151:144-158. [PMID: 30998945 PMCID: PMC6500758 DOI: 10.1016/j.neuropharm.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/24/2019] [Accepted: 04/13/2019] [Indexed: 02/05/2023]
Abstract
Nociceptin (NOP) is an endogenous opioid-like peptide that selectively activates the opioid receptor-like (ORL-1) receptors. The entorhinal cortex (EC) is closely related to temporal lobe epilepsy and expresses high densities of ORL-1 receptors. However, the functions of NOP in the EC, especially in modulating the epileptiform activity in the EC, have not been determined. We demonstrated that activation of ORL-1 receptors remarkably inhibited the epileptiform activity in entorhinal slices induced by application of picrotoxin or by deprivation of extracellular Mg2+. NOP-mediated depression of epileptiform activity was independent of synaptic transmission in the EC, but mediated by inhibition of neuronal excitability in the EC. NOP hyperpolarized entorhinal neurons via activation of K+ channels and inhibition of cation channels. Whereas application of Ba2+ at 300 μM which is effective for the inward rectifier K+ (Kir) channels slightly inhibited NOP-induced hyperpolarization, the current-voltage (I-V) curve of the net currents induced by NOP was linear without showing inward rectification. However, a role of NOP-induced inhibition of cation channels was revealed after inhibition of Kir channels by Ba2+. Furthermore, NOP-mediated augmentation of membrane currents was differently affected by application of the blockers selective for distinct subfamilies of Kir channels. Whereas SCH23390 or ML133 blocked NOP-induced augmentation of membrane currents at negative potentials, application of tertiapin-Q exerted no actions on NOP-induced alteration of membrane currents. Our results demonstrated a novel cellular and molecular mechanism whereby activation of ORL-1 receptors depresses epilepsy.
Collapse
Affiliation(s)
- Huiming Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Hao-Peng Zhang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
40
|
Jin X, Chen Q, Song Y, Zheng J, Xiao K, Shao S, Fu Z, Yi M, Yang Y, Huang Z. Dopamine D2 receptors regulate the action potential threshold by modulating T‐type calcium channels in stellate cells of the medial entorhinal cortex. J Physiol 2019; 597:3363-3387. [PMID: 31049961 DOI: 10.1113/jp277976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/24/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xueqin Jin
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science Centre Beijing 100191 China
| | - Qian Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science Centre Beijing 100191 China
| | - Yan Song
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science Centre Beijing 100191 China
| | - Jie Zheng
- Neuroscience Research InstitutePeking University Health Science Center Beijing 100191 China
| | - Kuo Xiao
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science Centre Beijing 100191 China
| | - Shan Shao
- Neuroscience Research InstitutePeking University Health Science Center Beijing 100191 China
| | - Zibing Fu
- Neuroscience Research InstitutePeking University Health Science Center Beijing 100191 China
| | - Ming Yi
- Neuroscience Research InstitutePeking University Health Science Center Beijing 100191 China
- Key Laboratory for NeuroscienceMinistry of Education/National Health and Family Planning CommissionPeking University Beijing 100191 China
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular PharmacologyCollege of Pharmacy, Purdue University West Lafayette IN 47907 USA
- Purdue Institute for Integrative Neuroscience 575 Stadium Mall Drive West Lafayette IN 47907 USA
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science Centre Beijing 100191 China
- Key Laboratory for NeuroscienceMinistry of Education/National Health and Family Planning CommissionPeking University Beijing 100191 China
- Department of Molecular and Cellular PharmacologyPeking University Health Science Center 38 Xue Yuan Road Beijing 100191 China
| |
Collapse
|
41
|
Berggaard N, Witter MP, van der Want JJL. GABA A Receptor Subunit α3 in Network Dynamics in the Medial Entorhinal Cortex. Front Syst Neurosci 2019; 13:10. [PMID: 30930755 PMCID: PMC6428777 DOI: 10.3389/fnsys.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Layer II of the medial entorhinal cortex (MEC LII) contains the largest number of spatially modulated grid cells and is one of the first regions in the brain to express Alzheimer's disease (AD)-related pathology. The most common principal cell type in MEC LII, reelin-expressing stellate cells, are grid cell candidates. Recently we found evidence that γ-aminobutyric acid (GABA)A receptor subunits show a specific distribution in MEC LII, in which GABAA α3 is selectively associated with reelin-positive neurons, with limited association with the other principal cell type, calbindin (CB)-positive pyramidal neurons. Furthermore, the expression of α3 subunit decreases in mice between P15 and P25, which coincides with the emergence of stable grid cell activity. It has been shown that the α3 subunit undergoes specific developmental changes and that it may exert pro-inflammatory actions if improperly regulated. In this review article, we evaluate the changing kinetics of α3-GABAA receptors (GABAARs). during development in relation to α3-subunit expression pattern in MEC LII and conclude that α3 could be closely related to the stabilization of grid cell activity and theta oscillations. We further conclude that dysregulated α3 may be a driving factor in early AD pathology.
Collapse
Affiliation(s)
- Nina Berggaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Johannes J L van der Want
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
42
|
Electrophysiological Characterization of Networks and Single Cells in the Hippocampal Region of a Transgenic Rat Model of Alzheimer's Disease. eNeuro 2019; 6:eN-NWR-0448-17. [PMID: 30809590 PMCID: PMC6390198 DOI: 10.1523/eneuro.0448-17.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
The hippocampus and entorhinal cortex (EC) are areas affected early and severely in Alzheimer’s disease (AD), and this is associated with deficits in episodic memory. Amyloid-β (Aβ), the main protein found in amyloid plaques, can affect neuronal physiology and excitability, and several AD mouse models with memory impairments display aberrant network activity, including hyperexcitability and seizures. In this study, we investigated single cell physiology in EC and network activity in EC and dentate gyrus (DG) in the McGill-R-Thy1-APP transgenic rat model, using whole-cell patch clamp recordings and voltage-sensitive dye imaging (VSDI) in acute slices. In slices from transgenic animals up to 4 months of age, the majority of the principal neurons in Layer II of EC, fan cells and stellate cells, expressed intracellular Aβ (iAβ). Whereas the electrophysiological properties of fan cells were unaltered, stellate cells were more excitable in transgenic than in control rats. Stimulation in the DG resulted in comparable patterns in both groups at three and nine months, but at 12 months, the elicited responses in the transgenic group showed a significant preference for the enclosed blade, without any change in overall excitability. Only transient changes in the local network activity were seen in the medial EC (MEC). Although the observed changes in the McGill rat model are subtle, they are specific, pointing to a differential and selective involvement of specific parts of the hippocampal circuitry in Aβ pathology.
Collapse
|
43
|
Using computational models to predict in vivo synaptic inputs to interneuron specific 3 (IS3) cells of CA1 hippocampus that also allow their recruitment during rhythmic states. PLoS One 2019; 14:e0209429. [PMID: 30620732 PMCID: PMC6324795 DOI: 10.1371/journal.pone.0209429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/05/2018] [Indexed: 12/05/2022] Open
Abstract
Brain coding strategies are enabled by the balance of synaptic inputs that individual neurons receive as determined by the networks in which they reside. Inhibitory cell types contribute to brain function in distinct ways but recording from specific, inhibitory cell types during behaviour to determine their contributions is highly challenging. In particular, the in vivo activities of vasoactive intestinal peptide-expressing interneuron specific 3 (IS3) cells in the hippocampus that only target other inhibitory cells are unknown at present. We perform a massive, computational exploration of possible synaptic inputs to IS3 cells using multi-compartment models and optimized synaptic parameters. We find that asynchronous, in vivo-like states that are sensitive to additional theta-timed inputs (8 Hz) exist when excitatory and inhibitory synaptic conductances are approximately equally balanced and with low numbers of activated synapses receiving correlated inputs. Specifically, under these balanced conditions, the input resistance is larger with higher mean spike firing rates relative to other activated synaptic conditions investigated. Incoming theta-timed inputs result in strongly increased spectral power relative to baseline. Thus, using a generally applicable computational approach we predict the existence and features of background, balanced states in hippocampal circuits.
Collapse
|
44
|
Reuveni I, Barkai E. Tune it in: mechanisms and computational significance of neuron-autonomous plasticity. J Neurophysiol 2018; 120:1781-1795. [DOI: 10.1152/jn.00102.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of a neural network is a result of synaptic signals that convey the communication between neurons and neuron-based intrinsic currents that determine the neuron’s input-output transfer function. Ample studies have demonstrated that cell-based excitability, and in particular intrinsic excitability, is modulated by learning and that these modifications play a key role in learning-related behavioral changes. The field of cell-based plasticity is largely growing, and it entails numerous experimental findings that demonstrate a large diversity of currents that are affected by learning. The diverse effect of learning on the neuron’s excitability emphasizes the need for a framework under which cell-based plasticity can be categorized to enable the assessment of the computational roles of the intrinsic modifications. We divide the domain of cell-based plasticity into three main categories, where the first category entails the currents that mediate the passive properties and single-spike generation, the second category entails the currents that mediate spike frequency adaptation, and the third category entails a novel learning-induced mechanism where all excitatory and inhibitory synapses double their strength. Curiously, this elementary division enables a natural categorization of the computational roles of these learning-induced plasticities. The computational roles are diverse and include modification of the neuronal mode of action, such as bursting, prolonged, and fast responsive; attention-like effect where the signal detection is improved; transfer of the network into an active state; biasing the competition for memory allocation; and transforming an environmental cue into a dominant cue and enabling a quicker formation of new memories.
Collapse
Affiliation(s)
- Iris Reuveni
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
45
|
Inhibitory Connectivity Dominates the Fan Cell Network in Layer II of Lateral Entorhinal Cortex. J Neurosci 2018; 38:9712-9727. [PMID: 30249791 DOI: 10.1523/jneurosci.1290-18.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/21/2022] Open
Abstract
Fan cells in layer II of the lateral entorhinal cortex (LEC) form a main component of the projection to the dentate gyrus, CA3 and CA2 of the hippocampal formation. This projection has a counterpart originating from stellate cells in layer II of the medial entorhinal cortex (MEC). Available evidence suggests that the two pathways carry different information, exemplified by a difference in spatial tuning of cells in LEC and MEC. The grid cell, a prominent position-modulated cell type present in MEC, has been postulated to derive its characteristic hexagonal firing pattern from dominant disynaptic inhibitory connections between hippocampal-projecting stellate cells. Given that grid cells have not been described in LEC, we aim to describe the local synaptic connectivity of fan cells, to explore whether the network architecture is similar to that of the MEC stellate cell. Using a combination of in vitro multicell electrophysiological and optogenetic approaches in acute slices from rodents of either sex, we show that excitatory connectivity between fan cells is very sparse. Fan cells connect preferentially with two distinct types of inhibitory interneurons, suggesting disynaptic inhibitory coupling as the main form of communication among fan cells. These principles are similar to those reported for stellate cells in MEC, indicating an overall comparable local circuit architecture of the main hippocampal-projecting cell types in the lateral and medial entorhinal cortex.SIGNIFICANCE STATEMENT Our data provide the first description of the synaptic microcircuit of hippocampal-projecting layer II cells in the lateral entorhinal cortex. We show that these cells make infrequent monosynaptic connections with each other, and that they preferentially communicate through a disynaptic inhibitory network. This is similar to the microcircuit of hippocampal-projecting stellate cells in layer II of the medial entorhinal cortex, but dissimilar to the connectivity observed in layer 2 of neocortex. In medial entorhinal cortex, the observed network structure has been proposed to underlie the firing pattern of grid cells. This opens the possibility that layer II cells in lateral entorhinal cortex exhibit regular firing patterns in an unexplored domain.
Collapse
|
46
|
Rowland DC, Obenhaus HA, Skytøen ER, Zhang Q, Kentros CG, Moser EI, Moser MB. Functional properties of stellate cells in medial entorhinal cortex layer II. eLife 2018; 7:36664. [PMID: 30215597 PMCID: PMC6140717 DOI: 10.7554/elife.36664] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/09/2018] [Indexed: 11/24/2022] Open
Abstract
Layer II of the medial entorhinal cortex (MEC) contains two principal cell types: pyramidal cells and stellate cells. Accumulating evidence suggests that these two cell types have distinct molecular profiles, physiological properties, and connectivity. The observations hint at a fundamental functional difference between the two cell populations but conclusions have been mixed. Here, we used a tTA-based transgenic mouse line to drive expression of ArchT, an optogenetic silencer, specifically in stellate cells. We were able to optogenetically identify stellate cells and characterize their firing properties in freely moving mice. The stellate cell population included cells from a range of functional cell classes. Roughly one in four of the tagged cells were grid cells, suggesting that stellate cells contribute not only to path-integration-based representation of self-location but also have other functions. The data support observations suggesting that grid cells are not the sole determinant of place cell firing.
Collapse
Affiliation(s)
- David C Rowland
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Horst A Obenhaus
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emilie R Skytøen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qiangwei Zhang
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Cliff G Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
47
|
Recurrent circuits within medial entorhinal cortex superficial layers support grid cell firing. Nat Commun 2018; 9:3701. [PMID: 30209250 PMCID: PMC6135799 DOI: 10.1038/s41467-018-06104-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/15/2018] [Indexed: 11/29/2022] Open
Abstract
Specialized cells in the medial entorhinal cortex (mEC), such as speed cells, head direction (HD) cells, and grid cells, are thought to support spatial navigation. To determine whether these computations are dependent on local circuits, we record neuronal activity in mEC layers II and III and optogenetically perturb locally projecting layer II pyramidal cells. We find that sharply tuned HD cells are only weakly responsive while speed, broadly tuned HD cells, and grid cells show pronounced transient excitatory and inhibitory responses. During the brief period of feedback inhibition, there is a reduction in specifically grid accuracy, which is corrected as firing rates return to baseline. These results suggest that sharp HD cells are embedded in a separate mEC sub-network from broad HD cells, speed cells, and grid cells. Furthermore, grid tuning is not only dependent on local processing but also rapidly updated by HD, speed, or other afferent inputs to mEC. Medial entorhinal cortex (mEC) neurons encode various navigation parameters such as speed, head direction, as well as grid cells. Here, the authors demonstrate that brief disruption of the local activity in mEC specifically affects grid cell tuning.
Collapse
|
48
|
Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J, Jiang H, Wang S, Looby JC, Guagliardo NA, Langma LW, Lu J, Zuo Y, Talmage DA, Role LW, Barrett PQ, Zhang LI, Luo M, Song Y, Zhu JJ, Li Y. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol 2018; 36:726-737. [PMID: 29985477 PMCID: PMC6093211 DOI: 10.1038/nbt.4184] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
The neurotransmitter acetylcholine (ACh) regulates a diverse array of physiological processes throughout the body. Despite its importance, cholinergic transmission in the majority of tissues and organs remains poorly understood owing primarily to the limitations of available ACh-monitoring techniques. We developed a family of ACh sensors (GACh) based on G-protein-coupled receptors that has the sensitivity, specificity, signal-to-noise ratio, kinetics and photostability suitable for monitoring ACh signals in vitro and in vivo. GACh sensors were validated with transfection, viral and/or transgenic expression in a dozen types of neuronal and non-neuronal cells prepared from multiple animal species. In all preparations, GACh sensors selectively responded to exogenous and/or endogenous ACh with robust fluorescence signals that were captured by epifluorescence, confocal, and/or two-photon microscopy. Moreover, analysis of endogenous ACh release revealed firing-pattern-dependent release and restricted volume transmission, resolving two long-standing questions about central cholinergic transmission. Thus, GACh sensors provide a user-friendly, broadly applicable tool for monitoring cholinergic transmission underlying diverse biological processes.
Collapse
Affiliation(s)
- Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Guangfu Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin
150001, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Lukas Mesik
- Zilkha Neurogenetic Institute, Department of Physiology & Neuroscience, Keck School of Medicine,
University of Southern California, Los Angeles, CA, 90033
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Huoqing Jiang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Shaohua Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Jess C. Looby
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Undergraduate Class of 2019, University of Virginia College of Arts and Sciences, Charlottesville, VA
22908
| | - Nick A. Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Linda W. Langma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ju Lu
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Yi Zuo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA
95064
| | - David A. Talmage
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Lorna W. Role
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Paula Q. Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Li I. Zhang
- Zilkha Neurogenetic Institute, Department of Physiology & Neuroscience, Keck School of Medicine,
University of Southern California, Los Angeles, CA, 90033
| | - Minmin Luo
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Song
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- School of Medicine, Ningbo University, Ningbo, 315010, China
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 EN, Nijmegen,
Netherlands
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan 430030, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
49
|
Ohara S, Onodera M, Simonsen ØW, Yoshino R, Hioki H, Iijima T, Tsutsui KI, Witter MP. Intrinsic Projections of Layer Vb Neurons to Layers Va, III, and II in the Lateral and Medial Entorhinal Cortex of the Rat. Cell Rep 2018; 24:107-116. [DOI: 10.1016/j.celrep.2018.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/04/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022] Open
|
50
|
Smirnova EY, Amakhin DV, Malkin SL, Chizhov AV, Zaitsev AV. Acute Changes in Electrophysiological Properties of Cortical Regular-Spiking Cells Following Seizures in a Rat Lithium–Pilocarpine Model. Neuroscience 2018; 379:202-215. [DOI: 10.1016/j.neuroscience.2018.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/26/2022]
|