1
|
Ding Q, Stander Z, Elizalde BJ, Stelmach ES, Duncan JC, Vidal-Folch N, Hasadsri L, Rumilla KM, Shen W. Thirteen cases support the clinical significance of imprinting center 1 (IC1) microdeletions in Beckwith-Wiedemann syndrome. Clin Epigenetics 2025; 17:67. [PMID: 40301967 PMCID: PMC12039090 DOI: 10.1186/s13148-025-01873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
Most Beckwith-Wiedemann syndrome (BWS) cases are sporadic; nonetheless, imprinting center 1 (IC1) microdeletions have been suggested as a rare cause of familial BWS, with ~ 20 reported cases. We report 13 cases from nine families with IC1 microdeletions. Recurrent 1.4-kb, 1.8-kb, and 2.2-kb deletions were observed. IC1 hypermethylation was identified in all families, and we established a statistically significant relationship between IC1 microdeletions and hypermethylation (OR: 108.17, p = 2.76e-13). This study confirms IC1 microdeletions as a cause of familial BWS, expands the understanding of their molecular mechanisms, and supports a Likely Pathogenic clinical classification for IC1 microdeletions.
Collapse
Affiliation(s)
- Qiliang Ding
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zinandre Stander
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brandon J Elizalde
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Erica S Stelmach
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaime C Duncan
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Noemi Vidal-Folch
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kandelaria M Rumilla
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wei Shen
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Urakawa T, Ozawa J, Tanaka M, Narusawa H, Matsuoka K, Fukami M, Nagasaki K, Kagami M. Beckwith-Wiedemann syndrome with long QT caused by a deletion involving KCNQ1 but not KCNQ1OT1:TSS-DMR. Eur J Med Genet 2023; 66:104671. [PMID: 36402267 DOI: 10.1016/j.ejmg.2022.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with characteristic features, such as overgrowth, macroglossia, and exomphalos. Hypomethylation of the KCNQ1OT1:TSS-differentially methylated region (DMR) on the 11p15.5 imprinted region is the most common etiology of BWS. KCNQ1 on 11p15.5 is expressed from the maternally inherited allele in most tissues, but is biparentally expressed in the heart, and maternal KCNQ1 transcription is required to establish the maternal DNA imprint in the KCNQ1OT1:TSS-DMR. Loss of function variants in KCNQ1 result in long QT syndrome type 1 (LQT1). To date, eight patients with BWS due to KCNQ1 splice variants or structural abnormalities involving KCNQ1 but not the KCNQ1OT1:TSS-DMR have been reported (KCNQ1-BWS), and four of them had LQT1. We report a Japanese boy with BWS and LQT1 presenting with extreme hypomethylation of the KCNQ1OT1:TSS-DMR caused by a de novo 215-kb deletion including KCNQ1 but not the KCNQ1OT1:TSS-DMR on the maternal allele. He was born by emergency cesarean section due to suspicion of placental abruption at 30 weeks of gestation. His birth weight and length were +1.6 SD and +1.0 SD, respectively. His placental weight was +3.9 SD, and histological examination of his placenta was consistent with mesenchymal dysplasia. He had BWS clinical features, including macroglossia, ear creases and pits, body asymmetry, and rectus abdominis muscle dehiscence, and BWS was therefore diagnosed. LQT1 was first noticed at three months in a preoperative examination for lingual frenectomy. The summarized data of our patient and the previously reported eight patients in KCNQ1-BWS showed more frequent and earlier preterm births and smaller sized birth weight in KCNQ1-BWS cases than those with BWS caused by epimutation of the KCNQ1OT1:TSS-DMR. In addition, in five of nine patients with KCNQ1-BWS, LQT1 was detected, and two of them were identified at school age. In our patient and in another single case with LQT1, the LQT1 was not detected early despite neonatal ECG monitoring. For BWS patients with extreme hypomethylation of the KCNQ1OT1:TSS-DMR, searching for CNVs involving KCNQ1 and mutation screening for KCNQ1 should be considered together with periodic ECG monitoring. (338/500 words).
Collapse
Affiliation(s)
- Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Nagasaki University, Japan
| | - Junichi Ozawa
- Department of Pediatrics, Graduate School of Medicine, Niigata University, Japan
| | - Masato Tanaka
- Department of Pediatrics, Graduate School of Medicine, Niigata University, Japan
| | - Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kentaro Matsuoka
- Department of Pathology, Tokyo Metropolitan Children's Medical Center, Fuchu, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keisuke Nagasaki
- Department of Pediatrics, Graduate School of Medicine, Niigata University, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
3
|
Different Mechanisms Cause Hypomethylation of Both H19 and KCNQ1OT1 Imprinted Differentially Methylated Regions in Two Cases of Silver-Russell Syndrome Spectrum. Genes (Basel) 2022; 13:genes13101875. [PMID: 36292759 PMCID: PMC9602374 DOI: 10.3390/genes13101875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Silver–Russell syndrome is an imprinting disorder characterised by pre- and post-natal growth retardation and several heterogeneous molecular defects affecting different human genomic loci. In the majority of cases, the molecular defect is the loss of methylation (LOM) of the H19/IGF2 differentially methylated region (DMR, also known as IC1) at the telomeric domain of the 11p15.5 imprinted genes cluster, which causes the altered expression of the growth controlling genes, IGF2 and H19. Very rarely, the LOM also affects the KCNQ1OT1 DMR (also known as IC2) at the centromeric domain, resulting in an SRS phenotype by an unknown mechanism. In this study, we report on two cases with SRS features and a LOM of either IC1 and IC2. In one case, this rare and complex epimutation was secondary to a de novo mosaic in cis maternal duplication, involving the entire telomeric 11p15.5 domain and part of the centromeric domain but lacking CDKN1C. In the second case, neither the no 11p15.5 copy number variant nor the maternal-effect subcortical maternal complex (SCMC) variant were found to be associated with the epimutation, suggesting that it arose as a primary event. Our findings further add to the complexity of the molecular genetics of SRS and indicate how the LOM in both 11p15.5 DMRs may result from different molecular mechanisms.
Collapse
|
4
|
Naveh NSS, Deegan DF, Huhn J, Traxler E, Lan Y, Weksberg R, Ganguly A, Engel N, Kalish JM. The role of CTCF in the organization of the centromeric 11p15 imprinted domain interactome. Nucleic Acids Res 2021; 49:6315-6330. [PMID: 34107024 PMCID: PMC8216465 DOI: 10.1093/nar/gkab475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation, chromatin-binding proteins, and DNA looping are common components regulating genomic imprinting which leads to parent-specific monoallelic gene expression. Loss of methylation (LOM) at the human imprinting center 2 (IC2) on chromosome 11p15 is the most common cause of the imprinting overgrowth disorder Beckwith-Wiedemann Syndrome (BWS). Here, we report a familial transmission of a 7.6 kB deletion that ablates the core promoter of KCNQ1. This structural alteration leads to IC2 LOM and causes recurrent BWS. We find that occupancy of the chromatin organizer CTCF is disrupted proximal to the deletion, which causes chromatin architecture changes both in cis and in trans. We also profile the chromatin architecture of IC2 in patients with sporadic BWS caused by isolated LOM to identify conserved features of IC2 regulatory disruption. A strong interaction between CTCF sites around KCNQ1 and CDKN1C likely drive their expression on the maternal allele, while a weaker interaction involving the imprinting control region element may impede this connection and mediate gene silencing on the paternal allele. We present an imprinting model in which KCNQ1 transcription is necessary for appropriate CTCF binding and a novel chromatin conformation to drive allele-specific gene expression.
Collapse
Affiliation(s)
- Natali S Sobel Naveh
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel F Deegan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jacklyn Huhn
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Emily Traxler
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Genetics and Genome Biology, Hospital for Sick Children, and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nora Engel
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Long QT and Silver Russell syndrome: First case report in a 9-year-old girl. HeartRhythm Case Rep 2020; 6:591-595. [PMID: 32983873 PMCID: PMC7498520 DOI: 10.1016/j.hrcr.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Eggermann T, Kraft F, Kloth K, Klopocki E, Hüning I, Hempel M, Kunstmann E. Heterogeneous phenotypes in families with duplications of the paternal allele within the imprinting center 1 (H19/IGF2:TSS-DMR) in 11p15.5. Clin Genet 2020; 98:418-419. [PMID: 33294970 DOI: 10.1111/cge.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022]
Abstract
The clinical impact of duplications affecting the 11p15.5 region is difficult to predict, and depends on the parent-of-origin of the affected allele as well as on the type (deletion, duplication), the extent and genomic content of the variant. Three unrelated families with inheritance of duplications affecting the IC1 region in 11p15.5 through two generations but different phenotypes (Beckwith-Wiedemann and Silver-Russell syndromes, normal phenotype) are reported. The inconsistent phenotypic patterns of carriers of the same variant strongly indicate the impact of cis- and/or trans-acting modifiers on the clinical outcome of IC1 duplication carriers.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katja Kloth
- Institute of Human Genetics, University of Hamburg, Hamburg, Germany
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Maja Hempel
- Institute of Human Genetics, University of Hamburg, Hamburg, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Eßinger C, Karch S, Moog U, Fekete G, Lengyel A, Pinti E, Eggermann T, Begemann M. Frequency of KCNQ1 variants causing loss of methylation of Imprinting Centre 2 in Beckwith-Wiedemann syndrome. Clin Epigenetics 2020; 12:63. [PMID: 32393365 PMCID: PMC7216698 DOI: 10.1186/s13148-020-00856-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by disturbances of the chromosomal region 11p15.5. The most frequent molecular finding in BWS is loss of methylation (LOM) of the Imprinting Centre 2 (IC2) region on the maternal allele, which is localised in intron 10 of the KCNQ1 gene. In rare cases, LOM of IC2 has been reported in families with KCNQ1 germline variants which additionally cause long-QT syndrome (LQTS). Thus, a functional link between disrupted KCNQ1 transcripts and altered IC2 methylation has been suggested, resulting in the co-occurrence of LQTS and BWS in case of maternal inheritance. Whereas these cases were identified by chance or in patients with abnormal electrocardiograms, a systematic screen for KCNQ1 variants in IC2 LOM carriers has not yet been performed. Results We analysed 52 BWS patients with IC2 LOM to determine the frequency of germline variants in KCNQ1 by MLPA and an amplicon-based next generation sequencing approach. We identified one patient with a splice site variant causing premature transcription termination of KCNQ1. Conclusions Our study strengthens the hypothesis that proper KCNQ1 transcription is required for the establishment of IC2 methylation, but that KCNQ1 variants cause IC2 LOM only in a small number of BWS patients.
Collapse
Affiliation(s)
- Carla Eßinger
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Stephanie Karch
- University Children's Hospital, Heidelberg University, Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - György Fekete
- II. Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Anna Lengyel
- II. Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Eva Pinti
- II. Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
8
|
Lazniewski M, Dawson WK, Rusek AM, Plewczynski D. One protein to rule them all: The role of CCCTC-binding factor in shaping human genome in health and disease. Semin Cell Dev Biol 2019; 90:114-127. [PMID: 30096365 PMCID: PMC6642822 DOI: 10.1016/j.semcdb.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome, constituting several billion base pairs, must be contracted to fit within the volume of a nucleus where the diameter is on the scale of μm. The 3D structure and packing of such a long sequence cannot be left to pure chance, as DNA must be efficiently used for its primary roles as a matrix for transcription and replication. In recent years, methods like chromatin conformation capture (including 3C, 4C, Hi-C, ChIA-PET and Multi-ChIA) and optical microscopy have advanced substantially and have shed new light on how eukaryotic genomes are hierarchically organized; first into 10-nm fiber, next into DNA loops, topologically associated domains and finally into interphase or mitotic chromosomes. This knowledge has allowed us to revise our understanding regarding the mechanisms governing the process of DNA organization. Mounting experimental evidence suggests that the key element in the formation of loops is the binding of the CCCTC-binding factor (CTCF) to DNA; a protein that can be referred to as the chief organizer of the genome. However, CTCF does not work alone but in cooperation with other proteins, such as cohesin or Yin Yang 1 (YY1). In this short review, we briefly describe our current understanding of the structure of eukaryotic genomes, how they are established and how the formation of DNA loops can influence gene expression. We discuss the recent discoveries describing the 3D structure of the CTCF-DNA complex and the role of CTCF in establishing genome structure. Finally, we briefly explain how various genetic disorders might arise as a consequence of mutations in the CTCF target sequence or alteration of genomic imprinting.
Collapse
Affiliation(s)
- Michal Lazniewski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Wayne K Dawson
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 103-8657, Japan
| | - Anna Maria Rusek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Clinical Molecular Biology Department, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Centre for Innovative Research, Medical University of Bialystok, Bialystok, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
9
|
Beygo J, Bürger J, Strom TM, Kaya S, Buiting K. Disruption of KCNQ1 prevents methylation of the ICR2 and supports the hypothesis that its transcription is necessary for imprint establishment. Eur J Hum Genet 2019; 27:903-908. [PMID: 30778172 DOI: 10.1038/s41431-019-0365-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2019] [Accepted: 02/02/2019] [Indexed: 11/09/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS; OMIM #130650) is an imprinting disorder caused by genetic or epigenetic alterations of one or both imprinting control regions on chromosome 11p15.5. Hypomethylation of the centromeric imprinting control region (KCNQ1OT1:TSS-DMR, ICR2) is the most common molecular cause of BWS and is present in about half of the cases. Based on a BWS family with a maternal deletion of the 5' part of KCNQ1 we have recently hypothesised that transcription of KCNQ1 is a prerequisite for the establishment of methylation at the KCNQ1OT1:TSS-DMR in the oocyte. Further evidence for this hypothesis came from a mouse model where methylation failed to be established when a poly(A) truncation cassette was inserted into this locus to prevent transcription through the DMR. Here we report on a family where a balanced translocation disrupts the KCNQ1 gene in intron 9. Maternal inheritance of this translocation is associated with hypomethylation of the KCNQ1OT1:TSS-DMR and BWS. This finding strongly supports our previous hypothesis that transcription of KCNQ1 is required for establishing the maternal methylation imprint at the KCNQ1OT1:TSS-DMR.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| | | | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sabine Kaya
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Transcription alterations of KCNQ1 associated with imprinted methylation defects in the Beckwith-Wiedemann locus. Genet Med 2019; 21:1808-1820. [PMID: 30635621 PMCID: PMC6687501 DOI: 10.1038/s41436-018-0416-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Beckwith–Wiedemann syndrome (BWS) is a developmental disorder caused by dysregulation of the imprinted gene cluster of chromosome 11p15.5 and often associated with loss of methylation (LOM) of the imprinting center 2 (IC2) located in KCNQ1 intron 10. To unravel the etiological mechanisms underlying these epimutations, we searched for genetic variants associated with IC2 LOM. Methods We looked for cases showing the clinical features of both BWS and long QT syndrome (LQTS), which is often associated with KCNQ1 variants. Pathogenic variants were identified by genomic analysis and targeted sequencing. Functional experiments were performed to link these pathogenic variants to the imprinting defect. Results We found three rare cases in which complete IC2 LOM is associated with maternal transmission of KCNQ1 variants, two of which were demonstrated to affect KCNQ1 transcription upstream of IC2. As a consequence of KCNQ1 haploinsufficiency, these variants also cause LQTS on both maternal and paternal transmission. Conclusion These results are consistent with the hypothesis that, similar to what has been demonstrated in mouse, lack of transcription across IC2 results in failure of methylation establishment in the female germline and BWS later in development, and also suggest a new link between LQTS and BWS that is important for genetic counseling.
Collapse
|
11
|
Wang KH, Kupa J, Duffy KA, Kalish JM. Diagnosis and Management of Beckwith-Wiedemann Syndrome. Front Pediatr 2019; 7:562. [PMID: 32039119 PMCID: PMC6990127 DOI: 10.3389/fped.2019.00562] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a human genomic imprinting disorder that presents with a wide spectrum of clinical features including overgrowth, abdominal wall defects, macroglossia, neonatal hypoglycemia, and predisposition to embryonal tumors. It is associated with genetic and epigenetic changes on the chromosome 11p15 region, which includes two imprinting control regions. Here we review strategies for diagnosing and managing BWS and delineate commonly used genetic tests to establish a molecular diagnosis of BWS. Recommended first-line testing assesses DNA methylation and copy number variation of the BWS region. Tissue mosaicism can occur in patients with BWS, posing a challenge for genetic testing, and a negative test result does not exclude a diagnosis of BWS. Further testing should analyze additional tissue samples or employ techniques with higher diagnostic yield. Identifying the BWS molecular subtype is valuable for coordinating patient care because of the (epi)genotype-phenotype correlations, including different risks and types of embryonal tumors.
Collapse
Affiliation(s)
- Kathleen H Wang
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jonida Kupa
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Soellner L, Kraft F, Sauer S, Begemann M, Kurth I, Elbracht M, Eggermann T. Search for cis-acting factors and maternal effect variants in Silver-Russell patients with ICR1 hypomethylation and their mothers. Eur J Hum Genet 2018; 27:42-48. [PMID: 30218098 DOI: 10.1038/s41431-018-0269-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/06/2018] [Accepted: 08/09/2018] [Indexed: 11/09/2022] Open
Abstract
Silver-Russell syndrome is an imprinting disorder characterized by severe intrauterine and postnatal growth retardation. The majority of patients show loss of methylation (LOM) of the H19/IGF2 IG-DMR (ICR1) in 11p15.5. In ~10% of these patients aberrant methylation of additional imprinted loci on other chromosomes than 11 can be observed (multilocus imprinting defect - MLID). Recently, genomic variations in the ICR1 have been associated with disturbed methylation of the ICR1. In addition, variants in factors contributing to the life cycle of imprinting are discussed to cause aberrant imprinting, including MLID. These variants can either be identified in the patients with imprinting disorders themselves or in their mothers. We performed comprehensive studies to elucidate the role of both cis-acting variants in 11p15.5 as well as of maternal effect variants in the etiology of ICR1 LOM. Whereas copy number analysis and next generation sequencing in the ICR1 did not provide any evidence for a variant, search for maternal effect variants in 21 mothers of patients with ICR1 LOM identified two carriers of NLRP5 variants. By considering our results as well as those from the literature, we conclude that the causes for epimutations are heterogeneous. MLID might be regarded as an own etiological subgroup, associated with maternal effect variants in NLRP and functionally related genes. In addition, these variants might also contribute to LOM of single imprinted loci. Furthermore, genomic variants in the patients themselves might result in aberrant methylation patterns and need further investigation.
Collapse
Affiliation(s)
- Lukas Soellner
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sabrina Sauer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Labor Dr. Wisplinghoff, Köln, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
13
|
Is ZFP57 binding to H19/IGF2:IG-DMR affected in Silver-Russell syndrome? Clin Epigenetics 2018; 10:23. [PMID: 29484033 PMCID: PMC5822596 DOI: 10.1186/s13148-018-0454-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/02/2018] [Indexed: 01/21/2023] Open
Abstract
Background Loss of paternal methylation (LOM) of the H19/IGF2 intergenic differentially methylated region (H19/IGF2:IG-DMR) causes alteration of H19/IGF2 imprinting and Silver-Russell syndrome (SRS). Recently, internal deletions of the H19/IGF2:IG-DMR have been associated with LOM and SRS when present on the paternal chromosome. In contrast, previously described deletions, most of which cause gain of methylation (GOM) and Beckwith-Wiedemann syndrome (BWS) on maternal transmission, were consistently associated with normal methylation and phenotype if paternally inherited. Presentation of the hypothesis The presence of several target sites (ZTSs) and three demonstrated binding regions (BRs) for the imprinting factor ZFP57 in the H19/IGF2:IG-DMR suggest the involvement of this factor in the maintenance of methylation of this locus. By comparing the extension of the H19/IGF2:IG-DMR deletions with the binding profile of ZFP57, we propose that the effect of the deletions on DNA methylation and clinical phenotype is dependent on their interference with ZFP57 binding. Indeed, deletions strongly affecting a ZFP57 BR result in LOM and SRS, while deletions preserving a significant number of ZFPs in each BR do not alter methylation and are associated with normal phenotype. Testing the hypothesis The generation of transgenic mouse lines in which the endogenous H19/IGF2:IG-DMR is replaced by the human orthologous locus including the three ZFP57 BRs or their mutant versions will allow to test the role of ZFP57 binding in imprinted methylation and growth phenotype. Implications of the hypothesis Similarly to what is proposed for maternally inherited BWS mutations and CTCF and OCT4/SOX2 binding, we suggest that deletions of the H19/IGF2:IG-DMR result in SRS with LOM if ZFP57 binding on the paternal chromosome is affected. Electronic supplementary material The online version of this article (10.1186/s13148-018-0454-7) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Tümer Z, López-Hernández JA, Netchine I, Elbracht M, Grønskov K, Gede LB, Sachwitz J, den Dunnen JT, Eggermann T. Structural and sequence variants in patients with Silver-Russell syndrome or similar features-Curation of a disease database. Hum Mutat 2018; 39:345-364. [PMID: 29250858 DOI: 10.1002/humu.23382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
Silver-Russell syndrome (SRS) is a clinically and molecularly heterogeneous disorder involving prenatal and postnatal growth retardation, and the term SRS-like is broadly used to describe individuals with clinical features resembling SRS. The main molecular subgroups are loss of methylation of the distal imprinting control region (H19/IGF2:IG-DMR) on 11p15.5 (50%) and maternal uniparental disomy of chromosome 7 (5%-10%). Through a comprehensive literature search, we identified 91 patients/families with various structural and small sequence variants, which were suggested as additional molecular defects leading to SRS/SRS-like phenotypes. However, the molecular and phenotypic data of these patients were not standardized and therefore not comparable, rendering difficulties in phenotype-genotype comparisons. To overcome this challenge, we curated a disease database including (epi)genetic phenotypic data of these patients. The clinical features are scored according to the Netchine-Harbison clinical scoring system (NH-CSS), which has recently been accepted as standard by consensus. The structural and sequence variations are reviewed and where necessary redescribed according to recent recommendations. Our study provides a framework for both research and diagnostic purposes through facilitating a standardized comparison of (epi)genotypes with phenotypes of patients with structural/sequence variants.
Collapse
Affiliation(s)
- Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Irène Netchine
- Sorbonne Universite, INSERM UMR_S 938, CDR Saint-Antoine, Paris, France.,APHP, Armand Trousseau Hospital, Pediatric Endocrinology, Paris, France
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lene Bjerring Gede
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Jana Sachwitz
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johan T den Dunnen
- Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Wang Q, Geng Q, Zhou Q, Luo F, Li P, Xie J. De novo paternal origin duplication of chromosome 11p15.5: report of two Chinese cases with Beckwith-Wiedemann syndrome. Mol Cytogenet 2017; 10:46. [PMID: 29270226 PMCID: PMC5738159 DOI: 10.1186/s13039-017-0347-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background The molecular etiology of Beckwith-Wiedemann syndrome (BWS) is complex and heterogeneous. Several subtypes of epigenetic-genetic alterations including aberrant methylation patterns, segmental uniparental disomy, single gene mutations, and copy number changes have been described. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS. Case presentation We reported two Chinese cases with BWS detected by genome-wide copy number analysis and locus-specific methylation profiling. Prenatal analysis on cord blood of patient 1 showed a de novo paternal origin duplication spanning 896Kb at 11p15.5. Patient 2 was referred at 2-month old and the genetic analysis showed a de novo 228.8Kb deletion at 11p15.5 telomeric end and a de novo duplication of 2.5 Mb at 11p15.5–15.4. Both the duplications are of paternal origin with gain of methylation at the imprinting center 1 and thus belong to the subgroup of a low tumor risk. Conclusion Results from these two cases and other reported cases from literature indicated that paternally derived duplications at 11p15.5 region cause BWS. Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this subtype of BWS. Characterization of genetic defects in BWS patients could lead to better understanding the genetic mechanisms of this clinically and genetically heterogeneous disorder.
Collapse
Affiliation(s)
- Qin Wang
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong 518028 China
| | - Qian Geng
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong 518028 China
| | - Qinghua Zhou
- First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong China
| | - Fuwei Luo
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong 518028 China
| | - Peining Li
- Department of Genetics, Yale School of Medicine, New Haven, CT USA
| | - Jiansheng Xie
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong 518028 China
| |
Collapse
|
16
|
Heide S, Chantot-Bastaraud S, Keren B, Harbison MD, Azzi S, Rossignol S, Michot C, Lackmy-Port Lys M, Demeer B, Heinrichs C, Newfield RS, Sarda P, Van Maldergem L, Trifard V, Giabicani E, Siffroi JP, Le Bouc Y, Netchine I, Brioude F. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences. J Med Genet 2017; 55:205-213. [PMID: 29223973 DOI: 10.1136/jmedgenet-2017-104919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/11/2017] [Accepted: 11/04/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex. OBJECTIVES To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations. METHODS From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain. RESULTS Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2, rather than H19, in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C) does not affect the expression of CDKN1C. CONCLUSIONS The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.
Collapse
Affiliation(s)
- Solveig Heide
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Sandra Chantot-Bastaraud
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Boris Keren
- Département de Génétique, APHP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Madeleine D Harbison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Salah Azzi
- Nuclear Dynamics ISPG, Babraham Institute, Cambridge, UK
| | - Sylvie Rossignol
- Service de Pédiatrie 1, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Caroline Michot
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - Marilyn Lackmy-Port Lys
- Unité de Génétique Clinique, Centre de Compétences Maladies Rares Anomalies du développement, Centre Hospitalier Universitaire Pointe-a-Pitre Abymes, Pointe-a-Pitre, France
| | - Bénédicte Demeer
- Service de Génétique Clinique et Oncogénétique, CLAD Nord de France, CHU Amiens-Picardie, Amiens, France
| | - Claudine Heinrichs
- Service d'Endocrinologie Pédiatrique, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ron S Newfield
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California San Diego, San Diego, CA, USA.,Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Pierre Sarda
- Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Lionel Van Maldergem
- CHU, Centre de Génétique Humaine Besançon, Université de Franche-Comté, Besançon, France
| | - Véronique Trifard
- Service de Pédiatrie, CH de La Roche sur Yon, La Roche sur Yon, France
| | - Eloise Giabicani
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Jean-Pierre Siffroi
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Yves Le Bouc
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Irène Netchine
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Frédéric Brioude
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
17
|
Bachmann N, Crazzolara R, Bohne F, Kotzot D, Maurer K, Enklaar T, Prawitt D, Bergmann C. Novel deletion in 11p15.5 imprinting center region 1 in a patient with Beckwith-Wiedemann syndrome provides insight into distal enhancer regulation and tumorigenesis. Pediatr Blood Cancer 2017; 64. [PMID: 27650505 DOI: 10.1002/pbc.26241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) is an early-onset overgrowth disorder with a high risk for embryonal tumors. It is mainly caused by dysregulation of imprinted genes on chromosome 11p15.5; however, the driving forces in the development of tumors are not fully understood. PROCEDURE We report on a female patient presenting with macrosomia, macroglossia, organomegaly and extensive bilateral nephroblastomatosis. Adjuvant chemotherapy was initiated; however, the patient developed hepatoblastoma and Wilms tumor at 5 and 12 months of age, respectively. Subsequent radiofrequency ablation of the liver tumor and partial nephrectomy followed by consolidation therapy achieved complete remission. RESULTS Molecular genetic analysis revealed a maternally derived large deletion of the complete H19-differentially methylated region (H19-DMR; imprinting control region-1 [ICR1]), the whole H19 gene itself as well as large parts of the distal enhancer region within the imprinting cluster-1 (IC1). Extended analysis showed highly elevated insulin-like growth factor 2 (IGF2) expression, possibly explaining at least in part the distinct BWS features and tumor manifestations. CONCLUSIONS This study of a large maternal deletion encompassing the H19 gene and complete ICR1 is the first to demonstrate transcriptional consequences on IGF2 in addition to methylation effects resulting in severe overgrowth and occurrence of multiple tumors in a BWS patient. Studying this deletion helps to clarify the complex molecular processes involved in BWS and provides further insight into tumorigenesis.
Collapse
Affiliation(s)
| | - Roman Crazzolara
- Department for Pediatrics, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Florian Bohne
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Dieter Kotzot
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathrin Maurer
- Department for Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Thorsten Enklaar
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany.,Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Jurkiewicz D, Kugaudo M, Skórka A, Śmigiel R, Smyk M, Ciara E, Chrzanowska K, Krajewska-Walasek M. A novelIGF2/H19domain triplication in the 11p15.5 imprinting region causing either Beckwith-Wiedemann or Silver-Russell syndrome in a single family. Am J Med Genet A 2016; 173:72-78. [DOI: 10.1002/ajmg.a.37964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/22/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Dorota Jurkiewicz
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | - Monika Kugaudo
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
- Department of Child and Adolescent Psychiatry; Medical University of Warsaw; Warsaw Poland
| | - Agata Skórka
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
- Department of Pediatrics; Medical University of Warsaw; Warsaw Poland
| | - Robert Śmigiel
- Department of Pediatrics; Wroclaw Medical University; Wroclaw Poland
| | - Marta Smyk
- Department of Medical Genetics; Institute of Mother and Child; Warsaw Poland
| | - Elżbieta Ciara
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | - Krystyna Chrzanowska
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | | |
Collapse
|
19
|
Õunap K. Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome: Opposite Phenotypes with Heterogeneous Molecular Etiology. Mol Syndromol 2016; 7:110-21. [PMID: 27587987 DOI: 10.1159/000447413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 clinically opposite growth-affecting disorders belonging to the group of congenital imprinting disorders. The expression of both syndromes usually depends on the parental origin of the chromosome in which the imprinted genes reside. SRS is characterized by severe intrauterine and postnatal growth retardation with various additional clinical features such as hemihypertrophy, relative macrocephaly, fifth finger clinodactyly, and triangular facies. BWS is an overgrowth syndrome with many additional clinical features such as macroglossia, organomegaly, and an increased risk of childhood tumors. Both SRS and BWS are clinically and genetically heterogeneous, and for clinical diagnosis, different diagnostic scoring systems have been developed. Six diagnostic scoring systems for SRS and 4 for BWS have been previously published. However, neither syndrome has common consensus diagnostic criteria yet. Most cases of SRS and BWS are associated with opposite epigenetic or genetic abnormalities in the 11p15 chromosomal region leading to opposite imbalances in the expression of imprinted genes. SRS is also caused by maternal uniparental disomy 7, which is usually identified in 5-10% of the cases, and is therefore the first imprinting disorder that affects 2 different chromosomes. In this review, we describe in detail the clinical diagnostic criteria and scoring systems as well as molecular causes in both SRS and BWS.
Collapse
Affiliation(s)
- Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, and Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Cytrynbaum C, Chong K, Hannig V, Choufani S, Shuman C, Steele L, Morgan T, Scherer SW, Stavropoulos DJ, Basran RK, Weksberg R. Genomic imbalance in the centromeric 11p15 imprinting center in three families: Further evidence of a role for IC2 as a cause of Russell-Silver syndrome. Am J Med Genet A 2016; 170:2731-9. [PMID: 27374371 DOI: 10.1002/ajmg.a.37819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 11/07/2022]
Abstract
Russell-Silver syndrome is a heterogeneous disorder characterized by intrauterine growth retardation, postnatal growth deficiency, characteristic facial appearance, and other variable features. Genetic and epigenetic alterations are identified in about 60% of individuals with Russell-Silver syndrome. Most frequently, Russell-Silver syndrome is caused by altered gene expression on chromosome 11p15 due to loss of methylation at the telomeric imprinting center. To date there have been a handful of isolated clinical reports implicating the centromeric imprinting center 2 in the etiology of Russell-Silver syndrome. Here we report three new families with genomic imbalances, involving imprinting center 2 resulting in gain of methylation at this center and a Russell-Silver syndrome phenotype, including two families with a maternally inherited microduplication and the first pediatric patient with a paternally derived microdeletion. The findings in our families provide additional evidence of a role for imprinting center 2 in the etiology of Russell-Silver syndrome and suggest that imprinting center 2 imprinting abnormalities may be a more common cause of Russell-Silver syndrome than previously recognized. Furthermore, our findings together with previous clinical reports of genomic imbalances involving imprinting center 2 serve to underscore the complexity of the epigenetic regulation of the 11p15 region making it challenging to predict phenotype on the basis of genotype alone. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl Cytrynbaum
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Karen Chong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pediatrics and Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Vickie Hannig
- Division of Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cheryl Shuman
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Steele
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Morgan
- Division of Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Paediatric Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raveen K Basran
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Paediatric Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Boonen SE, Freschi A, Christensen R, Valente FM, Lildballe DL, Perone L, Palumbo O, Carella M, Uldbjerg N, Sparago A, Riccio A, Cerrato F. Two maternal duplications involving the CDKN1C gene are associated with contrasting growth phenotypes. Clin Epigenetics 2016; 8:69. [PMID: 27313795 PMCID: PMC4910218 DOI: 10.1186/s13148-016-0236-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/08/2016] [Indexed: 01/20/2023] Open
Abstract
Background The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the undergrowth-associated Silver-Russell syndrome (SRS) are characterized by heterogeneous molecular defects affecting a large imprinted gene cluster at chromosome 11p15.5-p15.4. While maternal and paternal duplications of the entire cluster consistently result in SRS and BWS, respectively, the phenotypes associated with smaller duplications are difficult to predict due to the complexity of imprinting regulation. Here, we describe two cases with novel inherited partial duplications of the centromeric domain on chromosome 11p15 associated with contrasting growth phenotypes. Findings In a male patient affected by intrauterine growth restriction and postnatal short stature, we identified an in cis maternally inherited duplication of 0.88 Mb including the CDKN1C gene that was significantly up-regulated. The duplication did not include the long non-coding RNA KCNQ1OT1 nor the imprinting control region of the centromeric domain (KCNQ1OT1:TSS-DMR or ICR2) in which methylation was normal. In the mother, also referring a growth restriction phenotype in her infancy, the duplication was de novo and present on her paternal chromosome. A different in cis maternal duplication, 1.13 Mb long and including the abovementioned duplication, was observed in a child affected by Tetralogy of Fallot but with normal growth. In this case, the rearrangement also included most of the KCNQ1OT1 gene and resulted in ICR2 loss of methylation (LOM). In this second family, the mother carried the duplication on her paternal chromosome and showed a normal growth phenotype as well. Conclusions We report two novel in cis microduplications encompassing part of the centromeric domain of the 11p15.5-p15.4 imprinted gene cluster and both including the growth inhibitor CDKN1C gene. Likely, as a consequence of the differential involvement of the regulatory KCNQ1OT1 RNA and ICR2, the smaller duplication is associated with growth restriction on both maternal and paternal transmissions, while the larger duplication, although it includes the smaller one, does not result in any growth anomaly. Our study provides further insights into the phenotypes associated with imprinted gene alterations and highlights the importance of carefully evaluating the affected genes and regulatory elements for accurate genetic counselling of the 11p15 chromosomal rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Andrea Freschi
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Federica Maria Valente
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | | | | | - Orazio Palumbo
- Unità di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Massimo Carella
- Unità di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Angela Sparago
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Andrea Riccio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy.,Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche CNR, Napoli, Italy
| | - Flavia Cerrato
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| |
Collapse
|
22
|
de Leeuw N, Dijkhuizen T, Hehir-Kwa JY, Carter NP, Feuk L, Firth HV, Kuhn RM, Ledbetter DH, Martin CL, van Ravenswaaij-Arts CMA, Scherer SW, Shams S, Van Vooren S, Sijmons R, Swertz M, Hastings R. Diagnostic interpretation of array data using public databases and internet sources. Hum Mutat 2016; 33:930-40. [PMID: 26285306 DOI: 10.1002/humu.22049] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The range of commercially available array platforms and analysis software packages is expanding and their utility is improving, making reliable detection of copy-number variants (CNVs) relatively straightforward. Reliable interpretation of CNV data, however, is often difficult and requires expertise. With our knowledge of the human genome growing rapidly, applications for array testing continuously broadening, and the resolution of CNV detection increasing, this leads to great complexity in interpreting what can be daunting data. Correct CNV interpretation and optimal use of the genotype information provided by single-nucleotide polymorphism probes on an array depends largely on knowledge present in various resources. In addition to the availability of host laboratories' own datasets and national registries, there are several public databases and Internet resources with genotype and phenotype information that can be used for array data interpretation. With so many resources now available, it is important to know which are fit-for-purpose in a diagnostic setting. We summarize the characteristics of the most commonly used Internet databases and resources, and propose a general data interpretation strategy that can be used for comparative hybridization, comparative intensity, and genotype-based array data.
Collapse
Affiliation(s)
- Nicole de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Beygo J, Joksic I, Strom TM, Lüdecke HJ, Kolarova J, Siebert R, Mikovic Z, Horsthemke B, Buiting K. A maternal deletion upstream of the imprint control region 2 in 11p15 causes loss of methylation and familial Beckwith-Wiedemann syndrome. Eur J Hum Genet 2016; 24:1280-6. [PMID: 26839037 DOI: 10.1038/ejhg.2016.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 11/09/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS; OMIM #130650) is an overgrowth syndrome caused by different genetic or epigenetic alterations affecting imprinted regions on chromosome 11p15.5. Here we report a family with multiple offspring affected with BWS including giant omphalocoeles in which maternal transmission of a chromosomal rearrangement including an inversion and two deletions leads to hypomethylation of the imprint control region 2 (ICR2). As the deletion includes the promoter and 5' part of the KCNQ1 gene, we suggest that transcription of this gene may be involved in establishing the maternal methylation imprint of the ICR2, which is located in intron 10 of KCNQ1.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ivana Joksic
- Clinic of Gynecology and Obstetrics Narodni front, Belgrade, Serbia
| | - Tim M Strom
- Institut für Humangenetik, Technische Universität München, München, Germany
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Julia Kolarova
- Institut für Humangenetik, Christian-Albrechts-Universität Kiel and Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Reiner Siebert
- Institut für Humangenetik, Christian-Albrechts-Universität Kiel and Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Zeljko Mikovic
- Clinic of Gynecology and Obstetrics Narodni front, Belgrade, Serbia
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Xue Y, Shankar S, Cornell K, Dai Z, Wang CE, Rudd MK, Coffee B. Paternal duplication of the 11p15 centromeric imprinting control region is associated with increased expression of CDKN1C in a child with Russell-Silver syndrome. Am J Med Genet A 2015; 167A:3229-33. [PMID: 26358311 DOI: 10.1002/ajmg.a.37371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/01/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Yuan Xue
- Emory Genetics Laboratory, Emory University, Atlanta, Georgia.,Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Suma Shankar
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Kristen Cornell
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Zunyan Dai
- Emory Genetics Laboratory, Emory University, Atlanta, Georgia.,Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Chuan-En Wang
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - M Katherine Rudd
- Emory Genetics Laboratory, Emory University, Atlanta, Georgia.,Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Bradford Coffee
- Emory Genetics Laboratory, Emory University, Atlanta, Georgia.,Department of Human Genetics, Emory University, Atlanta, Georgia
| |
Collapse
|
25
|
Brioude F, Netchine I, Praz F, Le Jule M, Calmel C, Lacombe D, Edery P, Catala M, Odent S, Isidor B, Lyonnet S, Sigaudy S, Leheup B, Audebert-Bellanger S, Burglen L, Giuliano F, Alessandri JL, Cormier-Daire V, Laffargue F, Blesson S, Coupier I, Lespinasse J, Blanchet P, Boute O, Baumann C, Polak M, Doray B, Verloes A, Viot G, Le Bouc Y, Rossignol S. Mutations of the Imprinted CDKN1C Gene as a Cause of the Overgrowth Beckwith-Wiedemann Syndrome: Clinical Spectrum and Functional Characterization. Hum Mutat 2015; 36:894-902. [PMID: 26077438 DOI: 10.1002/humu.22824] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/09/2015] [Indexed: 11/12/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.
Collapse
Affiliation(s)
- Frederic Brioude
- Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France.,AP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris, France.,INSERM, UMR_S 938, Centre de recherche Saint-Antoine, F-75012, Paris, France
| | - Irène Netchine
- Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France.,AP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris, France.,INSERM, UMR_S 938, Centre de recherche Saint-Antoine, F-75012, Paris, France
| | - Francoise Praz
- Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France.,INSERM, UMR_S 938, Centre de recherche Saint-Antoine, F-75012, Paris, France
| | - Marilyne Le Jule
- AP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris, France
| | - Claire Calmel
- INSERM, UMR_S 938, Centre de recherche Saint-Antoine, F-75012, Paris, France
| | - Didier Lacombe
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France.,Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), Université de Bordeaux, EA4576, Bordeaux, France
| | - Patrick Edery
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Service de Génétique, Bron, France.,Centre de Recherche en Neurosciences de Lyon, Inserm 1028, CNRS 5292 UMR UCBL, Lyon, France
| | - Martin Catala
- Fédération de Neurologie Groupe Hospitalier Pitié-Salpêtrière, F-75651, Paris, France.,Laboratoire de Biologie du Développement UMR 7622, CNRS and Université Pierre et Marie Curie, F-75252, Paris, France
| | - Sylvie Odent
- CHU de Rennes, Hôpital Sud, Service de Génétique clinique, F-35203, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Bertrand Isidor
- CHU de Nantes, Service de Génétique, Nantes, France.,INSERM, UMR-S 957, Nantes, France
| | - Stanislas Lyonnet
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, INSERM UMR-1163, Paris, France.,Département de Génétique, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Sabine Sigaudy
- CHU de Marseille, Hôpital Timone Enfant, Service de Génétique Médicale, Marseille, France
| | - Bruno Leheup
- CHU de Nancy, Pôle Enfants, Service de Médecine Infantile et Génétique Clinique, Centre de référence Syndrome Malformatif et Anomalies du Développement, Vandoeuvre, France.,Université de Lorraine Faculté de Médecine, Unité INSERM U954, Vandoeuvre, France
| | | | - Lydie Burglen
- AP-HP, Hôpital Armand Trousseau, Centre de référence des malformations et maladies congénitales du cervelet, service de génétique, F-75012, Paris, France.,INSERM U1141, F-75019, Paris, France
| | - Fabienne Giuliano
- CHU de Nice, Hôpital Archet2, Service de Génétique Médicale, Nice, France
| | - Jean-Luc Alessandri
- CHU de La Réunion, CH Felix Guyon, Pole Femme Mere Enfant Saint-Denis, La Réunion, France
| | - Valérie Cormier-Daire
- IMAGINE Institute, Hôpital Necker Enfants Malade, Paris, France.,Université Paris Descartes, INSERM UMR1163, Paris, France
| | - Fanny Laffargue
- CHU Estaing, Service de Génétique Médicale, Clermont-Ferrand, France
| | | | - Isabelle Coupier
- CHU Arnaud de Villeneuve, Service de Génétique Médicale, Unité d'oncogénétique, Montpellier, France
| | - James Lespinasse
- Centre Hospitalier de Chambéry-Hôtel-Dieu, UF de Génétique Chromosomique, Chambéry, France
| | - Patricia Blanchet
- CHU Arnaud de Villeneuve, Service de Génétique Médicale, Unité de Génétique Clinique, Montpellier, France
| | - Odile Boute
- CHRU de Lille, Service de Génétique, Lille, France
| | - Clarisse Baumann
- AP-HP, Hôpital Robert Debré, Department of Medical Genetics and INSERM UMR 1141, Paris, France
| | - Michel Polak
- AP-HP, Hôpital Universitaire Necker Enfants Malades, Endocrinologie gynécologie diabétologie pédiatriques, Paris, France.,Université Paris Descartes, INSERM U1016, IMAGINE Institute, Paris, France
| | - Berenice Doray
- Service de Génétique Médicale, Centre de Référence pour les Anomalies du Développement (FECLAD), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Alain Verloes
- AP-HP, Hôpital Robert Debré, Department of Medical Genetics and INSERM UMR 1141, Paris, France
| | - Géraldine Viot
- AP-HP, Hôpital Port-Royal, Service de Génétique, Paris, France
| | - Yves Le Bouc
- Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France.,AP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris, France.,INSERM, UMR_S 938, Centre de recherche Saint-Antoine, F-75012, Paris, France
| | - Sylvie Rossignol
- INSERM, UMR_S 938, Centre de recherche Saint-Antoine, F-75012, Paris, France.,Service de Génétique Médicale, Centre de Référence pour les Anomalies du Développement (FECLAD), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Vals MA, Kahre T, Mee P, Muru K, Kallas E, Žilina O, Tillmann V, Õunap K. Familial 1.3-Mb 11p15.5p15.4 Duplication in Three Generations Causing Silver-Russell and Beckwith-Wiedemann Syndromes. Mol Syndromol 2015; 6:147-51. [PMID: 26732610 DOI: 10.1159/000437061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 01/07/2023] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 opposite growth-affecting disorders. The common molecular cause for both syndromes is an abnormal regulation of genes in chromosomal region 11p15, where 2 imprinting control regions (ICR) control fetal and postnatal growth. Also, many submicroscopic chromosomal disturbances like duplications in 11p15 have been described among SRS and BWS patients. Duplications involving both ICRs cause SRS or BWS, depending on which parent the aberration is inherited from. We describe to our knowledge the smallest familial pure 1.3-Mb duplication in chromosomal region 11p15.5p15.4 that involves both ICRs and is present in 3 generations causing an SRS or BWS phenotype.
Collapse
Affiliation(s)
- Mari-Anne Vals
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Pille Mee
- United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Kai Muru
- Department of Genetics, Tartu University Hospital, Tartu, Estonia
| | - Eha Kallas
- Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Olga Žilina
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
27
|
A novel large deletion of the ICR1 region including H19 and putative enhancer elements. BMC MEDICAL GENETICS 2015; 16:30. [PMID: 25943194 PMCID: PMC4630834 DOI: 10.1186/s12881-015-0173-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/22/2015] [Indexed: 02/01/2023]
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is a rare pediatric overgrowth disorder with a variable clinical phenotype caused by deregulation affecting imprinted genes in the chromosomal region 11p15. Alterations of the imprinting control region 1 (ICR1) at the IGF2/H19 locus resulting in biallelic expression of IGF2 and biallelic silencing of H19 account for approximately 10% of patients with BWS. The majority of these patients have epimutations of the ICR1 without detectable DNA sequence changes. Only a few patients were found to have deletions. Most of these deletions are small affecting different parts of the ICR1 differentially methylated region (ICR1-DMR) removing target sequences for CTCF. Only a very few deletions reported so far include the H19 gene in addition to the CTCF binding sites. None of these deletions include IGF2. Case presentation A male patient was born with hypotonia, facial dysmorphisms and hypoglycemia suggestive of Beckwith-Wiedemann syndrome. Using methylation-specific (MS)-MLPA (Multiplex ligation-dependent probe amplification) we have identified a maternally inherited large deletion of the ICR1 region in a patient and his mother. The deletion results in a variable clinical expression with a classical BWS in the mother and a more severe presentation of BWS in her son. By genome-wide SNP array analysis the deletion was found to span ~100 kb genomic DNA including the ICR1DMR, H19, two adjacent non-imprinted genes and two of three predicted enhancer elements downstream to H19. Methylation analysis by deep bisulfite next generation sequencing revealed hypermethylation of the maternal allele at the IGF2 locus in both, mother and child, although IGF2 is not affected by the deletion. Conclusions We here report on a novel large familial deletion of the ICR1 region in a BWS family. Due to the deletion of the ICR1-DMR CTCF binding cannot take place and the residual enhancer elements have access to the IGF2 promoters. The aberrant methylation (hypermethylation) of the maternal IGF2 allele in both affected family members may reflect the active state of the normally silenced maternal IGF2 copy and can be a consequence of the deletion. The deletion results in a variable clinical phenotype and expression. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0173-2) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Deng Q, He B, Gao T, Pan Y, Sun H, Xu Y, Li R, Ying H, Wang F, Liu X, Chen J, Wang S. Up-regulation of 91H promotes tumor metastasis and predicts poor prognosis for patients with colorectal cancer. PLoS One 2014; 9:e103022. [PMID: 25058480 PMCID: PMC4109963 DOI: 10.1371/journal.pone.0103022] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play widespread roles in gene regulation and cellular processes. However, the functional roles of lncRNAs in colorectal cancer (CRC) are not yet well elucidated. The aim of the present study was to measure the levels of lncRNA 91H expression in CRC and evaluate its clinical significance and biological roles in the development and progression of CRC. METHODS 91H expression and copy number variation (CNV) were measured in 72 CRC tumor tissues and adjacent normal tissues by real-time PCR. The biological roles of 91H were evaluated by MTT, scratch wound assay, migration and invasion assays, and flow cytometry. RESULTS 91H was significantly overexpressed in cancerous tissue and CRC cell lines compared with adjacent normal tissue and a normal human intestinal epithelial cell line. Moreover, 91H overexpression was closely associated with distant metastasis and poor prognosis in patients with CRC, except for CNV of 91H. Multivariate analysis indicated that 91H expression was an independent prognostic indicator, as well as distant metastasis. Our in vitro data indicated that knockdown of 91H inhibited the proliferation, migration, and invasiveness of CRC cells. CONCLUSIONS 91H played an important role in the molecular etiology of CRC and might be regarded as a novel prognosis indicator in patients with CRC.
Collapse
Affiliation(s)
- Qiwen Deng
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bangshun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianyi Gao
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiling Sun
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yeqiong Xu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Li
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Houqun Ying
- Medical college, Southeast University, Nanjing, Jiangsu, China
| | - Feng Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xian Liu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shukui Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Demars J, Shmela ME, Khan AW, Lee KS, Azzi S, Dehais P, Netchine I, Rossignol S, Le Bouc Y, El-Osta A, Gicquel C. Genetic variants within the second intron of the KCNQ1 gene affect CTCF binding and confer a risk of Beckwith-Wiedemann syndrome upon maternal transmission. J Med Genet 2014; 51:502-11. [PMID: 24996904 DOI: 10.1136/jmedgenet-2014-102368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Disruption of 11p15 imprinting results in two fetal growth disorders with opposite phenotypes: the Beckwith-Wiedemann (BWS; MIM 130650) and the Silver-Russell (SRS; MIM 180860) syndromes. DNA methylation defects account for 60% of BWS and SRS cases and, in most cases, occur without any identified mutation in a cis-acting regulatory sequence or a trans-acting factor. METHODS We investigated whether 11p15 cis-acting sequence variants account for primary DNA methylation defects in patients with SRS and BWS with loss of DNA methylation at ICR1 and ICR2, respectively. RESULTS We identified a 4.5 kb haplotype that, upon maternal transmission, is associated with a risk of ICR2 loss of DNA methylation in patients with BWS. This novel region is located within the second intron of the KCNQ1 gene, 170 kb upstream of the ICR2 imprinting centre and encompasses two CTCF binding sites. We showed that, within the 4.5 kb region, two SNPs (rs11823023 and rs179436) affect CTCF occupancy at DNA motifs flanking the CTCF 20 bp core motif. CONCLUSIONS This study shows that genetic variants confer a risk of DNA methylation defect with a parent-of-origin effect and highlights the crucial role of CTCF for the regulation of genomic imprinting of the CDKN1C/KCNQ1 domain.
Collapse
Affiliation(s)
- Julie Demars
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia INRA, GenPhySE (Génétique, Physiologie et Systèmes d'Elevage), Castanet-Tolosan, France
| | - Mansur Ennuri Shmela
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Abdul Waheed Khan
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia University of Melbourne, Parkville, Australia
| | - Kai Syin Lee
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Salah Azzi
- APHP, Armand Trousseau Hôpital, Pediatric Endocrinology, INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
| | - Patrice Dehais
- INRA, GenPhySE (Génétique, Physiologie et Systèmes d'Elevage), Castanet-Tolosan, France
| | - Irène Netchine
- APHP, Armand Trousseau Hôpital, Pediatric Endocrinology, INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
| | - Sylvie Rossignol
- APHP, Armand Trousseau Hôpital, Pediatric Endocrinology, INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
| | - Yves Le Bouc
- APHP, Armand Trousseau Hôpital, Pediatric Endocrinology, INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia University of Melbourne, Parkville, Australia
| | - Christine Gicquel
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
[Clinical profile of a cohort of Silver-Russell syndrome patients followed at the Hospital Infantil de México Federico Gómez from 1998 to 2012]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2014; 71:218-226. [PMID: 29421254 DOI: 10.1016/j.bmhimx.2014.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/09/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Patients with Silver-Russell syndrome suffer from severe intrauterine and postnatal growth retardation, relative macrocephaly and body asymmetry, among other characteristics. It is caused by several genetic and epigenetic mechanisms in 11p15.5 in 40% of the cases and maternal uniparental disomy of chromosome 7 in 10%. METHODS Twenty patients with a diagnosis of Silver-Russell syndrome who were seen at the HIMFG from 1998 to 2012, were evaluated according to international clinical criteria confirming the diagnosis in nine of the subjects. RESULTS All patients showed intrauterine and postnatal growth retardation and short stature, both considered as major criteria of Silver-Russell syndrome. Relative macrocephaly was present in 78% of the patients and asymmetry in 33%. Other characteristics such as renal tubular acidosis were present > 50% of the cases. CONCLUSIONS The clinical diagnosis of Silver-Russell syndrome is complex. Short stature is the main reason for seeking medical attention and is helpful in the identification of a differential diagnosis. This situation underlines the importance of growth and development evaluation of all patients and particularly in those with short stature to identify those cases that may require molecular studies, with implications in management, prognosis and genetic counseling.
Collapse
|
31
|
Abi Habib W, Azzi S, Brioude F, Steunou V, Thibaud N, Das Neves C, Le Jule M, Chantot-Bastaraud S, Keren B, Lyonnet S, Michot C, Rossi M, Pasquier L, Gicquel C, Rossignol S, Le Bouc Y, Netchine I. Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Hum Mol Genet 2014; 23:5763-73. [PMID: 24916376 DOI: 10.1093/hmg/ddu290] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Isolated gain of methylation (GOM) at the IGF2/H19 imprinting control region 1 (ICR1) accounts for about 10% of patients with BWS. A subset of these patients have genetic defects within ICR1, but the frequency of these defects has not yet been established in a large cohort of BWS patients with isolated ICR1 GOM. Here, we carried out a genetic analysis in a large cohort of 57 BWS patients with isolated ICR1 GOM and analyzed the methylation status of the entire domain. We found a new point mutation in two unrelated families and a 21 bp deletion in another unrelated child, both of which were maternally inherited and affected the OCT4/SOX2 binding site in the A2 repeat of ICR1. Based on data from this and previous studies, we estimate that cis genetic defects account for about 20% of BWS patients with isolated ICR1 GOM. Methylation analysis at eight loci of the IGF2/H19 domain revealed that sites surrounding OCT4/SOX2 binding site mutations were fully methylated and methylation indexes declined as a function of distance from these sites. This was not the case in BWS patients without genetic defects identified. Thus, GOM does not spread uniformly across the IGF2/H19 domain, suggesting that OCT4/SOX2 protects against methylation at local sites. These findings add new insights to the mechanism of the regulation of the ICR1 domain. Our data show that mutations and deletions within ICR1 are relatively common. Systematic identification is therefore necessary to establish appropriate genetic counseling for BWS patients with isolated ICR1 GOM.
Collapse
Affiliation(s)
- Walid Abi Habib
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Frédéric Brioude
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | | | - Nathalie Thibaud
- Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | | | - Marilyne Le Jule
- Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Sandra Chantot-Bastaraud
- INSERM U933, Service de Génétique et D'Embryologie Médicales, Paris 75571, France, AP-HP, Hôpital Trousseau, Service de Génétique et D'Embryologie Médicales, Paris 75571, France
| | - Boris Keren
- Département de Génétique, CRICM UPMC INSERM UMR_S975/CNRS UMR 7225, GH Pitié-Salpêtrière, APHP, Paris, France
| | - Stanislas Lyonnet
- University Paris Descartes-Sorbonne, Paris Cité, Institut Imagine, INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - Caroline Michot
- University Paris Descartes-Sorbonne, Paris Cité, Institut Imagine, INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - Massimiliano Rossi
- Service de Génétique, Centre de Référence des Anomalies du Développement Centre-Est, Hospices Civils de Lyon, Bron, France, INSERM U1028 UMR CNRS 5292, UCBL, CRNL TIGER Team, Lyon, France
| | - Laurent Pasquier
- Service de Génétique Médicale-CLAD Ouest, Hôpital Sud, CHU Rennes, Rennes, France and
| | - Christine Gicquel
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sylvie Rossignol
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Yves Le Bouc
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Irène Netchine
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France, Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France,
| |
Collapse
|
32
|
Brown LA, Rupps R, Peñaherrera MS, Robinson WP, Patel MS, Eydoux P, Boerkoel CF. A cryptic familial rearrangement of 11p15.5, involving both imprinting centers, in a family with a history of short stature. Am J Med Genet A 2014; 164A:1587-94. [DOI: 10.1002/ajmg.a.36490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Lindsay A. Brown
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver Canada
| | - Rosemarie Rupps
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
| | - Maria S. Peñaherrera
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
- Child & Family Research Institute; Vancouver Canada
| | - Wendy P. Robinson
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
- Child & Family Research Institute; Vancouver Canada
| | - Millan S. Patel
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
| | - Patrice Eydoux
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver Canada
| | | |
Collapse
|
33
|
Fokstuen S, Kotzot D. Chromosomal rearrangements in patients with clinical features of Silver-Russell syndrome. Am J Med Genet A 2014; 164A:1595-605. [PMID: 24664587 DOI: 10.1002/ajmg.a.36464] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/21/2013] [Indexed: 01/29/2023]
Abstract
Silver-Russell syndrome (SRS) is characterized by pre- and postnatal growth retardation, relative macrocephaly, asymmetry, and a triangular facial gestalt. In 5-10% of the patients the phenotype is caused by maternal UPD 7, and 38-64% of the patients present with hypomethylation at the imprinting center region 1 (ICR1) on 11p15.5. The etiology of the remaining cases is so far not known and various (sub-)microscopic chromosome aberrations with a phenotype resembling SRS have been published, especially duplication 11p15 (n = 15), deletion 12q14 (n = 19), ring chromosome 15, deletion 15qter, and various other mostly unique chromosomal aberrations (n = 30). In this study the phenotypes of these chromosomal aberrations were revisited and compared with the phenotypes of maternal UPD 7 and hypomethylation at ICR1 on 11p15.5. In some patients with a unique chromosomal aberration even the hallmarks of SRS were missing. Patients with duplication 11p15 show a more variable occipitofrontal head circumference at birth, a higher frequency of intellectual disability, and additional anomalies not reported in SRS. Deletion 12q14 is characterized by less severe pre- and postnatal growth retardation and less impressive relative macrocephaly. Patients with ring chromosome 15 and deletion 15qter have no relative macrocephaly (mostly even microcephaly) and more severe intellectual disability. Finally, deletion 15qter lacks the triangular facial gestalt. In summary, as SRS seems not an adequate diagnosis in many of these patients, diagnosis should focus on the chromosomal aberration than on SRS.
Collapse
Affiliation(s)
- Siv Fokstuen
- Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|
34
|
Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes 2014; 21:30-8. [PMID: 24322424 DOI: 10.1097/med.0000000000000037] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The imprinted human 11p15.5 region encompasses two imprinted domains important for the control of fetal growth: the H19/IGF2 domain in the telomeric region and the KCNQ1OT1/CDKN1C domain in the centromeric region. These two domains are differentially methylated and each is regulated by its own imprinting control region (ICR): ICR1 in the telomeric region and ICR2 in the centromeric region. Aberrant methylation of the 11p15.5 imprinted region, through genetic or epigenetic mechanisms, leads to two clinical syndromes, with opposite growth phenotypes: Russell-Silver Syndrome (RSS; with severe fetal and postnatal growth retardation) and Beckwith-Wiedemann Syndrome (BWS; an overgrowth syndrome). RECENT FINDINGS In this review, we discuss the recently identified molecular abnormalities at 11p15.5 involved in RSS and BWS, which have led to the identification of cis-acting elements and trans-acting regulatory factors involved in the regulation of imprinting in this region. We also discuss the multilocus imprinting disorders identified in various human syndromes, their clinical outcomes and their impact on commonly identified metabolism disorders. SUMMARY These new findings and progress in this field will have direct consequence for diagnostic and predictive tools, risk assessment and genetic counseling for these syndromes.
Collapse
Affiliation(s)
- Salah Azzi
- aAP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes bUPMC Paris 6, UMR_S938, Centre de Recherche de Saint-Antoine cINSERM, UMR_S938, Centre de Recherche de Saint-Antoine, Paris, France
| | | | | |
Collapse
|
35
|
Anaesthesia for orphan disease: management of an infant with Silver-Russell syndrome. Eur J Anaesthesiol 2013; 31:336-8. [PMID: 24276373 DOI: 10.1097/eja.0000000000000013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Baskin B, Choufani S, Chen YA, Shuman C, Parkinson N, Lemyre E, Micheil Innes A, Stavropoulos DJ, Ray PN, Weksberg R. High frequency of copy number variations (CNVs) in the chromosome 11p15 region in patients with Beckwith-Wiedemann syndrome. Hum Genet 2013; 133:321-30. [PMID: 24154661 DOI: 10.1007/s00439-013-1379-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/05/2013] [Indexed: 01/20/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS), an overgrowth and tumor predisposition syndrome is clinically heterogeneous. Its variable presentation makes molecular diagnosis particularly important for appropriate counseling of patients with respect to embyronal tumor risk and recurrence risk. BWS is characterized by macrosomia, omphalocele, and macroglossia. Additional clinical features can include hemihyperplasia, embryonal tumors, umbilical hernia, and ear anomalies. BWS is etiologically heterogeneous arising from dysregulation of one or both of the chromosome 11p15.5 imprinting centers (IC) and/or imprinted growth regulatory genes on chromosome 11p15.5. Most BWS cases are sporadic and result from loss of maternal methylation at imprinting center 2 (IC2), gain of maternal methylation at imprinting center 1 (IC1) or paternal uniparental disomy (UPD). Heritable forms of BWS (15 %) have been attributed mainly to mutations in the growth suppressor gene CDKN1C, but have also infrequently been identified in patients with copy number variations (CNVs) in the chromosome 11p15.5 region. Four hundred and thirty-four unrelated BWS patients referred to the molecular diagnostic laboratory were tested by methylation-specific multiplex ligation-dependent probe amplification. Molecular alterations were detected in 167 patients, where 103 (62 %) showed loss of methylation at IC2, 23 (14 %) had gain of methylation at IC1, and 41 (25 %) showed changes at both ICs usually associated with paternal UPD. In each of the three groups, we identified patients in whom the abnormalities in the chromosome 11p15.5 region were due to CNVs. Surprisingly, 14 patients (9 %) demonstrated either deletions or duplications of the BWS critical region that were confirmed using comparative genomic hybridization array analysis. The majority of these CNVs were associated with a methylation change at IC1. Our results suggest that CNVs in the 11p15.5 region contribute significantly to the etiology of BWS. We highlight the importance of performing deletion/duplication testing in addition to methylation analysis in the molecular investigation of BWS to improve our understanding of the molecular basis of this disorder, and to provide accurate genetic counseling.
Collapse
Affiliation(s)
- Berivan Baskin
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Flavia Cerrato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Agostina De Crescenzo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Andrea Riccio
- 1] Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy [2] Institute of Genetics and Biophysics A.Buzzati-Traverso, CNR, Naples, Italy
| |
Collapse
|
38
|
Brioude F, Oliver-Petit I, Blaise A, Praz F, Rossignol S, Le Jule M, Thibaud N, Faussat AM, Tauber M, Le Bouc Y, Netchine I. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J Med Genet 2013; 50:823-30. [PMID: 24065356 DOI: 10.1136/jmedgenet-2013-101691] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Russell Silver syndrome (RSS) leads to prenatal and postnatal growth retardation. About 55% of RSS patients present a loss-of-methylation of the paternal ICR1 domain on chromosome 11p15. CDKN1C is a cell proliferation inhibitor encoded by an imprinted gene in the 11p15 ICR2 domain. CDKN1C mutations lead to Beckwith Wiedemann syndrome (BWS, overgrowth syndrome) and in IMAGe syndrome which associates growth retardation and adrenal insufficiency. We searched for CDKN1C mutations in a cohort of clinically diagnosed RSS patients with no molecular anomaly. METHOD The coding sequence and intron-exon boundaries of CDKN1C were analysed in 97 RSS patients. The impact of CDKN1C variants on the cell cycle in vitro were determined by flow cytometry. Stability of CDKN1C was studied by western immunoblotting after inhibition of translation with cycloheximide. RESULTS We identified the novel c.836G>[G;T] (p.Arg279Leu) mutation in a familial case of intrauterine growth retardation (IUGR) with RSS phenotype and no evidence of IMAGe. All the RSS patients inherited this mutation from their mothers (consistent with monoallelic expression from the maternal allele of the gene). A mutation of this amino acid (p.Arg279Pro) has been reported in cases of IMAGe. Functional analysis showed that Arg279Leu (RSS) did not affect the cell cycle, whereas the Arg279Pro mutation (IMAGe) led to a gain of function. Arg279Leu (RSS) led to an increased stability which could explain an increased activity of CDKN1C. CONCLUSIONS CDKN1C mutations cause dominant maternally transmitted RSS, completing the molecular mirror with BWS. CDKN1C should be investigated in cases with family history of RSS.
Collapse
Affiliation(s)
- F Brioude
- AP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Evidence for anticipation in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2013; 21:1344-8. [PMID: 23572028 PMCID: PMC3831082 DOI: 10.1038/ejhg.2013.71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/02/2013] [Accepted: 03/12/2013] [Indexed: 12/16/2022] Open
Abstract
Classical Beckwith-Wiedemann syndrome (BWS) was diagnosed in two sisters and their male cousin. The children's mothers and a third sister were tall statured (178, 185 and 187 cm) and one had mild BWS features as a child. Their parents had average heights of 173 cm (mother) and 180 cm (father). This second generation tall stature and third generation BWS correlated with increased methylation of the maternal H19/IGF2-locus. The results were obtained by bisulphite treatment and subclone Sanger sequencing or next generation sequencing to quantitate the degree of CpG-methylation on three locations: the H19 promoter region and two CTCF binding sites in the H19 imprinting control region (ICR1), specifically in ICR1 repeats B1 and B7. Upon ICR1 copy number analysis and sequencing, the same maternal point variant NCBI36:11:g.1979595T>C that had been described previously as a cause of BWS in three brothers, was found. As expected, this point variant was on the paternal allele in the non-affected grandmother. This nucleotide variant has been shown to affect OCTamer-binding transcription factor-4 (OCT4) binding, which may be necessary for maintaining the unmethylated state of the maternal allele. Our data extend these findings by showing that the OCT4 binding site mutation caused incomplete switching from paternal to maternal ICR1 methylation imprint, and that upon further maternal transmission, methylation of the incompletely demethylated variant ICR1 allele was further increased. This suggests that maternal and paternal ICR1 alleles are treated differentially in the female germline, and only the paternal allele appears to be capable of demethylation.
Collapse
|
40
|
Jacob KJ, Robinson WP, Lefebvre L. Beckwith-Wiedemann and Silver-Russell syndromes: opposite developmental imbalances in imprinted regulators of placental function and embryonic growth. Clin Genet 2013; 84:326-34. [PMID: 23495910 DOI: 10.1111/cge.12143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 11/29/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are two congenital disorders with opposite outcomes on fetal growth, overgrowth and growth restriction, respectively. Although both disorders are heterogeneous, most cases of BWS and SRS are associated with opposite epigenetic or genetic abnormalities on 11p15.5 leading to opposite imbalances in the expression levels of imprinted genes. In this article, we review evidence implicating these genes in the developmental regulation of embryonic growth and placental function in mouse models. The emerging picture suggests that both SRS and BWS can be caused by the simultaneous and opposite deregulation of two groups of imprinted genes on 11p15.5. A detailed description of the phenotypic abnormalities associated with each syndrome must take into consideration the developmental functions of each gene involved.
Collapse
Affiliation(s)
- K J Jacob
- Department of Medical Genetics; Life Sciences Institute, Molecular Epigenetics Group, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
41
|
Hu J, Sathanoori M, Kochmar S, Madan-Khetarpal S, McGuire M, Surti U. Co-existence of 9p deletion and Silver-Russell syndromes in a patient with maternally inherited cryptic complex chromosome rearrangement involving chromosomes 4, 9, and 11. Am J Med Genet A 2012; 161A:179-84. [DOI: 10.1002/ajmg.a.35658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/20/2012] [Indexed: 11/09/2022]
|
42
|
Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, Heitmann M, Rademacher K, Guala A, Enklaar T, Anichini C, Cirillo Silengo M, Graf N, Prawitt D, Cubellis MV, Horsthemke B, Buiting K, Riccio A. The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Hum Mol Genet 2012; 22:544-57. [PMID: 23118352 PMCID: PMC3542864 DOI: 10.1093/hmg/dds465] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At chromosome 11p15.5, the imprinting centre 1 (IC1) controls the parent of origin-specific expression of the IGF2 and H19 genes. The 5 kb IC1 region contains multiple target sites (CTS) for the zinc-finger protein CTCF, whose binding on the maternal chromosome prevents the activation of IGF2 and allows that of H19 by common enhancers. CTCF binding helps maintaining the maternal IC1 methylation-free, whereas on the paternal chromosome gamete-inherited DNA methylation inhibits CTCF interaction and enhancer-blocking activity resulting in IGF2 activation and H19 silencing. Maternally inherited 1.4–2.2 kb deletions are associated with methylation of the residual CTSs and Beckwith–Wiedemann syndrome, although with different penetrance and expressivity. We explored the relationship between IC1 microdeletions and phenotype by analysing a number of previously described and novel mutant alleles. We used a highly quantitative assay based on next generation sequencing to measure DNA methylation in affected families and analysed enhancer-blocking activity and CTCF binding in cultured cells. We demonstrate that the microdeletions mostly affect IC1 function and CTCF binding by changing CTS spacing. Thus, the extent of IC1 inactivation and the clinical phenotype are influenced by the arrangement of the residual CTSs. A CTS spacing similar to the wild-type allele results in moderate IC1 inactivation and is associated with stochastic DNA methylation of the maternal IC1 and incomplete penetrance. Microdeletions with different CTS spacing display severe IC1 inactivation and are associated with IC1 hypermethylation and complete penetrance. Careful characterization of the IC1 microdeletions is therefore needed to predict recurrence risks and phenotypical outcomes.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Begemann M, Spengler S, Gogiel M, Grasshoff U, Bonin M, Betz RC, Dufke A, Spier I, Eggermann T. Clinical significance of copy number variations in the 11p15.5 imprinting control regions: new cases and review of the literature. J Med Genet 2012; 49:547-53. [PMID: 22844132 PMCID: PMC3439641 DOI: 10.1136/jmedgenet-2012-100967] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the clusters of imprinted genes in humans, one of the most relevant regions involved in human growth is localised in 11p15. Opposite epigenetic and genomic disturbances in this chromosomal region contribute to two distinct imprinting disorders associated with disturbed growth, Silver-Russell and Beckwith-Wiedemann syndromes. Due to the complexity of the 11p15 imprinting regions and their interactions, the interpretation of the copy number variations in that region is complicated. The clinical outcome in case of microduplications or microdeletions is therefore influenced by the size, the breakpoint positions and the parental inheritance of the imbalance as well as by the imprinting status of the affected genes. Based on their own new cases and those from the literature, the authors give an overview on the genotype-phenotype correlation in chromosomal rearrangements in 11p15 as the basis for a directed genetic counselling. The detailed characterisation of patients and families helps to further delineate risk figures for syndromes associated with 11p15 disturbances. Furthermore, these cases provide us with profound insights in the complex regulation of the (imprinted) factors localised in 11p15.
Collapse
|
44
|
Roth CL, Sathyanarayana S. Mechanisms affecting neuroendocrine and epigenetic regulation of body weight and onset of puberty: potential implications in the child born small for gestational age (SGA). Rev Endocr Metab Disord 2012; 13:129-40. [PMID: 22415297 DOI: 10.1007/s11154-012-9212-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Signaling peptides produced in peripheral tissues such as gut, adipose tissue, and pancreas communicate with brain centers, such as hypothalamus and hindbrain to manage energy homeostasis. These regulatory mechanisms of energy intake and storage have evolved during long periods of hunger in the evolution of man to protect the species from extinction. It is now clear that these circuitries are influenced by prenatal and postnatal environmental factors including endocrine disruptive chemicals. Hypothalamic appetite regulatory systems develop and mature in utero and early infancy, and involve signaling pathways that are important also for the regulation of puberty onset. Recent studies in humans and animals have shown that metabolic pathways involved in regulation of growth, body weight gain and sexual maturation are largely affected by epigenetic programming that can impact both current and future generations. In particular, intrauterine and early infantile developmental phases of high plasticity are susceptible to factors that affect metabolic programming that therefore, affect metabolic function throughout life. In children born small for gestational age, poor nutritional conditions during gestation can modify metabolic systems to adapt to expectations of chronic undernutrition. These children are potentially poorly equipped to cope with energy-dense diets and are possibly programmed to store as much energy as possible, leading to later obesity, metabolic syndrome, disturbed regulation of normal puberty and early onset of cardiovascular disease. Most cases of disturbed energy balance are likely a result of a combination of genetics, epigenetics and environment. This review will discuss potential mechanisms linking intrauterine growth retardation with changes in growth, energy homeostasis and sexual maturation.
Collapse
Affiliation(s)
- Christian L Roth
- Division of Endocrinology, Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
| | | |
Collapse
|
45
|
Demars J, Gicquel C. Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver-Russell syndromes. Clin Genet 2012; 81:350-61. [PMID: 22150955 DOI: 10.1111/j.1399-0004.2011.01822.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Genomic imprinting is a particularly attractive example of epigenetic regulation leading to the parental-origin-specific expression of genes. In several ways, the 11p15 imprinted region is an exemplary model for regulation of genomic imprinting. The two imprinted domains are controlled by imprinting control regions (ICRs) which carry opposite germ line imprints and they are regulated by two major mechanisms of imprinting control. Dysregulation of 11p15 genomic imprinting results in two fetal growth disorders [Silver-Russell (SRS) and Beckwith-Wiedemann (BWS) syndromes], with opposite growth phenotypes. BWS and SRS result from abnormal imprinting involving either, both domains or only one of them, with ICR1 and ICR2 more often involved in SRS and BWS respectively. DNA methylation defects affecting ICR1 or ICR2 account for approximately 60% of SRS and BWS patients. Recent studies have identified new cis-acting regulatory elements, as well as new trans-acting factors involved in the regulation of 11p15 imprinting, therefore establishing new mechanisms of BWS and SRS. Those studies also showed that, apart of CTCF, other transcription factors, including factors of the pluripotency network, play a crucial role in the regulation of 11p15 genomic imprinting. Those new findings have direct consequences in molecular testing, risk assessment and genetic counseling of BWS and SRS patients.
Collapse
Affiliation(s)
- J Demars
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | | |
Collapse
|
46
|
Chiesa N, De Crescenzo A, Mishra K, Perone L, Carella M, Palumbo O, Mussa A, Sparago A, Cerrato F, Russo S, Lapi E, Cubellis MV, Kanduri C, Cirillo Silengo M, Riccio A, Ferrero GB. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet 2011; 21:10-25. [PMID: 21920939 PMCID: PMC3235007 DOI: 10.1093/hmg/ddr419] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver–Russell syndrome (SRS) and Beckwith–Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5′ 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5′ 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA.
Collapse
Affiliation(s)
- Nicoletta Chiesa
- Dipartimento di Scienze Pediatriche e dell’Adolescenza, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|