1
|
Thau H, Gerjol BP, Hahn K, von Gudenberg RW, Knoedler L, Stallcup K, Emmert MY, Buhl T, Wyles SP, Tchkonia T, Tullius SG, Iske J. Senescence as a molecular target in skin aging and disease. Ageing Res Rev 2025; 105:102686. [PMID: 39929368 DOI: 10.1016/j.arr.2025.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Skin aging represents a multifactorial process influenced by both intrinsic and extrinsic factors, collectively known as the skin exposome. Cellular senescence, characterized by stable cell cycle arrest and secretion of pro-inflammatory molecules, has been implicated as a key driver of physiological and pathological skin aging. Increasing evidence points towards the role of senescence in a variety of dermatological diseases, where the accumulation of senescent cells in the epidermis and dermis exacerbates disease progression. Emerging therapeutic strategies such as senolytics and senomorphics offer promising avenues to target senescent cells and mitigate their deleterious effects, providing potential treatments for both skin aging and senescence-associated skin diseases. This review explores the molecular mechanisms of cellular senescence and its role in promoting age-related skin changes and pathologies, while compiling the observed effects of senotherapeutics in the skin and discussing the translational relevance.
Collapse
Affiliation(s)
- Henriette Thau
- Van Cleve Cardiac Regenerative Medicine Program Mayo Clinic, Rochester, Minesota, USA; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian P Gerjol
- Department of Internal Medicine, Klinik Hirslanden, Zurich, Switzerland
| | - Katharina Hahn
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | - Rosalie Wolff von Gudenberg
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonard Knoedler
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin, Germany
| | - Kenneth Stallcup
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | | | - Tamar Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Carrasco G, Stavrou I, Treanor-Taylor M, Beetham H, Lee M, Masalmeh R, Carreras-Soldevila A, Hardman D, Bernabeu MO, von Kriegsheim A, Inman GJ, Byron A, Brunton VG. Involvement of Kindlin-1 in cutaneous squamous cell carcinoma. Oncogenesis 2024; 13:24. [PMID: 38982038 PMCID: PMC11233684 DOI: 10.1038/s41389-024-00526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Kindler syndrome (KS) is a rare genodermatosis resulting from loss-of-function mutations in FERMT1, the gene that encodes Kindlin-1. KS patients have a high propensity to develop aggressive and metastatic cutaneous squamous cell carcinoma (cSCC). Here we show in non-KS-associated patients that elevation of FERMT1 expression is increased in actinic keratoses compared to normal skin, with a further increase in cSCC supporting a pro-tumorigenic role in this population. In contrast, we show that loss of Kindlin-1 leads to increased SCC tumor growth in vivo and in 3D spheroids, which was associated with the development of a hypoxic tumor environment and increased glycolysis. The metalloproteinase Mmp13 was upregulated in Kindlin-1-depleted tumors, and increased expression of MMP13 was responsible for driving increased invasion of the Kindlin-1-depleted SCC cells. These results provide evidence that Kindlin-1 loss in SCC can promote invasion through the upregulation of MMP13, and offer novel insights into how Kindlin-1 loss leads to the development of a hypoxic environment that is permissive for tumor growth.
Collapse
Affiliation(s)
- Giovana Carrasco
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| | - Ifigeneia Stavrou
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | | | - Henry Beetham
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Roza Masalmeh
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Artur Carreras-Soldevila
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - David Hardman
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
- The Bayes Centre, University of Edinburgh, Edinburgh, EH8 9BT, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Gareth J Inman
- CRUK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Adam Byron
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
4
|
Rafei-Shamsabadi D, Scholten L, Lu S, Castiglia D, Zambruno G, Volz A, Arnold A, Saleva M, Martin L, Technau-Hafsi K, Meiss F, von Bubnoff D, Has C. Epidermolysis-Bullosa-Associated Squamous Cell Carcinomas Support an Immunosuppressive Tumor Microenvironment: Prospects for Immunotherapy. Cancers (Basel) 2024; 16:471. [PMID: 38275911 PMCID: PMC10814073 DOI: 10.3390/cancers16020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Cutaneous squamous cell carcinomas (SCCs) are a major complication of some subtypes of epidermolysis bullosa (EB), with high morbidity and mortality rates and unmet therapeutic needs. The high rate of endogenous mutations and the fibrotic stroma are considered to contribute to the pathogenesis. Patients with dystrophic EB (DEB) and Kindler EB (KEB) have the highest propensity for developing SCCs. Another patient group that develops high-risk SCCs is immunosuppressed (IS) patients, especially after organ transplantation. Herein, we interrogate whether immune checkpoint proteins and immunosuppressive enzymes are dysregulated in EB-associated SCCs as an immune resistance mechanism and compare the expression patterns with those in SCCs from IS patients, who frequently develop high-risk tumors and sporadic SCCs, and immunocompetent (IC) individuals. The expression of indoleamine 2,3-dioxygenase (IDO), programmed cell death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), T cell immunoglobulin and mucin-domain-containing protein-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), and inflammatory infiltrates (CD4, CD8, and CD68) was assessed via immunohistochemistry and semi-quantitative analysis in 30 DEB-SCCs, 22 KEB-SCCs, 106 IS-SCCs, and 100 sporadic IC-SCCs. DEB-SCCs expressed significantly higher levels of IDO and PD-L1 in tumor cells and PD-1 in the tumor microenvironment (TME) compared with SCCs from IC and IS individuals. The number of CD4-positive T cells per mm2 was significantly lower in DEB-SCCs compared with IC-SCCs. KEB-SCCs showed the lowest expression of the exhaustion markers TIM-3 and LAG-3 compared with all other groups. These findings identify IDO, PD-1, and PD-L1 to be increased in EB-SCCs and candidate targets for combinatory treatments, especially in DEB-SCCs.
Collapse
Affiliation(s)
- David Rafei-Shamsabadi
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Lena Scholten
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Sisi Lu
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Via Monti di Creta 104, 00167 Rome, Italy;
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy;
| | - Andreas Volz
- Dermatologie am Rhein, 4051 Basel, Switzerland (A.A.)
| | | | - Mina Saleva
- Department of Dermatology and Venereology, University Hospital “Alexandrovska”, Faculty of Medicine, Sofia University of Medicine, 1431 Sofia, Bulgaria;
| | - Ludovic Martin
- MAGEC Nord Reference Center for Rare Skin Diseases, Department of Dermatology, Angers University Hospital, 49933 Angers, France;
| | - Kristin Technau-Hafsi
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Frank Meiss
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Dagmar von Bubnoff
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
| | - Cristina Has
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| |
Collapse
|
5
|
Webb ER, Dodd GL, Noskova M, Bullock E, Muir M, Frame MC, Serrels A, Brunton VG. Kindlin-1 regulates IL-6 secretion and modulates the immune environment in breast cancer models. eLife 2023; 12:e85739. [PMID: 36883731 PMCID: PMC10023156 DOI: 10.7554/elife.85739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 03/09/2023] Open
Abstract
The adhesion protein Kindlin-1 is over-expressed in breast cancer where it is associated with metastasis-free survival; however, the mechanisms involved are poorly understood. Here, we report that Kindlin-1 promotes anti-tumor immune evasion in mouse models of breast cancer. Deletion of Kindlin-1 in Met-1 mammary tumor cells led to tumor regression following injection into immunocompetent hosts. This was associated with a reduction in tumor infiltrating Tregs. Similar changes in T cell populations were seen following depletion of Kindlin-1 in the polyomavirus middle T antigen (PyV MT)-driven mouse model of spontaneous mammary tumorigenesis. There was a significant increase in IL-6 secretion from Met-1 cells when Kindlin-1 was depleted and conditioned media from Kindlin-1-depleted cells led to a decrease in the ability of Tregs to suppress the proliferation of CD8+ T cells, which was dependent on IL-6. In addition, deletion of tumor-derived IL-6 in the Kindlin-1-depleted tumors reversed the reduction of tumor-infiltrating Tregs. Overall, these data identify a novel function for Kindlin-1 in regulation of anti-tumor immunity, and that Kindlin-1 dependent cytokine secretion can impact the tumor immune environment.
Collapse
Affiliation(s)
- Emily R Webb
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Georgia L Dodd
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Michaela Noskova
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Alan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Akasaka E, Nakano H, Sawamura D. Kindler epidermolysis bullosa associated with oral cancer in the buccal mucosa. JAAD Case Rep 2022; 26:13-16. [PMID: 35815233 PMCID: PMC9263402 DOI: 10.1016/j.jdcr.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Eijiro Akasaka
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hajime Nakano
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
7
|
Kubanov AA, Chikin VV, Karamova AE, Monchakovskaya ES. Topical treatment of inherited epidermolysis bullosa. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Inherited epidermolysis bullosa is a group of genetic skin disorders characterized by skin erosions, ulceration, skin and mucosal blistering requiring topical treatment. This review demonstrates major clinical manifestations of epidermolysis bullosa and its mechanisms of development. According to these features the main principles of topical treatment and drug therapy were developed, including physical protection from trauma, moisturizing, improvement of wound healing, prevention and management of infection, itch and pain management. Drug therapy is outlined with dosage forms, drug routes of administration, age restrictions indicated in the instruction for medical use for the medications that could be used in epidermolysis bullosa patients. The authors provide indications for clinical use of antiseptics, disinfectants, antibiotics, antimicrobial agents, emollient cream and drugs reducing itch and pain.
Collapse
|
8
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Front Immunol 2021; 12:652846. [PMID: 33796114 PMCID: PMC8009184 DOI: 10.3389/fimmu.2021.652846] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.
Collapse
Affiliation(s)
- Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérémie D. Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Loïc Mermoud
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Gendrisch F, Esser PR, Schempp CM, Wölfle U. Luteolin as a modulator of skin aging and inflammation. Biofactors 2021; 47:170-180. [PMID: 33368702 DOI: 10.1002/biof.1699] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Luteolin belongs to the group of flavonoids and can be found in flowers, herbs, vegetables and spices. It plays an important role in defending plants, for example against UV radiation by partially absorbing UVA and UVB radiation. Thus, luteolin can also decrease adverse photobiological effects in the skin by acting as a first line of defense. Furthermore, anti-oxidative and anti-inflammatory activities of luteolin were described on keratinocytes and fibroblasts as well as on several immune cells (e.g., macrophages, mast cell, neutrophils, dendritic cells and T cells). Luteolin can suppress proinflammatory mediators (e.g., IL-1β, IL-6, IL-8, IL-17, IL-22, TNF-α and COX-2) and regulate various signaling pathway (e.g., the NF-κB, JAK-STAT as well as TLR signaling pathway). In this way, luteolin modulates many inflammatory processes of the skin. The present review summarizes the recent in vitro and in vivo research on luteolin in the field of skin aging and skin cancer, wound healing as well as inflammatory skin diseases, including psoriasis, contact dermatitis and atopic dermatitis. In conclusion, luteolin might be a promising molecule for the development of topic formulations and systemic agents against inflammatory skin diseases.
Collapse
Affiliation(s)
- Fabian Gendrisch
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christoph M Schempp
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ute Wölfle
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Papanikolaou M, Onoufriadis A, Mellerio JE, Nattkemper LA, Yosipovitch G, Steinhoff M, McGrath JA. Prevalence, pathophysiology and management of itch in epidermolysis bullosa. Br J Dermatol 2020; 184:816-825. [PMID: 32810291 DOI: 10.1111/bjd.19496] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
Epidermolysis bullosa (EB) is a highly diverse group of inherited skin disorders, resulting from mutations in genes encoding proteins of the dermoepidermal junction. Itch (pruritus) is one of the most common symptoms across all EB subtypes. It occurs in blistered or wounded sites, or manifests as a generalized phenomenon, thereby affecting both intact skin and healing wounds. The mechanism of pruritus in EB is unclear. It is likely that skin inflammation secondary to barrier disruption, wound healing cascades and dysregulated activation of epidermal sensory nerve endings are all involved in its pathophysiology on the molecular and cellular level. Understanding these mechanisms in depth is crucial in developing optimized treatments for people with EB and improving quality of life. This review summarizes current evidence on the prevalence, mechanisms and management of itch in EB.
Collapse
Affiliation(s)
- M Papanikolaou
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - A Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - J E Mellerio
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - L A Nattkemper
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Centre, University of Miami Miller School of Medicine, Miami, FL, USA
| | - G Yosipovitch
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Centre, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Steinhoff
- Department of Dermatology, Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar.,Translational Research Institute, Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar.,Weill Cornell Medicine, New York, NY, USA
| | - J A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
12
|
Abstract
Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.
Collapse
|
13
|
Epidermolysis Bullosa-Associated Squamous Cell Carcinoma: From Pathogenesis to Therapeutic Perspectives. Int J Mol Sci 2019; 20:ijms20225707. [PMID: 31739489 PMCID: PMC6888002 DOI: 10.3390/ijms20225707] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.
Collapse
|
14
|
Chacón‐Solano E, León C, Díaz F, García‐García F, García M, Escámez M, Guerrero‐Aspizua S, Conti C, Mencía Á, Martínez‐Santamaría L, Llames S, Pévida M, Carbonell‐Caballero J, Puig‐Butillé J, Maseda R, Puig S, de Lucas R, Baselga E, Larcher F, Dopazo J, del Río M. Fibroblast activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses. Br J Dermatol 2019; 181:512-522. [PMID: 30693469 PMCID: PMC6850467 DOI: 10.1111/bjd.17698] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three cancer-prone genodermatoses whose causal genetic mutations cannot fully explain, on their own, the array of associated phenotypic manifestations. Recent evidence highlights the role of the stromal microenvironment in the pathology of these disorders. OBJECTIVES To investigate, by means of comparative gene expression analysis, the role played by dermal fibroblasts in the pathogenesis of RDEB, KS and XPC. METHODS We conducted RNA-Seq analysis, which included a thorough examination of the differentially expressed genes, a functional enrichment analysis and a description of affected signalling circuits. Transcriptomic data were validated at the protein level in cell cultures, serum samples and skin biopsies. RESULTS Interdisease comparisons against control fibroblasts revealed a unifying signature of 186 differentially expressed genes and four signalling pathways in the three genodermatoses. Remarkably, some of the uncovered expression changes suggest a synthetic fibroblast phenotype characterized by the aberrant expression of extracellular matrix (ECM) proteins. Western blot and immunofluorescence in situ analyses validated the RNA-Seq data. In addition, enzyme-linked immunosorbent assay revealed increased circulating levels of periostin in patients with RDEB. CONCLUSIONS Our results suggest that the different causal genetic defects converge into common changes in gene expression, possibly due to injury-sensitive events. These, in turn, trigger a cascade of reactions involving abnormal ECM deposition and underexpression of antioxidant enzymes. The elucidated expression signature provides new potential biomarkers and common therapeutic targets in RDEB, XPC and KS. What's already known about this topic? Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three genodermatoses with high predisposition to cancer development. Although their causal genetic mutations mainly affect epithelia, the dermal microenvironment likely contributes to the physiopathology of these disorders. What does this study add? We disclose a large overlapping transcription profile between XPC, KS and RDEB fibroblasts that points towards an activated phenotype with high matrix-synthetic capacity. This common signature seems to be independent of the primary causal deficiency, but reflects an underlying derangement of the extracellular matrix via transforming growth factor-β signalling activation and oxidative state imbalance. What is the translational message? This study broadens the current knowledge about the pathology of these diseases and highlights new targets and biomarkers for effective therapeutic intervention. It is suggested that high levels of circulating periostin could represent a potential biomarker in RDEB.
Collapse
|
15
|
Zimmermann-Klemd AM, Konradi V, Steinborn C, Ücker A, Falanga CM, Woelfle U, Huber R, Jürgenliemk G, Rajbhandari M, Gründemann C. Influence of traditionally used Nepalese plants on wound healing and immunological properties using primary human cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:415-423. [PMID: 30794862 DOI: 10.1016/j.jep.2019.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The improvement of wound healing has always been an important issue for both ethnopharmacological and modern medical research. In this study, we used state-of-the-art methods to investigate extracts of plants used traditionally in Nepal for more than 1000 years to treat inflammatory injuries. AIM OF THE STUDY We focused on the potential of the plant extracts to ameliorate wound healing and to influence immune modulatory properties. MATERIALS AND METHODS Nine Nepalese plant extracts in three different solvents (methanol, ethyl acetate, petroleum ether) were immunologically characterised. Water-soluble tetrazolium (WST-1) assays and scratch assays were performed to determine their impact on viability and wound healing capacity of human keratinocytes and fibroblasts. Effects on proliferation, viability and function of physiologically relevant anti-CD3 and anti-CD28 stimulated primary human T lymphocytes were assessed using carboxyfluorescein succinimidyl ester (CFSE), annexin V/propidium iodide staining assays and flow cytometry-based surface receptor characterisation. The secretion level of interleukin-2 (IL-2) was analysed with the ELISA technique. Dendritic cells were generated out of peripheral blood mononuclear cells (PBMC) by CD14+ magnetic bead selection. Flow cytometry-based surface receptor characterisation and ELISA-based technique were used to evaluate the DC activation state and the interleukin-8 (IL-8) secretion level. RESULTS We demonstrate that an ethyl acetate extract of Bassia longifolia and of Gmelina arborea have anti-inflammatory capacities, indicated by reduced proliferation, inhibition of IL-2 secretion and degranulation capacity of activated human T cells, when compared with adequate concentrations of synthetic positive drug controls. Furthermore, Gmelina arborea improved the wound healing of keratinocytes and fibroblasts and has tendency to increase the secretion of IL-8 by human primary dendritic cells. CONCLUSION With this preliminary screening, we offer a scientific basis for the immunomodulatory properties of the two Nepalese medicinal plants Bassia longifolia and Gmelina arborea. However, further detailed studies regarding the responsible compounds are necessary.
Collapse
Affiliation(s)
- Amy M Zimmermann-Klemd
- Centre for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115 B, 79106 Freiburg, Germany
| | - Viktoria Konradi
- Centre for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115 B, 79106 Freiburg, Germany
| | - Carmen Steinborn
- Centre for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115 B, 79106 Freiburg, Germany
| | - Annekathrin Ücker
- Centre for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115 B, 79106 Freiburg, Germany
| | - Chiara Madlen Falanga
- Centre for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115 B, 79106 Freiburg, Germany
| | - Ute Woelfle
- Research Centre skinitial, Department of Dermatology, University Medical Center, Hauptstraße 7, 79104 Freiburg, Germany
| | - Roman Huber
- Centre for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115 B, 79106 Freiburg, Germany
| | - Guido Jürgenliemk
- University of Regensburg, Pharmaceutical Biology, Faculty of Chemistry and Pharmacy, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Meena Rajbhandari
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Carsten Gründemann
- Centre for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115 B, 79106 Freiburg, Germany.
| |
Collapse
|
16
|
IL-36, IL-37, and IL-38 Cytokines in Skin and Joint Inflammation: A Comprehensive Review of Their Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20061257. [PMID: 30871134 PMCID: PMC6470667 DOI: 10.3390/ijms20061257] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The interleukin (IL)-1 family of cytokines is composed of 11 members, including the most recently discovered IL-36α, β, γ, IL-37, and IL-38. Similar to IL-1, IL-36 cytokines are initiators and amplifiers of inflammation, whereas both IL-37 and IL-38 display anti-inflammatory activities. A few studies have outlined the role played by these cytokines in several inflammatory diseases. For instance, IL-36 agonists seem to be relevant for the pathogenesis of skin psoriasis whereas, despite being expressed within the synovial tissue, their silencing or overexpression do not critically influence the course of arthritis in mice. In this review, we will focus on the state of the art of the molecular features and biological roles of IL-36, IL-37, and IL-38 in representative skin- and joint-related inflammatory diseases, namely psoriasis, rheumatoid arthritis, and psoriatic arthritis. We will then offer an overview of the therapeutic potential of targeting the IL-36 axis in these diseases, either by blocking the proinflammatory agonists or enhancing the physiologic inhibitory feedback on the inflammation mediated by the antagonists IL-37 and IL-38.
Collapse
|
17
|
Alexeev V, Salas-Alanis JC, Palisson F, Mukhtarzada L, Fortuna G, Uitto J, South A, Igoucheva O. Pro-Inflammatory Chemokines and Cytokines Dominate the Blister Fluid Molecular Signature in Patients with Epidermolysis Bullosa and Affect Leukocyte and Stem Cell Migration. J Invest Dermatol 2017; 137:2298-2308. [PMID: 28736230 DOI: 10.1016/j.jid.2017.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
Hereditary epidermolysis bullosa (EB) is associated with skin blistering and the development of chronic nonhealing wounds. Although clinical studies have shown that cell-based therapies improve wound healing, the recruitment of therapeutic cells to blistering skin and to more advanced skin lesions remains a challenge. Here, we analyzed cytokines and chemokines in blister fluids of patients affected by dystrophic, junctional, and simplex EB. Our analysis revealed high levels of CXCR1, CXCR2, CCR2, and CCR4 ligands, particularly dominant in dystrophic and junctional EB. In vitro migration assays demonstrated the preferential recruitment of CCR4+ lymphocytes and CXCR1+, CXCR2+, and CCR2+ myeloid cells toward EB-derived blister fluids. Immunophenotyping of skin-infiltrating leukocytes confirmed substantial infiltration of EB-affected skin with resting (CD45RA+) and activated (CD45RO+) T cells and CXCR2+ CD11b+ cells, many of which were identified as CD16b+ neutrophils. Our studies also showed that abundance of CXCR2 ligand in blister fluids also creates a favorable milieu for the recruitment of the CXCR2+ stem cells, as validated by in vitro and in-matrix migration assays. Collectively, this study identified several chemotactic pathways that control the recruitment of leukocytes to the EB-associated skin lesions. These chemotactic axes could be explored for the refinement of the cutaneous homing of the therapeutic stem cells.
Collapse
Affiliation(s)
- Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julio Cesar Salas-Alanis
- Department of Basic Sciences, Health Sciences Division, University of Monterrey, Monterrey, Mexico
| | - Francis Palisson
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Lila Mukhtarzada
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Giulio Fortuna
- Department of Diagnostic Science, Louisiana State University School of Dentistry, New Orleans, Louisiana, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew South
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
18
|
Maier K, He Y, Wölfle U, Esser PR, Brummer T, Schempp C, Bruckner-Tuderman L, Has C. UV-B-induced cutaneous inflammation and prospects for antioxidant treatment in Kindler syndrome. Hum Mol Genet 2017; 25:5339-5352. [PMID: 27798104 DOI: 10.1093/hmg/ddw350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/09/2016] [Indexed: 12/27/2022] Open
Abstract
Kindler syndrome (KS), a rare, autosomal recessive disorder comprises mechanical skin fragility and photosensitivity, which manifest early in life. The progression of the disorder is irreversible and results in tissue damage in form of cutaneous and mucosal atrophy and scarring and epithelial cancers. Here, we unravel molecular mechanisms of increased UV-B sensitivity of keratinocytes derived from KS patients. We show that the pro-inflammatory cytokines, IL-1ß, IL-6 and TNF-α, are upregulated in KS skin and in UV-B irradiated KS keratinocytes. These cytokines are dependent on p38 activation, which is increased in the absence of kindlin-1 and induced by higher ROS levels. Other dysregulated cytokines and growth factors were identified in this study and might be involved in paracrine interactions contributing to KS pathology. We show a direct relationship between kindlin-1 abundance and UV-B induced apoptosis in keratinocytes, whereas kindlin-2 overexpression has no compensatory effect. Importantly, low levels of kindlin-1 are sufficient to relieve or rescue this feature. Reduction of pro-inflammatory cytokines and of UV-B induced apoptosis is a valid therapeutic goal to influence long term complications of KS. Here, we demonstrate that antioxidants and the plant flavonoid luteolin represent feasible topical therapeutic approaches decreasing UV-B induced apoptosis in two-dimensional and organotypic KS cultures. We provide evidence for potential new therapeutic approaches to mitigate the progressive course of KS, for which no cure is available to date. Furthermore, we established organotypic KS models, a valuable in vitro tool for research with a morphology similar to the skin of patients in situ.
Collapse
Affiliation(s)
- Kristin Maier
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Yinghong He
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ute Wölfle
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Christoph Schempp
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Youssefian L, Vahidnezhad H, Saeidian AH, Ahmadizadeh K, Has C, Uitto J. Kindler syndrome, an orphan disease of cell/matrix adhesion in the skin – molecular genetics and therapeutic opportunities. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1207519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Lv Z, Fan J, Zhang X, Huang Q, Han J, Wu F, Hu G, Guo M, Jin Y. Integrative genomic analysis of interleukin-36RN and its prognostic value in cancer. Mol Med Rep 2015; 13:1404-12. [PMID: 26676204 DOI: 10.3892/mmr.2015.4667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 10/28/2015] [Indexed: 11/05/2022] Open
Abstract
Interleukin (IL)-36RN, previously known as IL1-F5 and IL-1δ, shares a 360-kb region of chromosome 2q13 with members of IL-1 systems. IL-36RN encodes an anti-inflammatory cytokine, IL-36 receptor antagonist (IL-36Ra). In spite of IL-36Ra showing the highest homology to IL-1 receptor (IL-1R) antagonist, it differs from the latter in aspects including its binding to IL-lRrp2 but not to IL-1R1. IL-36RN is mainly expressed in epithelial cells and has important roles in inflammatory diseases. In the present study, IL-36RN was identified in the genomes of 27 species, including human, chimpanzee, mouse, horse and dolphin. Human IL-36RN was mainly expressed in the eye, head and neck, fetal heart, lung, testis, cervix and placenta; furthermore, it was highly expressed in bladder and parathyroid tumors. Furthermore, a total of 30 single nucleotide polymorphisms causing missense mutations were determined, which are considered to be the causes of various diseases, such as generalized pustular psoriasis. In addition, the link between IL-36RN and the prognosis of certain cancer types was revealed through meta-analysis. Tumor-associated transcriptional factors c-Fos, activator protein-1, c-Jun and nuclear factor κB were found to bind to the upstream region in the IL-36RN gene. This may indicate that IL-36RN is involved in tumorigenesis and tumor progression through the regulation of tumor-associated transcriptional factors. The present study identified IL-36RN in various species and investigated the associations between IL-36RN and cancer prognosis, which would determine whether IL-36RN drove the evolution of the various species with regard to tumorigenesis.
Collapse
Affiliation(s)
- Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinshuo Fan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiuxiu Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jieli Han
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guorong Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Ministry of Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
21
|
Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8:6-16. [DOI: 10.1007/s11684-014-0317-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Indexed: 11/25/2022]
|
22
|
|
23
|
Hegde S, Raghavan S. A Skin-depth Analysis of Integrins: Role of the Integrin Network in Health and Disease. ACTA ACUST UNITED AC 2013; 20:155-69. [DOI: 10.3109/15419061.2013.854334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Disorders of the cutaneous basement membrane zone--the paradigm of epidermolysis bullosa. Matrix Biol 2013; 33:29-34. [PMID: 23917088 DOI: 10.1016/j.matbio.2013.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 12/19/2022]
Abstract
The cutaneous basement membrane zone (BMZ) is a highly specialized functional complex that provides the skin with structural adhesion and resistance to shearing forces. Its regulatory functions include control of epithelial-mesenchymal interactions under physiological and pathological conditions. Mutations in genes encoding components of the BMZ are associated with inherited skin disorders of the epidermolysis bullosa (EB) group, characterized by skin fragility, mechanically induced blisters and erosions of the skin and mucous membranes. Although most disease-associated genes are known, the genetic basis of new EB subtypes linked to mutations in genes for focal adhesion proteins was uncovered only recently. The molecular mechanisms leading to blistering, abnormal wound healing, predisposition to skin cancer, and other complications in EB have been elucidated using animal models and disease proteomics. The rapid progress in understanding the molecular basis of EB has enabled the development of strategies for biologically valid causal therapies.
Collapse
|
25
|
Piccinni E, Di Zenzo G, Maurelli R, Dellambra E, Teson M, Has C, Zambruno G, Castiglia D. Induction of senescence pathways in Kindler syndrome primary keratinocytes. Br J Dermatol 2013; 168:1019-26. [PMID: 23278235 DOI: 10.1111/bjd.12184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Individuals with Kindler syndrome (KS) have loss-of-function mutations in the FERMT1 gene that encodes the focal adhesion component kindlin-1. The major clinical manifestation of KS is epidermal atrophy (premature skin ageing). This phenotypic feature is thought to be related to the decreased proliferation rate of KS keratinocytes; nevertheless, molecular mediators of such abnormal behaviour have not been fully elucidated. OBJECTIVES To investigate how kindlin-1 deficiency affects the proliferative potential of primary human keratinocytes. METHODS We serially cultivated nine primary KS keratinocyte strains until senescence and determined their lifespan and colony-forming efficiency (CFE) at each serial passage. The expression of molecular markers of stemness and cellular senescence were investigated by immunoblotting using cell extracts of primary keratinocyte cultures from patients with KS and healthy donors. In another set of experiments, kindlin-1 downregulation in normal keratinocytes was obtained by small interfering RNA (siRNA) technology. RESULTS We found that KS keratinocytes exhibited a precocious senescence and strongly reduced clonogenic potential. Moreover, KS cultures showed a strikingly increased percentage of aborted colonies (paraclones) already at early passages indicating an early depletion of stem cells. Immunoblotting analysis of KS keratinocyte extracts showed reduced levels of the stemness markers p63 and Bmi-1, upregulation of p16 and scant amounts of hypophosphorylated Rb protein, which indicated cell cycle-arrested status. Treatment of normal human primary keratinocytes with siRNA targeting kindlin-1 proved that its deficiency was directly responsible for p63, Bmi-1 and pRb downregulation and p16 induction. CONCLUSIONS Our data directly implicate kindlin-1 in preventing premature senescence of keratinocytes.
Collapse
Affiliation(s)
- E Piccinni
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wölfle U, Heinemann A, Esser PR, Haarhaus B, Martin SF, Schempp CM. Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: a role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes. Rejuvenation Res 2012; 15:466-75. [PMID: 23004935 DOI: 10.1089/rej.2011.1309] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts.
Collapse
Affiliation(s)
- Ute Wölfle
- Competence Center skintegral, Department of Dermatology, University Freiburg Medical Center, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Qu H, Wen T, Pesch M, Aumailley M. Partial loss of epithelial phenotype in kindlin-1-deficient keratinocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1581-92. [PMID: 22326752 DOI: 10.1016/j.ajpath.2012.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/25/2011] [Accepted: 01/03/2012] [Indexed: 01/11/2023]
Abstract
Kindlin-1 is an adaptor protein that is expressed by most epithelial cells and has been implicated in integrin bidirectional signaling. Mutations in the gene encoding kindlin-1 are associated with Kindler syndrome, a recessively inherited disorder that is characterized by fragile skin. Functionally, a loss of kindlin-1 impairs the adhesion of basal keratinocytes to the extracellular matrix both in vivo and in vitro. In this study, we show that the phenotype of mutant keratinocytes deficient in kindlin-1 is characterized by the modification of the cortical actin network and increased plasticity of the plasma membrane. At the molecular level, expression of several proteins associated with an epithelial phenotype, such as α6β4 integrin, collagen XVII, E-cadherin, and desmoglein-3, is strongly reduced, whereas, surprisingly, laminin 332 is synthesized in larger amounts than in control keratinocytes. In contrast, mesenchymal markers such as vimentin and fibronectin are increased in keratinocytes lacking kindlin-1. The switch in cell plasticity and protein expression was confirmed by siRNA-mediated down-regulation of kindlin-1 in HaCaT epithelial cells. Furthermore, there was up-regulation of matrix metalloproteinases and pro-inflammatory cytokines in kindlin-1-deficient keratinocytes. These results provide new insights into the pathogenic mechanisms that take place in Kindler syndrome. Moreover, the constellation of molecular defects associated with the loss of kindlin-1 may explain the higher incidence of skin cancer observed in patients affected with this disorder.
Collapse
Affiliation(s)
- Haiyan Qu
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
28
|
Has C, Castiglia D, del Rio M, Diez MG, Piccinni E, Kiritsi D, Kohlhase J, Itin P, Martin L, Fischer J, Zambruno G, Bruckner-Tuderman L. Kindler syndrome: extension of FERMT1 mutational spectrum and natural history. Hum Mutat 2011; 32:1204-12. [PMID: 21936020 DOI: 10.1002/humu.21576] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/29/2011] [Indexed: 11/08/2022]
Abstract
Mutations in the FERMT1 gene (also known as KIND1), encoding the focal adhesion protein kindlin-1, underlie the Kindler syndrome (KS), an autosomal recessive skin disorder with an intriguing progressive phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. Herein we review the clinical and genetic data of 62 patients, and delineate the natural history of the disorder, for example, age at onset of symptoms, or risk of malignancy. Although most mutations are predicted to lead to premature termination of translation, and to loss of kindlin-1 function, significant clinical variability is observed among patients. There is an association of FERMT1 missense and in-frame deletion mutations with milder disease phenotypes, and later onset of complications. Nevertheless, the clinical variability is not fully explained by genotype-phenotype correlations. Environmental factors and yet unidentified modifiers may play a role. Better understanding of the molecular pathogenesis of KS should enable the development of prevention strategies for disease complications.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|