1
|
Chadaeva I, Kozhemyakina R, Shikhevich S, Bogomolov A, Kondratyuk E, Oshchepkov D, Orlov YL, Markel AL. A Principal Components Analysis and Functional Annotation of Differentially Expressed Genes in Brain Regions of Gray Rats Selected for Tame or Aggressive Behavior. Int J Mol Sci 2024; 25:4613. [PMID: 38731836 PMCID: PMC11083694 DOI: 10.3390/ijms25094613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The process of domestication, despite its short duration as it compared with the time scale of the natural evolutionary process, has caused rapid and substantial changes in the phenotype of domestic animal species. Nonetheless, the genetic mechanisms underlying these changes remain poorly understood. The present study deals with an analysis of the transcriptomes from four brain regions of gray rats (Rattus norvegicus), serving as an experimental model object of domestication. We compared gene expression profiles in the hypothalamus, hippocampus, periaqueductal gray matter, and the midbrain tegmental region between tame domesticated and aggressive gray rats and revealed subdivisions of differentially expressed genes by principal components analysis that explain the main part of differentially gene expression variance. Functional analysis (in the DAVID (Database for Annotation, Visualization and Integrated Discovery) Bioinformatics Resources database) of the differentially expressed genes allowed us to identify and describe the key biological processes that can participate in the formation of the different behavioral patterns seen in the two groups of gray rats. Using the STRING- DB (search tool for recurring instances of neighboring genes) web service, we built a gene association network. The genes engaged in broad network interactions have been identified. Our study offers data on the genes whose expression levels change in response to artificial selection for behavior during animal domestication.
Collapse
Affiliation(s)
- Irina Chadaeva
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (I.C.); (R.K.); (E.K.); (A.L.M.)
| | - Rimma Kozhemyakina
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (I.C.); (R.K.); (E.K.); (A.L.M.)
| | - Svetlana Shikhevich
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (I.C.); (R.K.); (E.K.); (A.L.M.)
| | - Anton Bogomolov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (I.C.); (R.K.); (E.K.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (I.C.); (R.K.); (E.K.); (A.L.M.)
- Siberian Federal Scientific Centre of Agro-BioTechnologies, Russian Academy of Sciences, Krasnoobsk 630501, Russia
- Research Institute of Clinical and Experimental Lymphology—Branch of Institute of Cytology and Genetics, Novosibirsk 630117, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (I.C.); (R.K.); (E.K.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yuriy L. Orlov
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Arcady L. Markel
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (I.C.); (R.K.); (E.K.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Venkatachalam B, Biswa BB, Nagayama H, Koide T. Association of tameness and sociability but no sign of domestication syndrome in mice selectively bred for active tameness. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12887. [PMID: 38373143 PMCID: PMC10876149 DOI: 10.1111/gbb.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
Domesticated animals have been developed by selecting desirable traits following the initial unconscious selection stage, and now exhibit phenotypes desired by humans. Tameness is a common behavioural trait found in all domesticated animals. At the same time, these domesticated animals exhibit a variety of morphological, behavioural, and physiological traits that differ from their wild counterparts of their ancestral species. These traits are collectively referred to as domestication syndrome. However, whether this phenomenon exists is debatable. Previously, selective breeding has been used to enhance active tameness, a motivation to interact with humans, in wild heterogeneous stock mice derived from eight wild inbred strains. In the current study, we used tame mice to study how selective breeding for active tameness affects behavioural and morphological traits. A series of behavioural and morphological analyses on mice showed an increased preference for social stimuli and a longer duration of engagement in non-aggressive behaviour. However, no differences were observed in exploratory or anxiety-related behaviours. Similarly, selection for tameness did not affect ultrasonic vocalisations in mice, and no changes were observed in known morphological traits associated with domestication syndrome. These results suggest that there may be a link between active tameness and sociability and provide insights into the relationship between tameness and other behaviours in the context of domestication.
Collapse
Affiliation(s)
- Bharathi Venkatachalam
- Mouse Genomics Resource LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
- Graduate Institute for Advanced StudiesSOKENDAIMishimaShizuokaJapan
| | - Bhim B. Biswa
- Mouse Genomics Resource LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
- Graduate Institute for Advanced StudiesSOKENDAIMishimaShizuokaJapan
| | - Hiromichi Nagayama
- Mouse Genomics Resource LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
- Graduate Institute for Advanced StudiesSOKENDAIMishimaShizuokaJapan
| | - Tsuyoshi Koide
- Mouse Genomics Resource LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
- Graduate Institute for Advanced StudiesSOKENDAIMishimaShizuokaJapan
| |
Collapse
|
3
|
Alexandrovich YV, Antonov EV, Shikhevich SG, Kharlamova AV, Meister LV, Makovka YV, Shepeleva DV, Gulevich RG, Herbeck YE. The expression profile of genes associated with behavior, stress, and adult neurogenesis along the hippocampal dorsoventral axis in tame and aggressive foxes. Vavilovskii Zhurnal Genet Selektsii 2023; 27:651-661. [PMID: 38213464 PMCID: PMC10782033 DOI: 10.18699/vjgb-23-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/18/2022] [Accepted: 06/30/2023] [Indexed: 01/13/2024] Open
Abstract
The hippocampus plays the key role in stress response regulation, and stress response appears to be weakened in domesticated animals compared to their wild relatives. The hippocampus is functionally heterogeneous along its dorsoventral axis, with its ventral compartment being more closely involved in stress regulation. An earlier series of experiments was conducted with a unique breeding model of animal domestication, the farm silver fox (Vulpes vulpes), which included tame, aggressive, and unselected animals. A decrease in many indices of the hypothalamic-pituitary-adrenal activity was observed in tame animals. Also, adult hippocampal neurogenesis was more intense in tame foxes, and this fact may relate to reduced stress levels in this experimental population of foxes. Nevertheless, the molecular mechanisms responsible for the reduced stress response in tame animals remain obscure. In this study, serum cortisol levels and the mRNA levels of 13 genes in the dorsal and ventral hippocampus have been measured and compared in tame, aggressive, and unselected foxes. At the current stage of domestication, stress-induced cortisol levels in tame, aggressive, and unselected animals differ significantly from each other: tame foxes show the lowest levels, and aggressive ones, the highest. Twelve genes tested demonstrate significant gene expression differences between the dorsal and ventral hippocampi. These differences are mainly consistent with those found in rodents and humans. In tame foxes, significantly elevated mRNA levels were recorded for several genes: CYP26B1 for cytochrome P450 26B1 and ADRA1A for α1A adrenergic receptor in the dorsal hippocampus, whereas the level of NR3C2 mRNA for mineralocorticoid receptor was higher in the ventral. It is presumed that these genes constitute an important part of the mechanism reducing stress induced by contacts with humans and contribute to linking stress regulation with adult neurogenesis in tame foxes and domesticated animals in general.
Collapse
Affiliation(s)
- Yu V Alexandrovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Antonov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Sirius University of Science and Technology, Scientific Center for Translational Medicine, Sochi, Russia
| | - S G Shikhevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kharlamova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L V Meister
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Y V Makovka
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Shepeleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R G Gulevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu E Herbeck
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Dudek SM, Phoenix AN, Scappini E, Shepeleva DV, Herbeck YE, Trut LN, Farris S, Kukekova AV. Defining hippocampal area CA2 in the fox (Vulpes vulpes) brain. Hippocampus 2023; 33:700-711. [PMID: 37159095 PMCID: PMC10274530 DOI: 10.1002/hipo.23546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Since 1959, the Russian Farm-Fox study has bred foxes to be either tame or, more recently, aggressive, and scientists have used them to gain insight into the brain structures associated with these behavioral features. In mice, hippocampal area CA2 has emerged as one of the essential regulators of social aggression, and so to eventually determine whether we could identify differences in CA2 between tame and aggressive foxes, we first sought to identify CA2 in foxes (Vulpes vulpes). As no clearly defined area of CA2 has been described in species such as cats, dogs, or pigs, it was not at all clear whether CA2 could be identified in foxes. In this study, we cut sections of temporal lobes from male and female red foxes, perpendicular to the long axis of the hippocampus, and stained them with markers of CA2 pyramidal cells commonly used in tissue from rats and mice. We observed that antibodies against Purkinje cell protein 4 best stained the pyramidal cells in the area spanning the end of the mossy fibers and the beginning of the pyramidal cells lacking mossy fibers, resembling the pattern seen in rats and mice. Our findings indicate that foxes do have a "molecularly defined" CA2, and further, they suggest that other carnivores like dogs and cats might as well. With this being the case, these foxes could be useful in future studies looking at CA2 as it relates to aggression.
Collapse
Affiliation(s)
- Serena M Dudek
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Ashley N Phoenix
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Erica Scappini
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Darya V Shepeleva
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Yury E Herbeck
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lyudmila N Trut
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Shannon Farris
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia, USA
| | - Anna V Kukekova
- Department of Animal Science, The University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Rogers Flattery CN, Abdulla M, Barton SA, Michlich JM, Trut LN, Kukekova AV, Hecht EE. The brain of the silver fox (Vulpes vulpes): a neuroanatomical reference of cell-stained histological and MRI images. Brain Struct Funct 2023; 228:1177-1189. [PMID: 37160458 PMCID: PMC11192273 DOI: 10.1007/s00429-023-02648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Although the silver fox (Vulpes vulpes) has been largely overlooked by neuroscientists, it has the potential to serve as a powerful model for the investigation of brain-behavior relationships. The silver fox is a melanistic variant of the red fox. Within this species, the long-running Russian farm-fox experiment has resulted in different strains bred to show divergent behavior. Strains bred for tameness, aggression, or without selection on behavior present an excellent opportunity to investigate neuroanatomical changes underlying behavioral characteristics. Here, we present a histological and MRI neuroanatomical reference of a fox from the conventional strain, which is bred without behavioral selection. This can provide an anatomical basis for future studies of the brains of foxes from this particular experiment, as well as contribute to an understanding of fox brains in general. In addition, this can serve as a resource for comparative neuroscience and investigations into neuroanatomical variation among the family Canidae, the order Carnivora, and mammals more broadly.
Collapse
Affiliation(s)
| | - Munawwar Abdulla
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA
| | - Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA
| | - Jenny M Michlich
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA
| | - Lyudmila N Trut
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anna V Kukekova
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Hecht EE, Barton SA, Rogers Flattery CN, Meza Meza A. The evolutionary neuroscience of domestication. Trends Cogn Sci 2023; 27:553-567. [PMID: 37087363 DOI: 10.1016/j.tics.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
How does domestication affect the brain? This question has broad relevance. Domesticated animals play important roles in human society, and substantial recent work has addressed the hypotheses that a domestication syndrome links phenotypes across species, including Homo sapiens. Surprisingly, however, neuroscience research on domestication remains largely disconnected from current knowledge about how and why brains change in evolution. This article aims to bridge that gap. Examination of recent research reveals some commonalities across species, but ultimately suggests that brain changes associated with domestication are complex and variable. We conclude that interactions between behavioral, metabolic, and life-history selection pressures, as well as the role the role of experience and environment, are currently largely overlooked and represent important directions for future research.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA.
| | - Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA
| | | | - Araceli Meza Meza
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA
| |
Collapse
|
7
|
Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rodríguez-Moreno CB, Márquez-Valadez B, Gallardo-Caballero M, Rábano A, Llorens-Martín M. Methods to study adult hippocampal neurogenesis in humans and across the phylogeny. Hippocampus 2023; 33:271-306. [PMID: 36259116 PMCID: PMC7614361 DOI: 10.1002/hipo.23474] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
The hippocampus hosts the continuous addition of new neurons throughout life-a phenomenon named adult hippocampal neurogenesis (AHN). Here we revisit the occurrence of AHN in more than 110 mammalian species, including humans, and discuss the further validation of these data by single-cell RNAseq and other alternative techniques. In this regard, our recent studies have addressed the long-standing controversy in the field, namely whether cells positive for AHN markers are present in the adult human dentate gyrus (DG). Here we review how we developed a tightly controlled methodology, based on the use of high-quality brain samples (characterized by short postmortem delays and ≤24 h of fixation in freshly prepared 4% paraformaldehyde), to address human AHN. We review that the detection of AHN markers in samples fixed for 24 h required mild antigen retrieval and chemical elimination of autofluorescence. However, these steps were not necessary for samples subjected to shorter fixation periods. Moreover, the detection of labile epitopes (such as Nestin) in the human hippocampus required the use of mild detergents. The application of this strictly controlled methodology allowed reconstruction of the entire AHN process, thus revealing the presence of neural stem cells, proliferative progenitors, neuroblasts, and immature neurons at distinct stages of differentiation in the human DG. The data reviewed here demonstrate that methodology is of utmost importance when studying AHN by means of distinct techniques across the phylogenetic scale. In this regard, we summarize the major findings made by our group that emphasize that overlooking fundamental technical principles might have consequences for any given research field.
Collapse
Affiliation(s)
- Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Berenice Márquez-Valadez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Gallardo-Caballero
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department, CIEN Foundation, Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
8
|
Transcription Factors as Important Regulators of Changes in Behavior through Domestication of Gray Rats: Quantitative Data from RNA Sequencing. Int J Mol Sci 2022; 23:ijms232012269. [PMID: 36293128 PMCID: PMC9603081 DOI: 10.3390/ijms232012269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Studies on hereditary fixation of the tame-behavior phenotype during animal domestication remain relevant and important because they are of both basic research and applied significance. In model animals, gray rats Rattus norvegicus bred for either an enhancement or reduction in defensive response to humans, for the first time, we used high-throughput RNA sequencing to investigate differential expression of genes in tissue samples from the tegmental region of the midbrain in 2-month-old rats showing either tame or aggressive behavior. A total of 42 differentially expressed genes (DEGs; adjusted p-value < 0.01 and fold-change > 2) were identified, with 20 upregulated and 22 downregulated genes in the tissue samples from tame rats compared with aggressive rats. Among them, three genes encoding transcription factors (TFs) were detected: Ascl3 was upregulated, whereas Fos and Fosb were downregulated in tissue samples from the brains of tame rats brain. Other DEGs were annotated as associated with extracellular matrix components, transporter proteins, the neurotransmitter system, signaling molecules, and immune system proteins. We believe that these DEGs encode proteins that constitute a multifactorial system determining the behavior for which the rats have been artificially selected. We demonstrated that several structural subtypes of E-box motifs—known as binding sites for many developmental TFs of the bHLH class, including the ASCL subfamily of TFs—are enriched in the set of promoters of the DEGs downregulated in the tissue samples of tame rats’. Because ASCL3 may act as a repressor on target genes of other developmental TFs of the bHLH class, we hypothesize that the expression of TF gene Ascl3 in tame rats indicates longer neurogenesis (as compared to aggressive rats), which is a sign of neoteny and domestication. Thus, our domestication model shows a new function of TF ASCL3: it may play the most important role in behavioral changes in animals.
Collapse
|
9
|
Lu Y, Shi C, Jin X, He J, Yin Z. Domestication of farmed fish via the attenuation of stress responses mediated by the hypothalamus-pituitary-inter-renal endocrine axis. Front Endocrinol (Lausanne) 2022; 13:923475. [PMID: 35937837 PMCID: PMC9353172 DOI: 10.3389/fendo.2022.923475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Human-directed domestication of terrestrial animals traditionally requires thousands of years for breeding. The most prominent behavioral features of domesticated animals include reduced aggression and enhanced tameness relative to their wild forebears, and such behaviors improve the social tolerance of domestic animals toward both humans and crowds of their own species. These behavioral responses are primarily mediated by the hypothalamic-pituitary-adrenal (inter-renal in fish) (HPA/I) endocrine axis, which is involved in the rapid conversion of neuronal-derived perceptual information into hormonal signals. Over recent decades, growing evidence implicating the attenuation of the HPA/I axis during the domestication of animals have been identified through comprehensive genomic analyses of the paleogenomic datasets of wild progenitors and their domestic congeners. Compared with that of terrestrial animals, domestication of most farmed fish species remains at early stages. The present review focuses on the application of HPI signaling attenuation to accelerate the domestication and genetic breeding of farmed fish. We anticipate that deeper understanding of HPI signaling and its implementation in the domestication of farmed fish will benefit genetic breeding to meet the global demands of the aquaculture industry.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Zhan Yin,
| |
Collapse
|
10
|
Niego A, Benítez-Burraco A. Are feralization and domestication truly mirror processes? ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1975314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amy Niego
- PhD Program, Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain (E-mail: )
| |
Collapse
|
11
|
Suzuki K, Okanoya K. Domestication effects on aggressiveness: Comparison of biting motivation and bite force between wild and domesticated finches. Behav Processes 2021; 193:104503. [PMID: 34537267 DOI: 10.1016/j.beproc.2021.104503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/25/2022]
Abstract
Domesticated animals evolve unique traits, known as the domestication phenotypes or the domestication syndrome, due to their adaptation to a captive environment and changes in selection pressures. After being tamed, the Bengalese finch (Lonchura striata var. domestica) has undergone behavioural and physiological trait changes that differ from those of its wild ancestor, the white-rumped munia (Lonchura striata). The Bengalese finch has complex songs, lower fear response, and lower corticosterone levels than those in the white-rumped munia. We hypothesised that domesticated finches would exert less effort to maintain survival fitness for wild conditions because they are no longer subjected to natural selection pressures. Instead, they have been artificially selected by humans. Bite performance, denoting aggression affects survival rates, and is an indicator of adaptability in the wild. Furthermore, aggression is important as a behavioural trait influenced by domestication. Therefore, we compared the aggressiveness and biting force of white-rumped munias with those of Bengalese finches to explore the evolutionary mechanisms of behavioural changes due to domestication. Bengalese finches had decreased bite motivation and force compared to white-rumped munias. Domestication may have reduced aggression in Bengalese finches by eliminating the need to cope with predators and because of artificial selection by humans.
Collapse
Affiliation(s)
- Kenta Suzuki
- Faculty of Health Sciences, Nihon Institute of Medical Science, Moroyama-machi 350-0435, Japan; JST, ERATO, Okanoya Emotional Information Project, Wako, Saitama 351-0198, Japan; Cognition and Behavior Joint Research Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan; JST, ERATO, Okanoya Emotional Information Project, Wako, Saitama 351-0198, Japan; Cognition and Behavior Joint Research Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Benítez-Burraco A, Pörtl D, Jung C. Did Dog Domestication Contribute to Language Evolution? Front Psychol 2021; 12:695116. [PMID: 34589022 PMCID: PMC8473740 DOI: 10.3389/fpsyg.2021.695116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Different factors seemingly account for the emergence of present-day languages in our species. Human self-domestication has been recently invoked as one important force favoring language complexity mostly via a cultural mechanism. Because our self-domestication ultimately resulted from selection for less aggressive behavior and increased prosocial behavior, any evolutionary or cultural change impacting on aggression levels is expected to have fostered this process. Here, we hypothesize about a parallel domestication of humans and dogs, and more specifically, about a positive effect of our interaction with dogs on human self-domestication, and ultimately, on aspects of language evolution, through the mechanisms involved in the control of aggression. We review evidence of diverse sort (ethological mostly, but also archeological, genetic, and physiological) supporting such an effect and propose some ways of testing our hypothesis.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Daniela Pörtl
- Psychiatric Department, Saale-Unstrut Klinikum, Teaching Hospital Leipzig and Jena Universities, Naumburg, Germany
| | | |
Collapse
|
13
|
Zhu T, Qi X, Chen Y, Wang L, Lv X, Yang W, Zhang J, Li K, Ning Z, Jiang Z, Qu L. Positive selection of skeleton-related genes during duck domestication revealed by whole genome sequencing. BMC Ecol Evol 2021; 21:165. [PMID: 34488647 PMCID: PMC8419914 DOI: 10.1186/s12862-021-01894-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Domestication alters several phenotypic, neurological, and physiological traits in domestic animals compared to those in their wild ancestors. Domestic ducks originated from mallards, and some studies have shown that spot-billed ducks may have also made minor genetic contributions to domestication. Compared with the two ancestral species, domestic ducks generally differ in body size and bone morphology. In this study, we performed both genomic and transcriptomic analyses to identify candidate genes for elucidating the genetic mechanisms underlying phenotypic variation. METHODS In this study, the duck genome data from eight domestic breeds and two wild species were collected to study the genetic changes during domestication. And the transcriptome data of different tissues from wild ducks and seven domestic ducks were used to reveal the expression difference between wild and domestic ducks. RESULTS Using fixation index (Fst) algorithm and transcriptome data, we found that the genes related to skeletal development had high Fst values in wild and domestic breeds, and the differentially expressed genes were mainly enriched in the ossification pathway. Our data strongly suggest that the skeletal systems of domestic ducks were changed to adapt to artificial selection for larger sizes. In addition, by combining the genome and transcriptome data, we found that some Fst candidate genes exhibited different expression patterns, and these genes were found to be involved in digestive, immune, and metabolic functions. CONCLUSIONS A wide range of phenotypic differences exists between domestic and wild ducks. Through both genome and transcriptome analyses, we found that genes related to the skeletal system in domestic ducks were strongly selected. Our findings provide new insight into duck domestication and selection effects during the domestication.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing, 100193, China
| | - Xin Qi
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing, 100193, China
| | - Yu Chen
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Kaiyang Li
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing, 100193, China
| | - Zhihua Jiang
- Department of Animal Sciences, Center for Reproductive Biology, Veterinary and Biomedical Research Building, Washington State University, Pullman, Washington, 647010, USA
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing, 100193, China.
| |
Collapse
|
14
|
Hecht EE, Kukekova AV, Gutman DA, Acland GM, Preuss TM, Trut LN. Neuromorphological Changes following Selection for Tameness and Aggression in the Russian Farm-Fox experiment. J Neurosci 2021; 41:6144-6156. [PMID: 34127519 PMCID: PMC8276742 DOI: 10.1523/jneurosci.3114-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
The Russian farm-fox experiment is an unusually long-running and well-controlled study designed to replicate wolf-to-dog domestication. As such, it offers an unprecedented window onto the neural mechanisms governing the evolution of behavior. Here we report evolved changes to gray matter morphology resulting from selection for tameness versus aggressive responses toward humans in a sample of 30 male fox brains. Contrasting with standing ideas on the effects of domestication on brain size, tame foxes did not show reduced brain volume. Rather, gray matter volume in both the tame and aggressive strains was increased relative to conventional farm foxes bred without deliberate selection on behavior. Furthermore, tame- and aggressive-enlarged regions overlapped substantially, including portions of motor, somatosensory, and prefrontal cortex, amygdala, hippocampus, and cerebellum. We also observed differential morphologic covariation across distributed gray matter networks. In one prefrontal-cerebellum network, this covariation differentiated the three populations along the tame-aggressive behavioral axis. Surprisingly, a prefrontal-hypothalamic network differentiated the tame and aggressive foxes together from the conventional strain. These findings indicate that selection for opposite behaviors can influence brain morphology in a similar way.SIGNIFICANCE STATEMENT Domestication represents one of the largest and most rapid evolutionary shifts of life on earth. However, its neural correlates are largely unknown. Here we report the neuroanatomical consequences of selective breeding for tameness or aggression in the seminal Russian farm-fox experiment. Compared with a population of conventional farm-bred control foxes, tame foxes show neuroanatomical changes in the PFC and hypothalamus, paralleling wolf-to-dog shifts. Surprisingly, though, aggressive foxes also show similar changes. Moreover, both strains show increased gray matter volume relative to controls. These results indicate that similar brain adaptations can result from selection for opposite behavior, that existing ideas of brain changes in domestication may need revision, and that significant neuroanatomical change can evolve very quickly, within the span of <100 generations.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Anna V Kukekova
- Department of Animal Sciences, College of Agriculture, Consumer, and Environmental Sciences, University of IL Urbana-Champaign, Urbana, IL 61801
| | | | - Gregory M Acland
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | - Lyudmila N Trut
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 630090
| |
Collapse
|
15
|
Benítez-Burraco A, Ferretti F, Progovac L. Human Self-Domestication and the Evolution of Pragmatics. Cogn Sci 2021; 45:e12987. [PMID: 34170029 DOI: 10.1111/cogs.12987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
As proposed for the emergence of modern languages, we argue that modern uses of languages (pragmatics) also evolved gradually in our species under the effects of human self-domestication, with three key aspects involved in a complex feedback loop: (a) a reduction in reactive aggression, (b) the sophistication of language structure (with emerging grammars initially facilitating the transition from physical aggression to verbal aggression); and (c) the potentiation of pragmatic principles governing conversation, including, but not limited to, turn-taking and inferential abilities. Our core hypothesis is that the reduction in reactive aggression, one of the key factors in self-domestication processes, enabled us to fully exploit our cognitive and interactional potential as applied to linguistic exchanges, and ultimately to evolve a specific form of communication governed by persuasive reciprocity-a trait of human conversation characterized by both competition and cooperation. In turn, both early crude forms of language, well suited for verbal aggression/insult, and later more sophisticated forms of language, well suited for persuasive reciprocity, significantly contributed to the resolution and reduction of (physical) aggression, thus having a return effect on the self-domestication processes. Supporting evidence for our proposal, as well as grounds for further testing, comes mainly from the consideration of cognitive disorders, which typically simultaneously present abnormal features of self-domestication (including aggressive behavior) and problems with pragmatics and social functioning. While various approaches to language evolution typically reduce it to a single factor, our approach considers language evolution as a multifactorial process, with each player acting upon the other, engaging in an intense mutually reinforcing feedback loop. Moreover, we see language evolution as a gradual process, continuous with the pre-linguistic cognitive abilities, which were engaged in a positive feedback loop with linguistic innovations, and where gene-culture co-evolution and cultural niche construction were the main driving forces.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville
| | - Francesco Ferretti
- Department of Philosophy, Communication and Performing Arts. Roma Tre University
| | | |
Collapse
|
16
|
Sadoul B, Blumstein DT, Alfonso S, Geffroy B. Human protection drives the emergence of a new coping style in animals. PLoS Biol 2021; 19:e3001186. [PMID: 33822780 PMCID: PMC8057586 DOI: 10.1371/journal.pbio.3001186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/20/2021] [Indexed: 01/23/2023] Open
Abstract
Wild animals face novel environmental threats from human activities that may occur along a gradient of interactions with humans. Recent work has shown that merely living close to humans has major implications for a variety of antipredator traits and physiological responses. Here, we hypothesize that when human presence protects prey from their genuine predators (as sometimes seen in urban areas and at some tourist sites), this predator shield, followed by a process of habituation to humans, decouples commonly associated traits related to coping styles, which results in a new range of phenotypes. Such individuals are characterized by low aggressiveness and physiological stress responses, but have enhanced behavioral plasticity, boldness, and cognitive abilities. We refer to these individuals as "preactive," because their physiological and behavioral coping style falls outside the classical proactive/reactive coping styles. While there is some support for this new coping style, formal multivariate studies are required to investigate behavioral and physiological responses to anthropogenic activities.
Collapse
Affiliation(s)
- Bastien Sadoul
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, France
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Sébastien Alfonso
- COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari, Italy
| | - Benjamin Geffroy
- MARBEC, Univ. Montpellier, Ifremer, IRD, CNRS, Palavas-Les-Flots, France
| |
Collapse
|
17
|
Lu C, Li M, Sun X, Li N, Wang W, Tong P, Dai J. Comparing the hippocampal miRNA expression profiles of wild and domesticated Chinese tree shrews (Tupaia belangeri chinensis). BMC Ecol Evol 2021; 21:12. [PMID: 33514308 PMCID: PMC7853310 DOI: 10.1186/s12862-020-01740-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background The domestication of tree shrews represents an important advance in the development of standardized laboratory animals. Little is known regarding the miRNA changes that accompany the transformation of wild tree shrews into domestic tree shrews. Results By performing miRNA-seq analysis on wild and domestic tree shrews, we identified 2410 miRNAs and 30 differentially expressed miRNAs in the hippocampus during tree shrew domestication. A KEGG analysis of the differentially expressed genes showed that the differentially expressed miRNAs were associated with ECM-receptor interaction, the phosphatidylinositol signaling system, protein digestion and absorption, inositol phosphate metabolism, lysine degradation, fatty acid degradation and focal adhesion. Most of these pathways could be classified under environmental information processing, organismal systems and metabolism. The miRNAs exclusively expressed in wild and tame tree shrews GO enriched in terms of divergent functions. The miRNA-mRNA networks suggested that novel-m1388-5p and novel-m0746-5p might play regulatory roles in domestication of tree shrews. Real–time RT-PCR analysis was employed to verify the presence of these miRNAs. Conclusion We identified a number of candidate miRNA-regulated domestication genes that may represent targets for selection during the domestication of tree shrews.
Collapse
Affiliation(s)
- Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China. .,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China.
| | - Mingxue Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China. .,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
18
|
Matsumoto Y, Nagayama H, Nakaoka H, Toyoda A, Goto T, Koide T. Combined change of behavioral traits for domestication and gene-networks in mice selectively bred for active tameness. GENES BRAIN AND BEHAVIOR 2021; 20:e12721. [PMID: 33314580 PMCID: PMC7988575 DOI: 10.1111/gbb.12721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/02/2023]
Abstract
Tameness is a major element of animal domestication and involves two components: motivation to approach humans (active tameness) and reluctance to avoid humans (passive tameness). To understand the behavioral and genetic mechanisms of active tameness in mice, we had previously conducted selective breeding for long durations of contact and heading toward human hands in an active tameness test using a wild-derived heterogeneous stock. Although the study showed a significant increase in contacting and heading with the 12th generation of breeding, the effect on other behavioral indices related to tameness and change of gene expression levels underlying selective breeding was unclear. Here, we analyzed nine tameness-related traits at a later stage of selective breeding and analyzed how gene expression levels were changed by the selective breeding. We found that five traits, including contacting and heading, showed behavioral change in the selective groups comparing to the control through the generations. Furthermore, we conducted cluster analyses to evaluate the relationships among the nine traits and found that contacting and heading combined in an independent cluster in the selected groups, but not in the control groups. RNA-Seq of hippocampal tissue revealed differential expression of 136 genes between the selection and control groups, while the pathway analysis identified the networks associated with these genes. These results suggest that active tameness was hidden in the control groups but became apparent in the selected populations by selective breeding, potentially driven by changes in gene expression networks.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan.,Anicom Specialty Medical Institute Inc., Chojamachi, Yokohamashi-Nakaku, Kanagawaken, Japan
| | - Hiromichi Nagayama
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Hirofumi Nakaoka
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan.,Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tatsuhiko Goto
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| |
Collapse
|
19
|
Benítez-Burraco A. Mental time travel, language evolution, and human self-domestication. Cogn Process 2021; 22:363-367. [DOI: 10.1007/s10339-020-01005-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
|
20
|
La Rosa C, Cavallo F, Pecora A, Chincarini M, Ala U, Faulkes CG, Nacher J, Cozzi B, Sherwood CC, Amrein I, Bonfanti L. Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. eLife 2020; 9:55456. [PMID: 32690132 PMCID: PMC7373429 DOI: 10.7554/elife.55456] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
The adult mammalian brain is mainly composed of mature neurons. A limited amount of stem cell-driven neurogenesis persists in postnatal life and is reduced in large-brained species. Another source of immature neurons in adult brains is cortical layer II. These cortical immature neurons (cINs) retain developmentally undifferentiated states in adulthood, though they are generated before birth. Here, the occurrence, distribution and cellular features of cINs were systematically studied in 12 diverse mammalian species spanning from small-lissencephalic to large-gyrencephalic brains. In spite of well-preserved morphological and molecular features, the distribution of cINs was highly heterogeneous, particularly in neocortex. While virtually absent in rodents, they are present in the entire neocortex of many other species and their linear density in cortical layer II generally increased with brain size. These findings suggest an evolutionary developmental mechanism for plasticity that varies among mammalian species, granting a reservoir of young cells for the cerebral cortex. To acquire new skills or recover after injuries, the mammalian brain relies on plasticity, the ability for the brain to change its architecture and its connections during the lifetime of an animal. Creating new nerve cells is one way to achieve plasticity, but this process is rarer in humans than it is in mammals with smaller brains. In particular, it is absent in the human cortex: this region is enlarged in species with large brains, where it carries out complex tasks such as learning and memory. Producing new cells in the cortex would threaten the stability of the structures that retain long-term memories. Another route to plasticity is to reshape the connections between existing, mature nerve cells. This process takes place in the human brain during childhood and adolescence, as some connections are strengthened and others pruned away. An alternative mechanism relies on keeping some nerve cells in an immature, ‘adolescent’ state. When needed, these nerve cells emerge from their state of arrested development and ‘grow up’, connecting with the appropriate brain circuits. This mechanism does not involve producing new nerve cells, and so it would be suitable to maintain plasticity in the cortex. Consistent with this idea, in mice some dormant nerve cells are present in a small, primitive part of the cortex. La Rosa et al. therefore wanted to determine if the location and number of immature cells in the cortex differed between mammals, and if so, whether these differences depended on brain size. The study spanned 12 mammal species, from small-brained species like mice to larger-brained animals including sheep and non-human primates. Microscopy imaging was used to identify immature nerve cells in brain samples, which revealed that the cortex in larger-brained species contained more adolescent cells than its mouse counterpart. The difference was greatest in a region called the neocortex, which has evolved most recently. This area is most pronounced in primates – especially humans – where it carries out high-level cognitive tasks. These results identify immature nerve cells as a potential mechanism for plasticity in the cortex. La Rosa et al. hope that the work will inspire searches for similar reservoirs of young cells in humans, which could perhaps lead to new treatments for brain disorders like dementia.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Torino, Italy
| | - Francesca Cavallo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Alessandra Pecora
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Matteo Chincarini
- Università degli Studi di Teramo, Facoltà di Medicina Veterinaria, Teramo, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Torino, Italy
| | - Chris G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Juan Nacher
- Neurobiology Unit, BIOTECMED, Universitat de València, and Spanish Network for Mental Health Research CIBERSAM, València, Spain
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, United States
| | - Irmgard Amrein
- D-HEST, ETH, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Torino, Italy
| |
Collapse
|
21
|
Naval-Sanchez M, McWilliam S, Evans B, Yáñez JM, Houston RD, Kijas JW. Changed Patterns of Genomic Variation Following Recent Domestication: Selection Sweeps in Farmed Atlantic Salmon. Front Genet 2020; 11:264. [PMID: 32318091 PMCID: PMC7147387 DOI: 10.3389/fgene.2020.00264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
The introduction of wild Atlantic salmon into captivity, and their subsequent artificial selection for production traits, has caused phenotypic differences between domesticated fish and their wild counterparts. Identification of regions of the genome underling these changes offers the promise of characterizing the early biological consequences of domestication. In the current study, we sequenced a population of farmed European Atlantic salmon and compared the observed patterns of SNP variation to those found in conspecific wild populations. This identified 139 genomic regions that contained significantly elevated SNP homozygosity in farmed fish when compared to their wild counterparts. The most extreme was adjacent to versican, a gene involved in control of neural crest cell migration. To control for false positive signals, a second and independent dataset of farmed and wild European Atlantic salmon was assessed using the same methodology. A total of 81 outlier regions detected in the first dataset showed significantly reduced homozygosity within the second one, strongly suggesting the genomic regions identified are enriched for true selection sweeps. Examination of the associated genes identified a number previously characterized as targets of selection in other domestic species and that have roles in development, behavior and olfactory system. These include arcvf, sema6, errb4, id2-like, and 6n1-like genes. Finally, we searched for evidence of parallel sweeps using a farmed population of North American origin. This failed to detect a convincing overlap to the putative sweeps present in European populations, suggesting the factors that drive patterns of variation under domestication and early artificial selection were largely independent. This is the first analysis on domestication of aquaculture species exploiting whole-genome sequence data and resulted in the identification of sweeps common to multiple independent populations of farmed European Atlantic salmon.
Collapse
Affiliation(s)
| | | | - Bradley Evans
- Salmon Enterprises of Tasmania Pty. Limited, Wayatinah, TAS, Australia
| | - José M Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - James W Kijas
- CSIRO Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Chawana R, Patzke N, Bhagwandin A, Kaswera-Kyamakya C, Gilissen E, Bertelsen MF, Hemingway J, Manger PR. Adult hippocampal neurogenesis in Egyptian fruit bats from three different environments: Are interpretational variations due to the environment or methodology? J Comp Neurol 2020; 528:2994-3007. [PMID: 32112418 DOI: 10.1002/cne.24895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/10/2023]
Abstract
We quantified both proliferative (Ki-67 immunohistochemistry) and immature (doublecortin immunohistochemistry) cells within the dentate gyrus of adult Egyptian fruit bats from three distinct environments: (a) primary rainforest, (b) subtropical woodland, and (c) fifth-generation captive-bred. We used four different previously reported methods to assess the effect of the environment on proliferative and immature cells: (a) the comparison of raw totals of proliferative and immature cells; (b) these totals standardized to brain mass; (c) these totals expressed as a density using the volume of the granular cell layer (GCLv) for standardization; and (d) these totals expressed as a percentage of the total number of granule cells. For all methods, the numbers of proliferative cells did not differ statistically among the three groups, indicating that the rate of proliferation, while malleable to experimental manipulation or transiently in response to events of importance in the natural habitat, appears to occur, for the most part, at a predetermined rate within a species. For the immature cells, raw numbers and standardizations to brain mass and GCLv revealed no difference between the three groups studied; however, standardization to total granule cell numbers indicated that the two groups of wild-caught bats had significantly higher numbers of immature neurons than the captive-bred bats. These contrasting results indicate that the interpretation of the effect of the environment on the numbers of immature neurons appears method dependent. It is possible that current methods are not sensitive enough to reveal the effect of different environments on proliferative and immature cells.
Collapse
Affiliation(s)
- Richard Chawana
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium.,Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Jason Hemingway
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
23
|
Lord KA, Larson G, Coppinger RP, Karlsson EK. The History of Farm Foxes Undermines the Animal Domestication Syndrome. Trends Ecol Evol 2019; 35:125-136. [PMID: 31810775 DOI: 10.1016/j.tree.2019.10.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
Abstract
The Russian Farm-Fox Experiment is the best known experimental study in animal domestication. By subjecting a population of foxes to selection for tameness alone, Dimitry Belyaev generated foxes that possessed a suite of characteristics that mimicked those found across domesticated species. This 'domestication syndrome' has been a central focus of research into the biological pathways modified during domestication. Here, we chart the origins of Belyaev's foxes in eastern Canada and critically assess the appearance of domestication syndrome traits across animal domesticates. Our results suggest that both the conclusions of the Farm-Fox Experiment and the ubiquity of domestication syndrome have been overstated. To understand the process of domestication requires a more comprehensive approach focused on essential adaptations to human-modified environments.
Collapse
Affiliation(s)
- Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Raymond P Coppinger
- School of Cognitive Science, Hampshire College, 893 West St, Amherst, MA 01002, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA.
| |
Collapse
|
24
|
Bekiari C, Grivas I, Tsingotjidou A, Papadopoulos GC. Adult neurogenesis and gliogenesis in the dorsal and ventral canine hippocampus. J Comp Neurol 2019; 528:1216-1230. [PMID: 31743444 DOI: 10.1002/cne.24818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Dentate gyrus (DG) of the mammalian hippocampus gives rise to new neurons and astrocytes all through adulthood. Canine hippocampus presents many similarities in fetal development, anatomy, and physiology with human hippocampus, establishing canines as excellent animal models for the study of adult neurogenesis. In the present study, BrdU-dated cells of the structurally and functionally dissociated dorsal (dDG) and ventral (vDG) adult canine DG were comparatively examined over a period of 30 days. Each part's neurogenic potential, radial glia-like neural stem cells (NSCs) proliferation and differentiation, migration, and maturation of their progenies were evaluated at 2, 5, 14, and 30 days post BrdU administration, with the use of selected markers (glial fibrillary acidic protein, doublecortin, calretinin and calbindin). Co-staining of BrdU+ cells with NeuN or S100B permitted the parallel study of the ongoing neurogenesis and gliogenesis. Our findings reveal the comparatively higher populations of residing granule cells, proliferating NSCs and BrdU+ neurons in the dDG, whereas newborn neurons of the vDG showed a prolonged differentiation, migration, and maturation. Newborn astrocytes were found all along the dorso-ventral axis, counting however for only 11% of newborn cell population. Comparative evaluation of adult canine and rat neurogenesis revealed significant differences in the distribution of resident and newborn granule cells along the dorso-ventral axis, division pattern of adult NSCs, maturation time plan of newborn neurons, and ongoing gliogenesis. Concluding, spatial and temporal features of adult canine neurogenesis are similar to that of other gyrencephalic species, including humans, and justify the comparative examination of adult neurogenesis across mammalian species.
Collapse
Affiliation(s)
- Chryssa Bekiari
- Laboratory of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Grivas
- Laboratory of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios C Papadopoulos
- Laboratory of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
25
|
Terranova JI, Ogawa SK, Kitamura T. Adult hippocampal neurogenesis for systems consolidation of memory. Behav Brain Res 2019; 372:112035. [DOI: 10.1016/j.bbr.2019.112035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
|
26
|
Volumes of brain structures in captive wild-type and laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study. PLoS One 2019; 14:e0215348. [PMID: 30973956 PMCID: PMC6459519 DOI: 10.1371/journal.pone.0215348] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/27/2019] [Indexed: 11/19/2022] Open
Abstract
Selective breeding of laboratory rats resulted in changes of their behavior. Concomitantly, the albino strains developed vision related pathologies. These alterations certainly occurred on the background of modifications in brain morphology. The aim of the study was to assess and compare volumes of major structures in brains of wild-captive, laboratory albino and laboratory pigmented rats. High resolution T2-weighted images of brains of adult male Warsaw Wild Captive Pisula-Stryjek rats (WWCPS, a model of wild type), laboratory pigmented (Brown Norway strain, BN) and albino rats (Wistar strain, WI) were obtained with a 7T small animal-dedicated magnetic resonance tomograph. Volume quantification of whole brains and 50 brain structures within each brain were performed with the digital Schwarz rat brain atlas and a custom-made MATLAB/SPM8 scripts. Brain volumes were scaled to body mass, whereas volumes of brain structures were normalized to individual brain volumes. Normalized brain volume was similar in WWCPS and BN, but lower in WI. Normalized neocortex volume was smaller in both laboratory strains than in WWCPS and the visual cortex was smaller in albino WI rats than in WWCPS and BN. Relative volumes of phylogenetically older structures, such as hippocampus, amygdala, nucleus accumbens and olfactory nuclei, also displayed certain strain-related differences. The present data shows that selective breeding of laboratory rats markedly affected brain morphology, the neocortex being most significantly altered. In particular, albino rats display reduced volume of the visual cortex, possibly related to retinal degeneration and the development of blindness.
Collapse
|
27
|
Pörtl D, Jung C. Physiological pathways to rapid prosocial evolution. Biol Futur 2019; 70:93-102. [PMID: 34554422 DOI: 10.1556/019.70.2019.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/05/2019] [Indexed: 01/29/2023]
Abstract
Dogs (Canis lupus familiaris) descend from wolves (Canis lupus) sharing the same ecological niche of cooperative hunters, as humans. Initially, humans and wolves were competitors starting interspecific communication in order to avoid risk of injury. The evolutionary continuity of mammalian brains enabled interspecific prosocial contacts between both of them, which reduced stress, and enabled behavioral cultures leading to genetic isolation of those wolves. Dogs are the first domesticated animal living together with humans for about 25,000 years. Domestication means decreased aggression and flight distance toward humans, thus changes in the stress axis are crucial. The hypothesis of Active Social Domestication considers genetic selection as a necessary prediction but not a sufficient explanation of dog domestication. In addition, dog domestication is suggested to be an epigenetic disclosure. Due to changed stress activity, epigenetic mechanisms affect cerebral receptor activity and regulate transposon expressions, thus shaping brain function and behavior. Interspecific prosocial contacts initiated via serotonin release an enzymatic cascade enhancing, epigeneti-cally, the glucocorticoid negative feedback loop. Reduced chronic stress improved social learning capability and inhibitory control. Over time, those wolves could integrate themselves into human social structures, thus becoming dogs. In analogy, human mental skills, such as creating art and culture, might have also improved during the Upper Paleolithic.
Collapse
Affiliation(s)
- Daniela Pörtl
- Psychiatric Department, Saale-Unstrut Klinikum, Teaching Hospital Leipzig and Jena Universities, Naumburg, Germany.
| | | |
Collapse
|
28
|
Whitlock KE, Postlethwait J, Ewer J. Neuroendocrinology of reproduction: Is gonadotropin-releasing hormone (GnRH) dispensable? Front Neuroendocrinol 2019; 53:100738. [PMID: 30797802 PMCID: PMC7216701 DOI: 10.1016/j.yfrne.2019.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a highly conserved neuroendocrine decapeptide that is essential for the onset of puberty and the maintenance of the reproductive state. First identified in mammals, the GnRH signaling pathway is found in all classes of vertebrates; homologues of GnRH have also been identified in invertebrates. In addition to its role as a hypothalamic releasing hormone, GnRH has multiple functions including modulating neural activity within specific regions of the brain. These various functions are mediated by multiple isoforms, which are expressed at diverse locations within the central nervous system. Here we discuss the GnRH signaling pathways in light of new reports that reveal that some vertebrate genomes lack GnRH1. Not only do other isoforms of GnRH not compensate for this gene loss, but elements upstream of GnRH1, including kisspeptins, appear to also be dispensable. We discuss routes that may compensate for the loss of the GnRH1 pathway.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile.
| | - John Postlethwait
- Institute of Neuroscience, 324 Huestis Hall, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile
| |
Collapse
|
29
|
Wiget F, van Dijk RM, Louet ER, Slomianka L, Amrein I. Effects of Strain and Species on the Septo-Temporal Distribution of Adult Neurogenesis in Rodents. Front Neurosci 2017; 11:719. [PMID: 29311796 PMCID: PMC5742116 DOI: 10.3389/fnins.2017.00719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
The functional septo-temporal (dorso-ventral) differentiation of the hippocampus is accompanied by gradients of adult hippocampal neurogenesis (AHN) in laboratory rodents. An extensive septal AHN in laboratory mice suggests an emphasis on a relation of AHN to tasks that also depend on the septal hippocampus. Domestication experiments indicate that AHN dynamics along the longitudinal axis are subject to selective pressure, questioning if the septal emphasis of AHN in laboratory mice is a rule applying to rodents in general. In this study, we used C57BL/6 and DBA2/Crl mice, wild-derived F1 house mice and wild-captured wood mice and bank voles to look for evidence of strain and species specific septo-temporal differences in AHN. We confirmed the septal > temporal gradient in C57BL/6 mice, but in the wild species, AHN was low septally and high temporally. Emphasis on the temporal hippocampus was particularly strong for doublecortin positive (DCX+) young neurons and more pronounced in bank voles than in wood mice. The temporal shift was stronger in female wood mice than in males, while we did not see sex differences in bank voles. AHN was overall low in DBA and F1 house mice, but they exhibited the same inversed gradient as wood mice and bank voles. DCX+ young neurons were usually confined to the subgranular zone and deep granule cell layer. This pattern was seen in all animals in the septal and intermediate dentate gyrus. In bank voles and wood mice however, the majority of temporal DCX+ cells were radially dispersed throughout the granule cell layer. Some but not all of the septo-temporal differences were accompanied by changes in the DCX+/Ki67+ cell ratios, suggesting that new neuron numbers can be regulated by both proliferation or the time course of maturation and survival of young neurons. Some of the septo-temporal differences we observe have also been found in laboratory rodents after the experimental manipulation of the molecular mechanisms that control AHN. Adaptations of AHN under natural conditions may operate on these or similar mechanisms, adjusting neurogenesis to the requirements of hippocampal function.
Collapse
Affiliation(s)
- Franziska Wiget
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - R Maarten van Dijk
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilian-University, Munich, Germany
| | - Estelle R Louet
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Herbeck YE, Khantemirova AR, Antonov EV, Goncharova NI, Gulevich RG, Shepeleva DV, Trut LN. Expression of the DNA methyltransferase genes in silver foxes experimentally selected for domestication. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417040056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Lipp HP, Bonfanti L. Adult Neurogenesis in Mammals: Variations and Confusions. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:205-221. [DOI: 10.1159/000446905] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian adult neurogenesis has remained enigmatic. Two lines of research have emerged. One focuses on a potential repair mechanism in the human brain. The other aims at elucidating its functional role in the hippocampal formation, chiefly in cognitive processes; however, thus far it has been unsuccessful. Here, we try to recognize the sources of errors and conceptual confusion in comparative studies and neurobehavioral approaches with a focus on mice. Evolutionarily, mammalian adult neurogenesis appears as protracted juvenile neurogenesis originating from precursor cells in the secondary proliferation zones, from where newly formed cells migrate to target regions in the forebrain. This late developmental process is downregulated differentially in various brain structures depending on species and age. Adult neurogenesis declines substantially during early adulthood and persists at low levels into senescence. Short-lasting episodes in proliferation or reduction of adult neurogenesis may reflect a multitude of factors, and have been studied chiefly in mice and rats. Comparative studies face both species-specific variations in staining and technical abilities of laboratories, lacking quantification of important reference measures (e.g. granule cell number) and evaluation of maturational markers whose persistence might be functionally more relevant than proliferation rates. Likewise, the confusion about the functional role of variations in adult hippocampal neurogenesis has many causes. Prominent is an inferential statistical approach, usually with low statistical power. Interpretation is complicated by multiple theories about hippocampal function, often unrealistically extrapolating from humans to rodents. We believe that the field of mammalian adult neurogenesis needs more critical thinking, more sophisticated hypotheses, better statistical, technical and behavioral approaches, and a broader conceptual perspective incorporating comparative aspects rather than neglecting them.
Collapse
|
32
|
van Dijk RM, Huang SH, Slomianka L, Amrein I. Taxonomic Separation of Hippocampal Networks: Principal Cell Populations and Adult Neurogenesis. Front Neuroanat 2016; 10:22. [PMID: 27013984 PMCID: PMC4783399 DOI: 10.3389/fnana.2016.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/23/2016] [Indexed: 11/13/2022] Open
Abstract
While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis (AHN) in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates) are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non-rodent species, and support emerging concepts of functional and structural interactions between CA3 and the dentate gyrus.
Collapse
Affiliation(s)
- R Maarten van Dijk
- Functional Neuroanatomy, Institute of Anatomy, University of ZürichZurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH ZurichZürich, Switzerland; Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH ZurichZürich, Switzerland
| | - Shih-Hui Huang
- Functional Neuroanatomy, Institute of Anatomy, University of ZürichZurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH ZurichZürich, Switzerland; Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH ZurichZürich, Switzerland
| | - Lutz Slomianka
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zurich, Switzerland
| | - Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of ZürichZurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH ZurichZürich, Switzerland
| |
Collapse
|
33
|
Amrein I, Nosswitz M, Slomianka L, van Dijk RM, Engler S, Klaus F, Raineteau O, Azim K. Septo-temporal distribution and lineage progression of hippocampal neurogenesis in a primate (Callithrix jacchus) in comparison to mice. Front Neuroanat 2015; 9:85. [PMID: 26175670 PMCID: PMC4484228 DOI: 10.3389/fnana.2015.00085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/11/2015] [Indexed: 12/17/2022] Open
Abstract
Adult born neurons in the hippocampus show species-specific differences in their numbers, the pace of their maturation and their spatial distribution. Here, we present quantitative data on adult hippocampal neurogenesis in a New World primate, the common marmoset (Callithrix jacchus) that demonstrate parts of the lineage progression and age-related changes. Proliferation was largely (∼70%) restricted to stem cells or early progenitor cells, whilst the remainder of the cycling pool could be assigned almost exclusively to Tbr2+ intermediate precursor cells in both neonate and adult animals (20–122 months). Proliferating DCX+ neuroblasts were virtually absent in adults, although rare MCM2+/DCX+ co-expression revealed a small, persisting proliferative potential. Co-expression of DCX with calretinin was very limited in marmosets, suggesting that these markers label distinct maturational stages. In adult marmosets, numbers of MCM2+, Ki67+, and significantly Tbr2+, DCX+, and CR+ cells declined with age. The distributions of granule cells, proliferating cells and DCX+ young neurons along the hippocampal longitudinal axis were equal in marmosets and mice. In both species, a gradient along the hippocampal septo-temporal axis was apparent for DCX+ and resident granule cells. Both cell numbers are higher septally than temporally, whilst proliferating cells were evenly distributed along this axis. Relative to resident granule cells, however, the ratio of proliferating cells and DCX+ neurons remained constant in the septal, middle, and temporal hippocampus. In marmosets, the extended phase of the maturation of young neurons that characterizes primate hippocampal neurogenesis was due to the extension in a large CR+/DCX- cell population. This clear dissociation between DCX+ and CR+ young neurons has not been reported for other species and may therefore represent a key primate-specific feature of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland ; Neuroscience Center Zurich, University of Zürich and ETH Zürich Zürich, Switzerland
| | - Michael Nosswitz
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland
| | - Lutz Slomianka
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland
| | - R Maarten van Dijk
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland ; Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich Zürich, Switzerland
| | - Stefanie Engler
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland
| | - Fabienne Klaus
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zürich, Switzerland
| | - Olivier Raineteau
- Inserm U846, Stem Cell and Brain Research Institute, Bron France ; Université de Lyon, Bron France
| | - Kasum Azim
- Neuroscience Center Zurich, University of Zürich and ETH Zürich Zürich, Switzerland
| |
Collapse
|