1
|
Ogawa S, Ogiwara H. Cranial distraction osteogenesis for craniosynostosis associated with osteopetrosis: A case report. Surg Neurol Int 2023; 14:368. [PMID: 37941624 PMCID: PMC10629297 DOI: 10.25259/sni_623_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Background Osteopetrosis is a rare disease characterized by systemic osteosclerosis and hematopoietic disturbances. Childhood-onset cases are often accompanied by hydrocephalus and craniosynostosis; however, there have been no established treatments. We performed cranial distraction in a child with osteopetrosis who presented with craniosynostosis and intracranial hypertension. Case Description The patient was a 4-year-1-month-old boy. His pregnancy and birth were normal, but at 4 months of age, he was diagnosed with osteopetrosis based on generalized osteosclerosis and family history. A computed tomography scan of the head revealed early sagittal suture fusion and ventricular enlargement. A ventriculoperitoneal shunt was placed for intracranial hypertension; however, slit ventricle syndrome ensued and pansynostosis developed. To improve uncontrolled high intracranial pressure, cranial distraction was performed for intracranial volume expansion. No perioperative hemorrhagic or infectious complications were observed. After the start of distraction, the intracranial pressure gradually decreased, and clinical findings such as disturbance of consciousness and bradycardia disappeared. Bone regeneration in the defect site was good, and the extension device was removed 6 months after the operation. Conclusion For osteopetrosis with poorly controlled intracranial hypertension, cranial distraction was considered to be an effective treatment.
Collapse
Affiliation(s)
- Shotaro Ogawa
- Department of Neurosurgery, National Center for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
2
|
Shen S, Si M, Zeng C, Liu EK, Chen Y, Vacher J, Zhao H, Mohan S, Xing W. Leucine Repeat Rich Kinase 1 Controls Osteoclast Activity by Managing Lysosomal Trafficking and Secretion. BIOLOGY 2023; 12:511. [PMID: 37106712 PMCID: PMC10135754 DOI: 10.3390/biology12040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
We previously demonstrated that mice with targeted deletion of the leucine repeat rich kinase 1 (Lrrk1) gene were osteopetrotic due to the failure of osteoclasts to resorb bone. To determine how LRRK1 regulates osteoclast activity, we examined the intracellular and extracellular acidification with an acidotropic probe, acridine orange, in live osteoclasts on bone slices. We examined lysosome distribution in osteoclasts by localization of LAMP-2, cathepsin K, and v-ATPase by immunofluorescent staining with specific antibodies. We found that both vertical and horizontal cross-sectional images of the wild-type (WT) osteoclasts showed orange-staining of the intracellular acidic vacuoles/lysosomes dispersed to the ruffled border. By contrast, the LRRK1 deficient osteoclasts exhibited fluorescent orange staining in the cytoplasm away from the extracellular lacunae because of an altered distribution of the acidic vacuoles/lysosomes. In addition, WT osteoclasts displayed a peripheral distribution of LAMP-2 positive lysosomes with a typical actin ring. The clustered F-actin constitutes a peripheral sealing zone and a ruffled border which was stretched out into a resorption pit. The LAMP-2 positive lysosomes were also distributed to the sealing zone, and the cell was associated with a resorption pit. By contrast, LRRK1-deficient osteoclasts showed diffused F-actin throughout the cytoplasm. The sealing zone was weak and not associated with a resorption pit. LAMP-2 positive lysosomes were also diffuse in the cytoplasm and were not distributed to the ruffled border. Although the LRRK1-deficient osteoclast expressed normal levels of cathepsin K and v-ATPase, the lysosomal-associated cathepsin K and v-ATPase were not accumulated at the ruffled border in Lrrk1 KO osteoclasts. Our data indicate that LRRK1 controls osteoclast activity by regulating lysosomal distribution, acid secretion, and protease exocytosis.
Collapse
Affiliation(s)
- Sandi Shen
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mingjue Si
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Canjun Zeng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Elaine K. Liu
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
| | - Yian Chen
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
| | - Jean Vacher
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
3
|
Alotaibi Q, Dighe M, Aldaihani S. The clinical features of OSTM1-associated malignant infantile osteopetrosis: A retrospective, single-center experience over one decade. Am J Med Genet A 2023; 191:459-468. [PMID: 36369659 DOI: 10.1002/ajmg.a.63042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
Mutation in OSTM1 give rise to the rarest and most lethal subtype of malignant infantile osteopetrosis (MIOP), and an improved understanding of OSTM1-associated MIOP would help with informed decision-making regarding symptom management and early palliative care referral. This retrospective study describes the clinical and laboratory features of patients with a genetic diagnosis of OSTM1 MIOP made between January 2011 and December 2021 in the Department of Pediatrics, Al-Adan Hospital, Kuwait. Twenty-two children had confirmed homozygous deletion in OSTM1 (13 females, nine males). Consanguinity was reported in almost all parents. 72.7% were diagnosed before the age of two months, most commonly incidentally with a high clinical suspicion. All 22 patients developed upper respiratory symptoms, hepatosplenomegaly, poor feeding, and had severe developmental delay. 80% of patients developed pain and/or irritability, and 40.9% were diagnosed with primary seizures. Bone fractures developed in 27% of patients, most likely iatrogenic, and some patients had hernia and gum abnormalities. The mean survival was 10.9 months. The clinical presentation, symptomatology, and mortality of our cohort were compared with other cases of OSTM1 MIOP identified through a comperhensive search of the PubMed database. The findings conclude that OSTM1 MIOP is a multi-systemic disease with distinct clinical features, of which neurological complications are the most severe and include nociplastic pain and irritability. Although orthopedic complications influence the trajectory of most patients with other forms of osteopetrosis, OSTM1 MIOP is driven by its neurological complications. Hence, OSTM1 should be regarded as a neurodegenerative disease with osteopetrosis as a comorbidity that warrants early palliative care referral.
Collapse
Affiliation(s)
| | - Manjiri Dighe
- Pediatric Department, Aladan Hospital, Al-Masayel, Kuwait
| | - Saad Aldaihani
- Pediatric Department, Aladan Hospital, Al-Masayel, Kuwait
| |
Collapse
|
4
|
Riederer E, Cang C, Ren D. Lysosomal Ion Channels: What Are They Good For and Are They Druggable Targets? Annu Rev Pharmacol Toxicol 2023; 63:19-41. [PMID: 36151054 DOI: 10.1146/annurev-pharmtox-051921-013755] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca2+ signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K+, Na+, H+, Ca2+, and Cl-. The channels are regulated by numerous cellular factors, ranging from H+ in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.
Collapse
Affiliation(s)
- Erika Riederer
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| | - Chunlei Cang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China;
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| |
Collapse
|
5
|
Vacher J. OSTM1 pleiotropic roles from osteopetrosis to neurodegeneration. Bone 2022; 163:116505. [PMID: 35902071 DOI: 10.1016/j.bone.2022.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Autosomal recessive osteopetroses (ARO) are rare genetic skeletal disorders of high clinical and molecular heterogeneity with an estimated frequency of 1:250,000 worldwide. The manifestations are diverse and although individually rare, the various forms contribute to the prevalence of a significant number of affected individuals with considerable morbidity and mortality. Among the ARO classification, the most severe form is the autosomal recessive-5 (OPTB5) osteopetrosis (OMIM 259720) that results from homozygous mutation in the OSTM1 gene (607649). OSTM1 mutations account for approximately 5 % of instances of autosomal recessive osteopetrosis and lead to a highly debilitating form of the disease in infancy and death within the first few years of life (Sobacchi et al., 2013) [1].
Collapse
Affiliation(s)
- Jean Vacher
- Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Lee A, Cortez S, Yang P, Aum D, Singh P, Gooch C, Smyth M. Neonatal hydrocephalus: an atypical presentation of malignant infantile osteopetrosis. Childs Nerv Syst 2021; 37:3695-3703. [PMID: 34519872 DOI: 10.1007/s00381-021-05345-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Autosomal recessive osteopetrosis has a variable presentation, most commonly including failure to thrive, hypocalcemia, seizures, hepatosplenomegaly, hydrocephalus, vision or hearing loss, and cytopenias. Multiple symptoms are usually seen at presentation. The variability of presentation often delays diagnosis and subsequent treatment. Here, we present a case of an infant with this condition who initially presented with triventricular hydrocephalus with Chiari I malformation. This alone is not a common presentation of this disease, and we present this case to highlight autosomal recessive osteopetrosis as a potential diagnosis in infants presenting with hydrocephalus and discuss the other associated symptoms, management, and prognosis of this condition. CASE REPORT The patient was a full-term infant with a routine newborn period. At 6 months, the infant had macrocephaly and frontal bossing with a bulging fontanelle. She was found to have hydrocephalus with moderate ventriculomegaly involving the third and lateral ventricles with an associated Chiari 1 malformation. The infant was asymptomatic at the time. The infant was promptly referred to neurosurgery and underwent an uncomplicated ventriculoperitoneal shunt placement. Post-operative X-rays showed increased density of the skull with other bone changes suggestive of autosomal recessive osteopetrosis. Subsequent lab work and imaging studies were consistent with this condition. The diagnosis was confirmed by genetic testing, and the patient has undergone treatment with hematopoietic stem cell transplant. CONCLUSION Hydrocephalus is a common feature of this condition, typically seen in conjunction with other systemic symptoms and laboratory findings. Our patient had a limited initial presentation of triventricular hydrocephalus with Chiari I malformation and was otherwise clinically asymptomatic. There is limited literature of such a presentation, and we highlight this case to increase awareness, as timely diagnosis of these patients is critical for treatment and future outcomes.
Collapse
Affiliation(s)
- Angela Lee
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, Saint Louis, MO, USA.
- Saint Louis Children's Hospital, One Children's Place, MO, 63110, Saint Louis, USA.
| | - Samuel Cortez
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Washington University in St Louis, , Saint Louis, MO, USA
| | - Peter Yang
- Department of Neurological Surgery and Pediatrics, St. Louis Children's Hospital, Washington University in St. Louis, Saint Louis, MO, USA
| | - Diane Aum
- Department of Neurological Surgery and Pediatrics, St. Louis Children's Hospital, Washington University in St. Louis, Saint Louis, MO, USA
| | - Prapti Singh
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, Saint Louis, MO, USA
| | - Catherine Gooch
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, Saint Louis, MO, USA
| | - Matthew Smyth
- Department of Neurological Surgery and Pediatrics, St. Louis Children's Hospital, Washington University in St. Louis, Saint Louis, MO, USA
| |
Collapse
|
7
|
Karanth DS, Martin ML, Holliday LS. Plasma Membrane Receptors Involved in the Binding and Response of Osteoclasts to Noncellular Components of the Bone. Int J Mol Sci 2021; 22:ijms221810097. [PMID: 34576260 PMCID: PMC8466431 DOI: 10.3390/ijms221810097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoclasts differentiate from hematopoietic cells and resorb the bone in response to various signals, some of which are received directly from noncellular elements of the bone. In vitro, adherence to the bone triggers the reduction of cell–cell fusion events between osteoclasts and the activation of osteoclasts to form unusual dynamic cytoskeletal and membrane structures that are required for degrading the bone. Integrins on the surface of osteoclasts are known to receive regulatory signals from the bone matrix. Regulation of the availability of these signals is accomplished by enzymatic alterations of the bone matrix by protease activity and phosphorylation/dephosphorylation events. Other membrane receptors are present in osteoclasts and may interact with as yet unidentified signals in the bone. Bone mineral has been shown to have regulatory effects on osteoclasts, and osteoclast activity is also directly modulated by mechanical stress. As understanding of how osteoclasts and other bone cells interact with the bone has emerged, increasingly sophisticated efforts have been made to create bone biomimetics that reproduce both the structural properties of the bone and the bone’s ability to regulate osteoclasts and other bone cells. A more complete understanding of the interactions between osteoclasts and the bone may lead to new strategies for the treatment of bone diseases and the production of bone biomimetics to repair defects.
Collapse
Affiliation(s)
- Divakar S. Karanth
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
| | - Macey L. Martin
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
| | - Lexie S. Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
- Department of Anatomy & Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
8
|
Vacher J, Bruccoleri M, Pata M. Ostm1 from Mouse to Human: Insights into Osteoclast Maturation. Int J Mol Sci 2020; 21:ijms21165600. [PMID: 32764302 PMCID: PMC7460669 DOI: 10.3390/ijms21165600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The maintenance of bone mass is a dynamic process that requires a strict balance between bone formation and resorption. Bone formation is controlled by osteoblasts, while osteoclasts are responsible for resorption of the bone matrix. The opposite functions of these cell types have to be tightly regulated not only during normal bone development, but also during adult life, to maintain serum calcium homeostasis and sustain bone integrity to prevent bone fractures. Disruption of the control of bone synthesis or resorption can lead to an over accumulation of bone tissue in osteopetrosis or conversely to a net depletion of the bone mass in osteoporosis. Moreover, high levels of bone resorption with focal bone formation can cause Paget’s disease. Here, we summarize the steps toward isolation and characterization of the osteopetrosis associated trans-membrane protein 1 (Ostm1) gene and protein, essential for proper osteoclast maturation, and responsible when mutated for the most severe form of osteopetrosis in mice and humans.
Collapse
Affiliation(s)
- Jean Vacher
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
- Departement de Medecine, Universite de Montreal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
- Correspondence:
| | - Michael Bruccoleri
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
- Departement de Medecine, Universite de Montreal, Montreal, QC H2W 1R7, Canada
| | - Monica Pata
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
| |
Collapse
|
9
|
Neurosurgical considerations in osteopetrosis. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
11
|
BEHROOZINIA S, SAFDARIAN M, FARHADI A, KHEDERZADEH S. An In/Del mutation in upstream regulatory region of MC1R gene associated with grey lethal disease in grey Shiraz sheep (Persian lamb). THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v87i12.79779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In the present study, MC1R, which play an important role in normal pigmentation in Skeen and wool, was candidate to assess the lethal grey disease in Persian lamb. Blood samples (50) were collected randomly from grey Shiraz sheep, and DNA was extracted by salting out method. One of these samples showing the disease was assigned as control case. Two pairs of specific primers of P1MC1R and P2MC1R were designed to amplify two fragments from upstream regulatory region (URR) and coding sequence (CDS) of MC1R gene. After genotyping by SSCPtechnique, samples from each banding patterns were sequenced and analyzed using BioEdit and DNASIS MAX softwares. Comparing sequences from control (sick lamb) with healthy ones showed different haplotype in productsof each specific primer pairs. The multiple alignments revealed a 26 bp In/Del occurring at PCR product of P1MC1R gene in control case which was not observed in other studied lambs, and also 7 and 11 different positions were seen between sequence amplified by P1MC1R and P2MC1R primers, respectively. Further bioinformatics analysis showed that 26 bp insertion/deletion (In/Del) occurred in control case P1MC1R sequence caused deletion of gamma_IRE_CS and LBP_1_RS motifs from URR of control case. It seems this 26 bp In/Del mutation might have changed its expression and can be potential cause of grey lethal disease in studied sheep breed.
Collapse
|
12
|
Tsukuba T, Sakai E, Nishishita K, Kadowaki T, Okamoto K. New functions of lysosomes in bone cells. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Hypocalcemia presenting with multifocal seizure in a baby with osteopetrosis. J Paediatr Child Health 2016; 52:247. [PMID: 27062635 DOI: 10.1111/jpc.12648_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Alam I, Koller DL, Cañete T, Blázquez G, Mont-Cardona C, López-Aumatell R, Martínez-Membrives E, Díaz-Morán S, Tobeña A, Fernández-Teruel A, Stridh P, Diez M, Olsson T, Johannesson M, Baud A, Econs MJ, Foroud T. Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone 2015; 81:417-426. [PMID: 26297441 PMCID: PMC4641024 DOI: 10.1016/j.bone.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that skeletal structure and strength phenotypes vary considerably in heterogeneous stock (HS) rats. These phenotypes were found to be strongly heritable, suggesting that the HS rat model represents a unique genetic resource for dissecting the complex genetic etiology underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone structure and strength phenotypes using 1524 adult male and female HS rats between 17 to 20 weeks of age. Structure measures included femur length, neck width, head width; femur and lumbar spine (L3-5) areas obtained by DXA; and cross-sectional areas (CSA) at the midshaft, distal femur and femoral neck, and the 5th lumbar vertebra measured by CT. In addition, measures of strength of the whole femur and femoral neck were obtained. Approximately 70,000 polymorphic SNPs distributed throughout the rat genome were selected for genotyping, with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent at each locus from each of the 8 HS founder strains. The haplotypes were then tested for association with each structure and strength phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for structure phenotypes on chromosomes 3, 8, 10, 12, 17 and 20, and QTLs for strength phenotypes on chromosomes 5, 10 and 11 that met a conservative genome-wide empiric significance threshold (FDR=5%; P<3×10(-6)). Importantly, most QTLs were localized to very narrow genomic regions (as small as 0.3 Mb and up to 3 Mb), each harboring a small set of candidate genes, both novel and previously shown to have roles in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Imranul Alam
- Medicine, Indiana University School of Medicine, IN, USA.
| | - Daniel L Koller
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Toni Cañete
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Gloria Blázquez
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Carme Mont-Cardona
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | | | - Esther Martínez-Membrives
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Sira Díaz-Morán
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Pernilla Stridh
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Margarita Diez
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Tomas Olsson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Martina Johannesson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Amelie Baud
- Wellcome Trust Center for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Michael J Econs
- Medicine, Indiana University School of Medicine, IN, USA; Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Tatiana Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
15
|
The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in Rare Genetic Bone Disorders. J Clin Med 2015; 3:1490-510. [PMID: 25621177 PMCID: PMC4300535 DOI: 10.3390/jcm3041490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts.
Collapse
|
16
|
Shin B, Yu J, Park ES, Choi S, Yu J, Hwang JM, Yun H, Chung YH, Hong KS, Choi JS, Takami M, Rho J. Secretion of a truncated osteopetrosis-associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down-regulation of the B lymphocyte-induced maturation protein 1 (BLIMP1)-nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem 2014; 289:35868-81. [PMID: 25359771 DOI: 10.1074/jbc.m114.589614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic mutations in osteoclastogenic genes are closely associated with osteopetrotic bone diseases. Genetic defects in OSTM1 (osteopetrosis-associated transmembrane protein 1) cause autosomal recessive osteopetrosis in humans. In particular, OSTM1 mutations that exclude the transmembrane domain might lead to the production of a secreted form of truncated OSTM1. However, the precise role of the secreted form of truncated OSTM1 remains unknown. In this study, we analyzed the functional role of truncated OSTM1 in osteoclastogenesis. Here, we showed that a secreted form of truncated OSTM1 binds to the cell surface of osteoclast (OC) precursors and inhibits the formation of multinucleated OCs through the reduction of cell fusion and survival. Truncated OSTM1 significantly inhibited the expression of OC marker genes through the down-regulation of the BLIMP1 (B lymphocyte-induced maturation protein 1)-NFATc1 (nuclear factor of activated T cells c1) axis. Finally, we demonstrated that truncated OSTM1 reduces lipopolysaccharide-induced bone destruction in vivo. Thus, these findings suggest that autosomal recessive osteopetrosis patients with an OSTM1 gene mutation lacking the transmembrane domain produce a secreted form of truncated OSTM1 that inhibits osteoclastogenesis.
Collapse
Affiliation(s)
- Bongjin Shin
- From the Department of Microbiology and Molecular Biology and
| | - Jungeun Yu
- From the Department of Microbiology and Molecular Biology and
| | - Eui-Soon Park
- From the Department of Microbiology and Molecular Biology and
| | - Seunga Choi
- From the Department of Microbiology and Molecular Biology and
| | - Jiyeon Yu
- From the Department of Microbiology and Molecular Biology and
| | - Jung Me Hwang
- From the Department of Microbiology and Molecular Biology and
| | - Hyeongseok Yun
- From the Department of Microbiology and Molecular Biology and
| | - Young-Ho Chung
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and
| | - Kwan Soo Hong
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Jong-Soon Choi
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Masamichi Takami
- the Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawaku 142-8555, Japan
| | - Jaerang Rho
- From the Department of Microbiology and Molecular Biology and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea,
| |
Collapse
|
17
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
18
|
Skeletal dysplasias with increased bone density: Evolution of molecular pathogenesis in the last century. Gene 2013; 528:41-5. [DOI: 10.1016/j.gene.2013.04.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023]
|
19
|
Ott CE, Fischer B, Schröter P, Richter R, Gupta N, Verma N, Kabra M, Mundlos S, Rajab A, Neitzel H, Kornak U. Severe neuronopathic autosomal recessive osteopetrosis due to homozygous deletions affecting OSTM1. Bone 2013; 55:292-7. [PMID: 23685543 DOI: 10.1016/j.bone.2013.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/18/2013] [Accepted: 04/10/2013] [Indexed: 01/12/2023]
Abstract
Autosomal recessive osteopetrosis (ARO, MIM 259700) is a genetically heterogeneous rare skeletal disorder characterized by failure of osteoclast resorption leading to pathologically increased bone density, bone marrow failure, and fractures. In the neuronopathic form neurological complications are especially severe and progressive. An early identification of the underlying genetic defect is imperative for assessment of prognosis and treatment by hematopoietic stem cell transplantation. Here we describe for the first time homozygous microdeletions of different sizes affecting the OSTM1 gene in two unrelated consanguineous families with children suffering from neuronopathic infantile malignant osteopetrosis. Patients showed an exceptionally severe phenotype with variable CNS malformations, seizures, blindness, and deafness. Multi-organ failure due to sepsis led to early death between six weeks and five months of age in spite of intensive care treatment. Analysis of the breakpoints revealed different mechanisms underlying both rearrangements. Microdeletions seem to represent a considerable portion of OSTM1 mutations and should therefore be included in a sufficient diagnostic screening.
Collapse
Affiliation(s)
- Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stark Z, Pangrazio A, McGillivray G, Fink AM. Association of severe autosomal recessive osteopetrosis and structural brain abnormalities: a case report and review of the literature. Eur J Med Genet 2012; 56:36-8. [PMID: 23085203 DOI: 10.1016/j.ejmg.2012.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
We describe a fetus with severe osteopetrosis diagnosed on post-mortem radiographs following termination of pregnancy at 29 weeks for major brain malformations detected on ultrasound. SNP microarray confirmed loss of heterozygosity in 5% of the genome, consistent with parental consanguinity. Sequencing of the genes known to cause severe recessive osteopetrosis, TCIRG1, CLCN7, OSTM1 and SNX10, was negative. Brain malformations are not typically considered part of the phenotypic spectrum of osteopetrosis. We review the literature, and propose that this may represent a novel autosomal recessive variant of osteopetrosis.
Collapse
Affiliation(s)
- Zornitza Stark
- Victorian Clinical Genetics Service, Melbourne, Australia.
| | | | | | | |
Collapse
|
21
|
Cheli Y, Ohanna M, Ballotti R, Bertolotto C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 2009; 23:27-40. [DOI: 10.1111/j.1755-148x.2009.00653.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Mazzolari E, Forino C, Razza A, Porta F, Villa A, Notarangelo LD. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am J Hematol 2009; 84:473-9. [PMID: 19507210 DOI: 10.1002/ajh.21447] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Infantile malignant osteopetrosis (IMO) includes various genetic disorders that affect osteoclast development and/or function. Genotype-phenotype correlation studies in IMO have been hampered by the rarity and heterogeneity of the disease and by the severity of the clinical course, which often leads to death early in life. We report on the clinical and molecular findings and treatment in 20 consecutive patients (11 males, nine females) with IMO, diagnosed at a single center in the period 1991-2008. Mean age at diagnosis was 3.9 months, and mean follow-up was 66.75 months. Mutations in TCIRG1, OSTM1, ClCN7, and TNFRSF11A genes were detected in nine, three, one, and one patients, respectively. Six patients remain genetically undefined. OSTM1 and ClCN7 mutations were associated with poor neurologic outcome. Among nine patients with TCIRG1 defects, six presented with hypogammaglobulinemia, and one showed primary pulmonary hypertension. Fourteen patients received hematopoietic cell transplantation; of these, nine are alive and eight of them have evidence of osteoclast function. These data may provide a basis for informed decisions regarding the care of patients with IMO.
Collapse
Affiliation(s)
- Evelina Mazzolari
- Department of Pediatrics, University of Brescia, 25123 Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Perdu B, Odgren PR, Van Wesenbeeck L, Jennes K, Mackay CC, Van Hul W. Refined genomic localization of the genetic lesion in the osteopetrosis (op) rat and exclusion of three positional and functional candidate genes, Clcn7, Atp6v0c, and Slc9a3r2. Calcif Tissue Int 2009; 84:355-60. [PMID: 19259722 PMCID: PMC2718562 DOI: 10.1007/s00223-009-9229-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Osteopetrosis is a disease characterised by a generalized skeletal sclerosis resulting from a reduced osteoclast-mediated bone resorption. Several spontaneous mutations lead to osteopetrotic phenotypes in animals. Moutier et al. (1974) discovered the osteopetrosis (op) rat as a spontaneous, lethal, autosomal recessive mutant. op rats have large nonfunctioning osteoclasts and severe osteopetrosis. Dobbins et al. (2002) localized the disease-causing gene to a 1.5-cM genetic interval on rat chromosome 10, which we confirm in the present report. We also refined the genomic localization of the disease gene and provide statistical evidence for a disease-causing gene in a small region of rat chromosome 10. Three strong functional candidate genes are within the delineated region. Clcn7 was previously shown to underlie different forms of osteopetrosis, in both human and mice. ATP6v0c encodes a subunit of the vacuolar H(+)-ATPase or proton pump. Mutations in TCIRG1, another subunit of the proton pump, are known to cause a severe form of osteopetrosis. Given the critical role of proton pumping in bone resorption, the Slc9a3r2 gene, a sodium/hydrogen exchanger, was also considered as a candidate for the op mutation. RT-PCR showed that all 3 genes are expressed in osteoclasts, but sequencing found no mutations either in the coding regions or in intron splice junctions. Our ongoing mutation analysis of other genes in the candidate region will lead to the discovery of a novel osteopetrosis gene and further insights into osteoclast functioning.
Collapse
Affiliation(s)
- B Perdu
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Osteopetrosis ("marble bone disease") is a descriptive term that refers to a group of rare, heritable disorders of the skeleton characterized by increased bone density on radiographs. The overall incidence of these conditions is difficult to estimate but autosomal recessive osteopetrosis (ARO) has an incidence of 1 in 250,000 births, and autosomal dominant osteopetrosis (ADO) has an incidence of 1 in 20,000 births. Osteopetrotic conditions vary greatly in their presentation and severity, ranging from neonatal onset with life-threatening complications such as bone marrow failure (e.g. classic or "malignant" ARO), to the incidental finding of osteopetrosis on radiographs (e.g. osteopoikilosis). Classic ARO is characterised by fractures, short stature, compressive neuropathies, hypocalcaemia with attendant tetanic seizures, and life-threatening pancytopaenia. The presence of primary neurodegeneration, mental retardation, skin and immune system involvement, or renal tubular acidosis may point to rarer osteopetrosis variants, whereas onset of primarily skeletal manifestations such as fractures and osteomyelitis in late childhood or adolescence is typical of ADO. Osteopetrosis is caused by failure of osteoclast development or function and mutations in at least 10 genes have been identified as causative in humans, accounting for 70% of all cases. These conditions can be inherited as autosomal recessive, dominant or X-linked traits with the most severe forms being autosomal recessive. Diagnosis is largely based on clinical and radiographic evaluation, confirmed by gene testing where applicable, and paves the way to understanding natural history, specific treatment where available, counselling regarding recurrence risks, and prenatal diagnosis in severe forms. Treatment of osteopetrotic conditions is largely symptomatic, although haematopoietic stem cell transplantation is employed for the most severe forms associated with bone marrow failure and currently offers the best chance of longer-term survival in this group. The severe infantile forms of osteopetrosis are associated with diminished life expectancy, with most untreated children dying in the first decade as a complication of bone marrow suppression. Life expectancy in the adult onset forms is normal. It is anticipated that further understanding of the molecular pathogenesis of these conditions will reveal new targets for pharmacotherapy.
Collapse
Affiliation(s)
- Zornitza Stark
- Genetic Health Services Victoria, and Murdoch Childrens Research Institute, Melbourne, Australia.
| | | |
Collapse
|
26
|
Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 2009; 84:1-12. [PMID: 19082854 DOI: 10.1007/s00223-008-9196-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/07/2008] [Indexed: 02/06/2023]
Abstract
Human recessive osteopetrosis (ARO) represents a group of diseases in which, due to a defect in osteoclasts, bone resorption is prevented. The deficit could arise either from failure in osteoclast differentiation or from inability to perform resorption by mature, multinucleated, but nonfunctional cells. Historically, osteopetrosis due to both these mechanisms was found in spontaneous and artificially created mouse mutants, but the first five genes identified in human ARO (CA-II, TCIRG1, ClCN7, OSTM1, and PLEKHM1) were all involved in the effector function of mature osteoclasts, being linked to acidification of the cell/bone interface or to intracellular processing of the resorbed material. Differentiation defects in human ARO have only recently been described, following the identification of mutations in both RANKL and RANK, which define a new form of osteoclast-poor ARO, as expected from biochemical, cellular, and animal studies. The molecular dissection of ARO has prognostic and therapeutic implications. RANKL-dependent patients, in particular, represent an interesting subset which could benefit from mesenchymal cell transplant and/or administration of soluble RANKL cytokine.
Collapse
Affiliation(s)
- Anna Villa
- Istituto di Tecnologie Biomediche, CNR, via Cervi 93, Segrate, Italy.
| | | | | | | | | |
Collapse
|
27
|
Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet 2008; 124:561-77. [DOI: 10.1007/s00439-008-0583-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/28/2008] [Indexed: 02/05/2023]
|
28
|
Villa A, Pangrazio A, Caldana E, Guerrini M, Vezzoni P, Frattini A, Sobacchi C. Prognostic potential of precise molecular diagnosis of Autosomal Recessive Osteopetrosis with respect to the outcome of bone marrow transplantation. Cytotechnology 2008; 58:57-62. [PMID: 19002772 DOI: 10.1007/s10616-008-9165-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is often the only practical approach to fatal genetic defects. One of the first pathologies which HSCT was applied to was Autosomal Recessive Osteopetrosis (ARO), a rare genetic bone disease in which a deficit in bone resorption by osteoclasts leads to increased bone density and secondary defects. The disease is often lethal early in life unless treated with HSCT. In utero transplantation (IUT) of the oc/oc mouse, reproducing the clinical features of a subset of ARO, has demonstrated that the quality of life and the survival of transplanted animals are greatly improved, suggesting that a similar protocol could be applied to humans. However, recently the dissection of the molecular bases of the disease has shown that ARO is genetically heterogeneous and has revealed the presence of subsets of patients which do not benefit from HSCT. This observation highlights the importance of molecular diagnosing ARO to identify and establish the proper therapies for a better prognosis. In particular, on the basis of experimental results in murine models, efforts should be undertaken to develop approaches such as IUT and new pharmacological strategies.
Collapse
Affiliation(s)
- Anna Villa
- Istituto di Tecnologie Biomediche, CNR, via F.lli Cervi 93, 20090, Segrate, Italy,
| | | | | | | | | | | | | |
Collapse
|
29
|
Brain lipid composition in grey-lethal mutant mouse characterized by severe malignant osteopetrosis. Glycoconj J 2008; 26:623-33. [DOI: 10.1007/s10719-008-9179-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 12/11/2022]
|
30
|
Väänänen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys 2008; 473:132-8. [DOI: 10.1016/j.abb.2008.03.037] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 01/03/2023]
|
31
|
Jentsch TJ. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 2008; 43:3-36. [PMID: 18307107 DOI: 10.1080/10409230701829110] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CLC genes are expressed in species from bacteria to human and encode Cl(-)-channels or Cl(-)/H(+)-exchangers. CLC proteins assemble to dimers, with each monomer containing an ion translocation pathway. Some mammalian isoforms need essential beta -subunits (barttin and Ostm1). Crystal structures of bacterial CLC Cl(-)/H(+)-exchangers, combined with transport analysis of mammalian and bacterial CLCs, yielded surprising insights into their structure and function. The large cytosolic carboxy-termini of eukaryotic CLCs contain CBS domains, which may modulate transport activity. Some of these have been crystallized. Mammals express nine CLC isoforms that differ in tissue distribution and subcellular localization. Some of these are plasma membrane Cl(-) channels, which play important roles in transepithelial transport and in dampening muscle excitability. Other CLC proteins localize mainly to the endosomal-lysosomal system where they may facilitate luminal acidification or regulate luminal chloride concentration. All vesicular CLCs may be Cl(-)/H(+)-exchangers, as shown for the endosomal ClC-4 and -5 proteins. Human diseases and knockout mouse models have yielded important insights into their physiology and pathology. Phenotypes and diseases include myotonia, renal salt wasting, kidney stones, deafness, blindness, male infertility, leukodystrophy, osteopetrosis, lysosomal storage disease and defective endocytosis, demonstrating the broad physiological role of CLC-mediated anion transport.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| |
Collapse
|
32
|
Supanchart C, Kornak U. Ion channels and transporters in osteoclasts. Arch Biochem Biophys 2008; 473:161-5. [PMID: 18406337 DOI: 10.1016/j.abb.2008.03.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
The resorbing osteoclast is an exceptional cell that secretes large amounts of acid through the coupled activity of a v-type H+-ATPase and a chloride channel that both reside in the ruffled membrane. Impairment of this acid secretion machinery by genetic mutations can abolish bone resorption activity, resulting in osteopetrotic phenotypes. Another key feature of osteoclasts is the transport of high amounts of calcium and phosphate from the resorption lacuna to the basolateral plasma membrane. Evidence exists that this occurs in part through entry of these ions into the osteoclast cytosol. Handling of such large amounts of a cellular messenger requires elaborate mechanisms. Membrane proteins that regulate osteoclast calcium homeostasis and the effect of calcium on osteoclast function and survival are therefore the second main focus of this review.
Collapse
Affiliation(s)
- Chayarop Supanchart
- Institut fuer Medizinische Genetik, Charité Universitaetsmedizin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany
| | | |
Collapse
|
33
|
Abstract
UNLABELLED Infantile ARO is a genetic disorder characterized by osteoclast dysfunction that leads to osteopetrosis. We describe a novel mutation affecting the OSTM1 locus responsible for ARO. In addition to common clinical features of osteopetrosis, the patient developed a unique neuronal pathology that provided evidence for an essential role of OSTM1 in normal neuronal cell development. INTRODUCTION Infantile autosomal recessive osteopetrosis (ARO) is a genetic disorder characterized by osteoclast dysfunction that leads to osteopetrosis. We describe a novel mutation affecting the OSTM1 locus responsible for ARO. In addition to common clinical features of osteopetrosis, the patient developed a unique neuronal pathology that provided evidence for an essential role of OSTM1 in normal neuronal cell development. MATERIALS AND METHODS We report a new case of ARO caused by an homozygous mutation in OSTM1. In addition to osteopetrosis and bone marrow failure, this patient also had neurological impairment not related to bone entrapment. Retinal dystrophy with absent evoked visual potentials and sensorineural deafness were documented, as well as cerebral atrophy and bilateral atrial subependymal heterotopias. RESULTS The patient developed generalized seizures and had a profound developmental delay. Nerve biopsy failed to show inclusion material suggestive of neuroaxonal dystrophy. Bone marrow transplantation was declined considering the severe neurological compromise. The patient died at 1 yr of age. Osteoclasts derived from peripheral blood were mature and multinucleated. Expression analysis showed that the amount of OSTM1 cDNA transcript was significantly lowered but not absent. CONCLUSIONS These results support the role of OSTM1 in osteoclast function and activation. However, they also suggest that OSTM1 has a primary role in neural development not related to lysosomal dysfunction.
Collapse
|
34
|
Askmyr MK, Fasth A, Richter J. Towards a better understanding and new therapeutics of osteopetrosis. Br J Haematol 2008; 140:597-609. [PMID: 18241253 DOI: 10.1111/j.1365-2141.2008.06983.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lack of or dysfunction in osteoclasts result in osteopetrosis, a group of rare but often severe, genetic disorders affecting skeletal tissue. Increase in bone mass results in skeletal malformation and bone marrow failure that may be fatal. Many of the underlying defects have lately been characterized in humans and in animal models of the disease. In humans, these defects often involve mutations in genes expressing proteins involved in the acidification of the osteoclast resorption compartment, a process necessary for proper bone degradation. So far, the only cure for children with severe osteopetrosis is allogeneic hematopoietic stem cell (HSC) transplantation but without a matching donor this form of therapy is far from optimal. The characterization of the genetic defects opens up the possibility for gene replacement therapy as an alternative. Accordingly, HSC-targeted gene therapy in a mouse model of infantile malignant osteopetrosis was recently shown to correct many aspects of the disease.
Collapse
Affiliation(s)
- Maria K Askmyr
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | | | | |
Collapse
|
35
|
Feigin ME, Malbon CC. OSTM1 regulates beta-catenin/Lef1 interaction and is required for Wnt/beta-catenin signaling. Cell Signal 2008; 20:949-57. [PMID: 18296023 DOI: 10.1016/j.cellsig.2008.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
The Wnt/beta-catenin signaling pathway controls key aspects of embryonic development and adult tissue homeostasis, including the formation and maintenance of bone. Recently, mutations in the OSTM1 gene were found to be the cause of severe autosomal recessive osteopetrosis in both the mouse and humans. This disorder is characterized by increased bone mass resulting from a defect in osteoclast maturation. The possible role of OSTM1 in signaling of the Wnt/beta-catenin "canonical" pathway was investigated in totipotent mouse F9 embryonal teratocarcinoma cells. Overexpression of OSTM1 in F9 cells increased Wnt3a-responsive beta-catenin accumulation and Lef/Tcf-sensitive transcription. Similarly, knockdown of endogenous OSTM1 attenuated the ability of Wnt3a to stimulate the canonical signaling pathway. An OSTM1 mutant (detected in humans with osteopetrosis) was expressed in F9 cells and found to inhibit Wnt-stimulated beta-catenin stabilization, gene transcription, and primitive endoderm formation. Expression of this OSTM1 C-terminal deletion mutant attenuated Lef/Tcf-sensitive gene transcription, even when transcription was activated by expression of a constitutively-active form of beta-catenin. However, expression of this OSTM1 C-terminal deletion mutant was unable to alter Lef/Tcf-sensitive gene transcription when transcription was activated by expression of a beta-catenin/Lef chimeric protein. From the standpoint of protein-protein interactions, expression of wild-type OSTM1 stimulated whereas mutant OSTM1 inhibited, the Wnt-dependent association of beta-catenin and Lef1. On the foundation of these experiments, we propose that the human mutations in OSTM1 such as the C-terminal deletion mutant studied herein provoke dysregulation of the canonical Wnt/beta-catenin signaling pathway, providing a molecular basis for severe autosomal recessive osteopetrosis.
Collapse
Affiliation(s)
- Michael E Feigin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, United States.
| | | |
Collapse
|
36
|
Hübner CA, Jentsch TJ. Chapter 5 Channelopathies of Transepithelial Transport and Vesicular Function. ADVANCES IN GENETICS 2008; 63:113-152. [DOI: 10.1016/s0065-2660(08)01005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Camerino DC, Desaphy JF, Tricarico D, Pierno S, Liantonio A. Therapeutic Approaches to Ion Channel Diseases. ADVANCES IN GENETICS 2008; 64:81-145. [DOI: 10.1016/s0065-2660(08)00804-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Conway RL, Falk RE. A patient with TCIRG1-related infantile osteopetrosis presenting with congenital anomalies: chance association or a case for pleiotropy? Am J Med Genet A 2007; 143A:3140-3. [PMID: 18000986 DOI: 10.1002/ajmg.a.32102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Robert L Conway
- Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|
39
|
Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F, Jacobs R, Peruzzi B, Teti A, Helfrich MH, Rogers MJ, Villa A, Van Hul W. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 2007; 117:919-30. [PMID: 17404618 PMCID: PMC1838941 DOI: 10.1172/jci30328] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/23/2007] [Indexed: 12/23/2022] Open
Abstract
This study illustrates that Plekhm1 is an essential protein for bone resorption, as loss-of-function mutations were found to underlie the osteopetrotic phenotype of the incisors absent rat as well as an intermediate type of human osteopetrosis. Electron and confocal microscopic analysis demonstrated that monocytes from a patient homozygous for the mutation differentiated into osteoclasts normally, but when cultured on dentine discs, the osteoclasts failed to form ruffled borders and showed little evidence of bone resorption. The presence of both RUN and pleckstrin homology domains suggests that Plekhm1 may be linked to small GTPase signaling. We found that Plekhm1 colocalized with Rab7 to late endosomal/lysosomal vesicles in HEK293 and osteoclast-like cells, an effect that was dependent on the prenylation of Rab7. In conclusion, we believe PLEKHM1 to be a novel gene implicated in the development of osteopetrosis, with a putative critical function in vesicular transport in the osteoclast.
Collapse
Affiliation(s)
- Liesbeth Van Wesenbeeck
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Paul R. Odgren
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Fraser P. Coxon
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Annalisa Frattini
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Pierre Moens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Bram Perdu
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Carole A. MacKay
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Els Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Jean-Pierre Timmermans
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Filip Vanhoenacker
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Ruben Jacobs
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Barbara Peruzzi
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Anna Teti
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Miep H. Helfrich
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Michael J. Rogers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Anna Villa
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
40
|
Souraty N, Noun P, Djambas-Khayat C, Chouery E, Pangrazio A, Villa A, Lefranc G, Frattini A, Mégarbané A. Molecular study of six families originating from the Middle-East and presenting with autosomal recessive osteopetrosis. Eur J Med Genet 2007; 50:188-99. [PMID: 17400532 DOI: 10.1016/j.ejmg.2007.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 01/30/2007] [Indexed: 11/18/2022]
Abstract
Autosomal recessive osteopetrosis is a severe hereditary bone disease whose cellular basis is in the osteoclast, but with heterogeneous molecular defects. We hereby report the clinical and the molecular study of seven patients affected by the recessive form of osteopetrosis (ARO) from six families originating from the Middle-East: four from Lebanon and two from Syria. Parental consanguinity was found in five families. The mean age of diagnosis was 3 months. Failure to thrive, prominent forehead, exophthalmia, optic atrophy, hepatosplenomegaly, neurological manifestations, anaemia, thrombocytopenia, hypocalcaemia, elevated hepatic enzymes and acid phosphatase, and an early fatal outcome were common. Macrocephaly, strabismus, and brain malformations were relatively less common. Mutations were identified in two genes: TCIRG1 and OSTM1. Phenotype-genotype correlation is discussed.
Collapse
Affiliation(s)
- Noëlle Souraty
- Unité de Génétique Médicale, Laboratoire de Biologie Moléculaire et Cytogénétique, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Meadows NA, Sharma SM, Faulkner GJ, Ostrowski MC, Hume DA, Cassady AI. The Expression of Clcn7 and Ostm1 in Osteoclasts Is Coregulated by Microphthalmia Transcription Factor. J Biol Chem 2007; 282:1891-904. [PMID: 17105730 DOI: 10.1074/jbc.m608572200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microphthalmia transcription factor (MITF) regulates osteoclast function by controling the expression of genes, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K in response to receptor activator of nuclear factor-kappaB ligand (RANKL)-induced signaling. To identify novel MITF target genes, we have overexpressed MITF in the murine macrophage cell line RAW264.7 subclone 4 (RAW/C4) and examined the gene expression profile after sRANKL-stimulated osteoclastogenesis. Microarray analysis identified a set of genes superinduced by MITF overexpression, including Clcn7 (chloride channel 7) and Ostm1 (osteopetrosis-associated transmembrane protein 1). Using electrophoretic mobility shift assays, we identified two MITF-binding sites (M-boxes) in the Clcn7 promoter and a single M-box in the Ostm1 promoter. An anti-MITF antibody supershifted DNA-protein complexes for promoter sites in both genes, whereas MITF binding was abolished by mutation of these sites. The Clcn7 promoter was transactivated by coexpression of MITF in reporter gene assays. Mutation of one Clcn7 M-box prevented MITF transactivation, but mutation of the second MITF-binding site only reduced basal activity. Chromatin immunoprecipitation assays confirmed that the two Clcn7 MITF binding and responsive regions in vitro bind MITF in genomic DNA. The expression of Clcn7 is repressed in the dominant negative mutant Mitf mouse, mi/mi, indicating that the dysregulated bone resorption seen in these mice can be attributed in part to transcriptional repression of Clcn7. MITF regulation of the TRAP, cathepsin K, Clcn7, and Ostm1 genes, which are critical for osteoclast resorption, suggests that the role of MITF is more significant than previously perceived and that MITF may be a master regulator of osteoclast function and bone resorption.
Collapse
Affiliation(s)
- Nicholas A Meadows
- Institute for Molecular Biosciences, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Cooper JD, Russell C, Mitchison HM. Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1762:873-89. [PMID: 17023146 DOI: 10.1016/j.bbadis.2006.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/28/2006] [Accepted: 08/02/2006] [Indexed: 02/03/2023]
Abstract
Model systems provide an invaluable tool for investigating the molecular mechanisms underlying the NCLs, devastating neurodegenerative disorders that affect the relatively inaccessible tissues of the central nervous system. These models have enabled the assessment of behavioural, pathological, cellular, and molecular abnormalities, and also allow for development and evaluation of novel therapies. This review highlights the relative advantages of the two available small vertebrate species, the mouse and zebrafish, in modelling NCL disease, summarising how these have been useful in NCL research and their potential for the development and testing of prospective disease treatments. A panel of mouse mutants is available representing all the cloned NCL gene disorders (Cathepsin D, CLN1, CLN2, CLN3, CLN5, CLN6, CLN8). These NCL mice all have progressive neurodegenerative phenotypes that closely resemble the pathology of human NCL. The analysis of these models has highlighted several novel aspects underlying NCL pathogenesis including the selective nature of neurodegeneration, evidence for glial responses that precede neuronal loss and identification of the thalamus as an important pathological target early in disease progression. Studies in mice have also highlighted an unexpected heterogeneity underlying NCL phenotypes, and novel potential NCL-like mouse models have been described including mice with mutations in cathepsins, CLC chloride channels, and other lysosome-related genes. These new models are likely to provide significant new information on the spectrum of NCL disease. Information on NCL mice is available in the NCL Mouse Model Database (). There are homologs of most of the NCL genes in zebrafish, and NCL zebrafish models are currently in development. This model system provides additional advantages to those provided by NCL mouse models including high-throughput mutational, pharmacogenetic and therapeutic technique analyses. Mouse and zebrafish models are an important shared resource for NCL research, offering a unique possibility to dissect disease mechanisms and to develop therapeutic approaches.
Collapse
Affiliation(s)
- Jonathan D Cooper
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, and Centre for the Cellular Basis of Behaviour, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, King's College London, London, UK
| | | | | |
Collapse
|
43
|
Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, Rucci F, Lucchini F, Ravanini M, Facchetti F, Abinun M, Vezzoni P, Villa A, Frattini A. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res 2006; 21:1098-105. [PMID: 16813530 DOI: 10.1359/jbmr.060403] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED We report three novel osteopetrosis patients with OSTM1 mutations and review two that have been previously described. Our analysis suggests that OSTM1 defines a new subset of patients with severe central nervous system involvement. This defect is also present in the gl mouse, which could represent a good model to study the role of the gene in the pathogenesis of this disease. INTRODUCTION Autosomal recessive osteopetrosis (ARO) is a severe hereditary bone disease whose cellular basis is in the osteoclast, but with heterogeneous molecular defects. In addition to the TCIRG1 and the ClCN7 genes, whose mutations account for approximately 55% and 10% of cases, respectively, the OSTM1 gene has been described thus far in only two ARO patients. materials and methods: We report here three novel ARO patients presenting with severe primary central nervous system involvement in addition to the classical stigmata of severe bone sclerosis, growth failure, anemia, thrombocytopenia, and visual impairment with optic atrophy. In addition we analyzed the brain morphology and histology of the grey lethal mutant mouse. RESULTS The analysis of the OSTM1 gene in two patients, both from Kuwait, showed homozygous two nucleotide deletion in exon 2, leading to a frameshift and premature termination. The third (Lebanese) patient showed a single point mutation in exon 1, leading to a nonsense mutation. The clinical neurological evaluation of the two Kuwaiti patients by CT and MRI scans showed a defect in the white matter, with a specific diagnosis of severe cerebral atrophy. The gl brain showed a diffuse translucent appearance with loss of the normal demarcation between the white and the grey matter, features consistent with myelin loss or hypomyelination. Histological and myelin staining analysis evidenced an atrophy of the corpus callosum with loss of myelin fibers, and in cortical areas, loss of the normal lamination consistent with multiple foci of cortical dysplasia. CONCLUSIONS These findings suggest that OSTM1-dependent ARO defines a new subset of patients with severe central nervous system involvement leading to a very poor prognosis. The fact that central nervous system involvement is also present in the gl mouse mutant suggests that this mouse is a good model to test possible therapies.
Collapse
|
44
|
Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 2006; 440:220-3. [PMID: 16525474 DOI: 10.1038/nature04535] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 12/16/2005] [Indexed: 01/28/2023]
Abstract
Mutations in ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, cause osteopetrosis and lysosomal storage disease in humans and mice. Severe osteopetrosis is also observed with mutations in the OSTM1 gene, which encodes a membrane protein of unknown function. Here we show that both ClC-7 and Ostm1 proteins co-localize in late endosomes and lysosomes of various tissues, as well as in the ruffled border of bone-resorbing osteoclasts. Co-immunoprecipitations show that ClC-7 and Ostm1 form a molecular complex and suggest that Ostm1 is a beta-subunit of ClC-7. ClC-7 is required for Ostm1 to reach lysosomes, where the highly glycosylated Ostm1 luminal domain is cleaved. Protein but not RNA levels of ClC-7 are greatly reduced in grey-lethal mice, which lack Ostm1, suggesting that the ClC-7-Ostm1 interaction is important for protein stability. As ClC-7 protein levels in Ostm1-deficient tissues and cells, including osteoclasts, are decreased below 10% of normal levels, Ostm1 mutations probably cause osteopetrosis by impairing the acidification of the osteoclast resorption lacuna, which depends on ClC-7 (ref. 3). The finding that grey-lethal mice, just like ClC-7-deficient mice, show lysosomal storage and neurodegeneration in addition to osteopetrosis implies a more general importance for ClC-7-Ostm1 complexes.
Collapse
Affiliation(s)
- Philipp F Lange
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
45
|
Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int 2005; 77:263-74. [PMID: 16307387 DOI: 10.1007/s00223-005-0027-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 04/08/2005] [Indexed: 12/15/2022]
Abstract
The osteopetroses are a heterogeneous group of bone remodeling disorders characterized by an increase in bone density due to a defect in osteoclastic bone resorption. In humans, several types can be distinguished and a classification has been made based on their mode of inheritance, age of onset, severity, and associated clinical symptoms. The best-known forms of osteopetrosis are the malignant and intermediate autosomal recessive forms and the milder autosomal dominant subtypes. In addition to these forms, a restricted number of cases have been reported in which additional clinical features unrelated to the increased bone mass occur. During the last years, molecular genetic studies have resulted in the identification of several disease-causing gene mutations. Thus far, all genes associated with a human osteopetrosis encode proteins that participate in the functioning of the differentiated osteoclast. This contributed substantially to the understanding of osteoclast functioning and the pathogenesis of the human osteopetroses and will provide deeper insights into the molecular pathways involved in other bone pathologies, including osteoporosis.
Collapse
Affiliation(s)
- W Balemans
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
46
|
Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M, Devito R, Pinto R, Caniglia M, Lanino E, Messina C, Cesaro S, Letizia C, Bianchini G, Fryssira H, Grabowski P, Shaw N, Bishop N, Hughes D, Kapur RP, Datta HK, Taranta A, Fornari R, Migliaccio S, Teti A. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet 2005; 43:315-25. [PMID: 16118345 PMCID: PMC2563229 DOI: 10.1136/jmg.2005.036673] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Osteopetrosis, a genetic disease characterised by osteoclast failure, is classified into three forms: infantile malignant autosomal recessive osteopetrosis (ARO), intermediate autosomal recessive osteopetrosis (IRO), and autosomal dominant osteopetrosis (ADO). METHODS We studied 49 patients, 21 with ARO, one with IRO, and 27 with type II ADO (ADO II). RESULTS Most ARO patients bore known or novel (one case) ATP6i (TCIRG1) gene mutations. Six ADO II patients had no mutations in ClCN7, the only so far recognised gene implicated, suggesting involvement of yet unknown genes. Identical ClCN7 mutations produced differing phenotypes with variable degrees of severity. In ADO II, serum tartrate resistant acid phosphatase was always elevated. Bone alkaline phosphatase (BALP) was generally low, but osteocalcin was high, suggesting perturbed osteoblast differentiation or function. In contrast, BALP was high in ARO patients. Elevated osteoclast surface/bone surface was noted in biopsies from most ARO patients. Cases with high osteoclasts also showed increased osteoblast surface/bone surface. ARO osteoclasts were morphologically normal, with unaltered formation rates, intracellular pH handling, and response to acidification. Their resorption activity was greatly reduced, but not abolished. In control osteoclasts, all resorption activity was abolished by combined inhibition of proton pumping and sodium/proton antiport. CONCLUSIONS These findings provide a rationale for novel therapies targeting pH handling mechanisms in osteoclasts and their microenvironment.
Collapse
Affiliation(s)
- A Del Fattore
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Smith AN, Jouret F, Bord S, Borthwick KJ, Al-Lamki RS, Wagner CA, Ireland DC, Cormier-Daire V, Frattini A, Villa A, Kornak U, Devuyst O, Karet FE. Vacuolar H+-ATPase d2 subunit: molecular characterization, developmental regulation, and localization to specialized proton pumps in kidney and bone. J Am Soc Nephrol 2005; 16:1245-56. [PMID: 15800125 DOI: 10.1681/asn.2004090761] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ubiquitous multisubunit vacuolar-type proton pump (H+- or V-ATPase) is essential for acidification of diverse intracellular compartments. It is also present in specialized forms at the plasma membrane of intercalated cells in the distal nephron, where it is required for urine acidification, and in osteoclasts, playing an important role in bone resorption by acid secretion across the ruffled border membrane. It was reported previously that, in human, several of the renal pump's constituent subunits are encoded by genes that are different from those that are ubiquitously expressed. These paralogous proteins may be important in differential functions, targeting or regulation of H+-ATPases. They include the d subunit, where d1 is ubiquitous whereas d2 has a limited tissue expression. This article reports on an investigation of d2. It was first confirmed that in mouse, as in human, kidney and bone are two of the main sites of d2 mRNA expression. d2 mRNA and protein appear later during nephrogenesis than does the ubiquitously expressed E1 subunit. Mouse nephron-segment reverse transcription-PCR revealed detectable mRNA in all segments except thin limb of Henle's loop and distal convoluted tubule. However, with the use of a novel d2-specific antibody, high-intensity d2 staining was observed only in intercalated cells of the collecting duct in fresh-frozen human kidney, where it co-localized with the a4 subunit in the characteristic plasma membrane-enhanced pattern. In human bone, d2 co-localized with the a3 subunit in osteoclasts. This different subunit association in different tissues emphasizes the possibility of the H+-ATPase as a future therapeutic target.
Collapse
Affiliation(s)
- Annabel N Smith
- Department of Medical Genetics, University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Helfrich MH. Osteoclast diseases and dental abnormalities. Arch Oral Biol 2005; 50:115-22. [PMID: 15721137 DOI: 10.1016/j.archoralbio.2004.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 11/16/2004] [Indexed: 01/31/2023]
Abstract
Tooth eruption depends on the presence of osteoclasts to create an eruption pathway through the alveolar bone. In diseases where osteoclast formation, or function is reduced, such as the various types of osteopetrosis, tooth eruption is affected. Diseases in which osteoclast formation or activity is increased, such as familiar expansile osteolysis and Paget's disease, are associated with dental abnormalities such as root resorption and premature tooth loss. Less is known about the origin of the dental problems in these conditions as there are no rodent models of these diseases as yet. In this short review, the genes currently known to be mutated in human osteoclast diseases will be reviewed and, where known, the effect of osteoclast dysfunction on dental development described. It will focus on human conditions and only mention rodent disease where no clear data in the human are available.
Collapse
Affiliation(s)
- Miep H Helfrich
- Department of Medicine and Therapeutics, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|