1
|
Cierpicki T, Grembecka J. Targeting Protein-Protein Interactions in Hematologic Malignancies. ANNUAL REVIEW OF PATHOLOGY 2025; 20:275-301. [PMID: 39854187 DOI: 10.1146/annurev-pathmechdis-031521-033231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Over the last two decades, there have been extensive efforts to develop small-molecule inhibitors of protein-protein interactions (PPIs) as novel therapeutics for cancer, including hematologic malignancies. Despite the numerous challenges associated with developing PPI inhibitors, a significant number of them have advanced to clinical studies in hematologic patients in recent years. The US Food and Drug Administration approval of the very first PPI inhibitor, venetoclax, demonstrated the real clinical value of blocking protein-protein interfaces. In this review, we discuss the most successful examples of PPI inhibitors that have reached clinical studies in patients with hematologic malignancies. We also describe the challenges of blocking PPIs with small molecules, clinical resistance to such compounds, and the lessons learned from the development of successful PPI inhibitors. Overall, this review highlights the remarkable success and substantial promise of blocking PPIs in hematologic malignancies.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
2
|
Bai H, Yang Z, Lei H, Wu Y, Liu J, Yuan B, Ma M, Gao L, Zhang SQ, Xin M. Discovery of novel pyrrolo[2,3-d]pyrimidines as potent menin-mixed lineage leukemia interaction inhibitors. Eur J Med Chem 2024; 268:116226. [PMID: 38367493 DOI: 10.1016/j.ejmech.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
To interfere the Menin-MLL interaction using small molecular inhibitors has been shown as new treatment of several special hematological malignancies. Herein, a series of Menin-MLL interaction inhibitors with pyrrolo[2,3-d]pyrimidine scaffold were designed, synthesized and evaluated. Among them, compound A6 exhibited potent binding affinity with an IC50 value of 0.38 μM, and strong anti-proliferative activity against MV4-11 cells with an IC50 value of 1.07 μM. Further study showed A6 reduced the transcriptional levels of HOXA9 and MEIS1 genes. Moreover, A6 induced cellular apoptosis, arrested the cell cycle in G0/G1 phase, and reversed the differentiation arrest in a concentration-dependent manner. This study suggested compound A6 was as a novel potent Menin-MLL interaction inhibitor, and it proved that introduction of 4-amino pyrrolo[2,3-d]pyrimidine to occupy the P10 hydrophobic pocket was new idea for design of novel Menin-MLL interaction inhibitors.
Collapse
Affiliation(s)
- Huanrong Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Zhe Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Hao Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yujie Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jiaxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Bo Yuan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Mengyan Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Li Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
3
|
Numata M, Haginoya N, Shiroishi M, Hirata T, Sato-Otsubo A, Yoshikawa K, Takata Y, Nagase R, Kashimoto Y, Suzuki M, Schulte N, Polier G, Kurimoto A, Tomoe Y, Toyota A, Yoneyama T, Imai E, Watanabe K, Hamada T, Kanada R, Watanabe J, Kagoshima Y, Tokumaru E, Murata K, Baba T, Shinozaki T, Ohtsuka M, Goto K, Karibe T, Deguchi T, Gocho Y, Yoshida M, Tomizawa D, Kato M, Tsutsumi S, Kitagawa M, Abe Y. A novel Menin-MLL1 inhibitor, DS-1594a, prevents the progression of acute leukemia with rearranged MLL1 or mutated NPM1. Cancer Cell Int 2023; 23:36. [PMID: 36841758 PMCID: PMC9960487 DOI: 10.1186/s12935-023-02877-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Mixed lineage leukemia 1-rearranged (MLL1-r) acute leukemia patients respond poorly to currently available treatments and there is a need to develop more effective therapies directly disrupting the Menin‒MLL1 complex. Small-molecule-mediated inhibition of the protein‒protein interaction between Menin and MLL1 fusion proteins is a potential therapeutic strategy for patients with MLL1-r or mutated-nucleophosmin 1 (NPM1c) acute leukemia. In this study, we preclinically evaluated the new compound DS-1594a and its salts. METHODS We evaluated the preclinical efficacy of DS-1594a as well as DS-1594a·HCl (the HCl salt of DS-1594a) and DS-1594a·succinate (the succinic acid salt of DS-1594a, DS-1594b) in vitro and in vivo using acute myeloid leukemia (AML)/acute lymphoblastic leukemia (ALL) models. RESULTS Our results showed that MLL1-r or NPM1c human leukemic cell lines were selectively and highly sensitive to DS-1594a·HCl, with 50% growth inhibition values < 30 nM. Compared with cytrabine, the standard chemotherapy drug as AML therapy, both DS-1594a·HCl and DS-1594a·succinate mediated the eradication of potential leukemia-initiating cells by enhancing differentiation and reducing serial colony-forming potential in MLL1-r AML cells in vitro. The results were confirmed by flow cytometry, RNA sequencing, RT‒qPCR and chromatin immunoprecipitation sequencing analyses. DS-1594a·HCl and DS-1594a·succinate exhibited significant antitumor efficacy and survival benefit in MOLM-13 cell and patient-derived xenograft models of MLL1-r or NPM1c acute leukemia in vivo. CONCLUSION We have generated a novel, potent, orally available small-molecule inhibitor of the Menin-MLL1 interaction, DS-1594a. Our results suggest that DS-1594a has medicinal properties distinct from those of cytarabine and that DS-1594a has the potential to be a new anticancer therapy and support oral dosing regimen for clinical studies (NCT04752163).
Collapse
Affiliation(s)
- Masashi Numata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Noriyasu Haginoya
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Machiko Shiroishi
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tsuyoshi Hirata
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Aiko Sato-Otsubo
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Kenji Yoshikawa
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshimi Takata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Reina Nagase
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshinori Kashimoto
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Makoto Suzuki
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Nina Schulte
- grid.488273.20000 0004 0623 5599Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Gernot Polier
- grid.488273.20000 0004 0623 5599Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Akiko Kurimoto
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yumiko Tomoe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Akiko Toyota
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tomoko Yoneyama
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Emi Imai
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Kenji Watanabe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tomoaki Hamada
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Ryutaro Kanada
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Jun Watanabe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshiko Kagoshima
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Eri Tokumaru
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Kenji Murata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Takayuki Baba
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Taeko Shinozaki
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Masami Ohtsuka
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Koichi Goto
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tsuyoshi Karibe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Takao Deguchi
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Gocho
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Pediatrics, University of Tokyo, Tokyo, Japan ,grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Shinji Tsutsumi
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Mayumi Kitagawa
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005, Japan.
| | - Yuki Abe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| |
Collapse
|
4
|
Ikeda D, Chi S, Uchiyama S, Nakamura H, Guo YM, Yamauchi N, Yuda J, Minami Y. Molecular Classification and Overcoming Therapy Resistance for Acute Myeloid Leukemia with Adverse Genetic Factors. Int J Mol Sci 2022; 23:5950. [PMID: 35682627 PMCID: PMC9180585 DOI: 10.3390/ijms23115950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
The European LeukemiaNet (ELN) criteria define the adverse genetic factors of acute myeloid leukemia (AML). AML with adverse genetic factors uniformly shows resistance to standard chemotherapy and is associated with poor prognosis. Here, we focus on the biological background and real-world etiology of these adverse genetic factors and then describe a strategy to overcome the clinical disadvantages in terms of targeting pivotal molecular mechanisms. Different adverse genetic factors often rely on common pathways. KMT2A rearrangement, DEK-NUP214 fusion, and NPM1 mutation are associated with the upregulation of HOX genes. The dominant tyrosine kinase activity of the mutant FLT3 or BCR-ABL1 fusion proteins is transduced by the AKT-mTOR, MAPK-ERK, and STAT5 pathways. Concurrent mutations of ASXL1 and RUNX1 are associated with activated AKT. Both TP53 mutation and mis-expressed MECOM are related to impaired apoptosis. Clinical data suggest that adverse genetic factors can be found in at least one in eight AML patients and appear to accumulate in relapsed/refractory cases. TP53 mutation is associated with particularly poor prognosis. Molecular-targeted therapies focusing on specific genomic abnormalities, such as FLT3, KMT2A, and TP53, have been developed and have demonstrated promising results.
Collapse
Affiliation(s)
- Daisuke Ikeda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
- Department of Hematology, Kameda Medical Center, Kamogawa 296-8602, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Satoshi Uchiyama
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Hirotaka Nakamura
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Yong-Mei Guo
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Nobuhiko Yamauchi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| |
Collapse
|
5
|
Chi SG, Minami Y. Emerging Targeted Therapy for Specific Genomic Abnormalities in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:2362. [PMID: 35216478 PMCID: PMC8879537 DOI: 10.3390/ijms23042362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
We describe recent updates of existing molecular-targeting agents and emerging novel gene-specific strategies. FLT3 and IDH inhibitors are being tested in combination with conventional chemotherapy for both medically fit patients and patients who are ineligible for intensive therapy. FLT3 inhibitors combined with non-cytotoxic agents, such as BCL-2 inhibitors, have potential therapeutic applicability. The menin-MLL complex pathway is an emerging therapeutic target. The pathway accounts for the leukemogenesis in AML with MLL-rearrangement, NPM1 mutation, and NUP98 fusion genes. Potent menin-MLL inhibitors have demonstrated promising anti-leukemic effects in preclinical studies. The downstream signaling molecule SYK represents an additional target. However, the TP53 mutation continues to remain a challenge. While the p53 stabilizer APR-246 in combination with azacitidine failed to show superiority compared to azacitidine monotherapy in a phase 3 trial, next-generation p53 stabilizers are now under development. Among a number of non-canonical approaches to TP53-mutated AML, the anti-CD47 antibody magrolimab in combination with azacitidine showed promising results in a phase 1b trial. Further, the efficacy was somewhat better in patients with the TP53 mutation. Although clinical evidence has not been accumulated sufficiently, targeting activating KIT mutations and RAS pathway-related molecules can be a future therapeutic strategy.
Collapse
Affiliation(s)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 2778577, Japan;
| |
Collapse
|
6
|
Ozyerli‐Goknar E, Nizamuddin S, Timmers HTM. A Box of Chemistry to Inhibit the MEN1 Tumor Suppressor Gene Promoting Leukemia. ChemMedChem 2021; 16:1391-1402. [PMID: 33534953 PMCID: PMC8252030 DOI: 10.1002/cmdc.202000972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Targeting protein-protein interactions (PPIs) with small-molecule inhibitors has become a hotbed of modern drug development. In this review, we describe a new class of PPI inhibitors that block menin from binding to MLL proteins. Menin is encoded by the MEN1 tumor suppressor, but acts as an essential cofactor for MLL/KMT2A-rearranged leukemias. The most promising menin-MLL inhibitors belong to the thienopyrimidine class and have recently entered phase I/II clinical trials for treating acute leukemias characterized by MLL/KMT2A translocations or NPM1 mutations. As single agents, thienopyrimidine compounds eradicate leukemia in a xenograft models of primary leukemic cells belonging to the MLL-rearranged or NPM1-mutant subtypes. These compounds are well tolerated with few or no side effects, which is remarkable given the tumor-suppressor function of menin. The menin-MLL inhibitors highlight how leukemia patients could benefit from a targeted epigenetic therapy with novel PPI inhibitors obtained by directed chemical evolution.
Collapse
Affiliation(s)
- Ezgi Ozyerli‐Goknar
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - Sheikh Nizamuddin
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - H. T. Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| |
Collapse
|
7
|
Gao K, Shaabani S, Xu R, Zarganes-Tzitzikas T, Gao L, Ahmadianmoghaddam M, Groves MR, Dömling A. Nanoscale, automated, high throughput synthesis and screening for the accelerated discovery of protein modifiers. RSC Med Chem 2021; 12:809-818. [PMID: 34124680 PMCID: PMC8152715 DOI: 10.1039/d1md00087j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/14/2021] [Indexed: 11/26/2022] Open
Abstract
Hit finding in early drug discovery is often based on high throughput screening (HTS) of existing and historical compound libraries, which can limit chemical diversity, is time-consuming, very costly, and environmentally not sustainable. On-the-fly compound synthesis and in situ screening in a highly miniaturized and automated format has the potential to greatly reduce the medicinal chemistry environmental footprint. Here, we used acoustic dispensing technology to synthesize a library in a 1536 well format based on the Groebcke-Blackburn-Bienaymé reaction (GBB-3CR) on a nanomole scale. The unpurified library was screened by differential scanning fluorimetry (DSF) and cross-validated using microscale thermophoresis (MST) against the oncogenic protein-protein interaction menin-MLL. Several GBB reaction products were found as μM menin binder, and the structural basis of the interactions with menin was elucidated by co-crystal structure analysis. Miniaturization and automation of the organic synthesis and screening process can lead to an acceleration in the early drug discovery process, which is an alternative to classical HTS and a step towards the paradigm of continuous manufacturing.
Collapse
Affiliation(s)
- Kai Gao
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Shabnam Shaabani
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Ruixue Xu
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Tryfon Zarganes-Tzitzikas
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Li Gao
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Maryam Ahmadianmoghaddam
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Matthew R Groves
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Alexander Dömling
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| |
Collapse
|
8
|
Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, Kim E, Linhares BM, Chen D, Jih G, Perkey E, Huang H, He M, Wen B, Wang Y, Yu K, Lee SCW, Danet-Desnoyers G, Trotman W, Kandarpa M, Cotton A, Abdel-Wahab O, Lei H, Dou Y, Guzman M, Peterson L, Gruber T, Choi S, Sun D, Ren P, Li LS, Liu Y, Burrows F, Maillard I, Cierpicki T, Grembecka J. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J Clin Invest 2020; 130:981-997. [PMID: 31855575 DOI: 10.1172/jci129126] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
The protein-protein interaction between menin and mixed lineage leukemia 1 (MLL1) plays a critical role in acute leukemias with translocations of the MLL1 gene or with mutations in the nucleophosmin 1 (NPM1) gene. As a step toward clinical translation of menin-MLL1 inhibitors, we report development of MI-3454, a highly potent and orally bioavailable inhibitor of the menin-MLL1 interaction. MI-3454 profoundly inhibited proliferation and induced differentiation in acute leukemia cells and primary patient samples with MLL1 translocations or NPM1 mutations. When applied as a single agent, MI-3454 induced complete remission or regression of leukemia in mouse models of MLL1-rearranged or NPM1-mutated leukemia, including patient-derived xenograft models, through downregulation of key genes involved in leukemogenesis. We also identified MEIS1 as a potential pharmacodynamic biomarker of treatment response with MI-3454 in leukemia, and demonstrated that this compound is well tolerated and did not impair normal hematopoiesis in mice. Overall, this study demonstrates, for the first time to our knowledge, profound activity of the menin-MLL1 inhibitor as a single agent in clinically relevant PDX models of leukemia. These data provide a strong rationale for clinical translation of MI-3454 or its analogs for leukemia patients with MLL1 rearrangements or NPM1 mutations.
Collapse
Affiliation(s)
- Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Tao Wu
- Wellspring Biosciences, Inc., San Diego, California, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian M Linhares
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dong Chen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Huang Huang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi Wang
- Wellspring Biosciences, Inc., San Diego, California, USA
| | - Ke Yu
- Wellspring Biosciences, Inc., San Diego, California, USA
| | | | - Gwenn Danet-Desnoyers
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winifred Trotman
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Malathi Kandarpa
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Hongwei Lei
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Luke Peterson
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tanja Gruber
- Saint Jude Children's Hospital, Memphis, Tennessee, USA
| | - Sarah Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Pingda Ren
- Wellspring Biosciences, Inc., San Diego, California, USA.,Kura Oncology, Inc., San Diego, California, USA
| | - Lian-Sheng Li
- Wellspring Biosciences, Inc., San Diego, California, USA
| | - Yi Liu
- Wellspring Biosciences, Inc., San Diego, California, USA
| | | | - Ivan Maillard
- Life Sciences Institute and.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Sarrou E, Richmond L, Carmody RJ, Gibson B, Keeshan K. CRISPR Gene Editing of Murine Blood Stem and Progenitor Cells Induces MLL-AF9 Chromosomal Translocation and MLL-AF9 Leukaemogenesis. Int J Mol Sci 2020; 21:ijms21124266. [PMID: 32549410 PMCID: PMC7352880 DOI: 10.3390/ijms21124266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Chromosomal rearrangements of the mixed lineage leukaemia (MLL, also known as KMT2A) gene on chromosome 11q23 are amongst the most common genetic abnormalities observed in human acute leukaemias. MLL rearrangements (MLLr) are the most common cytogenetic abnormalities in infant and childhood acute myeloid leukaemia (AML) and acute lymphocytic leukaemia (ALL) and do not normally acquire secondary mutations compared to other leukaemias. To model these leukaemias, we have used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to induce MLL-AF9 (MA9) chromosomal rearrangements in murine hematopoietic stem and progenitor cell lines and primary cells. By utilizing a dual-single guide RNA (sgRNA) approach targeting the breakpoint cluster region of murine Mll and Af9 equivalent to that in human MA9 rearrangements, we show efficient de novo generation of MA9 fusion product at the DNA and RNA levels in the bulk population. The leukaemic features of MA9-induced disease were observed including increased clonogenicity, enrichment of c-Kit-positive leukaemic stem cells and increased MA9 target gene expression. This approach provided a rapid and reliable means of de novo generation of Mll-Af9 genetic rearrangements in murine haematopoietic stem and progenitor cells (HSPCs), using CRISPR/Cas9 technology to produce a cellular model of MA9 leukaemias which faithfully reproduces many features of the human disease in vitro.
Collapse
Affiliation(s)
- Evgenia Sarrou
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
| | - Laura Richmond
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
| | - Ruaidhrí J. Carmody
- Centre for Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK;
| | | | - Karen Keeshan
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
- Correspondence:
| |
Collapse
|
10
|
Xu S, Aguilar A, Huang L, Xu T, Zheng K, McEachern D, Przybranowski S, Foster C, Zawacki K, Liu Z, Chinnaswamy K, Stuckey J, Wang S. Discovery of M-808 as a Highly Potent, Covalent, Small-Molecule Inhibitor of the Menin-MLL Interaction with Strong In Vivo Antitumor Activity. J Med Chem 2020; 63:4997-5010. [PMID: 32338903 PMCID: PMC7981784 DOI: 10.1021/acs.jmedchem.0c00547] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Targeting the menin-MLL protein-protein interaction is a new therapeutic strategy for the treatment of acute leukemia carrying MLL fusion (MLL leukemia). We describe herein the structure-based optimization of a class of covalent menin inhibitors, which led to the discovery of M-808 (16) as a highly potent and efficacious covalent menin inhibitor. M-808 effectively inhibits leukemia cell growth at low nanomolar concentrations and is capable of achieving partial tumor regression in an MV4;11 xenograft tumor model in mice at a well-tolerated dose schedule. Determination of the co-crystal structure of M-808 in complex with menin provides a structural basis for their high-affinity, covalent interactions. M-808 represents a promising, covalent menin inhibitor for further optimization and evaluation toward developing a new therapy for the treatment of MLL leukemia.
Collapse
Affiliation(s)
- Shilin Xu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Angelo Aguilar
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liyue Huang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Zheng
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sally Przybranowski
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caroline Foster
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaitlin Zawacki
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhaomin Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Jeanne Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Medicinal Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States,Corresponding Author Phone: 1-734-615-0362;
| |
Collapse
|
11
|
Abstract
Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor-cofactor protein-protein interactions, inhibition of transcription factor-DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Crosstalk between 14-3-3θ and AF4 enhances MLL-AF4 activity and promotes leukemia cell proliferation. Cell Oncol (Dordr) 2019; 42:829-845. [PMID: 31493143 DOI: 10.1007/s13402-019-00468-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The t(4;11)(q21;q23) translocation characterizes a form of acute lymphoblastic leukemia with a poor prognosis. It results in a fusion gene encoding a chimeric transcription factor, MLL-AF4, that deregulates gene expression through a variety of still controversial mechanisms. To provide new insights into these mechanisms, we examined the interaction between AF4, the most common MLL fusion partner, and the scaffold protein 14-3-3θ, in the context of t(4;11)-positive leukemia. METHODS Protein-protein interactions were analyzed using immunoprecipitation and in vitro binding assays, and by fluorescence microscopy in t(4;11)-positive RS4;11 and MV4-11 leukemia cells and in HEK293 cells. Protein and mRNA expression levels were determined by Western blotting and RT-qPCR, respectively. A 5-bromo-2'-deoxyuridine assay and an annexin V/propidium iodide assay were used to assess proliferation and apoptosis rates, respectively, in t(4;11)-positive and control cells. Chromatin immunoprecipitation was performed to assess binding of 14-3-3θ and AF4 to a specific promoter element. RESULTS We found that AF4 and 14-3-3θ are nuclear interactors, that 14-3-3θ binds Ser588 of AF4 and that 14-3-3θ forms a complex with MLL-AF4. In addition, we found that in t(4;11)-positive cells, 14-3-3θ knockdown decreased the expression of MLL-AF4 target genes, induced apoptosis and hampered cell proliferation. Moreover, we found that 14-3-3θ knockdown impaired the recruitment of AF4, but not of MLL-AF4, to target chromatin. Overall, our data indicate that the activity of the chimeric transcription factor MLL-AF4 depends on the cellular availability of 14-3-3θ, which triggers the transactivating function and subsequent degradation of AF4. CONCLUSIONS From our data we conclude that the scaffold protein 14-3-3θ enhances the aberrant activity of the chimeric transcription factor MLL-AF4 and, therefore, represents a new player in the molecular pathogenesis of t(4;11)-positive leukemia and a new promising therapeutic target.
Collapse
|
13
|
Aguilar A, Zheng K, Xu T, Xu S, Huang L, Fernandez-Salas E, Liu L, Bernard D, Harvey KP, Foster C, McEachern D, Stuckey J, Chinnaswamy K, Delproposto J, Kampf JW, Wang S. Structure-Based Discovery of M-89 as a Highly Potent Inhibitor of the Menin-Mixed Lineage Leukemia (Menin-MLL) Protein-Protein Interaction. J Med Chem 2019; 62:6015-6034. [PMID: 31244110 DOI: 10.1021/acs.jmedchem.9b00021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inhibition of the menin-mixed lineage leukemia (MLL) protein-protein interaction is a promising new therapeutic strategy for the treatment of acute leukemia carrying MLL fusion (MLL leukemia). We describe herein our structure-based design, synthesis, and evaluation of a new class of small-molecule inhibitors of the menin-MLL interaction (hereafter called menin inhibitors). Our efforts have resulted in the discovery of highly potent menin inhibitors, as exemplified by compound 42 (M-89). M-89 binds to menin with a Kd value of 1.4 nM and effectively engages cellular menin protein at low nanomolar concentrations. M-89 inhibits cell growth in the MV4;11 and MOLM-13 leukemia cell lines carrying MLL fusion with IC50 values of 25 and 55 nM, respectively, and demonstrates >100-fold selectivity over the HL-60 leukemia cell line lacking MLL fusion. The determination of a co-crystal structure of M-89 in a complex with menin provides the structural basis for their high-affinity interaction. Further optimization of M-89 may lead to a new class of therapy for the treatment of MLL leukemia.
Collapse
|
14
|
Fagan RJ, Dingwall AK. COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer. Cancer Lett 2019; 458:56-65. [PMID: 31128216 DOI: 10.1016/j.canlet.2019.05.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022]
Abstract
The KMT2 (lysine methyltransferase) family of histone modifying proteins play essential roles in regulating developmental pathways, and mutations in the genes encoding these proteins have been strongly linked to many blood and solid tumor cancers. The KMT2A-D proteins are histone 3 lysine 4 (H3K4) methyltransferases embedded in large COMPASS-like complexes important for RNA Polymerase II-dependent transcription. KMT2 mutations were initially associated with pediatric Mixed Lineage Leukemias (MLL) and found to be the result of rearrangements of the MLL1/KMT2A gene at 11q23. Over the past several years, large-scale tumor DNA sequencing studies have revealed the potential involvement of other KMT2 family genes, including heterozygous somatic mutations in the paralogous MLL3/KMT2C and MLL2(4)/KMT2D genes that are now among the most frequently associated with human cancer. Recent studies have provided a better understanding of the potential roles of disrupted KMT2C and KMT2D family proteins in cell growth aberrancy. These findings, together with an examination of cancer genomics databases provide new insights into the contribution of KMT2C/D proteins in epigenetic gene regulation and links to carcinogenesis.
Collapse
Affiliation(s)
- Richard J Fagan
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA
| | - Andrew K Dingwall
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA; Department of Cancer Biology and Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA.
| |
Collapse
|
15
|
A new complex rearrangement in infant ALL: t(X;11;17)(p11.2;q23;q12). Cancer Genet 2018; 228-229:110-114. [DOI: 10.1016/j.cancergen.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022]
|
16
|
Jedwabny W, Cierpicki T, Grembecka J, Dyguda-Kazimierowicz E. Validation of approximate nonempirical scoring model for menin-mixed lineage leukemia inhibitors. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Xu S, Aguilar A, Xu T, Zheng K, Huang L, Stuckey J, Chinnaswamy K, Bernard D, Fernández‐Salas E, Liu L, Wang M, McEachern D, Przybranowski S, Foster C, Wang S. Design of the First‐in‐Class, Highly Potent Irreversible Inhibitor Targeting the Menin‐MLL Protein–Protein Interaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shilin Xu
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Angelo Aguilar
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Tianfeng Xu
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Ke Zheng
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Liyue Huang
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Jeanne Stuckey
- Life Sciences Institute University of Michigan 210 Washtenaw Ann Arbor MI 48109 USA
| | | | - Denzil Bernard
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Ester Fernández‐Salas
- Department of Pathology University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Liu Liu
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Mi Wang
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Donna McEachern
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Sally Przybranowski
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Caroline Foster
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Shaomeng Wang
- Comprehensive Cancer and Departments of Internal Medicine Pharmacology and Medicinal Chemistry University of Michigan 1600 Huron Parkway Ann Arbor MI 48109 USA
| |
Collapse
|
18
|
Xu S, Aguilar A, Xu T, Zheng K, Huang L, Stuckey J, Chinnaswamy K, Bernard D, Fernández-Salas E, Liu L, Wang M, McEachern D, Przybranowski S, Foster C, Wang S. Design of the First-in-Class, Highly Potent Irreversible Inhibitor Targeting the Menin-MLL Protein-Protein Interaction. Angew Chem Int Ed Engl 2018; 57:1601-1605. [PMID: 29284071 DOI: 10.1002/anie.201711828] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 01/03/2023]
Abstract
The structure-based design of M-525 as the first-in-class, highly potent, irreversible small-molecule inhibitor of the menin-MLL interaction is presented. M-525 targets cellular menin protein at sub-nanomolar concentrations and achieves low nanomolar potencies in cell growth inhibition and in the suppression of MLL-regulated gene expression in MLL leukemia cells. M-525 demonstrates high cellular specificity over non-MLL leukemia cells and is more than 30 times more potent than its corresponding reversible inhibitors. Mass spectrometric analysis and co-crystal structure of M-525 in complex with menin firmly establish its mode of action. A single administration of M-525 effectively suppresses MLL-regulated gene expression in tumor tissue. An efficient procedure was developed to synthesize M-525. This study demonstrates that irreversible inhibition of menin may be a promising therapeutic strategy for MLL leukemia.
Collapse
Affiliation(s)
- Shilin Xu
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Angelo Aguilar
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Tianfeng Xu
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Ke Zheng
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Liyue Huang
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Jeanne Stuckey
- Life Sciences Institute, University of Michigan, 210 Washtenaw, Ann Arbor, MI, 48109, USA
| | | | - Denzil Bernard
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Ester Fernández-Salas
- Department of Pathology, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Liu Liu
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Mi Wang
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Donna McEachern
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Sally Przybranowski
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Caroline Foster
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Shaomeng Wang
- Comprehensive Cancer and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| |
Collapse
|
19
|
Feng Z, Ma J, Hua X. Epigenetic regulation by the menin pathway. Endocr Relat Cancer 2017; 24:T147-T159. [PMID: 28811300 PMCID: PMC5612327 DOI: 10.1530/erc-17-0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.
Collapse
Affiliation(s)
- Zijie Feng
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianxin Hua
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Steinhilber D, Marschalek R. How to effectively treat acute leukemia patients bearing MLL-rearrangements ? Biochem Pharmacol 2017; 147:183-190. [PMID: 28943239 DOI: 10.1016/j.bcp.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Chromosomal translocations - leading to the expression of fusion genes - are well-studied genetic abberrations associated with the development of leukemias. Most of them represent altered transcription factors that affect transcription or epigenetics, while others - like BCR-ABL - are enhancing signaling. BCR-ABL has become the prototype for rational drug design, and drugs like Imatinib and subsequently improved drugs have a great impact on cancer treatments. By contrast, MLL-translocations in acute leukemia patients are hard to treat, display a high relapse rate and the overall survival rate is still very poor. Therefore, new treatment modalities are urgently needed. Based on the molecular insights of the most frequent MLL rearrangements, BET-, DOT1L-, SET- and MEN1/LEDGF-inhibitors have been developed and first clinical studies were initiated. Not all results of these studies have are yet available, however, a first paper reports a failure in the DOT1L-inhibitor study although it was the most promising drug based on literature data. One possible explanation is that all of the above mentioned drugs also target the cognate wildtype proteins. Here, we want to strengthen the fact that efforts should be made to develop drugs or strategies to selectively inhibit only the fusion proteins. Some examples will be given that follow exactly this guideline, and proof-of-concept experiments have already demonstrated their feasibility and effectiveness. Some of the mentioned approaches were using drugs that are already on the market, indicating that there are existing opportunities for the future which should be implemented in future therapy strategies.
Collapse
Affiliation(s)
- Dieter Steinhilber
- Institute of Pharm. Chemistry, Goethe-University, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharm. Biology/DCAL, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
21
|
Jedwabny W, Kłossowski S, Purohit T, Cierpicki T, Grembecka J, Dyguda-Kazimierowicz E. Theoretical models of inhibitory activity for inhibitors of protein-protein interactions: targeting menin-mixed lineage leukemia with small molecules. MEDCHEMCOMM 2017; 8:2216-2227. [PMID: 29456828 PMCID: PMC5774433 DOI: 10.1039/c7md00170c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022]
Abstract
A computationally affordable, non-empirical model based on electrostatic multipole and dispersion terms successfully predicts the binding affinity of inhibitors of menin–MLL protein–protein interactions.
Development and binding affinity predictions of inhibitors targeting protein–protein interactions (PPI) still represent a major challenge in drug discovery efforts. This work reports application of a predictive non-empirical model of inhibitory activity for PPI inhibitors, exemplified here for small molecules targeting the menin–mixed lineage leukemia (MLL) interaction. Systematic ab initio analysis of menin–inhibitor complexes was performed, revealing the physical nature of these interactions. Notably, the non-empirical protein–ligand interaction energy comprising electrostatic multipole and approximate dispersion terms (E(10)El,MTP + EDas) produced a remarkable correlation with experimentally measured inhibitory activities and enabled accurate activity prediction for new menin–MLL inhibitors. Importantly, this relatively simple and computationally affordable non-empirical interaction energy model outperformed binding affinity predictions derived from commonly used empirical scoring functions. This study demonstrates high relevance of the non-empirical model we developed for binding affinity prediction of inhibitors targeting protein–protein interactions that are difficult to predict using empirical scoring functions.
Collapse
Affiliation(s)
- Wiktoria Jedwabny
- Department of Chemistry , Wrocław University of Science and Technology , Wyb. Wyspiańskiego 27 , 50-370 Wrocław , Poland . ; Tel: +48 71 320 3200
| | - Szymon Kłossowski
- Department of Pathology , University of Michigan , 1150 W. Medical Center Dr, MSRBI, Rm 4510D , Ann Arbor , MI 48109 , USA . ; ; Tel: +734 615 9319
| | - Trupta Purohit
- Department of Pathology , University of Michigan , 1150 W. Medical Center Dr, MSRBI, Rm 4510D , Ann Arbor , MI 48109 , USA . ; ; Tel: +734 615 9319
| | - Tomasz Cierpicki
- Department of Pathology , University of Michigan , 1150 W. Medical Center Dr, MSRBI, Rm 4510D , Ann Arbor , MI 48109 , USA . ; ; Tel: +734 615 9319
| | - Jolanta Grembecka
- Department of Pathology , University of Michigan , 1150 W. Medical Center Dr, MSRBI, Rm 4510D , Ann Arbor , MI 48109 , USA . ; ; Tel: +734 615 9319
| | - Edyta Dyguda-Kazimierowicz
- Department of Chemistry , Wrocław University of Science and Technology , Wyb. Wyspiańskiego 27 , 50-370 Wrocław , Poland . ; Tel: +48 71 320 3200
| |
Collapse
|
22
|
Guo H, Chu Y, Wang L, Chen X, Chen Y, Cheng H, Zhang L, Zhou Y, Yang FC, Cheng T, Xu M, Zhang X, Zhou J, Yuan W. PBX3 is essential for leukemia stem cell maintenance in MLL-rearranged leukemia. Int J Cancer 2017; 141:324-335. [PMID: 28411381 DOI: 10.1002/ijc.30739] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
Interaction of HOXA9/MEIS1/PBX3 is responsible for hematopoietic system transformation in MLL-rearranged (MLL-r) leukemia. Of these genes, HOXA9 has been shown to be critical for leukemia cell survival, while MEIS1 has been identified as an essential regulator for leukemia stem cell (LSC) maintenance. Although significantly high expression of PBX3 was observed in clinical acute myeloid leukemia (AML) samples, the individual role of PBX3 in leukemia development is still largely unknown. In this study, we explored the specific role of PBX3 and its associated regulatory network in leukemia progression. By analyzing the clinical database, we found that the high expression of PBX3 is significantly correlated with a poor prognosis in AML patients. ChIP-Seq/qPCR analysis in MLL-r mouse models revealed aberrant epigenetic modifications with increased H3K79me2, and decreased H3K9me3 and H3K27me3 levels in LSCs, which may account for the high expression levels of Pbx3. To further examine the role of Pbx3 in AML maintenance and progression, we used the CRISPR/Cas9 system to delete Pbx3 in leukemic cells in the MLL-AF9 induced AML mouse model. We found that Pbx3 deletion significantly prolonged the survival of leukemic mice and decreased the leukemia burden by decreasing the capacity of LSCs and promoting LSC apoptosis. In conclusion, we found that PBX3 is epigenetically aberrant in the LSCs of MLL-r AML and is essential for leukemia development. Significantly, the differential expression of PBX3 in normal and malignant hematopoietic cells suggests PBX3 as a potential prognostic marker and therapeutic target for MLL-r leukemia.
Collapse
Affiliation(s)
- Huidong Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Le Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xing Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangpeng Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng-Chun Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingjiang Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Xiaobing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Medicine, Loma Linda University, Loma Linda, CA
| | - Jianfeng Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
23
|
Transcription control by the ENL YEATS domain in acute leukaemia. Nature 2017; 543:270-274. [PMID: 28241139 PMCID: PMC5497220 DOI: 10.1038/nature21688] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 02/03/2017] [Indexed: 01/03/2023]
Abstract
Recurrent chromosomal translocations involving the mixed lineage leukemia gene (MLL) give rise to a highly aggressive acute leukemia associated with poor clinical outcome1. The preferential involvement of chromatin-associated factors in MLL rearrangement belies a dependency on transcription control2. Despite recent progress made in targeting chromatin regulators in cancer3, available therapies for this well-characterized disease remain inadequate, prompting the present effort to qualify new targets for therapeutic intervention. Using unbiased, emerging CRISPR-Cas9 technology to perform a genome-scale loss-of-function screen in MLL-AF4-positive acute leukemia, we identified ENL (eleven-nineteen leukemia) as an unrecognized dependency particularly indispensable for proliferation in vitro and in vivo. To explain the mechanistic role for ENL in leukemia pathogenesis and dynamic transcription control, we pursued a chemical genetic strategy utilizing targeted protein degradation. Acute ENL loss suppresses transcription initiation and elongation genome-wide, with pronounced effects at genes featuring disproportionate ENL load. Importantly, ENL-dependent leukemic growth was contingent upon an intact YEATS chromatin reader domain. These findings reveal a novel dependency in acute leukemia and a first mechanistic rational for disrupting the YEATS domain in disease.
Collapse
|
24
|
Xu Y, Yue L, Wang Y, Xing J, Chen Z, Shi Z, Liu R, Liu YC, Luo X, Jiang H, Chen K, Luo C, Zheng M. Discovery of Novel Inhibitors Targeting the Menin-Mixed Lineage Leukemia Interface Using Pharmacophore- and Docking-Based Virtual Screening. J Chem Inf Model 2016; 56:1847-55. [PMID: 27513308 DOI: 10.1021/acs.jcim.6b00185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disrupting the interaction between mixed lineage leukemia (MLL) fusion protein and menin provides a therapeutic approach for MLL-mediated leukemia. Here, we aim to discover novel inhibitors targeting the menin-MLL interface with virtual screening. Both structure-based molecular docking and ligand-based pharmacophore models were established, and the models used for compound screening show a remarkable ability to retrieve known active ligands from decoy molecules. Verified by a fluorescence polarization assay, five hits with novel scaffolds were identified. Among them, DCZ_M123 exhibited potent inhibitory activity with an IC50 of 4.71 ± 0.12 μM and a KD of 14.70 ± 2.13 μM, and it can effectively inhibit the human MLL-rearranged leukemia cells MV4;11 and KOPN8 with GI50 values of 0.84 μM and 0.54 μM, respectively.
Collapse
Affiliation(s)
- Yuan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Liyan Yue
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yulan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jing Xing
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhifeng Chen
- School of Life Science and Technology, Shanghai Tech University , Shanghai 200031, China
| | - Zhe Shi
- Shanghai ChemPartner LifeScience Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China
| | - Rongfeng Liu
- Shanghai ChemPartner LifeScience Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China
| | - Yu-Chih Liu
- Shanghai ChemPartner LifeScience Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, Shanghai Tech University , Shanghai 200031, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, Shanghai Tech University , Shanghai 200031, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
25
|
Borkin D, Pollock J, Kempinska K, Purohit T, Li X, Wen B, Zhao T, Miao H, Shukla S, He M, Sun D, Cierpicki T, Grembecka J. Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein-Protein Interaction between Menin and Mixed Lineage Leukemia (MLL). J Med Chem 2016; 59:892-913. [PMID: 26744767 PMCID: PMC5092235 DOI: 10.1021/acs.jmedchem.5b01305] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of potent small molecule inhibitors of protein-protein interactions with optimized druglike properties represents a challenging task in lead optimization process. Here, we report synthesis and structure-based optimization of new thienopyrimidine class of compounds, which block the protein-protein interaction between menin and MLL fusion proteins that plays an important role in acute leukemias with MLL translocations. We performed simultaneous optimization of both activity and druglike properties through systematic exploration of substituents introduced to the indole ring of lead compound 1 (MI-136) to identify compounds suitable for in vivo studies in mice. This work resulted in the identification of compound 27 (MI-538), which showed significantly increased activity, selectivity, polarity, and pharmacokinetic profile over 1 and demonstrated a pronounced effect in a mouse model of MLL leukemia. This study, which reports detailed structure-activity and structure-property relationships for the menin-MLL inhibitors, demonstrates challenges in optimizing inhibitors of protein-protein interactions for potential therapeutic applications.
Collapse
MESH Headings
- Animals
- Caco-2 Cells
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Histone-Lysine N-Methyltransferase/chemistry
- Histone-Lysine N-Methyltransferase/metabolism
- Humans
- Injections, Intraventricular
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Models, Molecular
- Molecular Structure
- Myeloid-Lymphoid Leukemia Protein/chemistry
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Protein Binding/drug effects
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/chemistry
- Pyrimidines/pharmacology
- Small Molecule Libraries/administration & dosage
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Structure-Activity Relationship
- Thiophenes/administration & dosage
- Thiophenes/chemistry
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Dmitry Borkin
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jonathan Pollock
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Katarzyna Kempinska
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Xiaoqin Li
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ting Zhao
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Shirish Shukla
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Huang H, Jiang X, Wang J, Li Y, Song CX, Chen P, Li S, Gurbuxani S, Arnovitz S, Wang Y, Weng H, Neilly MB, He C, Li Z, Chen J. Identification of MLL-fusion/MYC⊣miR-26⊣TET1 signaling circuit in MLL-rearranged leukemia. Cancer Lett 2016; 372:157-65. [PMID: 26791235 DOI: 10.1016/j.canlet.2015.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/21/2015] [Accepted: 12/25/2015] [Indexed: 01/07/2023]
Abstract
Expression of functionally important genes is often tightly regulated at both transcriptional and post-transcriptional levels. We reported previously that TET1, the founding member of the TET methylcytosine dioxygenase family, plays an essential oncogenic role in MLL-rearranged acute myeloid leukemia (AML), where it is overexpressed owing to MLL-fusion-mediated direct up-regulation at the transcriptional level. Here we show that the overexpression of TET1 in MLL-rearranged AML also relies on the down-regulation of miR-26a, which directly negatively regulates TET1 expression at the post-transcriptional level. Through inhibiting expression of TET1 and its downstream targets, forced expression of miR-26a significantly suppresses the growth/viability of human MLL-rearranged AML cells, and substantially inhibits MLL-fusion-mediated mouse hematopoietic cell transformation and leukemogenesis. Moreover, c-Myc, an oncogenic transcription factor up-regulated in MLL-rearranged AML, mediates the suppression of miR-26a expression at the transcriptional level. Collectively, our data reveal a previously unappreciated signaling pathway involving the MLL-fusion/MYC⊣miR-26a⊣TET1 signaling circuit, in which miR-26a functions as an essential tumor-suppressor mediator and its transcriptional repression is required for the overexpression and oncogenic function of TET1 in MLL-rearranged AML. Thus, restoration of miR-26a expression/function holds therapeutic potential to treat MLL-rearranged AML.
Collapse
Affiliation(s)
- Hao Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xi Jiang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Jinhua Wang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yuanyuan Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Xiao Song
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ping Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Shenglai Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Stephen Arnovitz
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yungui Wang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Hengyou Weng
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Mary Beth Neilly
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Zejuan Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jianjun Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| |
Collapse
|
27
|
Abstract
A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies requires a thorough understanding of the underlying mechanisms of malignant transformation driven by aberrant epigenetic regulators. In this review we provide an overview of the major protagonists in epigenetic regulation, their aberrant role in myeloid malignancies, prognostic significance and potential for therapeutic targeting.
Collapse
Affiliation(s)
- Chun Yew Fong
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Jessica Morison
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne
| | - Mark A Dawson
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
28
|
Cierpicki T, Grembecka J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol Rev 2015; 263:279-301. [PMID: 25510283 DOI: 10.1111/imr.12244] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past several years, there has been an increasing research effort focused on inhibition of protein-protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of preclinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of PPIs highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein-protein interfaces, with the goal to address 'druggability' of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new PPIs and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new PPIs.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
29
|
Larsen MJ, Larsen SD, Fribley A, Grembecka J, Homan K, Mapp A, Haak A, Nikolovska-Coleska Z, Stuckey JA, Sun D, Sherman DH. The role of HTS in drug discovery at the University of Michigan. Comb Chem High Throughput Screen 2015; 17:210-30. [PMID: 24409957 DOI: 10.2174/1386207317666140109121546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Abstract
High throughput screening (HTS) is an integral part of a highly collaborative approach to drug discovery at the University of Michigan. The HTS lab is one of four core centers that provide services to identify, produce, screen and follow-up on biomedical targets for faculty. Key features of this system are: protein cloning and purification, protein crystallography, small molecule and siRNA HTS, medicinal chemistry and pharmacokinetics. Therapeutic areas that have been targeted include anti-bacterial, metabolic, neurodegenerative, cardiovascular, anti-cancer and anti-viral. The centers work in a coordinated, interactive environment to affordably provide academic investigators with the technology, informatics and expertise necessary for successful drug discovery. This review provides an overview of these centers at the University of Michigan, along with case examples of successful collaborations with faculty.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David H Sherman
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Senter T, Gogliotti RD, Han C, Locuson CW, Morrison R, Daniels JS, Cierpicki T, Grembecka J, Lindsley CW, Stauffer SR. Progress towards small molecule menin-mixed lineage leukemia (MLL) interaction inhibitors with in vivo utility. Bioorg Med Chem Lett 2015; 25:2720-5. [PMID: 25987377 DOI: 10.1016/j.bmcl.2015.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 01/04/2023]
Abstract
A series of substituted hydroxymethyl piperidine small molecule inhibitors of the protein-protein interaction between menin and mixed lineage leukemia 1 (MLL1) are described. Initial members of the series showed good inhibitory disruption of the menin-MLL1 interaction but demonstrated poor physicochemical and DMPK properties. Utilizing a structure-guided and iterative optimization approach key substituents were optimized leading to inhibitors with cell-based activity, improved in vitro DMPK parameters, and improved half-lives in rodent PK studies leading to MLPCN probe ML399. Ancillary off-target activity remains a parameter for further optimization.
Collapse
Affiliation(s)
- Timothy Senter
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Rocco D Gogliotti
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Changho Han
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Charles W Locuson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Ryan Morrison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, University of Michigan, Ann Arbor, 1150 West Medical Center Drive, MSRBI, Room 4510D, MI 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, 1150 West Medical Center Drive, MSRBI, Room 4510D, MI 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, 1150 West Medical Center Drive, MSRBI, Room 4510D, MI 48109, USA
| | - Craig W Lindsley
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA; Department of Pathology, University of Michigan, Ann Arbor, 1150 West Medical Center Drive, MSRBI, Room 4510D, MI 48109, USA
| | - Shaun R Stauffer
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA; Department of Pathology, University of Michigan, Ann Arbor, 1150 West Medical Center Drive, MSRBI, Room 4510D, MI 48109, USA.
| |
Collapse
|
31
|
Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J, Purohit T, Malik B, Zhao T, Wang J, Wen B, Zong H, Jones M, Danet-Desnoyers G, Guzman ML, Talpaz M, Bixby DL, Sun D, Hess JL, Muntean AG, Maillard I, Cierpicki T, Grembecka J. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 2015; 27:589-602. [PMID: 25817203 PMCID: PMC4415852 DOI: 10.1016/j.ccell.2015.02.016] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/11/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022]
Abstract
Chromosomal translocations affecting mixed lineage leukemia gene (MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report the development of highly potent and orally bioavailable small-molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, and show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate the efficacy of these compounds in primary samples derived from MLL leukemia patients. Overall, we demonstrate that pharmacologic inhibition of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification.
Collapse
Affiliation(s)
- Dmitry Borkin
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shihan He
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jonathan Pollock
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Molecular and Cellular Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Chase
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bhavna Malik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ting Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingya Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongliang Zong
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Morgan Jones
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gwenn Danet-Desnoyers
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Moshe Talpaz
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dale L Bixby
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jay L Hess
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Andrew G Muntean
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ivan Maillard
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Schulz Y, Freese L, Mänz J, Zoll B, Völter C, Brockmann K, Bögershausen N, Becker J, Wollnik B, Pauli S. CHARGE and Kabuki syndromes: a phenotypic and molecular link. Hum Mol Genet 2014; 23:4396-405. [PMID: 24705355 DOI: 10.1093/hmg/ddu156] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding gene CHD7. Kabuki syndrome, another developmental disorder, is characterized by typical facial features in combination with developmental delay, short stature, prominent digit pads and visceral abnormalities. Mutations in the KMT2D gene, which encodes a H3K4 histone methyltransferase, are the major cause of Kabuki syndrome. Here, we report a patient, who was initially diagnosed with CHARGE syndrome based on the spectrum of inner organ malformations like choanal hypoplasia, heart defect, anal atresia, vision problems and conductive hearing impairment. While sequencing and MLPA analysis of all coding exons of CHD7 revealed no pathogenic mutation, sequence analysis of the KMT2D gene identified the heterozygous de novo nonsense mutation c.5263C > T (p.Gln1755*). Thus, our patient was diagnosed with Kabuki syndrome. By using co-immunoprecipitation, immunohistochemistry and direct yeast two hybrid assays, we could show that, like KMT2D, CHD7 interacts with members of the WAR complex, namely WDR5, ASH2L and RbBP5. We therefore propose that CHD7 and KMT2D function in the same chromatin modification machinery, thus pointing out a mechanistic connection, and presenting a probable explanation for the phenotypic overlap between Kabuki and CHARGE syndromes.
Collapse
Affiliation(s)
- Yvonne Schulz
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Luisa Freese
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Johanna Mänz
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Barbara Zoll
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christiane Völter
- Phoniatrics and Pedaudiology, Department of Otorhinolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Nina Bögershausen
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jutta Becker
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
33
|
Cierpicki T, Grembecka J. Challenges and opportunities in targeting the menin-MLL interaction. Future Med Chem 2014; 6:447-62. [PMID: 24635524 PMCID: PMC4138051 DOI: 10.4155/fmc.13.214] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Menin is an essential co-factor of oncogenic MLL fusion proteins and the menin-MLL interaction is critical for development of acute leukemia in vivo. Targeting the menin-MLL interaction with small molecules represents an attractive strategy to develop new anticancer agents. Recent developments, including determination of menin crystal structure and development of potent small molecule and peptidomimetic inhibitors, demonstrate the feasibility of targeting the menin-MLL interaction. On the other hand, biochemical and structural studies revealed that MLL binds to menin in a complex bivalent mode engaging two MLL motifs, and therefore inhibition of this protein-protein interaction represents a challenge. This review summarizes the most recent achievements in targeting the menin-MLL interaction as well as discusses potential benefits of blocking menin in cancer.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Author for correspondence: Tel.: +1 734 615 9324, Fax: +1 734 615 0688,
| | | |
Collapse
|
34
|
He S, Senter TJ, Pollock J, Han C, Upadhyay SK, Purohit T, Gogliotti RD, Lindsley CW, Cierpicki T, Stauffer SR, Grembecka J. High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein-protein interaction. J Med Chem 2014; 57:1543-56. [PMID: 24472025 PMCID: PMC3983337 DOI: 10.1021/jm401868d] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Indexed: 12/14/2022]
Abstract
The protein-protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin-MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ∼288000 small molecules. We determined menin-inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin-MLL interaction with IC50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.
Collapse
Affiliation(s)
- Shihan He
- Department
of Pathology, University of Michigan, Ann Arbor, 1150 West
Medical Center Drive, MSRBI, Room 4510D, Michigan, 48109, United States
| | - Timothy J. Senter
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jonathan Pollock
- Department
of Pathology, University of Michigan, Ann Arbor, 1150 West
Medical Center Drive, MSRBI, Room 4510D, Michigan, 48109, United States
| | - Changho Han
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Sunil Kumar Upadhyay
- Department
of Pathology, University of Michigan, Ann Arbor, 1150 West
Medical Center Drive, MSRBI, Room 4510D, Michigan, 48109, United States
| | - Trupta Purohit
- Department
of Pathology, University of Michigan, Ann Arbor, 1150 West
Medical Center Drive, MSRBI, Room 4510D, Michigan, 48109, United States
| | - Rocco D. Gogliotti
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Tomasz Cierpicki
- Department
of Pathology, University of Michigan, Ann Arbor, 1150 West
Medical Center Drive, MSRBI, Room 4510D, Michigan, 48109, United States
| | - Shaun R. Stauffer
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jolanta Grembecka
- Department
of Pathology, University of Michigan, Ann Arbor, 1150 West
Medical Center Drive, MSRBI, Room 4510D, Michigan, 48109, United States
| |
Collapse
|
35
|
Wang CX, Wang X, Liu HB, Zhou ZH. Aberrant DNA methylation and epigenetic inactivation of hMSH2 decrease overall survival of acute lymphoblastic leukemia patients via modulating cell cycle and apoptosis. Asian Pac J Cancer Prev 2014; 15:355-62. [PMID: 24528056 DOI: 10.7314/apjcp.2014.15.1.355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Altered regulation of many transcription factors has been shown to play important roles in the development of leukemia. hMSH2 can modulate the activity of some important transcription factors and is known to be a regulator of hematopoietic differentiation. Herein, we investigated epigenetic regulation of hMSH2 and its influence on cell growth and overall survival of acute lymphoblastic leukemia (ALL) patients. METHODS hMSH2 promoter methylation status was assessed by COBRA and pyrosequencing in 60 ALL patients and 30 healthy volunteers. mRNA and protein expression levels of hMSH2, PCNA, CyclinD1, Bcl-2 and Bax were determined by real time PCR and Western blotting, respectively. The influence of hMSH2 on cell proliferation and survival was assessed in transient and stable expression systems. RESULTS mRNA and protein expression of hMSH2 and Bcl-2 was decreased, and that of PCNA, CyclinD1 and Bax was increased in ALL patients as compared to healthy volunteers (P<0.05). hMSH2 was inactivated in ALL patients through promoter hypermethylation. Furthermore, hMSH2 hypermethylation was found in relapsed ALL patients (85.7% of all cases). The median survival of patients with hMSH2 methylation was shorter than that of patients without hMSH2 methylation (log-rank test, P=0.0035). Over-expression of hMSH2 in cell lines resulted in a significant reduction in growth and induction of apoptosis. CONCLUSIONS This study suggests that aberrant DNA methylation and epigenetic inactivation of hMSH2 play an important role in the development of ALL through altering cell growth and survival.
Collapse
Affiliation(s)
- Cai-Xia Wang
- Department of Internal Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China E-mail :
| | | | | | | |
Collapse
|
36
|
Shen C, Jo SY, Liao C, Hess JL, Nikolovska-Coleska Z. Targeting recruitment of disruptor of telomeric silencing 1-like (DOT1L): characterizing the interactions between DOT1L and mixed lineage leukemia (MLL) fusion proteins. J Biol Chem 2013; 288:30585-30596. [PMID: 23996074 DOI: 10.1074/jbc.m113.457135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MLL fusion proteins, AF9 and ENL, activate target genes in part via recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like). Here we report biochemical, biophysical, and functional characterization of the interaction between DOT1L and MLL fusion proteins, AF9/ENL. The AF9/ENL-binding site in human DOT1L was mapped, and the interaction site was identified to a 10-amino acid region (DOT1L865-874). This region is highly conserved in DOT1L from a variety of species. Alanine scanning mutagenesis analysis shows that four conserved hydrophobic residues from the identified binding motif are essential for the interactions with AF9/ENL. Binding studies demonstrate that the entire intact C-terminal domain of AF9/ENL is required for optimal interaction with DOT1L. Functional studies show that the mapped AF9/ENL interacting site is essential for immortalization by MLL-AF9, indicating that DOT1L interaction with MLL-AF9 and its recruitment are required for transformation by MLL-AF9. These results strongly suggest that disruption of interaction between DOT1L and AF9/ENL is a promising therapeutic strategy with potentially fewer adverse effects than enzymatic inhibition of DOT1L for MLL fusion protein-associated leukemia.
Collapse
Affiliation(s)
- Chenxi Shen
- From the Department of Pathology and; the Chemical Biology Doctoral Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | | | - Chenzhong Liao
- the School of Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jay L Hess
- From the Department of Pathology and; the Chemical Biology Doctoral Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Zaneta Nikolovska-Coleska
- From the Department of Pathology and; the Chemical Biology Doctoral Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and.
| |
Collapse
|
37
|
Dobbins SE, Sherborne AL, Ma YP, Bardini M, Biondi A, Cazzaniga G, Lloyd A, Chubb D, Greaves MF, Houlston RS. The silent mutational landscape of infant MLL-AF4 pro-B acute lymphoblastic leukemia. Genes Chromosomes Cancer 2013; 52:954-60. [PMID: 23893660 DOI: 10.1002/gcc.22090] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/17/2013] [Indexed: 01/20/2023] Open
Abstract
Over 90% of infants (< 1-year-old) diagnosed with leukemia have pro-B acute lymphoblastic leukemia (ALL) containing the MLL-AF4 fusion. When compared with other forms of paediatric ALL affecting later B-cell differentiation, MLL-AF4 pro-B is associated with a dismal prognosis with a typical 5-year disease-free survival of <20%. MLL-AF4 may be sufficient on its own for leukemogenesis or the gene-fusion product may alternatively predispose transformed cells to global genetic instability, enhancing the acquisition of additional key mutations. To gain insight into the genomic landscape of infant MLL-AF4 pro-B ALL we performed whole genome sequencing of diagnostic leukemic blasts and matched germline samples from three MLL-AF4 pro-B ALL infants. Our analysis revealed few somatic changes (copy number abnormalities, loss of heterozygosity, or single nucleotide variants), demonstrating that only a very small number of mutations are necessary to generate infant MLL-leukemia.
Collapse
Affiliation(s)
- Sara E Dobbins
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pauwels D, Klaassen H, Lahortiga I, Kilonda A, Jacobs K, Sweron B, Corbau R, Chaltin P, Marchand A, Cools J. Identification of novel FLT3 kinase inhibitors. Eur J Med Chem 2013; 63:713-21. [PMID: 23567961 DOI: 10.1016/j.ejmech.2013.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/09/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
Abstract
FLT3 and PDGFR tyrosine kinases are important targets for therapy of different types of leukemia. Several FLT3/PDGFR inhibitors are currently under clinical investigation for combination with standard therapy for treatment of acute myeloid leukemia (AML), however these agents only induce partial remission and development of resistance has been reported. In this work we describe the identification of potent and novel dual FLT3/PDGFR inhibitors that resulted from our efforts to screen a library of 25,607 small molecules against the FLT3 dependent cell line MOLM-13 and the PDGFR dependent cell line EOL-1. This effort led to the identification of five compounds that were confirmed to be active on additional FLT3 dependent cell lines (cellular EC50 values between 35 and 700 nM), while having no significant effect on 24 other tyrosine kinases.
Collapse
Affiliation(s)
- Daphnie Pauwels
- Center for the Biology of Disease, VIB, Leuven 3000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Osaki H, Walf-Vorderwülbecke V, Mangolini M, Zhao L, Horton SJ, Morrone G, Schuringa JJ, de Boer J, Williams O. The AAA+ ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis. Leukemia 2013; 27:1461-8. [PMID: 23403462 DOI: 10.1038/leu.2013.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/18/2013] [Accepted: 02/11/2013] [Indexed: 12/27/2022]
Abstract
The most frequent chromosomal translocations in pediatric acute myeloid leukemia affect the 11q23 locus and give rise to mixed lineage leukemia (MLL) fusion genes, MLL-AF9 being the most prevalent. The MLL-AF9 fusion gene has been shown to induce leukemia in both mouse and human models. In this study, we demonstrate that leukemogenic activity of MLL-AF9 requires RUVBL2 (RuvB-like 2), an AAA+ ATPase family member that functions in a wide range of cellular processes, including chromatin remodeling and transcriptional regulation. Expression of RUVBL2 was dependent on MLL-AF9, as it increased upon immortalization of human cord blood-derived hematopoietic progenitor cells with the fusion gene and decreased following loss of fusion gene expression in conditionally immortalized mouse cells. Short hairpin RNA-mediated silencing experiments demonstrated that both the immortalized human cells and the MLL-AF9-expressing human leukemia cell line THP-1 required RUVBL2 expression for proliferation and survival. Furthermore, inhibition of RUVBL2 expression in THP-1 cells led to reduced telomerase activity and clonogenic potential. These data were confirmed with a dominant-negative Walker B-mutated RUVBL2 construct. Taken together, these data suggest the possibility of targeting RUVBL2 as a potential therapeutic strategy for MLL-AF9-associated leukemia.
Collapse
Affiliation(s)
- H Osaki
- Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Mol Cell Biol 2013; 33:1383-93. [PMID: 23358417 DOI: 10.1128/mcb.01721-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
KMT2B (MLL2/WBP7) is a member of the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal embryonic development in the mouse. To gain insight into the molecular mechanism underlying KMT2B function, we focused on MagohB, which is controlled by a CpG island promoter. We show that in cells lacking Mll2-the gene encoding KMT2B-the MagohB promoter resides in inaccessible chromatin and is methylated. To dissect the molecular events leading to the establishment of silencing, we performed kinetic studies in Mll2-conditional-knockout embryonic stem cells. KMT2B depletion was followed by the loss of the active chromatin marks and progressive loss of RNA polymerase II binding with a concomitant downregulation of MagohB expression. Once the active chromatin marks were lost, the MagohB promoter was rapidly methylated. We demonstrate that in the presence of KMT2B, neither transcription elongation nor RNA polymerase II binding is required to maintain H3K4 trimethylation at the MagohB promoter and protect it from DNA methylation. Reexpression of KMT2B was sufficient to reinstate an active MagohB promoter. Our study provides a paradigm for the idea that KMT2 proteins are crucial components for establishing and maintaining the transcriptionally active and unmethylated state of CpG island promoters.
Collapse
|
41
|
Genomic hallmarks of genes involved in chromosomal translocations in hematological cancer. PLoS Comput Biol 2012; 8:e1002797. [PMID: 23236267 PMCID: PMC3516532 DOI: 10.1371/journal.pcbi.1002797] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/07/2012] [Indexed: 12/31/2022] Open
Abstract
Reciprocal chromosomal translocations (RCTs) leading to the formation of fusion genes are important drivers of hematological cancers. Although the general requirements for breakage and fusion are fairly well understood, quantitative support for a general mechanism of RCT formation is still lacking. The aim of this paper is to analyze available high-throughput datasets with computational and robust statistical methods, in order to identify genomic hallmarks of translocation partner genes (TPGs). Our results show that fusion genes are generally overexpressed due to increased promoter activity of 5′ TPGs and to more stable 3′-UTR regions of 3′ TPGs. Furthermore, expression profiling of 5′ TPGs and of interaction partners of 3′ TPGs indicates that these features can help to explain tissue specificity of hematological translocations. Analysis of protein domains retained in fusion proteins shows that the co-occurrence of specific domain combinations is non-random and that distinct functional classes of fusion proteins tend to be associated with different components of the gene fusion network. This indicates that the configuration of fusion proteins plays an important role in determining which 5′ and 3′ TPGs will combine in specific fusion genes. It is generally accepted that chromosomal proximity in the nucleus can explain the specific pairing of 5′ and 3′ TPGS and the recurrence of hematological translocations. Using recently available data for chromosomal contact probabilities (Hi-C) we show that TPGs are preferentially located in early replicated regions and occupy distinct clusters in the nucleus. However, our data suggest that, in general, nuclear position of TPGs in hematological cancers explains neither TPG pairing nor clinical frequency. Taken together, our results support a model in which genomic features related to regulation of expression and replication timing determine the set of candidate genes more likely to be translocated in hematological tissues, with functional constraints being responsible for specific gene combinations. A common genetic lesion leading to hematological cancer is the creation of fusion genes as a result of reciprocal translocations between chromosomes. Such translocations are non-random, in the sense that certain genes are more likely to be fused than others, and they appear to be tissue-specific. Current models tend to explain the non-random nature of chromosomal translocations suggesting that chromosome breaks are favored at certain sites and that the distance between genes in the nucleus determines the probability of their being fused together. In this work we have analyzed several genomic features in a large collection of genes involved in chromosomal translocations in hematological cancers, using robust computational methods. Our findings suggest that nuclear distance is a general pre-requisite but does not determine the specific combinations of genes fused together. We find that genomic features related to transcription and replication, together with constraints derived from the functional domains present in the proteins encoded by fusion genes, better explain which genes participate in specific chromosomal translocations and the tissue types in which they are found. The association of such genomic features with the position occupied by genes in the nucleus explains the apparent causal role attributed to spatial position.
Collapse
|
42
|
Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. Blood 2012; 120:4461-9. [PMID: 22936661 DOI: 10.1182/blood-2012-05-429274] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Menin functions as a critical oncogenic cofactor of mixed lineage leukemia (MLL) fusion proteins in the development of acute leukemias, and inhibition of the menin interaction with MLL fusion proteins represents a very promising strategy to reverse their oncogenic activity. MLL interacts with menin in a bivalent mode involving 2 N-terminal fragments of MLL. In the present study, we reveal the first high-resolution crystal structure of human menin in complex with a small-molecule inhibitor of the menin-MLL interaction, MI-2. The structure shows that the compound binds to the MLL pocket in menin and mimics the key interactions of MLL with menin. Based on the menin-MI-2 structure, we developed MI-2-2, a compound that binds to menin with low nanomolar affinity (K(d) = 22nM) and very effectively disrupts the bivalent protein-protein interaction between menin and MLL. MI-2-2 demonstrated specific and very pronounced activity in MLL leukemia cells, including inhibition of cell proliferation, down-regulation of Hoxa9 expression, and differentiation. Our results provide the rational and essential structural basis to design next generation of inhibitors for effective targeting of the menin-MLL interaction in leukemia and demonstrate a proof of concept that inhibition of complex multivalent protein-protein interactions can be achieved by a small-molecule inhibitor.
Collapse
|
43
|
Sentani K, Oue N, Naito Y, Sakamoto N, Anami K, Oo HZ, Uraoka N, Aoyagi K, Sasaki H, Yasui W. Upregulation of HOXA10 in gastric cancer with the intestinal mucin phenotype: reduction during tumor progression and favorable prognosis. Carcinogenesis 2012; 33:1081-8. [PMID: 22411957 DOI: 10.1093/carcin/bgs121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Better knowledge of the changes in gene expression that occur during gastric carcinogenesis may lead to improvements in diagnosis, treatment and prevention. In this study, we screened for genes upregulated in GC by comparing gene expression profiles from microarray and serial analysis of gene expression and identified the HOXA10 gene. The aim of the present study was to investigate the significance of HOXA10 in GC. Immunohistochemical analysis demonstrated that 221 (30%) of 749 GC cases were positive for HOXA10, whereas HOXA10 was scarcely expressed in non-neoplastic gastric mucosa except in the case of intestinal metaplasia. Next, we analyzed the relationship between HOXA10 expression and clinicopathological characteristics. HOXA10 expression showed a significant inverse correlation with the depth of invasion and was observed more frequently in the differentiated type of GC than in the undifferentiated type of GC. HOXA10 expression was associated with GC with the intestinal mucin phenotype and correlated with CDX2 expression. Furthermore, the prognosis of patients with positive HOXA10 expression was significantly better than in the negative expression cases. 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide and wound healing assay revealed that knockdown of HOXA10 in GC cells by short interfering RNA transfection significantly increased viability and motility relative to the negative control, indicating that HOXA10 expression inhibits cell growth and motility. These results suggest that expression of HOXA10 may be a key regulator for GC with the intestinal mucin phenotype.
Collapse
Affiliation(s)
- Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, Hess JL, Cierpicki T. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012; 8:277-84. [PMID: 22286128 DOI: 10.1038/nchembio.773] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 11/02/2011] [Indexed: 12/12/2022]
Abstract
Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.
Collapse
Affiliation(s)
- Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Thathia SH, Ferguson S, Gautrey HE, van Otterdijk SD, Hili M, Rand V, Moorman AV, Meyer S, Brown R, Strathdee G. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity. Haematologica 2011; 97:371-8. [PMID: 22058208 DOI: 10.3324/haematol.2011.049593] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. DESIGN AND METHODS TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. RESULTS We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). CONCLUSIONS This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy.
Collapse
Affiliation(s)
- Shabnam H Thathia
- Crucible Laboratory, Institute for Ageing and Health, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Grembecka J, Belcher AM, Hartley T, Cierpicki T. Molecular basis of the mixed lineage leukemia-menin interaction: implications for targeting mixed lineage leukemias. J Biol Chem 2010; 285:40690-8. [PMID: 20961854 PMCID: PMC3003368 DOI: 10.1074/jbc.m110.172783] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/17/2010] [Indexed: 12/11/2022] Open
Abstract
Chromosomal translocations targeting the mixed lineage leukemia (MLL) gene result in MLL fusion proteins that are found in aggressive human acute leukemias. Disruption of MLL by such translocations leads to overexpression of Hox genes, resulting in a blockage of hematopoietic differentiation that ultimately leads to leukemia. Menin, which directly binds MLL, has been identified as an essential oncogenic co-factor required for the leukemogenic activity of MLL fusion proteins. Here, we characterize the molecular basis of the MLL-menin interaction. Using (13)C-detected NMR experiments, we have mapped the residues within the intrinsically unstructured fragment of MLL that are required for binding to menin. Interestingly, we found that MLL interacts with menin with a nanomolar affinity (K(d) ∼ 10 nM) through two motifs, MBM1 and MBM2 (menin binding motifs 1 and 2). These motifs are located within the N-terminal 43-amino acid fragment of MLL, and the MBM1 represents a high affinity binding motif. Using alanine scanning mutagenesis of MBM1, we found that the hydrophobic residues Phe(9), Pro(10), and Pro(13) are most critical for binding. Furthermore, based on exchange-transferred nuclear Overhauser effect measurements, we established that MBM1 binds to menin in an extended conformation. In a series of competition experiments we showed that a peptide corresponding to MBM1 efficiently dissociates the menin-MLL complex. Altogether, our work establishes the molecular basis of the menin interaction with MLL and MLL fusion proteins and provides the necessary foundation for development of small molecule inhibitors targeting this interaction in leukemias with MLL translocations.
Collapse
Affiliation(s)
- Jolanta Grembecka
- From the Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Amalia M. Belcher
- the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Thomas Hartley
- From the Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Tomasz Cierpicki
- From the Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109 and
| |
Collapse
|
47
|
Burbury KL, Bishton MJ, Johnstone RW, Dickinson MJ, Szer J, Prince HM. MLL-aberrant leukemia: complete cytogenetic remission following treatment with a histone deacetylase inhibitor (HDACi). Ann Hematol 2010; 90:847-9. [DOI: 10.1007/s00277-010-1099-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/20/2010] [Indexed: 11/28/2022]
|
48
|
Chang PY, Hom RA, Musselman CA, Zhu L, Kuo A, Gozani O, Kutateladze TG, Cleary ML. Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol 2010; 400:137-44. [PMID: 20452361 PMCID: PMC2886590 DOI: 10.1016/j.jmb.2010.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/01/2010] [Accepted: 05/03/2010] [Indexed: 12/13/2022]
Abstract
The MLL (mixed-lineage leukemia) proto-oncogene encodes a histone methyltransferase that creates the methylated histone H3K4 epigenetic marks, commonly associated with actively transcribed genes. In addition to its canonical histone methyltransferase SET domain, the MLL protein contains three plant homeodomain (PHD) fingers that are well conserved between species but whose potential roles and requirements for MLL function are unknown. Here, we demonstrate that the third PHD domain of MLL (PHD3) binds histone H3 trimethylated at lysine 4 (H3K4me3) with high affinity and specificity and H3K4me2 with 8-fold lower affinity. Biochemical and structural analyses using NMR and fluorescence spectroscopy identified key amino acids essential for the interaction with H3K4me3. Site-directed mutations of the residues involved in recognition of H3K4me3 compromised in vitro H3K4me3 binding but not in vivo localization of full-length MLL to chromatin sites in target promoters of MEIS1 and HOXA genes. Whereas intact PHD3 finger was necessary for MLL occupancy at these promoters, H3K4me3 binding was critical for MLL transcriptional activity. These results demonstrate that MLL occupancy and target gene activation can be functionally separated. Furthermore, these findings reveal that MLL not only "writes" the H3K4me3 mark but also binds the mark, and this binding is required for the transcriptional maintenance functions of MLL.
Collapse
Affiliation(s)
- Pei-Yun Chang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert A. Hom
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Catherine A. Musselman
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alex Kuo
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | - Or Gozani
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Michael L. Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
49
|
Liu H, Cheng EHY, Hsieh JJD. MLL fusions: pathways to leukemia. Cancer Biol Ther 2010; 8:1204-11. [PMID: 19729989 DOI: 10.4161/cbt.8.13.8924] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human leukemias with chromosomal band 11q23 aberrations that disrupt the MLL/HRX/ALL-1 gene portend poor prognosis. MLL associated leukemias account for the majority of infant leukemia, approximately 10% of adult de novo leukemia and approximately 33% of therapy related acute leukemia with a balanced chromosome translocation. The 500 kD MLL precursor is processed by Taspase1 to generate mature MLL(N320/C180), which orchestrates many aspects of biology such as embryogenesis, cell cycle, cell fate and stem cell maintenance. Leukemogenic MLL translocations fuse the common MLL N-terminus (approximately 1,400 aa) in frame with more than 60 translocation partner genes (TPGs). Recent studies on MLL and MLL leukemia have greatly advanced our knowledge concerning the normal function of MLL and its deregulation in leukemogenesis. Here, we summarize the critical biological and pathological activities of MLL and MLL fusions, and discuss available models and potential therapeutic targets of MLL associated leukemias.
Collapse
Affiliation(s)
- Han Liu
- Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
50
|
Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci U S A 2010; 107:3710-5. [PMID: 20133587 DOI: 10.1073/pnas.0914900107] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNA (miRNA)-17-92 cluster (miR-17-92), containing seven individual miRNAs, is frequently amplified and overexpressed in lymphomas and various solid tumors. We have found that it is also frequently amplified and the miRNAs are aberrantly overexpressed in mixed lineage leukemia (MLL)-rearranged acute leukemias. Furthermore, we show that MLL fusions exhibit a much stronger direct binding to the locus of this miRNA cluster than does wild-type MLL; these changes are associated with elevated levels of histone H3 acetylation and H3K4 trimethylation and an up-regulation of these miRNAs. We further observe that forced expression of this miRNA cluster increases proliferation and inhibits apoptosis of human cells. More importantly, we show that this miRNA cluster can significantly increase colony-forming capacity of normal mouse bone marrow progenitor cells alone and, particularly, in cooperation with MLL fusions. Finally, through combinatorial analysis of miRNA and mRNA arrays of mouse bone marrow progenitor cells transfected with this miRNA cluster and/or MLL fusion gene, we identified 363 potential miR-17-92 target genes that exhibited a significant inverse correlation of expression with the miRNAs. Remarkably, these potential target genes are significantly enriched (P < 0.01; >2-fold) in cell differentiation, hematopoiesis, cell cycle, and apoptosis. Taken together, our studies suggest that overexpression of miR-17-92 cluster in MLL-rearranged leukemias is likely attributed to both DNA copy number amplification and direct up-regulation by MLL fusions, and that the miRNAs in this cluster may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation, by regulating relevant target genes.
Collapse
|