1
|
Thouvenel CD, Tipton CM, Yamazaki Y, Zhang TT, Rylaarsdam S, Hom JR, Snead C, Zhu C, Li QZ, Lee YN, Kawai T, Haque N, Zimmermann MT, Ponnan SM, Jackson SW, James RG, Sanz I, Notarangelo LD, Torgerson TR, Ochs HD, Rawlings DJ, Allenspach EJ. Hypomorphic RAG2 Deficiency Promotes Selection of Self-Reactive B Cells. J Clin Immunol 2025; 45:66. [PMID: 39812873 PMCID: PMC11735530 DOI: 10.1007/s10875-024-01849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025]
Abstract
Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study. Whole-genome and repertoire sequencing, bacteriophage immunizations, and deep immunophenotyping were used to compare affected and unaffected family members. The clinical phenotype of three affected siblings with hypomorphic RAG deficiency ranged from combined immunodeficiency and early mortality to a late-onset CID with hyper-IgM phenotype. T cells were remarkably similar across affected siblings, yet CDR3 skewing and regulatory T cell defects were not observed. B cell analysis showed elevated unswitched CD27+ and CD21low cells as well as features of an autoreactive antibody repertoire and presence of secreted autoantibodies, yet no clinical autoimmunity was present. Most striking was an expanded polyclonal marginal zone-like B cell population (IgM+IgD+CD27+) utilizing the self-reactive unmutated VH4-34 receptor demonstrating that hypomorphic RAG deficiency can promote expansion of self-reactive B cells. This process, however, was not sufficient to trigger clinical autoimmunity. Utilizing multiple approaches, we functionally measured the specific RAG2 variant effects and assessed how selection and secondary triggers altered the BCR repertoire and immunophenotype overtime. Overall, we demonstrate a broad disease spectrum in siblings with identical hypomorphic RAG deficiency, highlighting that phenotypic divergence can result from expansion of IgM + memory B cells.
Collapse
Affiliation(s)
- Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Christopher M Tipton
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Ting Zhang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stacey Rylaarsdam
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jennifer R Hom
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Ramat-Gan and Sackler Faculty of Medicine, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv, Israel
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Rich G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ignacio Sanz
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Liu H, Yang H, Xu H, Liu J, Li H, Zhao S. Diffuse alveolar hemorrhage as the initial presentation of hypomorphic RAG1 deficiency. Pediatr Allergy Immunol 2024; 35:e14250. [PMID: 39367705 DOI: 10.1111/pai.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Hui Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Haiming Yang
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hui Xu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huimin Li
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
3
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
4
|
Pavel-Dinu M, Gardner CL, Nakauchi Y, Kawai T, Delmonte OM, Palterer B, Bosticardo M, Pala F, Viel S, Malech HL, Ghanim HY, Bode NM, Kurgan GL, Detweiler AM, Vakulskas CA, Neff NF, Sheikali A, Menezes ST, Chrobok J, Hernández González EM, Majeti R, Notarangelo LD, Porteus MH. Genetically corrected RAG2-SCID human hematopoietic stem cells restore V(D)J-recombinase and rescue lymphoid deficiency. Blood Adv 2024; 8:1820-1833. [PMID: 38096800 PMCID: PMC11006817 DOI: 10.1182/bloodadvances.2023011766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αβ and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Cameron L. Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Yusuke Nakauchi
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Tomoki Kawai
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ottavia M. Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sebastien Viel
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
- Service d’immunologie biologique, Hospices Civils de Lyon, Centre International de Recherche en Infectivologie, Centre International de Recheerche in Infectivalogie, INSERM U1111, Université Claude Bernard Lyon 1, Centre National de la Recherge Scientifique, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hana Y. Ghanim
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | | | | | | | | | | | - Adam Sheikali
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Sherah T. Menezes
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Jade Chrobok
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Elaine M. Hernández González
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Matthew H. Porteus
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
5
|
Taghizadeh Mortezaei N, Mohammadi S, Abolhassani H, Shokri S, Nabavi M, Fallahpour M, Bemanian MH. From variant of uncertain significance to likely pathogenic in two siblings with atypical RAG2 Deficiency: a case report and review of the literature. BMC Pediatr 2024; 24:116. [PMID: 38350907 PMCID: PMC10863182 DOI: 10.1186/s12887-024-04597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Severe combined immunodeficiencies (SCIDs) are hereditary disorders characterized by impaired T and B cell function, resulting in significant immune system dysfunction. Recombination-activating gene (RAG) mutations account for a substantial proportion of SCID cases. Here, we present two sibling cases of SCID caused by a novel RAG2 gene mutation. CASE PRESENTATION The index case was an 8-year-old boy who had a history of recurring infections. After a comprehensive immunological workup, the initial diagnosis of agammaglobulinemia was revised to combined immunodeficiency (CID). The patient underwent hematopoietic stem cell transplantation (HSCT) but succumbed to cytomegalovirus (CMV) infection. His brother, a 4-month-old boy, presented with CMV chorioretinitis. Leaky SCID was diagnosed based on genetic tests and immunological findings. The patient received appropriate treatment and was considered for HSCT. Both siblings had a homozygous RAG2 gene variant, with the first case classified as a variant of uncertain significance (VUS). The presence of the same mutation in the second brother, and the clinical phenotype, supports considering the mutation as likely pathogenic. CONCLUSIONS This case report highlights a novel RAG2 gene mutation associated with CID. The classification of a VUS may evolve with accumulating evidence, and additional studies are warranted to establish its pathogenicity. Proper communication between genetic counselors and immunologists, accurate documentation of patient information, increased public awareness, and precise utilization of genetic techniques are essential for optimal patient management.
Collapse
Affiliation(s)
- Nima Taghizadeh Mortezaei
- School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Mohammadi
- School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, School of Medicine, Iran University of Medical Sciences (IUMS), Rasool-e-Akram Hospital, Mansoori ave, Sattarkhan street, Tehran, 14456 13131, Iran.
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, School of Medicine, Iran University of Medical Sciences (IUMS), Rasool-e-Akram Hospital, Mansoori ave, Sattarkhan street, Tehran, 14456 13131, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, School of Medicine, Iran University of Medical Sciences (IUMS), Rasool-e-Akram Hospital, Mansoori ave, Sattarkhan street, Tehran, 14456 13131, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, School of Medicine, Iran University of Medical Sciences (IUMS), Rasool-e-Akram Hospital, Mansoori ave, Sattarkhan street, Tehran, 14456 13131, Iran
| |
Collapse
|
6
|
Karaatmaca B, Cagdas D, Esenboga S, Erman B, Tan C, Turul Ozgur T, Boztug K, van der Burg M, Sanal O, Tezcan I. Heterogeneity in RAG1 and RAG2 deficiency: 35 cases from a single-centre. Clin Exp Immunol 2024; 215:160-176. [PMID: 37724703 PMCID: PMC10847812 DOI: 10.1093/cei/uxad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
Recombination activating genes (RAG)1 and RAG2 deficiency leads to combined T/B-cell deficiency with varying clinical presentations. This study aimed to define the clinical/laboratory spectrum of RAG1 and RAG2 deficiency. We retrospectively reviewed the clinical/laboratory data of 35 patients, grouped them as severe combined immunodeficiency (SCID), Omenn syndrome (OS), and delayed-onset combined immunodeficiency (CID) and reported nine novel mutations. The male/female ratio was 23/12. Median age of clinical manifestations was 1 months (mo) (0.5-2), 2 mo (1.25-5), and 14 mo (3.63-27), age at diagnosis was 4 mo (3-6), 4.5 mo (2.5-9.75), and 27 mo (14.5-70) in SCID (n = 25; 71.4%), OS (n = 5; 14.3%), and CID (n = 5; 14.3%) patients, respectively. Common clinical manifestations were recurrent sinopulmonary infections 82.9%, oral moniliasis 62.9%, diarrhea 51.4%, and eczema/dermatitis 42.9%. Autoimmune features were present in 31.4% of the patients; 80% were in CID patients. Lymphopenia was present in 92% of SCID, 80% of OS, and 80% of CID patients. All SCID and CID patients had low T (CD3, CD4, and CD8), low B, and increased NK cell numbers. Twenty-eight patients underwent hematopoietic stem cell transplantation (HSCT), whereas seven patients died before HSCT. Median age at HSCT was 7 mo (4-13.5). Survival differed in groups; maximum in SCID patients who had an HLA-matched family donor, minimum in OS. Totally 19 (54.3%) patients survived. Early molecular genetic studies will give both individualized therapy options, and a survival advantage because of timely diagnosis and treatment. Further improvement in therapeutic outcomes will be possible if clinicians gain time for HSCT.
Collapse
Affiliation(s)
- Betul Karaatmaca
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Baran Erman
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Tuba Turul Ozgur
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Ozden Sanal
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Hasham MG, Sargent JK, Warner MA, Farley SR, Hoffmann BR, Stodola TJ, Brunton CJ, Munger SC. Methods to study xenografted human cancer in genetically diverse mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576906. [PMID: 38328145 PMCID: PMC10849620 DOI: 10.1101/2024.01.23.576906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Xenografting human cancer tissues into mice to test new cures against cancers is critical for understanding and treating the disease. However, only a few inbred strains of mice are used to study cancers, and derivatives of mainly one strain, mostly NOD/ShiLtJ, are used for therapy efficacy studies. As it has been demonstrated when human cancer cell lines or patient-derived tissues (PDX) are xenografted into mice, the neoplastic cells are human but the supporting cells that comprise the tumor (the stroma) are from the mouse. Therefore, results of studies of xenografted tissues are influenced by the host strain. We previously published that when the same neoplastic cells are xenografted into different mouse strains, the pattern of tumor growth, histology of the tumor, number of immune cells infiltrating the tumor, and types of circulating cytokines differ depending on the strain. Therefore, to better comprehend the behavior of cancer in vivo, one must xenograft multiple mouse strains. Here we describe and report a series of methods that we used to reveal the genes and proteins expressed when the same cancer cell line, MDA-MB-231, is xenografted in different hosts. First, using proteomic analysis, we show how to use the same cell line in vivo to reveal the protein changes in the neoplastic cell that help it adapt to its host. Then, we show how different hosts respond molecularly to the same cell line. We also find that using multiple strains can reveal a more suitable host than those traditionally used for a "difficult to xenograft" PDX. In addition, using complex trait genetics, we illustrate a feasible method for uncovering the alleles of the host that support tumor growth. Finally, we demonstrate that Diversity Outbred mice, the epitome of a model of mouse-strain genetic diversity, can be xenografted with human cell lines or PDX using 2-deoxy-D-glucose treatment.
Collapse
|
8
|
Gupta S, Agrawal A. Dendritic cells in inborn errors of immunity. Front Immunol 2023; 14:1080129. [PMID: 36756122 PMCID: PMC9899832 DOI: 10.3389/fimmu.2023.1080129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) are crucial cells for initiating and maintaining immune response. They play critical role in homeostasis, inflammation, and autoimmunity. A number of molecules regulate their functions including synapse formation, migration, immunity, and induction of tolerance. A number of IEI are characterized by mutations in genes encoding several of these molecules resulting in immunodeficiency, inflammation, and autoimmunity in IEI. Currently, there are 465 Inborn errors of immunity (IEI) that have been grouped in 10 different categories. However, comprehensive studies of DCs have been reported in only few IEI. Here we have reviewed biology of DCs in IEI classified according to recently published IUIS classification. We have reviewed DCs in selected IEI in each group category and discussed in depth changes in DCs where significant data are available regarding role of DCs in clinical and immunological manifestations. These include severe immunodeficiency diseases, antibody deficiencies, combined immunodeficiency with associated and syndromic features, especially disorders of synapse formation, and disorders of immune regulation.
Collapse
Affiliation(s)
- Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California, Irvine, CA, United States
| | | |
Collapse
|
9
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
10
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Chin EW, Ma Q, Ruan H, Chin C, Somasundaram A, Zhang C, Liu C, Lewis MD, White M, Smith TL, Battersby M, Yao WD, Lu XY, Arap W, Licinio J, Wong ML. The epigenetic reader PHF21B modulates murine social memory and synaptic plasticity-related genes. JCI Insight 2022; 7:e158081. [PMID: 35866480 PMCID: PMC9431697 DOI: 10.1172/jci.insight.158081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Synaptic dysfunction is a manifestation of several neurobehavioral and neurological disorders. A major therapeutic challenge lies in uncovering the upstream regulatory factors controlling synaptic processes. Plant homeodomain (PHD) finger proteins are epigenetic readers whose dysfunctions are implicated in neurological disorders. However, the molecular mechanisms linking PHD protein deficits to disease remain unclear. Here, we generated a PHD finger protein 21B-depleted (Phf21b-depleted) mutant CRISPR mouse model (hereafter called Phf21bΔ4/Δ4) to examine Phf21b's roles in the brain. Phf21bΔ4/Δ4 animals exhibited impaired social memory. In addition, reduced expression of synaptic proteins and impaired long-term potentiation were observed in the Phf21bΔ4/Δ4 hippocampi. Transcriptome profiling revealed differential expression of genes involved in synaptic plasticity processes. Furthermore, we characterized a potentially novel interaction of PHF21B with histone H3 trimethylated lysine 36 (H3K36me3), a histone modification associated with transcriptional activation, and the transcriptional factor CREB. These results establish PHF21B as an important upstream regulator of synaptic plasticity-related genes and a candidate therapeutic target for neurobehavioral dysfunction in mice, with potential applications in human neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Qi Ma
- Department of Psychiatry and Behavioral Sciences
| | - Hongyu Ruan
- Department of Psychiatry and Behavioral Sciences
| | | | | | - Chunling Zhang
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Chunyu Liu
- Department of Psychiatry and Behavioral Sciences
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Martin D. Lewis
- Neuropsychiatric Laboratory, Lifelong Health Research Unit, and
| | - Melissa White
- Gene Editing Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SA Genome Editing Facility, University of Adelaide, Adelaide, South Australia, Australia
| | - Tracey L. Smith
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Malcolm Battersby
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences
- Department of Neuroscience & Physiology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
12
|
Khan YW, Williams KW. Inborn Errors of Immunity Associated with Elevated IgE. Ann Allergy Asthma Immunol 2022; 129:552-561. [PMID: 35872242 DOI: 10.1016/j.anai.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To review the characteristic clinical and laboratory features of inborn errors of immunity that are associated with elevated IgE levels DATA SOURCE: Primary peer-reviewed literature. STUDY SELECTION Original research articles reviewed include interventional studies, retrospective studies, case-control studies, cohort studies and review articles related to the subject matter. RESULTS An extensive literature review was completed to allow for comprehensive evaluation of several monogenic inborn errors of immunity. This review includes a description of the classic clinical features, common infections, characteristic laboratory findings, specific diagnostic methods (when applicable), and genetic basis of disease of each syndrome. A comprehensive flow diagram was created to assist them in the diagnosis and evaluation of patients with elevated IgE levels who may require evaluation for an IEI. CONCLUSION IEI should be considered in patients with elevated IgE levels, especially if they have recurrent infections, eczematous dermatitis, malignancy, lymphoproliferation, autoimmunity, and/or connective tissue abnormalities.
Collapse
Affiliation(s)
- Yasmin W Khan
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, South Carolina, USA.
| |
Collapse
|
13
|
Cifaldi C, Rivalta B, Amodio D, Mattia A, Pacillo L, Di Cesare S, Chiriaco M, Ursu GM, Cotugno N, Giancotta C, Manno EC, Santilli V, Zangari P, Federica G, Palumbo G, Merli P, Palma P, Rossi P, Di Matteo G, Locatelli F, Finocchi A, Cancrini C. Clinical, Immunological, and Molecular Variability of RAG Deficiency: A Retrospective Analysis of 22 RAG Patients. J Clin Immunol 2022; 42:130-145. [PMID: 34664192 PMCID: PMC8821501 DOI: 10.1007/s10875-021-01130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/29/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE We described clinical, immunological, and molecular characterization within a cohort of 22 RAG patients focused on the possible correlation between clinical and genetic data. METHODS Immunological and genetic features were investigated by multiparametric flow cytometry and by Sanger or next generation sequencing (NGS) as appropriate. RESULTS Patients represented a broad spectrum of RAG deficiencies: SCID, OS, LS/AS, and CID. Three novel mutations in RAG1 gene and one in RAG2 were reported. The primary symptom at presentation was infections (81.8%). Infections and autoimmunity occurred together in the majority of cases (63.6%). Fifteen out of 22 (68.2%) patients presented autoimmune or inflammatory manifestations. Five patients experienced severe autoimmune cytopenia refractory to different lines of therapy. Total lymphocytes count was reduced or almost lacking in SCID group and higher in OS patients. B lymphocytes were variably detected in LS/AS and CID groups. Eighteen patients underwent HSCT permitting definitive control of autoimmune/hyperinflammatory manifestations in twelve of them (80%). CONCLUSION We reinforce the notion that different clinical phenotype can be found in patients with identical mutations even within the same family. Infections may influence genotype-phenotype correlation and function as trigger for immune dysregulation or autoimmune manifestations. Severe and early autoimmune refractory cytopenia is frequent and could be the first symptom of onset. Prompt recognition of RAG deficiency in patients with early onset of autoimmune/hyperinflammatory manifestations could contribute to the choice of a timely and specific treatment preventing the onset of other complications.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Algeri Mattia
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Giorgiana Madalina Ursu
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Nicola Cotugno
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Emma C Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Galaverna Federica
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giuseppe Palumbo
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Gigliola Di Matteo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
14
|
Lugo-Reyes SO, Pastor N, González-Serrano E, Yamazaki-Nakashimada MA, Scheffler-Mendoza S, Berron-Ruiz L, Wakida G, Nuñez-Nuñez ME, Macias-Robles AP, Staines-Boone AT, Venegas-Montoya E, Alaez-Verson C, Molina-Garay C, Flores-Lagunes LL, Carrillo-Sanchez K, Niemela J, Rosenzweig SD, Gaytan P, Yañez JA, Martinez-Duncker I, Notarangelo LD, Espinosa-Padilla S, Cruz-Munoz ME. Clinical Manifestations, Mutational Analysis, and Immunological Phenotype in Patients with RAG1/2 Mutations: First Cases Series from Mexico and Description of Two Novel Mutations. J Clin Immunol 2021; 41:1291-1302. [PMID: 33954879 DOI: 10.1007/s10875-021-01052-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022]
Abstract
Mutations in recombinase activating genes 1 and 2 (RAG1/2) result in human severe combined immunodeficiency (SCID). The products of these genes are essential for V(D)J rearrangement of the antigen receptors during lymphocyte development. Mutations resulting in null-recombination activity in RAG1 or RAG2 are associated with the most severe clinical and immunological phenotypes, whereas patients with hypomorphic mutations may develop leaky SCID, including Omenn syndrome (OS). A group of previously unrecognized clinical phenotypes associated with granulomata and/or autoimmunity have been described as a consequence of hypomorphic mutations. Here, we present six patients from unrelated families with missense variants in RAG1 or RAG2. Phenotypes observed in these patients ranged from OS to severe mycobacterial infections and granulomatous disease. Moreover, we report the first evidence of two variants that had not been associated with immunodeficiency. This study represents the first case series of RAG1- or RAG2-deficient patients from Mexico and Latin America.
Collapse
Affiliation(s)
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | | | | | - Laura Berron-Ruiz
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Guillermo Wakida
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | | | - Edna Venegas-Montoya
- Unidad Médica de Alta Especialidad 25, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | | - Julie Niemela
- Laboratory of Clinical Immunology and Microbiology, National Institute of Health, Mexico City, Mexico
| | - Sergio D Rosenzweig
- Laboratory of Clinical Immunology and Microbiology, National Institute of Health, Mexico City, Mexico
| | - Paul Gaytan
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge A Yañez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Health, Mexico City, Mexico
| | - Sara Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City, Mexico.
| | | |
Collapse
|
15
|
Vignesh P, Rawat A, Kumrah R, Singh A, Gummadi A, Sharma M, Kaur A, Nameirakpam J, Jindal A, Suri D, Gupta A, Khadwal A, Saikia B, Minz RW, Sharma K, Desai M, Taur P, Gowri V, Pandrowala A, Dalvi A, Jodhawat N, Kambli P, Madkaikar MR, Bhattad S, Ramprakash S, CP R, Jayaram A, Sivasankaran M, Munirathnam D, Balaji S, Rajendran A, Aggarwal A, Singh K, Na F, George B, Mehta A, Lashkari HP, Uppuluri R, Raj R, Bartakke S, Gupta K, Sreedharanunni S, Ogura Y, Kato T, Imai K, Chan KW, Leung D, Ohara O, Nonoyama S, Hershfield M, Lau YL, Singh S. Clinical, Immunological, and Molecular Features of Severe Combined Immune Deficiency: A Multi-Institutional Experience From India. Front Immunol 2021; 11:619146. [PMID: 33628209 PMCID: PMC7897653 DOI: 10.3389/fimmu.2020.619146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Severe Combined Immune Deficiency (SCID) is an inherited defect in lymphocyte development and function that results in life-threatening opportunistic infections in early infancy. Data on SCID from developing countries are scarce. OBJECTIVE To describe clinical and laboratory features of SCID diagnosed at immunology centers across India. METHODS A detailed case proforma in an Excel format was prepared by one of the authors (PV) and was sent to centers in India that care for patients with primary immunodeficiency diseases. We collated clinical, laboratory, and molecular details of patients with clinical profile suggestive of SCID and their outcomes. Twelve (12) centers provided necessary details which were then compiled and analyzed. Diagnosis of SCID/combined immune deficiency (CID) was based on 2018 European Society for Immunodeficiencies working definition for SCID. RESULTS We obtained data on 277 children; 254 were categorized as SCID and 23 as CID. Male-female ratio was 196:81. Median (inter-quartile range) age of onset of clinical symptoms and diagnosis was 2.5 months (1, 5) and 5 months (3.5, 8), respectively. Molecular diagnosis was obtained in 162 patients - IL2RG (36), RAG1 (26), ADA (19), RAG2 (17), JAK3 (15), DCLRE1C (13), IL7RA (9), PNP (3), RFXAP (3), CIITA (2), RFXANK (2), NHEJ1 (2), CD3E (2), CD3D (2), RFX5 (2), ZAP70 (2), STK4 (1), CORO1A (1), STIM1 (1), PRKDC (1), AK2 (1), DOCK2 (1), and SP100 (1). Only 23 children (8.3%) received hematopoietic stem cell transplantation (HSCT). Of these, 11 are doing well post-HSCT. Mortality was recorded in 210 children (75.8%). CONCLUSION We document an exponential rise in number of cases diagnosed to have SCID over the last 10 years, probably as a result of increasing awareness and improvement in diagnostic facilities at various centers in India. We suspect that these numbers are just the tip of the iceberg. Majority of patients with SCID in India are probably not being recognized and diagnosed at present. Newborn screening for SCID is the need of the hour. Easy access to pediatric HSCT services would ensure that these patients are offered HSCT at an early age.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anjani Gummadi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Johnson Nameirakpam
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Bone Marrow Transplantation Unit, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Bone Marrow Transplantation Unit, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Aparna Dalvi
- ICMR-National Institute of Immunohematology, Mumbai, India
| | - Neha Jodhawat
- ICMR-National Institute of Immunohematology, Mumbai, India
| | | | | | - Sagar Bhattad
- Pediatric Immunology and Rheumatology, Aster CMI hospital, Bengaluru, India
| | - Stalin Ramprakash
- Pediatric Hemat-oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | - Raghuram CP
- Pediatric Hemat-oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | | | | | | | - Sarath Balaji
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Aruna Rajendran
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Amita Aggarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Komal Singh
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Fouzia Na
- Christian Medical College, Vellore, India
| | | | | | | | | | | | | | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Yumi Ogura
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Dasouki M, Jabr A, AlDakheel G, Elbadaoui F, Alazami AM, Al-Saud B, Arnaout R, Aldhekri H, Alotaibi I, Al-Mousa H, Hawwari A. TREC and KREC profiling as a representative of thymus and bone marrow output in patients with various inborn errors of immunity. Clin Exp Immunol 2020; 202:60-71. [PMID: 32691468 DOI: 10.1111/cei.13484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
Primary immune deficiency (PID) disorders are clinically and molecularly heterogeneous diseases. T cell receptor excision circles (TRECs) and κ (kappa)-deleting excision circles (KRECs) are markers of T and B cell development, respectively. They are useful tools to assess T and B cell function and immune reconstitution and have been used for newborn screening for severe combined immunodeficiency disease (SCID) and agammaglobulinemia, respectively. Their profiles in several genetically confirmed PIDs are still lacking. The objective of this study was to determine TREC and KREC genomic profiling among various molecularly confirmed PIDs. We used real-time-quantitative polymerase chain reaction (RT-qPCR)-based triplex analysis of TRECs, KRECs and β-actin (ACTB) in whole blood genomic DNA isolated from 108 patients with molecularly confirmed PIDs. All agammaglobulinemia patients had low KREC counts. All SCIDs and Omenn syndrome patients secondary to mutations in RAG1, RAG2, DCLRE1C and NHEJ1 had low TREC and KREC counts. JAK3-deficient patients had normal KREC and the TREC count was influenced by the type of mutation. Early-onset ADA patients had low TREC and KREC counts. Four patients with zeta-chain-associated protein kinase 70 (ZAP70) had low TREC. All purine nucleoside phosphorylase (PNP) patients had low TREC. Combined immunodeficiency (CID) patients secondary to AK2, PTPRC, CD247, DCLREC1 and STAT1 had normal TREC and KREC counts. Most patients with ataxia-telangiectasia (AT) patients had low TREC and KREC, while most DOCK8-deficient patients had low TRECs only. Two of five patients with Wiskott-Aldrich syndrome (WAS) had low TREC counts as well as one patient each with bare lymphocyte syndrome (BLS) and chronic granulomatous disease. All patients with Griscelli disease, Chediak-Higashi syndrome, hyper-immunoglobulin (Ig)M syndrome and IFNGR2 had normal TREC and KREC counts. These data suggest that, in addition to classical SCID and agammaglobulinemia, TREC/KREC assay may identify ZAP70 patients and secondary target PIDs, including dedicator of cytokinesis 8 (DOCK8) deficiency, AT and some individuals with WAS and BLS.
Collapse
Affiliation(s)
- M Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A Jabr
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - G AlDakheel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F Elbadaoui
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - B Al-Saud
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - R Arnaout
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H Aldhekri
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - I Alotaibi
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - A Hawwari
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City Hospital, Ministry of National Guard Health Affairs, Al-Ahsa, Saudi Arabia
| |
Collapse
|
17
|
Fayez EA, Qazvini FF, Mahmoudi SM, Khoei S, Vesaltalab M, Teimourian S. Diagnosis of radiosensitive severe combined immunodeficiency disease (RS-SCID) by Comet Assay, management of bone marrow transplantation. Immunobiology 2020; 225:151961. [PMID: 32517885 DOI: 10.1016/j.imbio.2020.151961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Severe combined immunodeficiency disease (SCID) is a rare inherited severe immunodeficiency, in which functions of T cells and B cells are impaired. SCID is inherited either in X-linked recessive, or autosomal recessive forms, and is either radiosensitive or radioresistant. Artemis (DCLRE1C gene), DNA ligase IV, DNA-PKC, and Cernunnos/XLF proteins are regarded as NHEJ (Non-Homologous End-Joining) proteins that are involved in the repair process of double-strand DNA breaks and their mutations would lead to cellular radiosensitivity. Diagnostic radiosensitivity assays are important for the management of clinical BMT (Bone Marrow Transplantation) conditions, such as what conditioning agents and doses should be used. MATERIALS AND METHODS In this study, five SCID patients and healthy controls were examined. Skin fibroblasts were cultured. After X-irradiation, cells either underwent clonogenic assay or incubated to allow DNA repair and examined by the alkaline comet assay. Finally, DCLRE1C, RAG-1, and RAG-2 genes sequenced. RESULTS By clonogenic assay, three patients were detected as radiosensitive with possible mutations in NHEJ genes such as DCLRE1C gene. The percentage of DNA in the tail measured by comet assay, in all three patients, was significantly different from the two other patients and the control group (p-value < 0.05). By using Sanger sequencing, a mutation in DCLRE1C gene was detected in one of the radiosensitive patients and two mutations in RAG-1, and RAG-2 genes were detected in the two radioresistant patients. CONCLUSION Our findings suggest that comet assay is a fast technique for the diagnosis of the radiosensitive form of SCID and is very suitable for the timely diagnosis of RS-SCID before BMT.
Collapse
Affiliation(s)
- Elham Alipour Fayez
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farajihaye Qazvini
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Marzeyeh Mahmoudi
- Department of Cell and Molecular Biology, Islamic Azad University, Science and Research Branch. Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Vesaltalab
- School of Medicine, Bandar Abbas University of Medical Science, Bandar Abbas, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat Cell Biol 2020; 22:60-73. [DOI: 10.1038/s41556-019-0445-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
|
19
|
Abstract
While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.
Collapse
|
20
|
Sacco KA, Milner JD. Gene-environment interactions in primary atopic disorders. Curr Opin Immunol 2019; 60:148-155. [PMID: 31302571 DOI: 10.1016/j.coi.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Environmental factors modify disease presentation and severity in allergic disorders. Primary atopic disorders (PADs) are a heterogenous group of single gene disorders that lead to significant atopic and allergic disease manifestations. However, a number of these monogenic diseases have variable penetrance suggesting that gene-gene and/or gene-environment interactions could modulate the clinical phenotype. Environmental factors such as diet, the microbiome at the epithelial-environment interface, the presence and/or extent of infection, and psychologic stress can alter disease phenotypic expression of allergic diseases, and PADs provide discrete contexts in which to understand these influences. We outline how gene-environment interactions likely contribute to a variable penetrance and expressivity in PADs. Dietary modifications of both macronutrients and/or micronutrients alter T-cell metabolism and may influence effector T-cell function. The mucosal microbiome may affect local inflammation and may remotely influence regulatory elements, while psychologic stress can affect mast cell and other allergic effector cell function. Understanding gene-environment interactions in PADs can hopefully provide a foundation for interrogating gene-environment interactions to common allergic disorders, and also present opportunities for personalized interventions based on the altered pathways and environmental influences in affected individuals.
Collapse
Affiliation(s)
- Keith A Sacco
- Laboratory of Allergic Diseases, NIAID, NIH, 9000 Rockville Pike, NIH Building 10 Room 11N240A, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, NIAID, NIH, 9000 Rockville Pike, NIH Building 10 Room 11N240A, United States.
| |
Collapse
|
21
|
Aluri J, Desai M, Gupta M, Dalvi A, Terance A, Rosenzweig SD, Stoddard JL, Niemela JE, Tamankar V, Mhatre S, Bargir U, Kulkarni M, Shah N, Aggarwal A, Lashkari HP, Krishna V, Govindaraj G, Kalra M, Madkaikar M. Clinical, Immunological, and Molecular Findings in 57 Patients With Severe Combined Immunodeficiency (SCID) From India. Front Immunol 2019; 10:23. [PMID: 30778343 PMCID: PMC6369708 DOI: 10.3389/fimmu.2019.00023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Severe combined immunodeficiency (SCID) represents one of the most severe forms of primary immunodeficiency (PID) disorders characterized by impaired cellular and humoral immune responses. Here, we report the clinical, immunological, and molecular findings in 57 patients diagnosed with SCID from India. Majority of our patients (89%) presented within 6 months of age. The most common clinical manifestations observed were recurrent pneumonia (66%), failure to thrive (60%), chronic diarrhea (35%), gastrointestinal infection (21%), and oral candidiasis (21%). Hematopoietic Stem Cell Transplantation (HSCT) is the only curative therapy available for treating these patients. Four patients underwent HSCT in our cohort but had a poor survival outcome. Lymphopenia (absolute lymphocyte counts/μL <2,500) was noted in 63% of the patients. Based on immunophenotypic pattern, majority of the cases were T−B− SCID (39%) followed by T−B+ SCID (28%). MHC class II deficiency accounted for 10.5% of our patient group. A total of 49 patients were molecularly characterized in this study and 32 novel variants were identified in our cohort. The spectrum of genetic defects in our cohort revealed a wide genetic heterogeneity with the major genetic cause being RAG1/2 gene defect (n = 12) followed by IL2RG (n = 9) and JAK3 defects (n = 9). Rare forms of SCID like Purine nucleoside phosphorylase (PNP) deficiency, reticular dysgenesis, DNA-Protein Kinase (DNA-PKcs) deficiency, six cases of MHC class II deficiency and two ZAP70 deficiency were also identified in our cohort. Fourteen percent of the defects still remained uncharacterized despite the application of next generation sequencing. With the exception of MHC class II deficiency and ZAP70 deficiency, all SCID patients had extremely low T cell receptor excision (TRECs) (<18 copies/μL).
Collapse
Affiliation(s)
- Jahnavi Aluri
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Mukesh Desai
- Division of Immunology, Bai Jerbai Wadia Children's Hospital, Mumbai, India
| | - Maya Gupta
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Aparna Dalvi
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Antony Terance
- Department of Pediatric Pulmonology, G. Kuppuswamy Naidu Memorial Hospital, Coimbatore, India
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Jennifer L Stoddard
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Julie E Niemela
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | | | - Snehal Mhatre
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Umair Bargir
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Manasi Kulkarni
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Nitin Shah
- Pediatric Hematology-Oncology, P. D. Hinduja National Hospital & Research Center, Mumbai, India
| | - Amita Aggarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Vidya Krishna
- Department of Pediatrics, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Geeta Govindaraj
- Department of Pediatrics, Institute of Maternal and Child Health, Government Medical College, Kozhikode, India
| | - Manas Kalra
- Department of Pediatrics Hematology and Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| |
Collapse
|
22
|
Meshaal SS, El Hawary RE, Abd Elaziz DS, Eldash A, Alkady R, Lotfy S, Mauracher AA, Opitz L, Pachlopnik Schmid J, van der Burg M, Chou J, Galal NM, Boutros JA, Geha R, Elmarsafy AM. Phenotypical heterogeneity in RAG-deficient patients from a highly consanguineous population. Clin Exp Immunol 2019; 195:202-212. [PMID: 30307608 PMCID: PMC6330646 DOI: 10.1111/cei.13222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations affecting recombination activation genes RAG1 and RAG2 are associated with variable phenotypes, depending on the residual recombinase activity. The aim of this study is to describe a variety of clinical phenotypes in RAG-deficient patients from the highly consanguineous Egyptian population. Thirty-one patients with RAG mutations (from 28 families) were included from 2013 to 2017. On the basis of clinical, immunological and genetic data, patients were subdivided into three groups; classical T- B- severe combined immunodeficiency (SCID), Omenn syndrome (OS) and atypical SCID. Nineteen patients presented with typical T- B- SCID; among these, five patients carried a homozygous RAG2 mutation G35V and five others carried two homozygous RAG2 mutations (T215I and R229Q) that were detected together. Four novel mutations were reported in the T- B- SCID group; three in RAG1 (A565P, N591Pfs*14 and K621E) and one in RAG2 (F29S). Seven patients presented with OS and a novel RAG2 mutation (C419W) was documented in one patient. The atypical SCID group comprised five patients. Two had normal B cell counts; one had a previously undescribed RAG2 mutation (V327D). The other three patients presented with autoimmune cytopaenias and features of combined immunodeficiency and were diagnosed at a relatively late age and with a substantial diagnostic delay; one patient had a novel RAG1 mutation (C335R). PID disorders are frequent among Egyptian children because of the high consanguinity. RAG mutations stand behind several variable phenotypes, including classical SCID, OS, atypical SCID with autoimmunity and T- B+ CID.
Collapse
Affiliation(s)
- S. S. Meshaal
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. E. El Hawary
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - D. S. Abd Elaziz
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - A. Eldash
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. Alkady
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - S. Lotfy
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - A. A. Mauracher
- Division of ImmunologyUniversity Children’s Hospital ZurichZurichSwitzerland
| | - L. Opitz
- Functional Genomics Center ZürichUniversity of Zurich, ETH ZurichZurichSwitzerland
| | | | - M. van der Burg
- Department of ImmunologyErasmus MC, University Medical Center RotterdamRotterdamNetherlands
| | - J. Chou
- Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - N. M. Galal
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - J. A. Boutros
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. Geha
- Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - A. M. Elmarsafy
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| |
Collapse
|
23
|
Lougaris V, Plebani A. Genetics of CVID. RARE DISEASES OF THE IMMUNE SYSTEM 2019:67-76. [DOI: 10.1007/978-3-319-91785-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Hematopoietic stem cell gene therapy for the cure of blood diseases: primary immunodeficiencies. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Delmonte OM, Schuetz C, Notarangelo LD. RAG Deficiency: Two Genes, Many Diseases. J Clin Immunol 2018; 38:646-655. [PMID: 30046960 PMCID: PMC6643099 DOI: 10.1007/s10875-018-0537-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To review the clinical and laboratory spectrum of RAG gene defects in humans, and discuss the mechanisms underlying phenotypic heterogeneity, the basis of immune dysregulation, and the current and perspective treatment modalities. METHODS Literature review and analysis of medical records RESULTS: RAG gene defects in humans are associated with a surprisingly broad spectrum of clinical and immunological phenotypes. Correlation between in vitro recombination activity of the mutant RAG proteins and the clinical phenotype has been observed. Altered T and B cell development in this disease is associated with defects of immune tolerance. Hematopoietic cell transplantation is the treatment of choice for the most severe forms of the disease, but a high rate of graft failure has been observed. CONCLUSIONS Phenotypic heterogeneity of RAG gene defects in humans may represent a diagnostic challenge. There is a need to improve treatment for severe, early-onset forms of the disease. Optimal treatment modalities for patients with delayed-onset disease presenting with autoimmunity and/or inflammation remain to be defined.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Tirosh I, Yamazaki Y, Frugoni F, Ververs FA, Allenspach EJ, Zhang Y, Burns S, Al-Herz W, Noroski L, Walter JE, Gennery AR, van der Burg M, Notarangelo LD, Lee YN. Recombination activity of human recombination-activating gene 2 (RAG2) mutations and correlation with clinical phenotype. J Allergy Clin Immunol 2018; 143:726-735. [PMID: 29772310 DOI: 10.1016/j.jaci.2018.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mutations in recombination-activating gene (RAG) 1 and RAG2 are associated with a broad range of clinical and immunologic phenotypes in human subjects. OBJECTIVE Using a flow cytometry-based assay, we aimed to measure the recombinase activity of naturally occurring RAG2 mutant proteins and to correlate our results with the severity of the clinical and immunologic phenotype. METHODS Abelson virus-transformed Rag2-/- pro-B cells engineered to contain an inverted green fluorescent protein (GFP) cassette flanked by recombination signal sequences were transduced with retroviruses encoding either wild-type or 41 naturally occurring RAG2 variants. Bicistronic vectors were used to introduce compound heterozygous RAG2 variants. The percentage of GFP-expressing cells was evaluated by using flow cytometry, and high-throughput sequencing was used to analyze rearrangements at the endogenous immunoglobulin heavy chain (Igh) locus. RESULTS The RAG2 variants showed a wide range of recombination activity. Mutations associated with severe combined immunodeficiency and Omenn syndrome had significantly lower activity than those detected in patients with less severe clinical presentations. Four variants (P253R, F386L, N474S, and M502V) previously thought to be pathogenic were found to have wild-type levels of activity. Use of bicistronic vectors permitted us to assess more carefully the effect of compound heterozygous mutations, with good correlation between GFP expression and the number and diversity of Igh rearrangements. CONCLUSIONS Our data support genotype-phenotype correlation in the setting of RAG2 deficiency. The assay described can be used to define the possible disease-causing role of novel RAG2 variants and might help predict the severity of the clinical phenotype.
Collapse
Affiliation(s)
- Irit Tirosh
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Francesco Frugoni
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Francesca A Ververs
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Eric J Allenspach
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Siobhan Burns
- Institute for Immunity and Transplantation, University College London, London, United Kingdom; Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lenora Noroski
- Division of Allergy and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida and Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Andrew R Gennery
- Department of Pediatric Immunology, Newcastle Upon Tyne Hospital, NHS Foundation Trust, United Kingdom and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
27
|
Rapid generation of novel models of RAG1 deficiency by CRISPR/Cas9-induced mutagenesis in murine zygotes. Oncotarget 2017; 7:12962-74. [PMID: 26887046 PMCID: PMC4914335 DOI: 10.18632/oncotarget.7341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in the Recombination Activating Gene 1 (RAG1) can cause a wide variety of clinical and immunological phenotypes in humans, ranging from absence of T and B lymphocytes to occurrence of autoimmune manifestations associated with expansion of oligoclonal T cells and production of autoantibodies. Although the mechanisms underlying this phenotypic heterogeneity remain poorly understood, some genotype-phenotype correlations can be made. Currently, mouse models of Rag deficiency are restricted to RAG1−/− mice and to knock-in models carrying severe missense mutations. The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system is a novel and powerful gene-editing strategy that permits targeted introduction of DNA double strand breaks with high efficiency through simultaneous delivery of the Cas9 endonuclease and a guide RNA (gRNA). Here, we report on CRISPR-based, single-step generation and characterization of mutant mouse models in which gene editing was attempted around residue 838 of RAG1, a region whose functional role had not been studied previously.
Collapse
|
28
|
DNA recombination defects in Kuwait: Clinical, immunologic and genetic profile. Clin Immunol 2017; 187:68-75. [PMID: 29051008 PMCID: PMC5826831 DOI: 10.1016/j.clim.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022]
Abstract
Defects in DNA Recombination due to mutations in RAG1/2 or DCLRE1C result in combined immunodeficiency (CID) with a range of disease severity. We present the clinical, immunologic and molecular characteristics of 21 patients with defects in RAG1, RAG2 or DCLRE1C, who accounted for 24% of combined immune deficiency cases in the Kuwait National Primary Immunodeficiency Disorders Registry. The distribution of the patients was as follow: 8 with RAG1 deficiency, 6 with RAG2 deficiency and 7 with DCLRE1C deficiency. Nine patients presented with SCID, 6 with OS, 2 with leaky SCID and 4 with CID and granuloma and/or autoimmunity (CID-G/AI). Eight patients [(7 SCID and 1 OS) (38%)] received hematopoietic stem cell transplant (HSCT). The median age of HSCT was 11.5 months and the median time from diagnosis to HSCT was 6 months. Fifty percent of the transplanted patients are alive while only 23% of the untransplanted ones are alive. Defects in V(D)J recombination result in combined immunodeficiency. Pediatricians awareness about the spectrum of CID presentation is crucial for better outcome. International collaboration is needed to study HSCT outcome for different genetic causes of CID.
Collapse
|
29
|
Comprehensive validation of T- and B-cell deficiency in rag1-null zebrafish: Implication for the robust innate defense mechanisms of teleosts. Sci Rep 2017; 7:7536. [PMID: 28790360 PMCID: PMC5548773 DOI: 10.1038/s41598-017-08000-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/06/2017] [Indexed: 11/08/2022] Open
Abstract
rag1−/− zebrafish have been employed in immunological research as a useful immunodeficient vertebrate model, but with only fragmentary evidence for the lack of functional adaptive immunity. rag1-null zebrafish exhibit differences from their human and murine counterparts in that they can be maintained without any specific pathogen-free conditions. To define the immunodeficient status of rag1−/− zebrafish, we obtained further functional evidence on T- and B-cell deficiency in the fish at the protein, cellular, and organism levels. Our developed microscale assays provided evidence that rag1−/− fish do not possess serum IgM protein, that they do not achieve specific protection even after vaccination, and that they cannot induce antigen-specific CTL activity. The mortality rate in non-vaccinated fish suggests that rag1−/− fish possess innate protection equivalent to that of rag1+/− fish. Furthermore, poly(I:C)-induced immune responses revealed that the organ that controls anti-viral immunity is shifted from the spleen to the hepatopancreas due to the absence of T- and B-cell function, implying that immune homeostasis may change to an underside mode in rag-null fish. These findings suggest that the teleost relies heavily on innate immunity. Thus, this model could better highlight innate immunity in animals that lack adaptive immunity than mouse models.
Collapse
|
30
|
Weisz Hubshman M, Basel-Vanagaite L, Krauss A, Konen O, Levy Y, Garty BZ, Smirin-Yosef P, Maya I, Lagovsky I, Taub E, Marom D, Gaash D, Shichrur K, Avigad S, Hayman-Manzur L, Villa A, Sobacchi C, Shohat M, Yaniv I, Stein J. Homozygous deletion of RAG1, RAG2 and 5' region TRAF6 causes severe immune suppression and atypical osteopetrosis. Clin Genet 2017; 91:902-907. [PMID: 27808398 DOI: 10.1111/cge.12916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 01/17/2023]
Abstract
Mutations of several genes have been implicated in autosomal recessive osteopetrosis (OP), a disease caused by impaired function and differentiation of osteoclasts. Severe combined immune deficiencies (SCID) can likewise result from different genetic mutations. We report two siblings with SCID and an atypical phenotype of OP. A biallelic microdeletion encompassing the 5' region of TRAF6, RAG1 and RAG2 genes was identified. TRAF6, a tumor necrosis factor receptor-associated family member, plays an important role in T cell signaling and in RANKL-dependent osteoclast differentiation and activation but its role in human OP has not been previously reported. The RAG proteins are essential for recombination of B and T cell receptors, and for the survival and differentiation of these cells. This is the first study to report a homozygous deletion of TRAF6 as a cause of human disease.
Collapse
Affiliation(s)
- M Weisz Hubshman
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Basel-Vanagaite
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - A Krauss
- Bone Marrow Transplantation Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - O Konen
- Radiology Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Y Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - B Z Garty
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - P Smirin-Yosef
- Felsenstein Medical Research Center, Petach Tikva, Israel.,Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - I Maya
- Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel
| | - I Lagovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Taub
- Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel
| | - D Marom
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Gaash
- Hemato-Oncology Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - K Shichrur
- Hemato-Oncology Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - S Avigad
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Hemato-Oncology Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - L Hayman-Manzur
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pathology Department, Rabin Medical Center, Petach Tikva, Israel
| | - A Villa
- CNR/IRGB, UOS Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - C Sobacchi
- CNR/IRGB, UOS Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - M Shohat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Bioinformatics Unit, Cancer Center, Sheba Medical Center, Tel Aviv, Israel.,Genetic Institute, Maccabi Megalab, Rehovot, Israel
| | - I Yaniv
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Bone Marrow Transplantation Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - J Stein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Bone Marrow Transplantation Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
31
|
Kumánovics A, Lee YN, Close DW, Coonrod EM, Ujhazi B, Chen K, MacArthur DG, Krivan G, Notarangelo LD, Walter JE. Estimated disease incidence of RAG1/2 mutations: A case report and querying the Exome Aggregation Consortium. J Allergy Clin Immunol 2017; 139:690-692.e3. [PMID: 27609655 PMCID: PMC5303162 DOI: 10.1016/j.jaci.2016.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/30/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
RAG deficiency is emerging as one of the leading causes of SCID and leaky SCID with an estimated incidence of 1:336,000. Hypomorphic mutations in the RAG genes can also lead to highly variable delayed-onset combined immunodeficiency diseases. We estimate the population genetic frequency of these hypomorphic diseases as up to 1:181,000, suggesting that RAG1/2 mutations are likely to contribute to undiagnosed cases of combined immunodeficiencies.
Collapse
Affiliation(s)
- Attila Kumánovics
- Department of Pathology, University of Utah, Salt Lake City, Utah; ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah.
| | - Yu Nee Lee
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Devin W Close
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Emily M Coonrod
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Boglarka Ujhazi
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Mass
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Division of Allergy and Immunology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Mass
| | - Gergely Krivan
- United St Laszlo and St Istvan Hospital, Budapest, Hungary
| | - Luigi D Notarangelo
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Jolan E Walter
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Mass.
| |
Collapse
|
32
|
Mutation c.256_257delAA in RAG1 Gene in Polish Children with Severe Combined Immunodeficiency: Diversity of Clinical Manifestations. Arch Immunol Ther Exp (Warsz) 2017; 64:177-183. [PMID: 28083621 PMCID: PMC5334423 DOI: 10.1007/s00005-016-0447-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/02/2016] [Indexed: 11/05/2022]
Abstract
Mutations in RAG1 gene may result in different types of severe combined immunodeficiencies. In this study, we compare clinical symptoms and laboratory findings in four children with identical mutation in RAG1 gene. All of analyzed patients presented symptoms of severe combined immunodeficiencies associated or not with Omenn syndrome (OS) features. In our patients two different types of variants in RAG1 gene were detected. The first of the mutation was the deletion of AA dinucleotide at position c.256_257 (p.Lys86ValfsTer33), the second gene variant was substitution c.2867T>C (p.Ile956Thr). In Patient 1 we detected that compound heterozygous mutations involved both of the mentioned variants. Whereas, in Patients 2, 3 and 4, we confirmed the presence of the dinucleotide deletion but in a homozygous state. In all described patients, sequence analysis of RAG2 gene did not reveal any nucleotide changes. Our data show that mutation c.256_257delAA in RAG1 gene seems to occur quite frequently in the polish patients with severe combined immunodeficiency and may result in classical OS as well as in severe combined immunodeficiency without clinical and laboratory features of OS when occurred in homozygous state. The same mutation but in heterozygous state, in combination with other mutation in RAG1 gene, may result in incomplete OS.
Collapse
|
33
|
Rodgers KK. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures. Trends Biochem Sci 2016; 42:72-84. [PMID: 27825771 DOI: 10.1016/j.tibs.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Development of the adaptive immune system is dependent on V(D)J recombination, which forms functional antigen receptor genes through rearrangement of component gene segments. The V(D)J recombinase, comprising recombination-activating proteins RAG1 and RAG2, guides the initial DNA cleavage events to the recombination signal sequence (RSS), which flanks each gene segment. Although the enzymatic steps for RAG-mediated endonucleolytic activity were established over two decades ago, only recently have high-resolution structural studies of the catalytically active core regions of the RAG proteins shed light on conformational requirements for the reaction. While outstanding questions remain, we have a clearer picture of how RAG proteins function in generating the diverse repertoires of antigen receptors, the underlying foundation of the adaptive immune system.
Collapse
Affiliation(s)
- Karla K Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| |
Collapse
|
34
|
Cifaldi C, Scarselli A, Petricone D, Di Cesare S, Chiriaco M, Claps A, Rossi P, Calzoni E, Yamazaki Y, Notarangelo LD, Di Matteo G, Cancrini C, Finocchi A. Agammaglobulinemia associated to nasal polyposis due to a hypomorphic RAG1 mutation in a 12 years old boy. Clin Immunol 2016; 173:121-123. [PMID: 27713031 DOI: 10.1016/j.clim.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022]
Abstract
Recombination-activating gene (RAG) 1 and 2 mutations in humans cause T- B- NK+ SCID and Omenn syndrome, but milder phenotypes associated with residual protein activity have been recently described. We report a male patient with a diagnosis of common variable immunodeficiency (CVID) born from non-consanguineous parents, whose immunological phenotype was characterized by severe reduction of B cells and agammaglobulinemia for which several candidate genes were excluded by targeted Sanger sequencing. Next Generation Sequencing revealed two compound heterozygous mutations in the RAG1 gene: the previously described p.R624H, and the novel p.Y728H mutation, as well as the known polymorphism p.H249R. This case reinforces the notion of large phenotypic spectrum in RAG deficiency and opens questions on the management and follow-up of these patients.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Department of Systems Medicine, "University of Rome Tor Vergata", Rome, Italy
| | - Alessia Scarselli
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Italy
| | - Davide Petricone
- Department of Systems Medicine, "University of Rome Tor Vergata", Rome, Italy
| | - Silvia Di Cesare
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Italy
| | - Maria Chiriaco
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Italy
| | - Alessia Claps
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Italy
| | - Paolo Rossi
- Department of Systems Medicine, "University of Rome Tor Vergata", Rome, Italy; University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Italy
| | - Enrica Calzoni
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | | | - Luigi Daniele Notarangelo
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gigliola Di Matteo
- Department of Systems Medicine, "University of Rome Tor Vergata", Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, "University of Rome Tor Vergata", Rome, Italy; University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, "University of Rome Tor Vergata", Rome, Italy; University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Italy.
| |
Collapse
|
35
|
Abramson J, Husebye ES. Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol Rev 2016; 271:127-40. [PMID: 27088911 DOI: 10.1111/imr.12419] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The establishment of central tolerance in the thymus is critical for avoiding deleterious autoimmune diseases. Autoimmune regulator (AIRE), the causative gene in autoimmune polyendocrine syndrome type-1 (APS-1), is crucial for the establishment of self-tolerance in the thymus by promoting promiscuous expression of a wide array of tissue-restricted self-antigens. This step is critical for elimination of high-affinity self-reactive T cells from the immunological repertoire, and for the induction of a specific subset of Foxp3(+) T-regulatory (Treg ) cells. In this review, we discuss the most recent advances in our understanding of how AIRE operates on molecular and cellular levels, as well as of how its loss of function results in breakdown of self-tolerance mechanisms characterized by a broad and heterogeneous repertoire of autoimmune phenotypes.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
36
|
Al-Mousa H, Abouelhoda M, Monies DM, Al-Tassan N, Al-Ghonaium A, Al-Saud B, Al-Dhekri H, Arnaout R, Al-Muhsen S, Ades N, Elshorbagi S, Al Gazlan S, Sheikh F, Dasouki M, El-Baik L, Elamin T, Jaber A, Kheir O, El-Kalioby M, Subhani S, Al Idrissi E, Al-Zahrani M, Alhelale M, Alnader N, Al-Otaibi A, Kattan R, Al Abdelrahman K, Al Breacan MM, Bin Humaid FS, Wakil SM, Alzayer F, Al-Dusery H, Faquih T, Al-Hissi S, Meyer BF, Hawwari A. Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases. J Allergy Clin Immunol 2016; 137:1780-1787. [PMID: 26915675 DOI: 10.1016/j.jaci.2015.12.1310] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/11/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Molecular genetics techniques are an essential diagnostic tool for primary immunodeficiency diseases (PIDs). The use of next-generation sequencing (NGS) provides a comprehensive way of concurrently screening a large number of PID genes. However, its validity and cost-effectiveness require verification. OBJECTIVES We sought to identify and overcome complications associated with the use of NGS in a comprehensive gene panel incorporating 162 PID genes. We aimed to ascertain the specificity, sensitivity, and clinical sensitivity of the gene panel and its utility as a diagnostic tool for PIDs. METHODS A total of 162 PID genes were screened in 261 patients by using the Ion Torrent Proton NGS sequencing platform. Of the 261 patients, 122 had at least 1 known causal mutation at the onset of the study and were used to assess the specificity and sensitivity of the assay. The remaining samples were from unsolved cases that were biased toward more phenotypically and genotypically complicated cases. RESULTS The assay was able to detect the mutation in 117 (96%) of 122 positive control subjects with known causal mutations. For the unsolved cases, our assay resulted in a molecular genetic diagnosis for 35 of 139 patients. Interestingly, most of these cases represented atypical clinical presentations of known PIDs. CONCLUSIONS The targeted NGS PID gene panel is a sensitive and cost-effective diagnostic tool that can be used as a first-line molecular assay in patients with PIDs. The assay is an alternative choice to the complex and costly candidate gene approach, particularly for patients with atypical presentation of known PID genes.
Collapse
Affiliation(s)
- Hamoud Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mohamed Abouelhoda
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota M Monies
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Nada Al-Tassan
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Ghonaium
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Bandar Al-Saud
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hasan Al-Dhekri
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rand Arnaout
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Nazema Ades
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Sahar Elshorbagi
- Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Sulaiman Al Gazlan
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Farrukh Sheikh
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Lina El-Baik
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Tanzeil Elamin
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Amal Jaber
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Omnia Kheir
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed El-Kalioby
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Shazia Subhani
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Eman Al Idrissi
- Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Maryam Alhelale
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Noukha Alnader
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Afaf Al-Otaibi
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rana Kattan
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Khalid Al Abdelrahman
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Muna M Al Breacan
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Faisal S Bin Humaid
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Salma Majid Wakil
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Fadi Alzayer
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Haya Al-Dusery
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Tariq Faquih
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Safa Al-Hissi
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Abbas Hawwari
- Department of Genetics (Research Center), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
37
|
Xu K, Liu H, Shi Z, Song G, Zhu X, Jiang Y, Zhou Z, Liu X. Disruption of the RAG2 zinc finger motif impairs protein stability and causes immunodeficiency. Eur J Immunol 2015; 46:1011-9. [PMID: 26692406 DOI: 10.1002/eji.201545896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/18/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022]
Abstract
Although the RAG2 core domain is the minimal region required for V(D)J recombination, the noncore region also plays important roles in the regulation of recombination, and mutations in this region are often related to severe combined immunodeficiency. A complete understanding of the functions of the RAG2 noncore region and the potential contributions of its individual residues has not yet been achieved. Here, we show that the zinc finger motif within the noncore region of RAG2 is indispensable for maintaining the stability of the RAG2 protein. The zinc finger motif in the noncore region of RAG2 is highly conserved from zebrafish to humans. Knock-in mice carrying a zinc finger mutation (C478Y) exhibit decreased V(D)J recombination efficiency and serious impairment in T/B-cell development due to RAG2 instability. Further studies also reveal the importance of the zinc finger motif for RAG2 stability. Moreover, mice harboring a RAG2 noncore region mutation (N474S), which is located near C478 but is not zinc-binding, exhibit no impairment in either RAG2 stability or T/B-cell development. Taken together, our findings contribute to defining critical functions of the RAG2 zinc finger motif and provide insights into the relationships between the mutations within this motif and immunodeficiency diseases.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhubing Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangrong Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuzhang Jiang
- Department of Medical Laboratory, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Houghton BC, Booth C, Thrasher AJ. Lentivirus technologies for modulation of the immune system. Curr Opin Pharmacol 2015; 24:119-27. [PMID: 26363252 DOI: 10.1016/j.coph.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023]
Abstract
Lentiviral vectors (LVV) are important tools for the treatment of immune system disorders. Integration of therapeutic genetic material into the haematopoietic stem cell compartment using LVV can mediate long-term correction of haematopoietic lineages, thereby correcting disease phenotypes. Twenty years of vector development have successfully brought LVV to the clinic, with follow up studies of clinical trials treating primary immunodeficiencies now being reported. Results have demonstrated clear improvements in the quality of life for patients with a number of conditions in the absence of the severe adverse events observed in earlier retroviral gene therapy trials. Growing interest in gene modified adoptive T cell transfer as an alternative strategy has driven further technology innovation, including characterisation of novel viral envelopes. We will also discuss the progression of gene editing technology to preclinical investigations in models of immune deficiency.
Collapse
Affiliation(s)
- Benjamin C Houghton
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claire Booth
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK.
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
39
|
Compound heterozygous mutation of Rag1 leading to Omenn syndrome. PLoS One 2015; 10:e0121489. [PMID: 25849362 PMCID: PMC4388548 DOI: 10.1371/journal.pone.0121489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
Omenn syndrome is a primary immunodeficiency disorder, featuring susceptibility to infections and autoreactive T cells and resulting from defective genomic rearrangement of genes for the T cell and B cell receptors. The most frequent etiologies are hypomorphic mutations in "non-core" regions of the Rag1 or Rag2 genes, the protein products of which are critical members of the cellular apparatus for V(D)J recombination. In this report, we describe an infant with Omenn syndrome with a previously unreported termination mutation (p.R142*) in Rag1 on one allele and a partially characterized substitution mutation (p.V779M) in a "core" region of the other Rag1 allele. Using a cellular recombination assay, we found that while the p.R142* mutation completely abolished V(D)J recombination activity, the p.V779M mutation conferred a severe, but not total, loss of V(D)J recombination activity. The recombination defect of the V779 mutant was not due to overall misfolding of Rag1, however, as this mutant supported wild-type levels of V(D)J cleavage. These findings provide insight into the role of this poorly understood region of Rag1 and support the role of Rag1 in a post-cleavage stage of recombination.
Collapse
|
40
|
Atypical severe combined immunodeficiency caused by a novel homozygous mutation in Rag1 gene in a girl who presented with pyoderma gangrenosum: a case report and literature review. J Clin Immunol 2014; 34:792-5. [PMID: 25104208 DOI: 10.1007/s10875-014-0077-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 07/06/2014] [Indexed: 10/24/2022]
Abstract
Severe combined immunodeficiency (SCID) is a heterogeneous group of inherited defects involving the development of T- and/or B-lymphocytes. We report a female with atypical severe combined immunodeficiency caused by a novel homozygous mutation at cDNA position 2290 (c.2290C > T) in exon 2 of the RAG1 gene. The patient presented with bronchopneumonia, pyoderma gangrenosum (PG), pancytopenia and splenomegaly. She presented to us with pancytopenia and splenomegaly at the age of 11. Her condition was complicated by PG on left lower ankle at the age of 12. She experienced bronchopneumonia at the age of 15. She was diagnosed with RAG1 deficiency at the age of 16. Her immunological presentation included leucopenia and diminished number of B cells.
Collapse
|
41
|
Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, Notarangelo LD, Pan-Hammarström Q, Hammarström L. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol 2014; 134:1375-1380. [PMID: 24996264 DOI: 10.1016/j.jaci.2014.04.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recombination-activating gene 1 (RAG1) deficiency presents with a varied spectrum of combined immunodeficiency, ranging from a T(-)B(-)NK(+) type of disease to a T(+)B(+)NK(+) phenotype. OBJECTIVE We sought to assess the genetic background of patients with common variable immunodeficiency (CVID). METHODS A patient given a diagnosis of CVID, who was born to a consanguineous family and thus would be expected to show an autosomal recessive inheritance, was subjected to clinical evaluation, immunologic assays, homozygosity gene mapping, exome sequencing, Sanger sequencing, and functional analysis. RESULTS The 14-year-old patient, who had liver granuloma, extranodal marginal zone B-cell lymphoma, and autoimmune neutropenia, presented with a clinical picture resembling CVID. Genetic analysis of this patient showed a homozygous hypomorphic RAG1 mutation (c.1073 G>A, p.C358Y) with a residual functional capacity of 48% of wild-type protein. CONCLUSION Our finding broadens the range of disorders associated with RAG1 mutations and might have important therapeutic implications.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ning Wang
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yu Nee Lee
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Francesco Frugoni
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Luigi D Notarangelo
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
42
|
Hedayat M, Massaad MJ, Lee YN, Conley ME, Orange JS, Ohsumi TK, Al-Herz W, Notarangelo LD, Geha RS, Chou J. Lessons in gene hunting: a RAG1 mutation presenting with agammaglobulinemia and absence of B cells. J Allergy Clin Immunol 2014; 134:983-5.e1. [PMID: 24985406 DOI: 10.1016/j.jaci.2014.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 04/06/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Mona Hedayat
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Yu Nee Lee
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mary Ellen Conley
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY
| | - Jordan S Orange
- Immunology, Allergy, and Rheumatology, Baylor College of Medicine and the Texas Children's Hospital, Houston, Tex
| | - Toshiro K Ohsumi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Mass
| | - Waleed Al-Herz
- Faculty of Medicine, Department of Pediatrics, Kuwait University, Kuwait City, Kuwait
| | - Luigi D Notarangelo
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
43
|
Lee YN, Frugoni F, Dobbs K, Walter JE, Giliani S, Gennery AR, Al-Herz W, Haddad E, LeDeist F, Bleesing JH, Henderson LA, Pai SY, Nelson RP, El-Ghoneimy DH, El-Feky RA, Reda SM, Hossny E, Soler-Palacin P, Fuleihan RL, Patel NC, Massaad MJ, Geha RS, Puck JM, Palma P, Cancrini C, Chen K, Vihinen M, Alt FW, Notarangelo LD. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. J Allergy Clin Immunol 2014; 133:1099-108. [PMID: 24290284 PMCID: PMC4005599 DOI: 10.1016/j.jaci.2013.10.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND The recombination-activating gene (RAG) 1/2 proteins play a critical role in the development of T and B cells by initiating the VDJ recombination process that leads to generation of a broad T-cell receptor (TCR) and B-cell receptor repertoire. Pathogenic mutations in the RAG1/2 genes result in various forms of primary immunodeficiency, ranging from T(-)B(-) severe combined immune deficiency to delayed-onset disease with granuloma formation, autoimmunity, or both. It is not clear what contributes to such heterogeneity of phenotypes. OBJECTIVE We sought to investigate the molecular basis for phenotypic diversity presented in patients with various RAG1 mutations. METHODS We have developed a flow cytometry-based assay that allows analysis of RAG recombination activity based on green fluorescent protein expression and have assessed the induction of the Ighc locus rearrangements in mouse Rag1(-/-) pro-B cells reconstituted with wild-type or mutant human RAG1 (hRAG1) using deep sequencing technology. RESULTS Here we demonstrate correlation between defective recombination activity of hRAG1 mutant proteins and severity of the clinical and immunologic phenotype and provide insights on the molecular mechanisms accounting for such phenotypic diversity. CONCLUSIONS Using a sensitive assay to measure the RAG1 activity level of 79 mutations in a physiologic setting, we demonstrate correlation between recombination activity of RAG1 mutants and the severity of clinical presentation and show that RAG1 mutants can induce specific abnormalities of the VDJ recombination process.
Collapse
Affiliation(s)
- Yu Nee Lee
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Francesco Frugoni
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Kerry Dobbs
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Jolan E Walter
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass; Division of Pediatric Allergy/Immunology, Massachusetts General Hospital for Children, Boston, Mass
| | - Silvia Giliani
- A. Nocivelli Institute for Molecular Medicine, Pediatric Clinic, University of Brescia, and the Section of Genetics, Department of Pathology Spedali Civili, Brescia, Italy
| | - Andrew R Gennery
- Department of Paediatric Immunology, Newcastle Upon Tyne Hospital, NHS Foundation Trust, United Kingdom and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Elie Haddad
- Department of Pediatrics and Department of Microbiology, Infectiology and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Francoise LeDeist
- Department of Pediatrics and Department of Microbiology, Infectiology and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Jack H Bleesing
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren A Henderson
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, Mass
| | - Robert P Nelson
- Divisions of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Ind
| | - Dalia H El-Ghoneimy
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reem A El-Feky
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shereen M Reda
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Elham Hossny
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Pere Soler-Palacin
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ramsay L Fuleihan
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Niraj C Patel
- Immunology Clinic, Levine Children's Hospital, Carolinas Medical Center, Charlotte, NC
| | - Michel J Massaad
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass
| | - Jennifer M Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Paolo Palma
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Caterina Cancrini
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Karin Chen
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and the Department of Genetics, Harvard Medical School, Boston, Mass.
| | - Luigi D Notarangelo
- Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
44
|
Chen K, Wu W, Mathew D, Zhang Y, Browne SK, Rosen LB, McManus MP, Pulsipher MA, Yandell M, Bohnsack JF, Jorde LB, Notarangelo LD, Walter JE. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J Allergy Clin Immunol 2014; 133:880-2.e10. [PMID: 24472623 PMCID: PMC4107635 DOI: 10.1016/j.jaci.2013.11.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 11/23/2022]
Affiliation(s)
- Karin Chen
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah.
| | - Wilfred Wu
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Divij Mathew
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Sarah K Browne
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lindsey B Rosen
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meghann P McManus
- Division of Hematology/Blood and Marrow Transplantation, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Pulsipher
- Division of Hematology/Blood and Marrow Transplantation, University of Utah School of Medicine, Salt Lake City, Utah
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - John F Bohnsack
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Luigi D Notarangelo
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Jolan E Walter
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Pediatric Immunodeficiency Program, Division of Allergy, Massachusetts General Hospital for Children, Boston, Mass
| |
Collapse
|
45
|
Severe combined immunodeficiency in Serbia and Montenegro between years 1986 and 2010: a single-center experience. J Clin Immunol 2014; 34:304-8. [PMID: 24481607 DOI: 10.1007/s10875-014-9991-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Severe combined immunodeficiency (SCID), including the 'variant' Omenn syndrome (OS), represent a heterogeneous group of monogenic disorders characterized by defect in differentiation of T- and/or B lymphocytes and susceptibility to infections since birth. In the period of 25 years, between January 1986 and December 2010, a total of 21 patients (15 SCID, 6 OS) were diagnosed in Mother & Child Health Institute of Serbia, a tertiary-care teaching University hospital and a national referral center for patients affected with primary immunodeficiency (PID). The diagnoses were based on anamnestic data, clinical findings, and immunological and genetic analysis. The median age at the onset of the first infection was the 2nd month of life. Seven (33 %) patients had positive family history for SCID. Out of five male infants with T-B+NK- SCID phenotype, mutation analysis revealed interleukin-2 (common) gamma-chain receptor (IL2RG) mutations in 3 with positive X-linked family history, and Janus-kinase (JAK)-3 gene defects in the other two. Six patients had T-B-NK+ SCID phenotype and further 6 features of OS, 11 of which had recombinase-activating gene (RAG1or RAG2) and 1 Artemis gene mutations. One child with T+B+NK+ SCID phenotype as well had proven RAG mutation. One child each with T-B+NK+ SCID phenotype, CD8 lymphopenia and unknown phenotype remained without known underlying genetic defect. Of the eight patients who underwent hematopoetic stem cell transplant (HSCT) 5 survived, the other 13 died between 2 days and 12 months after diagnosis was made. Early diagnosis of SCID, before onset of severe infections, offers possibility for HSCT and cure. Education of primary-care pediatricians, in particular including awareness of the risk of using live vaccines and non-irradiated blood products, should improve prognosis of SCID in our setting.
Collapse
|
46
|
Yu X, Almeida JR, Darko S, van der Burg M, DeRavin SS, Malech H, Gennery A, Chinn I, Markert ML, Douek DC, Milner JD. Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in T-cell receptor repertoire development. J Allergy Clin Immunol 2014; 133:1109-15. [PMID: 24406074 DOI: 10.1016/j.jaci.2013.11.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human immunodeficiencies characterized by hypomorphic mutations in critical developmental and signaling pathway genes allow for the dissection of the role of these genes in the development of the T-cell receptor (TCR) repertoire and the correlation of alterations of the TCR repertoire with diverse clinical phenotypes. OBJECTIVE The presence of T cells in patients with Omenn syndrome (OS) and patients with atypical presentations of severe combined immunodeficiency gene mutations presents an opportunity to study the effects of the causal genes on TCR repertoires and provides a window into the clinical heterogeneity observed. METHODS We performed deep sequencing of TCRβ complementarity-determining region 3 (CDR3) regions in subjects with a series of immune dysregulatory conditions caused by mutations in recombination activating gene 1/2 (RAG 1/2), IL-2 receptor γ (IL2RG), and ζ chain-associated protein kinase 70 (ZAP70); a patient with atypical DiGeorge syndrome; and healthy control subjects. RESULTS We found that patients with OS had marked reductions in TCRβ diversity compared with control subjects, as expected. Patients with atypical presentations of RAG or IL2RG mutations associated with autoimmunity and granulomatous disease did not have altered overall diversity but instead had skewed V-J pairing and skewed CDR3 amino acid use. Although germline TCRs were more abundant and clonally expanded in patients with OS, nongermline sequences were expanded as well. TCRβ from patients with RAG mutations had less junctional diversity and smaller CDR3s than patients with OS caused by other gene mutations and healthy control subjects but relatively similar CDR3 amino acid use. CONCLUSIONS High-throughput TCR sequencing of rare immune disorders has demonstrated that quantitative TCR diversity can appear normal despite qualitative changes in repertoire and strongly suggests that in human subjects RAG enzymatic function might be necessary for normal CDR3 junctional diversity.
Collapse
Affiliation(s)
- Xiaomin Yu
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jorge R Almeida
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Suk See DeRavin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Harry Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew Gennery
- Department of Paediatric Immunology, Newcastle University, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ivan Chinn
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Mary Louise Markert
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
47
|
SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood 2013; 123:281-9. [PMID: 24144642 DOI: 10.1182/blood-2013-01-476432] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A subgroup of severe combined immunodeficiencies (SCID) is characterized by lack of T and B cells and is caused by defects in genes required for T- and B-cell receptor gene rearrangement. Several of these genes are also involved in nonhomologous end joining of DNA double-strand break repair, the largest subgroup consisting of patients with T(-)B(-)NK(+)SCID due to DCLRE1C/ARTEMIS defects. We postulated that in patients with ARTEMIS deficiency, early and late complications following hematopoietic cell transplantation might be more prominent compared with patients with T(-)B(-)NK(+)SCID caused by recombination activating gene 1/2 (RAG1/2) deficiencies. We analyzed 69 patients with ARTEMIS and 76 patients with RAG1/2 deficiencies who received transplants from either HLA-identical donors without conditioning or from HLA-nonidentical donors without or with conditioning. There was no difference in survival or in the incidence or severity of acute graft-versus-host disease regardless of exposure to alkylating agents. Secondary malignancies were not observed. Immune reconstitution was comparable in both groups, however, ARTEMIS-deficient patients had a significantly higher occurrence of infections in long-term follow-up. There is a highly significant association between poor growth in ARTEMIS deficiency and use of alkylating agents. Furthermore, abnormalities in dental development and endocrine late effects were associated with alkylation therapy in ARTEMIS deficiency.
Collapse
|
48
|
Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: results of the first 2 years. J Allergy Clin Immunol 2013; 132:140-50. [PMID: 23810098 DOI: 10.1016/j.jaci.2013.04.024] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Assay of T-cell receptor excision circles (TRECs) in dried blood spots obtained at birth permits population-based newborn screening (NBS) for severe combined immunodeficiency (SCID). OBJECTIVE We sought to report the first 2 years of TREC NBS in California. METHODS Since August 2010, California has conducted SCID NBS. A high-throughput TREC quantitative PCR assay with DNA isolated from routine dried blood spots was developed. Samples with initial low TREC numbers had repeat DNA isolation with quantitative PCR for TRECs and a genomic control, and immunophenotyping was performed within the screening program for infants with incomplete or abnormal results. Outcomes were tracked. RESULTS Of 993,724 infants screened, 50 (1/19,900 [0.005%]) had significant T-cell lymphopenia. Fifteen (1/66,250) required hematopoietic cell or thymus transplantation or gene therapy; these infants had typical SCID (n = 11), leaky SCID or Omenn syndrome (n = 3), or complete DiGeorge syndrome (n = 1). Survival to date in this group is 93%. Other T-cell lymphopenic infants had variant SCID or combined immunodeficiency (n = 6), genetic syndromes associated with T-cell impairment (n = 12), secondary T-cell lymphopenia (n = 9), or preterm birth (n = 8). All T-cell lymphopenic infants avoided live vaccines and received appropriate interventions to prevent infections. TREC test specificity was excellent: only 0.08% of infants required a second test, and 0.016% required lymphocyte phenotyping by using flow cytometry. CONCLUSIONS TREC NBS in California has achieved early diagnosis of SCID and other conditions with T-cell lymphopenia, facilitating management and optimizing outcomes. Furthermore, NBS has revealed the incidence, causes, and follow-up of T-cell lymphopenia in a large diverse population.
Collapse
|
49
|
Lee PP, Woodbine L, Gilmour KC, Bibi S, Cale CM, Amrolia PJ, Veys PA, Davies EG, Jeggo PA, Jones A. The many faces of Artemis-deficient combined immunodeficiency - Two patients with DCLRE1C mutations and a systematic literature review of genotype-phenotype correlation. Clin Immunol 2013; 149:464-74. [PMID: 24230999 DOI: 10.1016/j.clim.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 12/31/2022]
Abstract
Defective V(D)J recombination and DNA double-strand break (DSB) repair severely impair the development of T-lymphocytes and B-lymphocytes. Most patients manifest a severe combined immunodeficiency during infancy. We report 2 siblings with combined immunodeficiency (CID) and immunodysregulation caused by compound heterozygous Artemis mutations, including an exon 1-3 deletion generating a null allele, and a missense change (p.T71P). Skin fibroblasts demonstrated normal DSB repair by gamma-H2AX analysis, supporting the predicted hypomorphic nature of the p.T71P allele. In addition to these two patients, 12 patients with Artemis-deficient CID were previously reported. All had significant morbidities including recurrent infections, autoimmunity, EBV-associated lymphoma, and carcinoma despite having hypomorphic mutants with residual Artemis expression, V(D)J recombination or DSB repair capacity. Nine patients underwent stem cell transplant and six survived, while four patients who did not receive transplant died. The progressive nature of immunodeficiency and genomic instability accounts for poor survival, and early HSCT should be considered.
Collapse
Affiliation(s)
- Pamela P Lee
- Department of Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gorska MM, Alam R. Consequences of a mutation in the UNC119 gene for T cell function in idiopathic CD4 lymphopenia. Curr Allergy Asthma Rep 2013; 12:396-401. [PMID: 22729960 DOI: 10.1007/s11882-012-0281-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The activation of a T cell through T cell receptor (TCR) is fundamental to adaptive immune responses. The lymphocyte specific kinase (LCK) plays a central role in the initiation of signaling from the TCR. TCR activates LCK through the adaptor protein uncoordinated 119 (UNC119). A mutation of human UNC119 impairs LCK activation and is associated with inadequate signaling, diminished T cell responses to TCR stimulation, CD4 lymphopenia, and infections of viral, bacterial, and fungal origin. The above clinical and immunological findings meet the criteria of the idiopathic CD4 lymphopenia (ICL). The discovery of the UNC119 defect provides a molecular mechanism for a subset of patients with this previously unexplained disease. Here we review our recent findings on the UNC119 mutation in ICL.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.
| | | |
Collapse
|