1
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Apte A, Dutta Dey P, Julakanti SR, Midura-Kiela M, Skopp SM, Canchis J, Fauser T, Bardill J, Seal S, Jackson DM, Ghishan FK, Kiela PR, Zgheib C, Liechty KW. Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice. Pharmaceutics 2024; 16:1573. [PMID: 39771552 PMCID: PMC11679827 DOI: 10.3390/pharmaceutics16121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a). We hypothesized that oral delivery of CNP-miR146a would reduce colonic inflammation in a mouse model of established, chronic, T cell-mediated colitis. Methods: The stability of CNP-miR146a and mucosal delivery was assessed in vitro with simulated gastrointestinal fluid and in vivo after oral gavage by quantitative real-time RT-PCR. The efficacy of orally administered CNP-miR146a was tested in mice with established colitis using the model of adoptive naïve T-cell transfer in recombinant activating gene 2 knockout (Rag2-/-) mice. Measured outcomes included histopathology; CD45+ immune cell infiltration; oxidative DNA damage (tissue 8-hydroxy-2'-deoxyguanosine; 8-OHdG); expression of IL-6 and TNF mRNA and protein, and flow cytometry analysis of lamina propria Th1 and Th17 cell populations. Results: miR146a expression remained stable in simulated gastric and intestinal conditions. miR146a expression increased in the intestines of mice six hours following oral gavage of CNP-miR146a. Oral delivery of CNP-miR146a in mice with colitis was associated with reduced inflammation and oxidative stress in the proximal and distal colons as evidenced by histopathology scoring, reduced immune cell infiltration, reduced IL-6 and TNF expression, and decreased populations of CD4+Tbet+IFNg+ Th1, CD4+RorgT+IL17+ Th17, as well as pathogenic double positive IFNg+IL17+ T cells. Conclusions: CNP-miR146a represents a novel orally available therapeutic with high potential to advance into clinical trials.
Collapse
Affiliation(s)
- Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Pujarini Dutta Dey
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Srisaianirudh Reddy Julakanti
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Monica Midura-Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Stacy M. Skopp
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Jimena Canchis
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Tobias Fauser
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - James Bardill
- Laboratory for Fetal and Regenerative Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | - Fayez K. Ghishan
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Pawel R. Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
- Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Wen Y, Li C, Huang P, Liu Z, He Y, Liu B. Transcriptional landscape of intestinal environment in DSS-induced ulcerative colitis mouse model. BMC Gastroenterol 2024; 24:60. [PMID: 38308210 PMCID: PMC10836045 DOI: 10.1186/s12876-024-03128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease that targets the colon and has seen an increasing prevalence worldwide. In our pursuit of new diagnostic and therapeutic approaches for UC, we undertook a sequencing of colons from UC mouse models. We focused on analyzing their differentially expressed genes (DEGs), enriching pathways, and constructing protein-protein interaction (PPI) and Competing Endogenous RNA (ceRNA) networks. Our analysis highlighted novel DEGs such as Tppp3, Saa3, Cemip, Pappa, and Nr1d1. These DEGs predominantly play roles in pathways like cytokine-mediated signaling, extracellular matrix organization, extracellular structure organization, and external encapsulating structure organization. This suggests that the UC pathogenesis is intricately linked to the interactions between immune and non-immune cells with the extracellular matrix (ECM). To corroborate our findings, we also verified certain DEGs through quantitative real-time PCR. Within the PPI network, nodes like Stat3, Il1b, Mmp3, and Lgals3 emerged as significant and were identified to be involved in the crucial cytokine-mediated signaling pathway, which is central to inflammation. Our ceRNA network analysis further brought to light the role of the Smad7 Long non-coding RNA (lncRNA). Key MicroRNA (miRNAs) in the ceRNA network were pinpointed as mmu-miR-17-5p, mmu-miR-93-5p, mmu-miR-20b-5p, mmu-miR-16-5p, and mmu-miR-106a-5p, while central mRNAs included Egln3, Plagl2, Sema7a, Arrdc3, and Stat3. These insights imply that ceRNA networks are influential in UC progression and could provide further clarity on its pathogenesis. In conclusion, this research deepens our understanding of UC pathogenesis and paves the way for potential new diagnostic and therapeutic methods. Nevertheless, to solidify our findings, additional experiments are essential to confirm the roles and molecular interplay of the identified DEGs in UC.
Collapse
Affiliation(s)
- Yuefei Wen
- Foshan Maternity and Child Health Care Hospital, Southern Medical University, 528000, Foshan, China
| | - Chenyang Li
- Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, China
| | - Peng Huang
- Foshan Maternity and Child Health Care Hospital, Southern Medical University, 528000, Foshan, China
| | - Zhigang Liu
- Foshan Maternity and Child Health Care Hospital, Southern Medical University, 528000, Foshan, China
| | - Yanjun He
- Foshan Maternity and Child Health Care Hospital, Southern Medical University, 528000, Foshan, China.
- Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, China.
| | - Bin Liu
- Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, China.
| |
Collapse
|
4
|
Yan Q, Jia S, Li D, Yang J. The role and mechanism of action of microbiota-derived short-chain fatty acids in neutrophils: From the activation to becoming potential biomarkers. Biomed Pharmacother 2023; 169:115821. [PMID: 37952355 DOI: 10.1016/j.biopha.2023.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, have emerged as critical mediators in the communication between the human microbiota and its host. As the first responder to the inflammatory site, neutrophils play an important role in protecting the host against bacterial infections. Recent investigations revealed that SCFAs generated from microbiota influence various neutrophil activities, including activation, migration, and generation of mediators of inflammatory processes. SCFAs have also been demonstrated to exhibit potential therapeutic benefits in a variety of disorders related to neutrophil dysfunction, including inflammatory bowel disease, viral infectious disorders, and cancer. This study aims to examine the molecular processes behind the complicated link between SCFAs and neutrophils, as well as their influence on neutrophil-driven inflammatory disorders. In addition, we will also provide an in-depth review of current research on the diagnostic and therapeutic value of SCFAs as possible biomarkers for neutrophil-related diseases.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
5
|
Ebihara S, Urashima T, Amano W, Yamamura H, Konishi N. Macrophage polarization toward M1 phenotype in T cell transfer colitis model. BMC Gastroenterol 2023; 23:411. [PMID: 38012544 PMCID: PMC10680295 DOI: 10.1186/s12876-023-03054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND T cell transfer colitis model is often used to study the CD4+ T cell functions in the intestine. However, the specific roles of macrophages in colitis remain unclear. In this study, we aimed to evaluate the phenotype and functions of macrophages in the colonic lamina propria (LP) in a colitis model. METHODS Colitis was induced in scid mice via the adaptive transfer of CD4+CD45RBhi T cells. Then, flow cytometry was used to determine the number of macrophages in the colonic LP and expression of cytokines in macrophages at the onset of colitis. Moreover, M1/M2 macrophage markers were detected in the colonic LP during colitis development using high-dimensional single-cell data and gating-based analyses. Expression levels of M1 markers in macrophages isolated from the colonic LP were measured using quantitative reverse transcription-polymerase chain reaction. Additionally, macrophages were co-cultured with T cells isolated from the colon to assess colitogenic T cell activation. RESULTS Infiltration of macrophages into the colon increased with the development of colitis in the T cell transfer colitis model. M1/M2 macrophage markers were observed in this model, as observed in the colon of patients with inflammatory bowel disease (IBD). Moreover, number of M1 macrophages increased, whereas that of M2 macrophages decreased in the colonic LP during colitis development. M1 macrophages were identified as the main source of inflammatory cytokine production, and colitogenic T cells were activated via interactions with these macrophages. CONCLUSIONS Our findings revealed that macrophages polarized toward the M1 phenotype in LP during colitis development in the T cell transfer colitis model. Therefore, the colitis model is suitable for the evaluation of the efficacy of macrophage-targeted drugs in human IBD treatment. Furthermore, this model can be used to elucidate the in vivo functions of macrophages in the colon of patients with IBD.
Collapse
Affiliation(s)
- Shin Ebihara
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
| | - Toshiki Urashima
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Wataru Amano
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Hideto Yamamura
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Noriko Konishi
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
6
|
Yarani R, Palasca O, Doncheva NT, Anthon C, Pilecki B, Svane CAS, Mirza AH, Litman T, Holmskov U, Bang-Berthelsen CH, Vilien M, Jensen LJ, Gorodkin J, Pociot F. Cross-species high-resolution transcriptome profiling suggests biomarkers and therapeutic targets for ulcerative colitis. Front Mol Biosci 2023; 9:1081176. [PMID: 36685283 PMCID: PMC9850088 DOI: 10.3389/fmolb.2022.1081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates. Methods: To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse. By combining this with public human Ulcerative colitis data, we investigated conserved gene expression signatures and pathways/biological processes through which these genes may contribute to disease development/progression. Results: Cross-species integration of human and mouse Ulcerative colitis data resulted in the identification of 1442 genes that were significantly differentially regulated in the same direction in the colon and 157 in blood. Of these, 51 genes showed consistent differential regulation in the colon and blood. Less known genes with importance in disease pathogenesis, including SPI1, FPR2, TYROBP, CKAP4, MCEMP1, ADGRG3, SLC11A1, and SELPLG, were identified through network centrality ranking and validated in independent human and mouse cohorts. Conclusion: The identified Ulcerative colitis conserved transcriptional signatures aid in the disease phenotyping and future treatment decisions, drug discovery, and clinical trial design.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark,*Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cecilie A. S. Svane
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Aashiq H. Mirza
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Claus H. Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark,Department of Gastroenterology, North Zealand Hillerød Hospital, Hillerød, Denmark
| | - Mogens Vilien
- Department of Surgery, North Zealand Hospital, Hillerød, Denmark
| | - Lars J. Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
7
|
Lee H, Jeon JH, Lee YJ, Kim MJ, Kwon WH, Chanda D, Thoudam T, Pagire HS, Pagire SH, Ahn JH, Harris RA, Kim ES, Lee IK. Inhibition of Pyruvate Dehydrogenase Kinase 4 in CD4 + T Cells Ameliorates Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2022; 15:439-461. [PMID: 36229019 PMCID: PMC9791136 DOI: 10.1016/j.jcmgh.2022.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Despite recent evidence supporting the metabolic plasticity of CD4+ T cells, it is uncertain whether the metabolic checkpoint pyruvate dehydrogenase kinase (PDK) in T cells plays a role in the pathogenesis of colitis. METHODS To investigate the role of PDK4 in colitis, we used dextran sulfate sodium (DSS)-induced colitis and T-cell transfer colitis models based on mice with constitutive knockout (KO) or CD4+ T-cell-specific KO of PDK4 (Pdk4fl/flCD4Cre). The effect of PDK4 deletion on T-cell activation was also studied in vitro. Furthermore, we examined the effects of a pharmacologic inhibitor of PDK4 on colitis. RESULTS Expression of PDK4 increased during colitis development in a DSS-induced colitis model. Phosphorylated PDHE1α, a substrate of PDK4, accumulated in CD4+ T cells in the lamina propria of patients with inflammatory bowel disease. Both constitutive KO and CD4+ T-cell-specific deletion of PDK4 delayed DSS-induced colitis. Adoptive transfer of PDK4-deficient CD4+ T cells attenuated murine colitis, and PDK4 deficiency resulted in decreased activation of CD4+ T cells and attenuated aerobic glycolysis. Mechanistically, there were fewer endoplasmic reticulum-mitochondria contact sites, which are responsible for interorganelle calcium transfer, in PDK4-deficient CD4+ T cells. Consistent with this, GM-10395, a novel inhibitor of PDK4, suppressed T-cell activation by reducing endoplasmic reticulum-mitochondria calcium transfer, thereby ameliorating murine colitis. CONCLUSIONS PDK4 deletion from CD4+ T cells mitigates colitis by metabolic and calcium signaling modulation, suggesting PDK4 as a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yu-Jeong Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Jin Kim
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Woong Hee Kwon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Haushabhau S. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suvarna H. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea,Correspondence Address correspondence to: Eun Soo Kim, MD, PhD, Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, Republic of Korea 41944. fax: +82-53-200-5879.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea,In-Kyu Lee, MD, PhD, Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, Republic of Korea 41944.
| |
Collapse
|
8
|
He KJ, Dong JH, Ouyang XM, Huo YN, Cheng XS, Lin Y, Li Y, Gong G, Liu J, Ren JL, Guleng B. Glycerol monolaurate ameliorates DSS-induced acute colitis by inhibiting infiltration of Th17, neutrophils, macrophages and altering the gut microbiota. Front Nutr 2022; 9:911315. [PMID: 36034889 PMCID: PMC9413164 DOI: 10.3389/fnut.2022.911315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Inflammatory bowel disease (IBD) places a heavy medical burden on countries and families due to repeated and prolonged attacks, and the incidence and prevalence of IBD are increasing worldwide. Therefore, finding an effective treatment is a matter of great urgency. Glycerol monolaurate (GML), which has a twelve-carbon chain, is a compound naturally found in human breast milk. Some studies have shown that GML has antibacterial and anti-inflammatory effects. However, the specific mechanism of action remains unclear. Methods Acute colitis was established in mice using 3% DSS, and glycerol monolaurate (500 mg·kg-1) was administered for two weeks. QPCR and western blotting were performed to examine the inflammatory status. Mice described were subjected to flow cytometry analysis for immune cell activation. Results GML treated alleviated macroscopic symptoms such as shortened colons, increased spleen weight, and caused weight loss in mice with DSS-induced colitis. In addition, GML decreased the expression of pro-inflammatory factors (NF-α, IL-1β and IL-1α) and increased the expression of anti-inflammatory factors (IL-10 and TGF-β). GML inhibited the activation of the MAPK and NF-κB signalling pathways, improved tissue damage, and increased the expression of intestinal tight junction proteins. In addition, LPMCs extracted from intestinal tissue via flow cytometry showed that GML treatment led to a decrease of Th17 cells, Neutrophils and Macrophages. 16S rDNA sequencing showed that GML increased the abundance of commensal bacterium such as Akkermansia and Lactobacillus murinus. Conclusions We showed that oral administration of GML ameliorated DSS-induced colitis by inhibiting infiltration of Th17 cells, Neutrophils, and Macrophages, protecting the intestinal mucosal barrier and altered the abundance of commensal bacterium. This study provides new insights into the biological function and therapeutic potential of GML in the treatment of IBD.
Collapse
Affiliation(s)
- Ke-Jie He
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Binhai County People's Hospital, Yancheng, China
| | - Jia-Hui Dong
- Binhai County People's Hospital, Yancheng, China
| | - Xiao-Mei Ouyang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ya-Ni Huo
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Shen Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoyu Gong
- Cancer Research Center and Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center and Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Halasi M, Grinstein M, Adini A, Adini I. Fibromodulin Ablation Exacerbates the Severity of Acute Colitis. J Inflamm Res 2022; 15:4515-4526. [PMID: 35966006 PMCID: PMC9374093 DOI: 10.2147/jir.s366290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Epidemiological studies have associated pigment production with protection against certain human diseases. In contrast to African Americans, European descendants are more likely to suffer from angiogenesis-dependent and inflammatory diseases, such as wet age-related macular degeneration (ARMD) and ulcerative colitis (UC), respectively. Methods In a mouse model of dextran sulfate sodium (DSS)-induced acute colitis, the effect of fibromodulin (FMOD) depletion was examined on colitis severity. Results In this study, albino mice that produce high levels of FMOD developed less severe acute colitis compared with mice lacking in FMOD as assessed by clinical symptoms and histopathological changes. FMOD depletion affected the expression of tight junction proteins, contributing to the destruction of the epithelial barrier. Furthermore, this study revealed a stronger inflammatory response after DSS treatment in the absence of FMOD, where FMOD depletion led to an increase in activated T cells, plasmacytoid dendritic cells (pDCs), and type I interferon (IFN) production. Discussion These findings point to FMOD as a potential biomarker of disease severity in UC among light-skinned individuals of European descent.
Collapse
Affiliation(s)
- Marianna Halasi
- Department of Surgery, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mor Grinstein
- Department of Medicine, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avner Adini
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Irit Adini
- Department of Surgery, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Caban M, Lewandowska U. Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Liu C, Jiang Y, Liu G, Guo Z, Jin Q, Long D, Zhou W, Qian K, Zhao H, Liu K. PPARGC1A affects inflammatory responses in photodynamic therapy (PDT)-treated inflammatory bowel disease (IBD). Biochem Pharmacol 2022; 202:115119. [PMID: 35667414 DOI: 10.1016/j.bcp.2022.115119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic inflammation of the gastrointestinal tract is a feature of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Targeting inflammatory signaling represents promising strategy for IBD treatment regimens. METHODS Dextran sulfate sodium (DSS)-induced colitis model was established in mice. Histopathological examinations were conducted by H&E staining and IHC staining. IL-1β, IL-10, and TNF-α were tested by ELISA kits. TargetScan was used to predict miRNAs that target PPARGC1A and luciferase activity assay was performed to validate the predicted binding. RESULTS DSS-induced acute colitis model was successfully established in mice; photodynamic therapy (PDT) treatment partially improved DSS-induced colonic damages and cell inflammation. Microarray assays and integrative bioinformatics analysis identified PPARG coactivator 1 alpha (PPARGC1A) as a significantly differentially-expressed gene in PDT-treated IBD compared with non-treated IBD. PPARGC1A expression was downregulated in IBD clinical samples, DSS-induced colitis mice colons, and DSS-stimulated colonic epithelial cells, whereas partially upregulated by PDT treatment in DSS-stimulated cells. Single DSS stimulation significantly promoted cellular inflammation; PDT partially attenuated, whereas sh-PPARGC1A transduction further enhanced DSS effects on cancer cell inflammation. In colitis mice, DSS decreased PPRA-α and PPRA-γ proteins in mice colons; the in vivo effects of DSS were partially attenuated by PDT treatment, whereas amplified by sh-PPARGC1A transduction. Upstream miR-301a-3p targeted and inhibited PPARGC1A expression. CONCLUSIONS Collectively, PPARGC1A, which is downregulated in DSS-induced acute colitis and DSS-stimulated colonic epithelial cells, could be upregulated by PDT treatment. PPARGC1A knockdown could attenuate PDT therapeutic effects on DSS-induced acute colitis and DSS-stimulated colonic epithelial cells.
Collapse
Affiliation(s)
- Chao Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuhong Jiang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ganglei Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhushu Guo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qianqian Jin
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dongju Long
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Weihan Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Qian
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hua Zhao
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kuijie Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
12
|
Sato M, Fujii K, Takagi H, Shibuya I, Oka D, Yamaya N, Hagita H, Matsumoto M, Inagaki K. Antibacterial and Immunosuppressive Effects of OPS-2071, a Candidate Therapy for Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:3993-4007. [PMID: 34463880 DOI: 10.1007/s10620-021-07237-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract. Although many types of drug are used, clinical outcomes are still unsatisfactory. Previous studies have suggested that intestinal bacteria are involved in the pathogenesis of IBD. Accordingly, in an IBD model we evaluated the therapeutic effects of OPS-2071, a low-absorption quinolone antibacterial agent indicated for intestinal infection, and investigated its mechanism of action. METHODS The therapeutic effects of OPS-2071 and comparison therapies were evaluated using naive CD4 + T cell-transfer IBD model mice. In vitro inhibition of LPS-induced TNF-α production and inhibitory effects on T cell responses stimulated using anti-CD3/CD28 antibody-loaded beads were evaluated using mouse splenocytes and human peripheral blood mononuclear cells. In addition, in vitro activities against bacteria implicated in IBD pathogenesis were tested. RESULTS OPS-2071 dose-dependently decreased both colonic weight/length ratio and the colitis histological score as compared with the vehicle group. The therapeutic effect of OPS-2071 was equivalent to that of anti-IL-12/23 (p40) antibody. In vitro, OPS-2071 suppressed TNF-α production induced by LPS stimulation and T cell responses in a dose-dependent manner. At high concentrations, these effects were comparable to those of existing immunosuppressive agents, such as prednisolone, in both mouse and human cells. OPS-2071 also showed antibacterial activity against IBD-related bacteria. CONCLUSIONS Our results suggest that OPS-2071 had both immunosuppressive and antibacterial effects. This dual effect makes OPS-2071 a unique and promising candidate for IBD.
Collapse
Affiliation(s)
- Masayoshi Sato
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Kazuyuki Fujii
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Hiroko Takagi
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan.
| | - Isao Shibuya
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Daisuke Oka
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Naomitsu Yamaya
- Department of Drug Metabolism and Pharmacokinetics, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Hiraku Hagita
- Department of Drug Metabolism and Pharmacokinetics, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Makoto Matsumoto
- Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd, Shinagawa Grand Central Tower, 2-16-4 Konan, Minato-ku, Tokyo, 108-8242, Japan
| | - Katsuya Inagaki
- Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd, 463-10, Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| |
Collapse
|
13
|
Seki N, Kimizuka T, Gondo M, Yamaguchi G, Sugiura Y, Akiyama M, Yakabe K, Uchiyama J, Higashi S, Haneda T, Suematsu M, Hase K, Kim YG. D-tryptophan suppresses enteric pathogens and pathobionts and prevents colitis by modulating microbial tryptophan metabolism. iScience 2022; 25:104838. [PMID: 35996581 PMCID: PMC9391578 DOI: 10.1016/j.isci.2022.104838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
D-Amino acids (D-AAs) have various functions in mammals and microbes. D-AAs are produced by gut microbiota and can act as potent bactericidal molecules. Thus, D-AAs regulate the ecological niche of the intestine; however, the actual impacts of D-AAs in the gut remain unknown. In this study, we show that D-Tryptophan (D-Trp) inhibits the growth of enteric pathogen and colitogenic pathobionts. The growth of Citrobacter rodentium in vitro is strongly inhibited by D-Trp treatment. Moreover, D-Trp protects mice from lethal C. rodentium infection via reduction of the pathogen. Additionally, D-Trp prevents the development of experimental colitis by the depletion of specific microbes in the intestine. D-Trp increases the intracellular level of indole acrylic acid (IA), a key molecule that determines the susceptibility of enteric microbes to D-Trp. Treatment with IA improves the survival of mice infected with C. rodentium. Hence, D-Trp could act as a gut environmental modulator that regulates intestinal homeostasis. D-Trp inhibits the growth of Citrobacter rodentium in vitro and in vivo D-Trp suppresses experimental colitis by the depletion of specific gut microbes IA is the metabolite that determines the susceptibility of enteric microbes to D-Trp
Collapse
Affiliation(s)
- Natsumi Seki
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Tatsuki Kimizuka
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Monica Gondo
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Genki Yamaguchi
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Kyosuke Yakabe
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Seiichiro Higashi
- Co-Creation Center, Meiji Holdings Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koji Hase
- Department of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Corresponding author
| |
Collapse
|
14
|
CD30L is involved in the regulation of the inflammatory response through inducing homing and differentiation of monocytes via CCL2/CCR2 axis and NF-κB pathway in mice with colitis. Int Immunopharmacol 2022; 110:108934. [PMID: 35834956 DOI: 10.1016/j.intimp.2022.108934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The pathogenesis of inflammatory bowel diseases (IBD) is complex, and dysregulated immune responses play a pivotal role in its occurrence and development. Our previous studies indicated that CD30L may participate in monocyte-mediated inflammation in patients with UC through the activation of circulating monocytes. However, it remains unclear how CD30L participates in monocyte-mediated inflammation in IBD by activation of circulating monocytes. In this study, we observed an increase in the expression of CD30L and chemokine receptor type 2 (CCR2) on circulating monocytes and pro-inflammatory monocytes in the colon lamina propria in mice with dextran sulfate sodium salt (DSS)-induced colitis. Moreover, there was a positive correlation between the expression levels of CCR2 and CD30L (r = 0.8817, p = 0.0480) in monocytes. In Cd30l-/- mice with DSS-induced colitis, the percentage and absolute number of circulating monocytes and pro-inflammatory monocytes decreased with the downregulation of CCR2. Stimulation via CD30L by immobilized anti-CD30L mAb suppressed the expression of pNF-κB p65, pIκBα, p65 and CCR2 and up-regulated the expression of IκBα in the sorted pro-inflammatory monocytes in Cd30l-/- mice with DSS-induced colitis. The mRNA levels of Ccr2 in the sorted pro-inflammatory monocytes were significantly down-regulated with the presence of immobilized RM153 and inhibitors of NF-κB (BAY 11-7082) in WT mice with DSS-induced colitis. Our results suggested that CD30L could promote the inflammatory response by inducing the homing and differentiation of monocytes via the chemokine ligand 2 (CCL2)/CCR2 axis and NF-κB signaling pathway in mice with colitis. These findings provide a novel target for monocyte-based immunotherapy against IBD.
Collapse
|
15
|
Ozanne J, Shek B, Stephen LA, Novak A, Milne E, Mclachlan G, Midwood KS, Farquharson C. Tenascin-C is a driver of inflammation in the DSS model of colitis. Matrix Biol Plus 2022; 14:100112. [PMID: 35669358 PMCID: PMC9166467 DOI: 10.1016/j.mbplus.2022.100112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Increased tenascin-C staining appeared to predominantly occur in damaged ulcerated areas. Tenascin-C knock-out mice were partly protected from DSS induced colitis. Mice deficient in tenascin-C had areas of + ve EpCAM staining indicating that crypt and epithelial integrity was maintained.
Inflammatory Bowel Disease (IBD) is a grouping of chronic inflammatory disorders of the gut. Tenascin-C is a pro-inflammatory, extracellular matrix protein found upregulated in IBD patients and whilst a pathological driver of chronic inflammation, its precise role in the etiology of IBD is unknown. To study tenascin-C’s role in colitis pathology we investigated its expression in a murine model of IBD. Wild-type (WT) or tenascin-C knockout (KO) male mice were left untreated or treated with dextran sodium sulphate (DSS) in their drinking water. Tenascin-C was upregulated at the mRNA level in the colitic distal colon of day eight DSS treated mice, coinciding with significant increases in gross and histological pathology. Immunohistochemistry localized this increase in tenascin-C to areas of inflammation and ulceration in the mucosa. Tenascin-C KO mice exhibited reduced gross pathology in comparison. These differences also extended to the histopathological level where reduced colonic inflammation and tissue damage were found in KO compared to WT mice. Furthermore, the severity of the distal colon lesions were less in the KO mice after 17 days of recovery from DSS treatment. This study demonstrates a role for tenascin-C as a driver of inflammatory pathology in a murine model of IBD and thus suggests neutralizing its pro-inflammatory activity could be explored as a therapeutic strategy for treating IBD.
Collapse
|
16
|
Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M, Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes 2022; 13:1968257. [PMID: 34494943 PMCID: PMC8437544 DOI: 10.1080/19490976.2021.1968257] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Host-microbial cross-talk plays a crucial role in maintenance of gut homeostasis. However, how microbiota-derived metabolites, e.g., butyrate, regulate functions of neutrophils in the pathogenesis of inflammatory bowel disease (IBD) remains elusive. We sought to investigate the effects of butyrate on IBD neutrophils and elucidate the therapeutic potential in regulating mucosal inflammation. Peripheral neutrophils were isolated from IBD patients and healthy donors, and profiles of proinflammatory cytokines and chemokines were determined by qRT-PCR and ELISA, respectively. The migration and release of neutrophil extracellular traps (NETs) were studied by a Transwell model and immunofluorescence, respectively. The in vivo role of butyrate in regulating IBD neutrophils was evaluated in a DSS-induced colitis model in mice. We found that butyrate significantly inhibited IBD neutrophils to produce proinflammatory cytokines, chemokines, and calprotectins. Blockade of GPCR signaling with pertussis toxin (PTX) did not interfere the effects whereas pan-histone deacetylase (HDAC) inhibitor, trichostatin A (TSA) effectively mimicked the role of butyrate. Furthermore, in vitro studies confirmed that butyrate suppressed neutrophil migration and formation of NETs from both CD and UC patients. RNA sequencing analysis revealed that the immunomodulatory effects of butyrate on IBD neutrophils were involved in leukocyte activation, regulation of innate immune response and response to oxidative stress. Consistently, oral administration of butyrate markedly ameliorated mucosal inflammation in DSS-induced murine colitis through inhibition of neutrophil-associated immune responses such as proinflammatory mediators and NET formation. Our data thus reveal that butyrate constrains neutrophil functions and may serve as a novel therapeutic potential in the treatment of IBD.
Collapse
Affiliation(s)
- Gengfeng Li
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Lin
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cui Zhang
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiying Lu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruixin Zhu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhitao Li
- Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Mingsong Li Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China,CONTACT Zhanju Liu Center for IBD Research, Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, No. 301 Yanchang Road, Shanghai200072, China
| |
Collapse
|
17
|
Taverniti V, Cesari V, Gargari G, Rossi U, Biddau C, Lecchi C, Fiore W, Arioli S, Toschi I, Guglielmetti S. Probiotics Modulate Mouse Gut Microbiota and Influence Intestinal Immune and Serotonergic Gene Expression in a Site-Specific Fashion. Front Microbiol 2021; 12:706135. [PMID: 34539604 PMCID: PMC8441017 DOI: 10.3389/fmicb.2021.706135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotic microorganisms may benefit the host by influencing diverse physiological processes, whose nature and underlying mechanisms are still largely unexplored. Animal models are a unique tool to understand the complexity of the interactions between probiotic microorganisms, the intestinal microbiota, and the host. In this regard, in this pilot study, we compared the effects of 5-day administration of three different probiotic bacterial strains (Bifidobacterium bifidum MIMBb23sg, Lactobacillus helveticus MIMLh5, and Lacticaseibacillus paracasei DG) on three distinct murine intestinal sites (ileum, cecum, and colon). All probiotics preferentially colonized the cecum and colon. In addition, probiotics reduced in the ileum and increased in the cecum and colon the relative abundance of numerous bacterial taxonomic units. MIMBb23sg and DG increased the inducible nitric oxide synthase (iNOS) in the ileum, which is involved in epithelial homeostasis. In addition, MIMBb23sg upregulated cytokine IL-10 in the ileum and downregulated the cyclooxygenase COX-2 in the colon, suggesting an anti-inflammatory/regulatory activity. MIMBb23sg significantly affected the expression of the main gene involved in serotonin synthesis (TPH1) and the gene coding for the serotonin reuptake protein (SERT) in the ileum and colon, suggesting a potential propulsive effect toward the distal part of the gut, whereas the impact of MIMLh5 and DG on serotonergic genes suggested an effect toward motility control. The three probiotics decreased the expression of the permeability marker zonulin in gut distal sites. This preliminary in vivo study demonstrated the safety of the tested probiotic strains and their common ability to modulate the intestinal microbiota. The probiotics affected host gene expression in a strain-specific manner. Notably, the observed effects in the gut were site dependent. This study provides a rationale for investigating the effects of probiotics on the serotonergic system, which is a topic still widely unexplored.
Collapse
Affiliation(s)
- Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Umberto Rossi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Biddau
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Wang J, Lv M, He L, Wang X, Lan Y, Chen J, Chen M, Zhang C, Tang R, Zhou D, Deng X, Li J, Guo T, Price M, Yue B, Fan Z. Transcriptomic landscape of persistent diarrhoea in rhesus macaques and comparison with humans and mouse models with inflammatory bowel disease. Gene 2021; 800:145837. [PMID: 34274469 DOI: 10.1016/j.gene.2021.145837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
Diarrhoea is a widespread disease in captive rhesus macaques (Macaca mulatta) and a small proportion of individuals may experience persistent diarrhoea. Persistent diarrhoea can lead to a compromised immune system, intestinal inflammation and malnutrition. We analyzed the blood transcriptomes of 10 persistent diarrhoeal and 12 healthy rhesus macaques to investigate the gene expression differences between the two groups. We identified 330 DEGs between persistent diarrhoeal and healthy rhesus macaques. The 211 up-regulated DEGs in the diarrhoeal group were mainly enriched in immune-related and interleukin-related categories. Among them, three interleukin (IL) 18 related DEGs (IL18, IL18R1, and IL18BP) played important roles in actively regulating pro-inflammatory responses. Interestingly, the up- and down-regulated DEGs were both enriched in the same immune-related categories. Thus, we applied a new method to examine the distribution of DEGs in all child categories. We found that interleukin and T cell related categories were mainly occupied by up-regulated DEGs, while immunoglobulin production and B cell related categories were enriched by down-regulated DEGs. We also compared rhesus macaque DEGs with the DEGs of inflammatory bowel disease (IBD) humans and IBD mouse models and found that 30-40% of macaque DEGs were shared with IBD humans and mouse models. In conclusion, our results showed that there were significant immune differences between persistent diarrhoeal rhesus macaques and healthy macaques, which was similar to the expression differences in IBD patients and mouse models.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mingyi Lv
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lewei He
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xinqi Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jieyun Chen
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Minghui Chen
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Chunhui Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ruixiang Tang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dan Zhou
- The First People's Hospital of Neijiang, Neijiang 641000, Sichuan, China
| | - Xiaoyang Deng
- Lasa Sunshine Maternity Hospital, Lasa 850000, Xizang, China
| | - Jing Li
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
19
|
Hayes KS, Grencis RK. Trichuris muris and comorbidities - within a mouse model context. Parasitology 2021; 148:1-9. [PMID: 34078488 PMCID: PMC8660644 DOI: 10.1017/s0031182021000883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023]
Abstract
Trichuris muris is a mouse intestinal parasitic nematode that inhabits the large intestine of its host and induces a strong immune response. The effects of this strong anti-parasite response can be found locally within the intestinal niche and also systemically, having effects on multiple organs. Additionally, the anti-parasite response can have multiple effects on infectious organisms and on microbiota that the host is harbouring. It has been shown that Th1 responses induced by T. muris can affect progression of bowel inflammation, cause colitic-like intestinal inflammation, reduce barrier function and intestinal mucosal responses. In the brain, T. muris can exacerbate stroke outcome and other neurological conditions. In the lung, T. muris can suppress airway inflammation and alter immune responses to other parasites. Additionally, T. muris induced responses can inhibit anti-tumour immunity. Although this parasite maintains a localized niche in the large intestine, its effects can be far-reaching and substantially impact other infections through modulation of bystander immune responses.
Collapse
Affiliation(s)
- Kelly S. Hayes
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
21
|
Kourkoulis P, Michalopoulos G, Katifelis H, Giannopoulou I, Lazaris AC, Papaconstantinou I, Karamanolis G, Gazouli M. Leucine-rich alpha-2 glycoprotein 1, high mobility group box 1, matrix metalloproteinase 3 and annexin A1 as biomarkers of ulcerative colitis endoscopic and histological activity. Eur J Gastroenterol Hepatol 2020; 32:1106-1115. [PMID: 32483088 DOI: 10.1097/meg.0000000000001783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The LRG, HMGB1, MMP3 and ANXA1 proteins have been implicated in different inflammatory pathways in ulcerative colitis (UC), but their role as specific biomarkers of both endoscopic and histological activity has yet to be elucidated. In the present study, we aimed to evaluate the LRG1, HMGB1, MMP3 and ANXA1 as potential serum biomarkers for UC endoscopic and histological activity. METHODS This cross-sectional study included UC patients under 5-ASA, and healthy controls (HC) undergoing colonoscopy. Blood and biopsy samples were obtained and endoscopic Mayo sub-score (Ms) was recorded for the UC patients. Intramucosal calprotectin as a marker of histologic activity was evaluated in all biopsy samples and serum LRG1, HMGB1, MMP3 and ANXA1 levels were measured in the blood samples. RESULTS The HCs ANXA1 level was lower compared to that of the UC group [P = 0.00, area under the curve (AUC) = 0.881] and so was the HCs MMP3 level compared to that of patients (P = 0.00, AUC = 0.835). The HCs ANXA1 levels were also lower compared to these of the independent Ms groups, even to the Ms = 0 (P = 0.00, AUC = 0.913). UC endoscopic activity was associated with MMP3 levels (r = 0.54, P = 0.000) but not with ANXA1, LRG1 and HMGB1 levels CONCLUSION: Serum ANXA1 is a potential diagnostic biomarker of UC and serum MMP3 is a potential biomarker of UC endoscopic and histological activity.
Collapse
Affiliation(s)
| | | | - Hector Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens
| | - Ioanna Giannopoulou
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens
| | - Andreas C Lazaris
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens
| | - Ioannis Papaconstantinou
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Karamanolis
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens
| |
Collapse
|
22
|
Li X, Lu C, Yang Y, Yu C, Rao Y. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. Biomed Pharmacother 2020; 129:110486. [PMID: 32768972 DOI: 10.1016/j.biopha.2020.110486] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease and ulcerative colitis and manifests as a complex and dysregulated immune response. To date, there is no cure for IBD; thus, lifelong administration of maintenance drugs is often necessary. Since conventional IBD treatment strategies do not target the sites of inflammation, only limited efficacy is observed with their use. Moreover, the possibility of severe side effects resulting from systemic drug redistribution is high when conventional drug treatments are used. Therefore, a straightforward disease-targeted drug delivery system is desirable. Based on the pathophysiological changes associated with IBD, novel site-specific targeted drug delivery strategies that deliver drugs directly to the inflammation sites can enhance drug accumulation and decrease side effects. This review summarizes novel inflammation targeted delivery systems in the management of IBD. It also discusses the challenges and new perspectives in this field.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chao Lu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanyan Yang
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yuefeng Rao
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
23
|
Shohan M, Dehghani R, Khodadadi A, Dehnavi S, Ahmadi R, Joudaki N, Houshmandfar S, Shamshiri M, Shojapourian S, Bagheri N. Interleukin-22 and intestinal homeostasis: Protective or destructive? IUBMB Life 2020; 72:1585-1602. [PMID: 32365282 DOI: 10.1002/iub.2295] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22 is a member of IL-10 family cytokines with various immunologic functions. As its name implies, IL-22 is known to be secreted mainly by Th22 cells, a recently discovered lineage of CD4+ T cells. Also, Th17, Th1, natural killer cells, γδT cells, and innate immune cells along with some nonlymphoid cells have been confirmed as secondary cellular sources of IL-22. Different cell types such as bronchial and intestinal epithelial cells, keratinocytes, hepatocytes, dermal fibroblasts, and tubular epithelial cells are affected by IL-22. Both pathologic and protective roles have been attributed to IL-22 in maintaining gut homeostasis and inflammation. According to the latest fast-growing investigations, IL-22 is significantly involved in various pathologies including allergic diseases, infection, autoimmunity, and cancer development. Regulating gut immune responses, barrier integrity, and inflammation is dependent on a diverse complex of cytokines and mediators which are secreted by mucosal immune cells. Several investigations have been designed to recognize the role of IL-22 in gastrointestinal immunity. This article tries to discuss the latest knowledge on this issue and clarify the potential of IL-22 to be used in the future therapeutic approaches of intestinal disorders including inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Dehghani
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nazanin Joudaki
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sheyda Houshmandfar
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Shamshiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Shojapourian
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
24
|
Schmitt H, Ulmschneider J, Billmeier U, Vieth M, Scarozza P, Sonnewald S, Reid S, Atreya I, Rath T, Zundler S, Langheinrich M, Schüttler J, Hartmann A, Winkler T, Admyre C, Knittel T, Dieterich Johansson C, Zargari A, Neurath MF, Atreya R. The TLR9 Agonist Cobitolimod Induces IL10-Producing Wound Healing Macrophages and Regulatory T Cells in Ulcerative Colitis. J Crohns Colitis 2020; 14:508-524. [PMID: 31630153 PMCID: PMC7242005 DOI: 10.1093/ecco-jcc/jjz170] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The topically applied Toll-like receptor 9 [TLR9] agonist cobitolimod is a first-in-class DNA-based oligonucleotide with demonstrated therapeutic efficacy in clinical trials with ulcerative colitis [UC] patients. We here characterized its anti-inflammatory mechanism in UC. METHODS Luminal cobitolimod administration was evaluated in an experimental dextran sodium sulfate [DSS]-induced colitis model. Cultured blood and mucosal cells from UC patients were treated with cobitolimod and analysed via microarray, quantitative real-time PCR, ELISA and flow cytometry. Intestinal slides of cobitolimod-treated UC patients were analysed by immunohistochemistry. RESULTS Cobitolimod administration markedly suppressed experimental colitis activity, and microarray analyses demonstrated mucosal IL10 upregulation and suppression of IL17 signalling pathways. Cobitolimod treatment was associated with significant induction of mucosal IL10+Tr1 and Treg cells and suppression of Th17 cells. TLR9 knockout mice indicated that cobitolimod requires TLR9 signalling for IL10 induction. In UC patients, mucosal TLR9 levels correlated with severity of inflammation. Cobitolimod inhibited IL17A and IL17F, but increased IL10 and FoxP3 expression in cultured intestinal UC T cells. Cobitolimod-mediated suppression of intestinal IL17+T cells was abrogated by IL10 blockade. Furthermore, cobitolimod led to heightened IL10 production by wound healing macrophages. Immunohistochemistry in intestinal biopsies of cobitolimod-treated UC patients indicated increased presence of IL10+mononuclear and regulatory T cells, as well as reduction of IL17+cells. CONCLUSION Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
- Heike Schmitt
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Ulmschneider
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Billmeier
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Patrizio Scarozza
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Internal Medicine Department, University Tor Vergata, Rome, Italy
| | - Sophia Sonnewald
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stephen Reid
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Langheinrich
- Department of Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Schüttler
- Department for Anesthesiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Winkler
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - Markus F Neurath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
25
|
Gobbetti T, Berger SB, Fountain K, Slocombe T, Rowles A, Pearse G, Harada I, Bertin J, Haynes AC, Beal AM. Receptor-interacting protein 1 kinase inhibition therapeutically ameliorates experimental T cell-dependent colitis in mice. Cell Death Dis 2020; 11:220. [PMID: 32249785 PMCID: PMC7136199 DOI: 10.1038/s41419-020-2423-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas Gobbetti
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK.
| | - Scott B Berger
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Kathryn Fountain
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Tom Slocombe
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Alison Rowles
- Department of Pathology, GlaxoSmithKline, Ware, Hertfordshire, UK
| | - Gail Pearse
- Department of Pathology, GlaxoSmithKline, Ware, Hertfordshire, UK
| | | | - John Bertin
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Andrea C Haynes
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Allison M Beal
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
26
|
Esteban S, Clemente C, Koziol A, Gonzalo P, Rius C, Martínez F, Linares PM, Chaparro M, Urzainqui A, Andrés V, Seiki M, Gisbert JP, Arroyo AG. Endothelial MT1-MMP targeting limits intussusceptive angiogenesis and colitis via TSP1/nitric oxide axis. EMBO Mol Med 2020; 12:e10862. [PMID: 31793743 PMCID: PMC7005619 DOI: 10.15252/emmm.201910862] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022] Open
Abstract
Pathological angiogenesis contributes to cancer progression and chronic inflammatory diseases. In inflammatory bowel disease, the microvasculature expands by intussusceptive angiogenesis (IA), a poorly characterized mechanism involving increased blood flow and splitting of pre-existing capillaries. In this report, mice lacking the protease MT1-MMP in endothelial cells (MT1iΔEC ) presented limited IA in the capillary plexus of the colon mucosa assessed by 3D imaging during 1% DSS-induced colitis. This resulted in better tissue perfusion, preserved intestinal morphology, and milder disease activity index. Combined in vivo intravital microscopy and lentiviral rescue experiments with in vitro cell culture demonstrated that MT1-MMP activity in endothelial cells is required for vasodilation and IA, as well as for nitric oxide production via binding of the C-terminal fragment of MT1-MMP substrate thrombospondin-1 (TSP1) to CD47/αvβ3 integrin. Moreover, TSP1 levels were significantly higher in serum from IBD patients and in vivo administration of an anti-MT1-MMP inhibitory antibody or a nonamer peptide spanning the αvβ3 integrin binding site in TSP1 reduced IA during mouse colitis. Our results identify MT1-MMP as a new actor in inflammatory IA and a promising therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Sergio Esteban
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Cristina Clemente
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigaciones Biológicas (CIB‐CSIC)MadridSpain
| | - Agnieszka Koziol
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Pilar Gonzalo
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Cristina Rius
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBER‐CV)MadridSpain
| | - Fernando Martínez
- Bioinformatics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Pablo M Linares
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - María Chaparro
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - Ana Urzainqui
- Immunology DepartmentFIB‐Hospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)MadridSpain
| | - Vicente Andrés
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBER‐CV)MadridSpain
| | - Motoharu Seiki
- Division of Cancer Cell ResearchInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Javier P Gisbert
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - Alicia G Arroyo
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigaciones Biológicas (CIB‐CSIC)MadridSpain
| |
Collapse
|
27
|
Network pharmacology-based identification of the protective mechanisms of taraxasterol in experimental colitis. Int Immunopharmacol 2019; 71:259-266. [DOI: 10.1016/j.intimp.2019.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
|
28
|
Hu S, Cheng M, Fan R, Wang Z, Wang L, Zhang T, Zhang M, Louis E, Zhong J. Beneficial effects of dual TORC1/2 inhibition on chronic experimental colitis. Int Immunopharmacol 2019; 70:88-100. [PMID: 30797172 DOI: 10.1016/j.intimp.2019.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM AZD8055, a new immunosuppressive reagent, a dual TORC1/2 inhibitor, had been used successfully in animal models for heart transplantation. The aim of this study was to evaluate the effects and mechanisms of AZD8055 on chronic intestinal inflammation. METHODS Dextran sulfate sodium (DSS) - induced chronic colitis was used to investigate the effects of AZD8055 on the development of colitis. Colitis activity was monitored by body weight assessment, colon length, histology and cytokine profile analysis. RESULTS AZD8055 treatment significantly alleviated the severity of colitis, as assessed by colonic length and colonic damage. In addition, AZD8055 treatment decreased the colonic CD4+ T cell numbers and reduced both Th1 and Th17 cell activation and cytokine production. The percentages of Treg cells in the colon were also expanded by AZD8055 treatment. Furthermore, AZD8055 effectively inhibited mTOR downstream proteins and signal transducer and activator of transcription related proteins in CD4+ T cells of intestinal lamina propria. CONCLUSIONS These findings increased our understanding of DSS-induced colitis and shed new lights on mechanisms of digestive tract chronic inflammation. Dual TORC1/2 inhibition showed potent anti-inflammatory and immune regulation effects by targeting critical signaling pathways. The results supported the strategy of using dual mTOR inhibitor to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Shurong Hu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China; Translational Gastroenterology Research Unit, GIGA-R, University of Liège, Belgium
| | - Mengmeng Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and technology, Wuhan, Hubei, PR China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Maochen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Edouard Louis
- Translational Gastroenterology Research Unit, GIGA-R, University of Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Unit, University Hospital, CHU Liege, Domaine du Sart Tilman, 4000 Liege, Belgium.
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
29
|
Charlesworth RPG, Agnew LL, Scott DR, Andronicos NM. Celiac disease gene expression data can be used to classify biopsies along the Marsh score severity scale. J Gastroenterol Hepatol 2019; 34:169-177. [PMID: 29972865 DOI: 10.1111/jgh.14369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM The diagnosis of celiac disease autoimmune pathology relies on the subjective histological assignment of biopsies into Marsh score categories. It is hypothesized that Marsh score categories have unique gene expression signatures. The aims were as follows: first, to develop a celiac disease quantitative reverse transcription-polymerase chain reaction (RT-PCR) array; second, define gene expression signatures associated with Marsh score categories; and third, develop equations that classify biopsies into Marsh score categories and to monitor the efficacy of patient treatment. METHODS Gene targets for inclusion in the celiac RT-PCR (qRT-PCR) array were identified using systematic analysis of published celiac transcriptomic data. The array was used to assess the gene expression associated with histological changes in duodenal biopsies obtained from adult patients. Finally, Marsh score classification equations were defined using discriminant analysis. RESULTS The array contained 87 genes. The expression of 26 genes were significantly (p < 0.06) associated with the discrete Marsh score categories. As the Marsh score pathology of biopsies increased, there was a progression of innate immune gene expression through adaptive Th1-specific gene expression with a concurrent decrease in intestinal structural gene expression in high Marsh score samples. These 26 genes were used to define classification equations that accounted for 99% of the observed experimental variation and which could classify biopsies into Marsh score categories and monitor patient treatment progression. CONCLUSIONS This proof-of-concept study successfully developed a celiac RT-PCR array and has provided evidence that discriminant equations defined using gene expression data can objectively and accurately classify duodenal biopsies into Marsh score categories.
Collapse
Affiliation(s)
- Richard P G Charlesworth
- Discipline of Biomedical Sciences, School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Linda L Agnew
- Discipline of Biomedical Sciences, School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - David R Scott
- Hunter New England Area Health Service, Tamworth, New South Wales, Australia
| | - Nicholas M Andronicos
- Discipline of Biomedical Sciences, School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
30
|
Rankin CR, Theodorou E, Man Law IK, Rowe L, Kokkotou E, Pekow J, Wang J, Martín MG, Pothoulakis C, Padua D. Identification of novel mRNAs and lncRNAs associated with mouse experimental colitis and human inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2018; 315:G722-G733. [PMID: 29953254 PMCID: PMC6293253 DOI: 10.1152/ajpgi.00077.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend toward improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and noncoding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate-induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 noncoding RNAs that were differentially expressed in either mouse model. Surprisingly, only three noncoding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and noncoding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD. NEW & NOTEWORTHY Much of the genome is transcribed as non-protein-coding RNAs; however, their role in inflammatory bowel disease is largely unknown. This study represents the first of its kind to analyze the expression of long noncoding RNAs in two mouse models of inflammatory bowel disease and correlate them to human clinical samples. Using high-throughput RNA-seq analysis, we identified new coding and noncoding RNAs that were differentially expressed such as ubiquitin D and 5730437C11Rik.
Collapse
Affiliation(s)
- Carl Robert Rankin
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Evangelos Theodorou
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ivy Ka Man Law
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Lorraine Rowe
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Efi Kokkotou
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Joel Pekow
- 3Division of Gastroenterology, University of Chicago, Chicago, Illinois
| | - Jiafang Wang
- 4Division of Pediatrics, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Martín G. Martín
- 4Division of Pediatrics, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Charalabos Pothoulakis
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - David Padua
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California,5Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
31
|
Liu Y, Dong Y, Zhu X, Fan H, Xu M, Chen Q, Nan Z, Wu H, Deng S, Liu X, Zuo D, Yang J. MiR-155 inhibition ameliorates 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. Int Immunopharmacol 2018; 64:401-410. [PMID: 30253332 DOI: 10.1016/j.intimp.2018.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 08/23/2018] [Accepted: 09/08/2018] [Indexed: 01/19/2023]
Abstract
Th17 cells play an important role in the immune imbalance and inflammatory state in colonic mucosa of Inflammatory Bowel Disease (IBD) and to clarify the mechanism that affect the differentiation of Th17 cells will help us find a new target for the treatment of IBD. MiR-155 which is reported to have an important role in regulating immune system function is also detected to be significantly up-regulated in colonic tissues of IBD patients. However, whether and how miR-155 affects the differentiation of Th17 cells in the colon of IBD patients is still worth studying. Here, we investigated the role of miR-155 in TNBS-induced rat colitis. Firstly, we found that the disease activity index (DAI) and Colon pathological changes were significantly reduced (P < 0.05) by using miR-155 inhibition sequences delivered by lentiviral vector, which revealed that miR-155 inhibition ameliorated TNBS-Induced experimental colitis. Then, we carried out flow cytometry, ELISA, qRT-PCR, and found that in TNBS+miR-155 inhibition group, the proportion of Th17 cells in spleens and mesenteric lymph nodes (MLNs) and the level of the Th17 cell-associated cytokines IL-6, IL-17A, IL-17F and IL-21 in colon tissues were significantly reduced (P < 0.05), which revealed that miR-155 inhibition regulated the differentiation and function of Th17 cells. Finally, we discovered that Jarid2 was significantly elevated (P < 0.05) by miR-155 inhibition and notch1 expression was inversely correlated with Jarid2 by using Immunohistochemistry and western blot. This study suggests that miR-155 inhibition ameliorates TNBS-induced colitis by regulating the Th17 cells differentiation and function and Jarid2/notch1 is closely related with the process.
Collapse
Affiliation(s)
- Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiwen Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Meng Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen Nan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dongmei Zuo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
32
|
Konarska K, Cieszkowski J, Warzecha Z, Ceranowicz P, Chmura A, Kuśnierz-Cabala B, Gałązka K, Kowalczyk P, Miskiewicz A, Konturek TJ, Pędziwiatr M, Dembiński A. Treatment with Obestatin-A Ghrelin Gene-Encoded Peptide-Reduces the Severity of Experimental Colitis Evoked by Trinitrobenzene Sulfonic Acid. Int J Mol Sci 2018; 19:ijms19061643. [PMID: 29865176 PMCID: PMC6032262 DOI: 10.3390/ijms19061643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Obestatin is a 23-amino acid peptide derived from proghrelin, a common prohormone for ghrelin and obestatin. Previous studies showed that obestatin exhibited some protective and therapeutic effects in the gut. The aim of our presented study was to examine the effect of treatment with obestatin on trinitrobenzene sulfonic acid (TNBS)-induced colitis. In rats anesthetized with ketamine, colitis was induced through intrarectal administration of 25 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Obestatin was administered intraperitoneally at doses of 4, 8, or 16 nmol/kg, twice per day for four consecutive days. The first dose of obestatin was given one day before the induction of colitis, and the last one was given two days after administration of TNBS. Fourteen days after the induction of colitis, rats were anesthetized again with ketamine, and the severity of colitis was determined. The administration of obestatin had no effect on the parameters tested in rats without the induction of colitis. In rats with colitis, administration of obestatin at doses of 8 or 16 nmol/kg reduced the area of colonic damage, and improved mucosal blood flow in the colon. These effects were accompanied by a reduction in the colitis-evoked increase in the level of blood leukocytes, and mucosal concentration of pro-inflammatory interleukin-1β. Moreover, obestatin administered at doses of 8 or 16 nmol/kg reduced histological signs of colonic damage. The administration of obestatin at a dose of 4 nmol/kg failed to significantly affect the parameters tested. Overall, treatment with obestatin reduced the severity of TNBS-induced colitis in rats. This effect was associated with an improvement in mucosal blood flow in the colon, and a decrease in local and systemic inflammatory processes.
Collapse
Affiliation(s)
- Katarzyna Konarska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Jakub Cieszkowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Beata Kuśnierz-Cabala
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Krystyna Gałązka
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland.
| | - Andrzej Miskiewicz
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 00-246 Warsaw, Poland.
| | - Thomas Jan Konturek
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Michał Pędziwiatr
- Second Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Artur Dembiński
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| |
Collapse
|
33
|
Cytoglobin affects tumorigenesis and the expression of ulcerative colitis-associated genes under chemically induced colitis in mice. Sci Rep 2018; 8:6905. [PMID: 29720595 PMCID: PMC5931983 DOI: 10.1038/s41598-018-24728-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Cytoglobin (Cygb) is a member of the hemoglobin family and is thought to protect against cellular hypoxia and oxidative stress. These functions may be particularly important in inflammation-induced cancer, e.g., in patients with ulcerative colitis (UC). In this study, we investigated the development of inflammation and tumors in a murine model of inflammation-induced colorectal cancer using a combined treatment of azoxymethane and dextran sulfate sodium. A bioinformatics analysis of genome-wide expression data revealed increased colonic inflammation at the molecular level accompanied by enhanced macroscopic tumor development in Cygb-deficient mice. Moreover, the expression of the UC-associated gene neurexophilin and PC-esterase domain family member 4 (Nxpe4) depended on the presence of Cygb in the inflamed colonic mucosa. Compared to wild type mice, RT-qPCR confirmed a 14-fold (p = 0.0003) decrease in Nxpe4 expression in the inflamed colonic mucosa from Cygb-deficient mice. An analysis of Cygb protein expression suggested that Cygb is expressed in fibroblast-like cells surrounding the colonic crypts. Histological examinations of early induced lesions suggested that the effect of Cygb is primarily at the level of tumor promotion. In conclusion, in this model, Cygb primarily seemed to inhibit the development of established microadenomas.
Collapse
|
34
|
Kralicek SE, Nguyen M, Rhee KJ, Tapia R, Hecht G. EPEC NleH1 is significantly more effective in reversing colitis and reducing mortality than NleH2 via differential effects on host signaling pathways. J Transl Med 2018; 98:477-488. [PMID: 29396422 PMCID: PMC5920738 DOI: 10.1038/s41374-017-0016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a foodborne pathogen that uses a type III secretion system to translocate effector molecules into host intestinal epithelial cells (IECs) subverting several host cell processes and signaling cascades. Interestingly, EPEC infection induces only modest intestinal inflammation in the host. The homologous EPEC effector proteins, NleH1 and NleH2, suppress the nuclear factor-κB (NF-κB) pathway and apoptosis in vitro. Increased apoptosis and activation of NF-κB and MAP kinases (MAPK) contribute to the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to determine if NleH1 and NleH2 also block MAPK pathways in vitro and in vivo, and to compare the effects of these bacterial proteins on a murine model of colitis. Cultured IECs were infected with various strains of EPEC expressing NleH1 and NleH2, or not, and the activation of ERK1/2 and p38 was determined. In addition, the impact of infection with various strains of EPEC on murine DSS colitis was assessed by change in body weight, colon length, histology, and survival. Activation of apoptosis and MAPK signaling were also evaluated. Our data show that NleH1, but not NleH2, suppresses ERK1/2 and p38 activation in vitro. Interestingly, NleH1 affords significantly greater protection against and hastens recovery from dextran sodium sulfate (DSS)-induced colitis compared to NleH2. Strikingly, colitis-associated mortality was abolished by infection with EPEC strains expressing NleH1. Interestingly, in vivo NleH1 suppresses activation of ERK1/2 and p38 and blocks apoptosis independent of the kinase domain that inhibits NF-κB. In contrast, NleH2 suppresses only caspase-3 and p38, but not ERK1/2. We conclude that NleH1 affords greater protection against and improves recovery from DSS colitis compared to NleH2 due to its ability to suppress ERK1/2 in addition to NF-κB, p38, and apoptosis. These findings warrant further investigation of anti-inflammatory bacterial proteins as novel treatments for IBD.
Collapse
Affiliation(s)
- Sarah E. Kralicek
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Mai Nguyen
- Cortexyme Inc, South San Francisco, CA, USA
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, Republic of Korea
| | - Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Gail Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA. .,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA. .,Edward Hines Jr. VA Hospital, Hines, IL, USA.
| |
Collapse
|
35
|
Zhang HJ, Xu B, Wang H, Xu B, Wang GD, Jiang MZ, Lei C, Ding ML, Yu PF, Nie YZ, Wu KC, Sha SM, Li MB. IL-17 is a protection effector against the adherent-invasive Escherichia coli in murine colitis. Mol Immunol 2018; 93:166-172. [PMID: 29195141 DOI: 10.1016/j.molimm.2017.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is caused by aberrant immune responses to the gut microbiota. Among the gut microbiota, adherent-invasive Escherichia Coli (AIEC) is thought to be the pathogen through invading the intestinal epithelial cells and causing inflammation. IL-17 secretion increase, induced by enhanced bacterial adhesion to the intestine epithelium, could on one hand protect the mucosa, but on the other hand, over amount of IL-17 initializes inflammation reactions that in turn damages the mucosa. The relationship between IL-17 and AIEC is still unclear. In this study, we tried to elucidate the function of IL-17 in AIEC-mediated colitis. Wild type (WT) and IL-17 knockout (IL-17 KO) mice were inoculated with AIEC strain E. coli LF82 and treated with dextran sodium sulphate (DSS). Histological examination of the colon was performed. Mucosa damage was assessed and scored. IL-22 and IL-17 in colon tissues were detected by ELISA, qPCR and immunohistochemistry methods. Transient AIEC colonization in IL-17 KO mice resulted in increased intestinal epithelial damage, systemic bacterial burden and mortality compared with WT controls. Moreover, IL-17 is required for the induction of IL-22 in the experimental animal models during AIEC strain E. coli LF82 colonization. These results indicate IL-17 plays a protective role in AIEC strain E. coli LF82 induced colitis by promoting IL-22 secretion.
Collapse
Affiliation(s)
- Hai-Jia Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Bin Xu
- No. 174 Hospital of People's Liberation Army, Xiamen, Fujian Province, 361000, PR China
| | - Hu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Bing Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Guo-Dong Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Ming-Zuo Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Chao Lei
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Mei-Ling Ding
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Peng-Fei Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Kai-Chun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Su-Mei Sha
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China.
| | - Meng-Bin Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China.
| |
Collapse
|
36
|
Ding X, Li D, Li M, Tian D, Yu H, Yu Q. Tumor necrosis factor-α acts reciprocally with solute carrier family 26, member 3, (downregulated-in-adenoma) and reduces its expression, leading to intestinal inflammation. Int J Mol Med 2017; 41:1224-1232. [PMID: 29286110 PMCID: PMC5819926 DOI: 10.3892/ijmm.2017.3347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Solute carrier family 26, member 3 (Slc26a3), also termed downregulated-in-adenoma (DRA) is a member of the Slc26 family of anion transporters and is mutated in congenital chloride diarrhea. Our previous study demonstrated that DRA deficiency is associated with severely reduced colonic HCO3‑ secretion, a loss of colonic fluid absorption, a lack of a firmly adherent mucus layer and a severely reduced colonic mucosal resistance to dextran sodium sulfate (DSS) damage. However, the direct effect of mediators that trigger intestinal inflammatory factors on DRA has not been fully investigated. Tumor necrosis factor (TNF)‑α is a central mediator of intestinal inflammation in inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease. However, to the best of our knowledge, whether TNF‑α acts reciprocally with DRA leading to the development of gut inflammation in IBD has not been reported. The present study identified that the expression level of DRA was reduced in active UC patients and DSS‑induced colitis mice with high expression levels of TNF‑α identified in the peripheral blood serum. In addition, TNF‑α may affect the expression level of DRA in human colonic Caco2BBE cells in a dose‑dependent manner, including in DRA overexpressed Caco2BBE cells. Furthermore, knockdown of TNF‑α in Caco2BBE cells led to a higher expression level of DRA and a markedly reduced secretion of TNF‑α in the culture media. In addition, knockdown of DRA in Caco2BBE cells led to a higher secretion of TNF‑α in the culture media compared with the control cells, which could be reversed by overexpression of DRA. Overall, these results indicate that TNF‑α may act reciprocally with DRA, leading to the development of intestinal inflammation. Based on the pivotal position of TNF‑α in IBD, DRA is hypothesized to have therapeutic potential against colitis serving as an important target.
Collapse
Affiliation(s)
- Xiangming Ding
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dongxiao Li
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengke Li
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hongbing Yu
- Department of Pediatrics, BC Children's Hospital and The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
37
|
Duan L, Rao X, Braunstein Z, Toomey AC, Zhong J. Role of Incretin Axis in Inflammatory Bowel Disease. Front Immunol 2017; 8:1734. [PMID: 29270177 PMCID: PMC5723660 DOI: 10.3389/fimmu.2017.01734] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/23/2017] [Indexed: 12/25/2022] Open
Abstract
The inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory conditions of the gastrointestinal tract and involve a complicated reciprocity of environmental, genetic, and immunologic factors. Despite substantial advances in the foundational understanding of the immunological pathogenesis of IBD, the detailed mechanism of the pathological progression in IBD remains unknown. In addition to Th1/Th2 cells, whose role in IBD has been previously well defined, recent evidence indicates that Th17 cells and Tregs also play a crucial role in the development of IBD. Diets which contain excess sugars, salt, and fat may also be important actors in the pathogenesis of IBD, which may be the cause of high IBD incidence in western developed and industrialized countries. Up until now, the reason for the variance in prevalence of IBD between developed and developing countries has been unknown. This is partly due to the increasing popularity of western diets in developing countries, which makes the data harder to interpret. The enterocrinins glucagon-like peptides (GLPs), including GLP-1 and GLP-2, exhibit notable benefits on lipid metabolism, atherosclerosis formation, plasma glucose levels, and maintenance of gastric mucosa integrity. In addition to the regulation of nutrient metabolism, the emerging role of GLPs and their degrading enzyme dipeptidyl peptidase-4 (DPP-4) in gastrointestinal diseases has gained increasing attention. Therefore, here we review the function of the DPP-4/GLP axis in IBD.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amelia C. Toomey
- Department of Health Sciences, University of Missouri, Columbia, MO, United States
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
38
|
Duijvis NW, Moerland PD, Kunne C, Slaman MMW, van Dooren FH, Vogels EW, de Jonge WJ, Meijer SL, Fluiter K, te Velde AA. Inhibition of miR-142-5P ameliorates disease in mouse models of experimental colitis. PLoS One 2017; 12:e0185097. [PMID: 29059189 PMCID: PMC5653202 DOI: 10.1371/journal.pone.0185097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are epigenetically involved in regulating gene expression. They may be of importance in the pathogenesis of inflammatory bowel disease (IBD). The aim of this study was to determine the role of miRNAs by their specific blocking in the CD4+CB45RBhi T-cell transfer model of chronic experimental colitis. METHODS Colitis caused by transfer of WT CD4+CD45RBhi T cells in severe combined immunodeficiency (SCID) mice shares many features with human IBD. Colonic miRNA expression levels were measured at three time points in colitic mice, where a time-dependent upregulation of multiple miRNAs was seen. To inhibit these miRNAs, specific locked-nucleic-acid-modified (LNA) oligonucleotides were administered in further experiments at the moment the mice demonstrated the first signs of colitis. As controls, PBS and a scrambled sequence of anti-miRNA were used. Genome-wide expression analyses were also performed in order to detect candidate target genes of miR-142-5p, of which inhibition resulted in most effective amelioration of colitis. RESULTS Anti-miR-142-5p reduced colitis and related wasting disease when administered in the T-cell transfer model, reflected in reduced weight loss and a lower disease activity index (DAI). In further validation experiments we also observed a higher survival rate and less colonic histological inflammation in the antagomir-treated mice. Moreover, by genome-wide expression analyses, we found downstream activation of the anti-inflammatory IL10RA pathway, including three genes also found in the top-20 candidate target genes of miR-142-5p. CONCLUSION In conclusion, CD4+CD45RBhi-transfer colitis induces miR-142-5p. Blocking miR-142-5p reduced colitis and prevented wasting disease, possibly by activation of the IL10RA pathway.
Collapse
Affiliation(s)
- Nicolette W. Duijvis
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), Amsterdam, the Netherlands
- * E-mail: (NWD); (AAV)
| | - Perry D. Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Cindy Kunne
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - Monique M. W. Slaman
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - Faas H. van Dooren
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - Esther W. Vogels
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - Sybren L. Meijer
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - Anje A. te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), Amsterdam, the Netherlands
- * E-mail: (NWD); (AAV)
| |
Collapse
|
39
|
Jayawardena D, Anbazhagan AN, Guzman G, Dudeja PK, Onyuksel H. Vasoactive Intestinal Peptide Nanomedicine for the Management of Inflammatory Bowel Disease. Mol Pharm 2017; 14:3698-3708. [PMID: 28991483 DOI: 10.1021/acs.molpharmaceut.7b00452] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the intestine, with increasing incidence worldwide. At present, the management of IBD is an unmet medical need due to the ineffectiveness of currently available drugs in treating all patients, and there is strong demand for novel therapeutics. In this regard, vasoactive intestinal peptide, a potent anti-inflammatory endogenous hormone, has shown promise in managing multiple immune disorders in animal models. However, when administered in the free form, VIP undergoes rapid degradation in vivo, and with continuous infusion, it causes severe dose limiting side effects. To overcome these barriers, we have developed a superior mode to deliver VIP in its native form, using sterically stabilized micelles (VIP-SSM). Our previous studies demonstrated that, VIP, when administered in SSM, prevented joint damage and inflammation in a mouse model of rheumatoid arthritis at a significantly lower dose than the free peptide, completely abrogating the serious side effect of hypotension associated with VIP. In the current study, we demonstrate the therapeutic benefit of VIP-SSM over free peptide in reversing severe colitis associated with IBD. First, we conducted preliminary studies with dextran sulfate sodium (DSS) induced colitis in mice, to determine the effectiveness of VIP administered on alternate days in reducing disease severity. Thereafter, a single intra peritoneal injection of VIP-SSM or the free peptide was used to determine its therapeutic effect on the reversal of colitis and associated diarrhea. The results demonstrated that when administered on alternate days, both VIP-SSM and VIP were capable of alleviating DSS colitis in mice. However, when administered as a single dose, in a therapeutic setting, VIP-SSM showed superior benefits compared to the free peptide in ameliorating colitis phenotype. Namely, the loss of solid fecal pellets and increased fluid accumulation in colon resulting from DSS insult was abrogated in VIP-SSM treated mice and not with free VIP. Furthermore, reduced protein and mRNA levels of the major chloride bicarbonate exchanger, down regulated in adenoma (DRA), seen with DSS was reversed with VIP-SSM, but not with the free peptide. Similarly, VIP-SSM treatment significantly reduced the elevated mRNA levels of pro-inflammatory cytokines and showed significant histologic recovery when compared to mice treated with free VIP. Therefore, these results demonstrated that as a single dose, the anti-inflammatory and antidiarrheal effects of VIP can be achieved effectively when administered as a nanomedicine. Therefore, we propose VIP-SSM to be developed as a potential therapeutic tool for treating ulcerative colitis, a type of IBD.
Collapse
Affiliation(s)
| | | | | | - Pradeep K Dudeja
- Jesse Brown VA Medical Center , Chicago Illinois 60612, United States
| | | |
Collapse
|
40
|
van Herk EH, Te Velde AA. Treg subsets in inflammatory bowel disease and colorectal carcinoma: Characteristics, role, and therapeutic targets. J Gastroenterol Hepatol 2016; 31:1393-404. [PMID: 26990130 DOI: 10.1111/jgh.13342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
T regulatory cells (Tregs) play an important role in the regulation of autoimmunity, autoinflammation, allergic diseases, infection, and the tumor environment. Different subsets are characterized that use a number of regulatory mechanisms. Tregs can influence the progression of inflammatory bowel disease and the development of colorectal cancer. Knowledge of Tregs and their regulatory mechanisms can provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Egbert H van Herk
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Tian Z, Liu J, Liao M, Li W, Zou J, Han X, Kuang M, Shen W, Li H. Beneficial Effects of Fecal Microbiota Transplantation on Ulcerative Colitis in Mice. Dig Dis Sci 2016; 61:2262-2271. [PMID: 26846120 DOI: 10.1007/s10620-016-4060-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic condition and the most common form of inflammatory bowel disease. The goal of standard treatment is mainly to induce and maintain remission with anti-inflammatory, immunosuppressive agents, and/or colectomy. Fecal microbiota transplantation (FMT) has been used successfully to treat relapsing or refractory Clostridium difficile infection. The alteration of microbiota in mouse models of UC as well as in patients suggested the possibility of treating UC with FMT. AIMS To study the effects of FMT on dextran sodium sulfate (DSS)-induced UC model in mice. METHODS Littermates of BALB/c and C57BL/6J were randomized into four groups: normal control , treatment with DSS for 7 days (DSS - FMT), treatment with DSS followed by FMT for another 8 days (DSS + FMT), and treatment with DSS and FMT followed by another 5 days for recovery (remission). Body weight, survival rate, and DAI scores of mice in each group were recorded. Changes in distal colon were studied by histopathology. Alterations of spleen and lamina propria regulatory lymphocytes, major bacterial species in feces and inflammatory cytokines in colon were also studied. RESULTS C57BL/6J mice experienced more significant weight loss than BALB/c mice after DSS treatment, regardless of whether the two strains of mice were co-housed or not. FMT caused reversal of DAI scores in BALB/c but not in C57BL/6J mice. In BALB/c mice, FMT also reduced colon inflammation that was paralleled by decreased inflammatory cytokine levels, altered bacterial microbiota, and regulatory lymphocyte proportions. CONCLUSIONS FMT is effective in a mouse model of UC through its modulation on gut microbiota and the host immune system.
Collapse
MESH Headings
- Animals
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/pathology
- CD4-Positive T-Lymphocytes
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/pathology
- Colitis, Ulcerative/therapy
- Colon/immunology
- Colon/microbiology
- Colon/pathology
- Cytokines/immunology
- DNA, Bacterial/analysis
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Fecal Microbiota Transplantation/methods
- Feces/microbiology
- Female
- Gastrointestinal Microbiome/genetics
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Zhihui Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jiaqi Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinxin Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mingjie Kuang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wanqiu Shen
- Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Haidong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
42
|
Zeeff SB, Kunne C, Bouma G, de Vries RB, Te Velde AA. Actual Usage and Quality of Experimental Colitis Models in Preclinical Efficacy Testing: A Scoping Review. Inflamm Bowel Dis 2016; 22:1296-305. [PMID: 27104821 DOI: 10.1097/mib.0000000000000758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is no standardized validated experimental model used to predict human drug response, and the choice of model is not based on systematic evidence. Therefore, we decided to systematically investigate which models are currently used by selecting studies from literature that use prescribed inflammatory bowel disease medication as a positive control. METHODS A search of PubMed was performed using terms describing experimental colitis models and the drugs used in corresponding clinical practice followed by the application of an animal filter. Each article was read and scored using a predesigned form describing the characteristics of the study (17 items), a quality assessment (10 items) completed by a meta-analysis. RESULTS One hundred ninety-four unique articles were included that met the selection criteria. A large heterogeneity was found regarding the characteristics of the animals used, induction methods, treatment protocol, and reporting quality. If categorized by colitis model only a small number of studies used a chronic model (10/194). Almost all use acute chemical models that investigate a response to epithelial damage, rather than chronic colitis. Fifty-six percent used a TNBS model and 20% used a dextran sodium sulfate model. In these models, an ameliorating effect of 5-ASA and corticosteroids was demonstrated and also a difference in outcome when male or female animals are used. CONCLUSIONS This scope describes a huge heterogeneity in study designs for preclinical drug efficacy. In addition, more than three-quarters of the studies used an acute model irrelevant for testing new treatment options for inflammatory bowel disease.
Collapse
Affiliation(s)
- Sophia B Zeeff
- *Tytgat Institute for Liver and Intestinal Research, AMC, Amsterdam, the Netherlands; †Department of Gastroenterology, VUmc, Amsterdam, the Netherlands; and ‡SYstematic Review Centre for Laboratory animal Experimentation, Radboudumc, Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
43
|
Identification of Commensal Species Positively Correlated with Early Stress Responses to a Compromised Mucus Barrier. Inflamm Bowel Dis 2016; 22:826-40. [PMID: 26926038 DOI: 10.1097/mib.0000000000000688] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Our aims were (1) to correlate changes in the microbiota to intestinal gene expression before and during the development of colitis in Muc2 mice and (2) to investigate whether the heterozygote Muc2 mouse would reveal host markers of gut barrier stress. METHODS Colon histology, transcriptomics, and microbiota profiling of faecal samples was performed on wild type, Muc2, and Muc2 mice at 2, 4, and 8 weeks of age. RESULTS Muc2 mice develop colitis in proximal colon after weaning, resulting in inflammatory and adaptive immune responses, and expression of genes associated with human inflammatory bowel disease. Muc2 mice do not develop colitis, but produce a thinner mucus layer. The transcriptome of Muc2 mice revealed differential expression of genes participating in mucosal stress responses and exacerbation of a transient inflammatory state around the time of weaning. Young wild type and Muc2 mice have a more constrained group of bacteria as compared with the Muc2 mice, but at 8 weeks the microbiota composition is more similar in all mice. At all ages, microbiota composition discriminated the groups of mice according to their genotype. Specific bacterial clusters correlated with altered gene expression responses to stress and bacteria, before colitis development, including colitogenic members of the genus Bacteroides. CONCLUSIONS The abundance of Bacteroides pathobionts increased before histological signs of pathology suggesting they may play a role in triggering the development of colitis. The Muc2 mouse produces a thinner mucus layer and can be used to study mucus barrier stress in the absence of colitis.
Collapse
|
44
|
Reyes JL, Fernando MR, Lopes F, Leung G, Mancini NL, Matisz CE, Wang A, McKay DM. IL-22 Restrains Tapeworm-Mediated Protection against Experimental Colitis via Regulation of IL-25 Expression. PLoS Pathog 2016; 12:e1005481. [PMID: 27055194 PMCID: PMC4824453 DOI: 10.1371/journal.ppat.1005481] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/09/2016] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL)-22, an immune cell-derived cytokine whose receptor expression is restricted to non-immune cells (e.g. epithelial cells), can be anti-inflammatory and pro-inflammatory. Mice infected with the tapeworm Hymenolepis diminuta are protected from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Here we assessed expulsion of H. diminuta, the concomitant immune response and the outcome of DNBS-induced colitis in wild-type (WT) and IL-22 deficient mice (IL-22-/-) ± infection. Interleukin-22-/- mice had a mildly impaired ability to expel the worm and this correlated with reduced or delayed induction of TH2 immunity as measured by splenic and mesenteric lymph node production of IL-4, IL-5 and IL-13 and intestinal Muc-2 mRNA and goblet cell hyperplasia; in contrast, IL-25 increased in the small intestine of IL-22-/- mice 8 and 12 days post-infection compared to WT mice. In vitro experiments revealed that H. diminuta directly evoked epithelial production of IL-25 that was inhibited by recombinant IL-22. Also, IL-10 and markers of regulatory T cells were increased in IL-22-/- mice that displayed less DNBS (3 mg, ir. 72h)-induced colitis. Wild-type mice infected with H. diminuta were protected from colitis, as were infected IL-22-/- mice and the latter to a degree that they were almost indistinguishable from control, non-DNBS treated mice. Finally, treatment with anti-IL-25 antibodies exaggerated DNBS-induced colitis in IL-22-/- mice and blocked the anti-colitic effect of infection with H. diminuta. Thus, IL-22 is identified as an endogenous brake on helminth-elicited TH2 immunity, reducing the efficacy of expulsion of H. diminuta and limiting the effectiveness of the anti-colitic events mobilized following infection with H. diminuta in a non-permissive host.
Collapse
Affiliation(s)
- José L. Reyes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria R. Fernando
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gabriella Leung
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole L. Mancini
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chelsea E. Matisz
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Treatment with a Monoclonal Anti-IL-12p40 Antibody Induces Substantial Gut Microbiota Changes in an Experimental Colitis Model. Gastroenterol Res Pract 2016; 2016:4953120. [PMID: 26880890 PMCID: PMC4736578 DOI: 10.1155/2016/4953120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
Background and Aim. Crohn's disease is associated with gut microbiota (GM) dysbiosis. Treatment with the anti-IL-12p40 monoclonal antibody (12p40-mAb) has therapeutic effect in Crohn's disease patients. This study addresses whether a 12p40-mAb treatment influences gut microbiota (GM) composition in mice with adoptive transfer colitis (AdTr-colitis). Methods. AdTr-colitis mice were treated with 12p40-mAb or rat-IgG2a or NaCl from days 21 to 47. Disease was monitored by changes in body weight, stool, endoscopic and histopathology scores, immunohistochemistry, and colonic cytokine/chemokine profiles. GM was characterized through DGGE and 16S rRNA gene-amplicon high-throughput sequencing. Results. Following 12p40-mAb treatment, most clinical and pathological parameters associated with colitis were either reduced or absent. GM was shifted towards a higher Firmicutes-to-Bacteroidetes ratio compared to rat-IgG2a treated mice. Significant correlations between 17 bacterial genera and biological markers were found. The relative abundances of the RF32 order (Alphaproteobacteria) and Akkermansia muciniphila were positively correlated with damaged histopathology and colonic inflammation. Conclusions. Shifts in GM distribution were observed with clinical response to 12p40-mAb treatment, whereas specific GM members correlated with colitis symptoms. Our study implicates that specific changes in GM may be connected with positive clinical outcomes and suggests preventing or correcting GM dysbiosis as a treatment goal in inflammatory bowel disease.
Collapse
|
46
|
Abstract
Inflammatory bowel diseases (IBDs) are complex multifactorial disease thought to result from inappropriate immune responses to the gut microbiota, in genetically susceptible individuals, under the influence of environmental factors. Among the different animal models developed to help in understanding IBDs pathophysiological mechanisms as well as to achieve pharmacological preclinical studies, the dextran sulfate sodium (DSS)-induced colitis model is the most widely used because of its simplicity, cost-effectiveness, and similarity with human IBDs. This section provides with a detailed protocol that we validated in our laboratory to perform DSS-induced acute colitis in the Sprague-Dawley (SPD) rat.
Collapse
|
47
|
Boeckxstaens G. Mast cells and inflammatory bowel disease. Curr Opin Pharmacol 2015; 25:45-9. [DOI: 10.1016/j.coph.2015.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/14/2015] [Accepted: 11/11/2015] [Indexed: 01/14/2023]
|
48
|
Catechin-7-O- β -D-glucopyranoside isolated from the seed of Phaseolus calcaratus Roxburgh ameliorates experimental colitis in rats. Int Immunopharmacol 2015; 29:521-527. [DOI: 10.1016/j.intimp.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
|
49
|
Orally delivered β-glucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation. Nutr Res 2015; 35:1106-12. [PMID: 26500083 PMCID: PMC6205189 DOI: 10.1016/j.nutres.2015.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 11/21/2022]
Abstract
β-Glucans have beneficial health effects due to their immune modulatory properties. Oral administration of β-glucans affects tumour growth, microbial infection, sepsis, and wound healing. We hypothesized that pre-treatment with orally delivered soluble and particulate β-glucans could ameliorate the development of aggravate dextran sulfate sodium (DSS) induced intestinal inflammation. To study this, mice were orally pre-treated with β-glucans for 14 days. We tested curdlan (a particulate β-(1,3)-glucan), glucan phosphate (a soluble β-(1,3)-glucan), and zymosan (a particle made from Saccharomyces cerevisiae, which contains around 55% β-glucans). Weight loss, colon weight, and feces score did not differ between β-glucan and vehicle treated groups. However, histology scores indicated that β-glucan-treated mice had increased inflammation at a microscopic level suggesting that β-glucan treatment worsened intestinal inflammation. Furthermore, curdlan and zymosan treatment led to increased colonic levels of inflammatory cytokines and chemokines, compared to vehicle. Glucan phosphate treatment did not significantly affect cytokine and chemokine levels. These data suggest that particulate and soluble β-glucans differentially affect the intestinal immune responses. However, no significant differences in other clinical colitis scores between soluble and particulate β-glucans were found in this study. In summary, β-glucans aggravate the course of dextran sulfate sodium (DSS)-induced intestinal inflammation at the level of the mucosa.
Collapse
|
50
|
Effects of Dietary Plant Sterols and Stanol Esters with Low- and High-Fat Diets in Chronic and Acute Models for Experimental Colitis. Nutrients 2015; 7:8518-31. [PMID: 26501315 PMCID: PMC4632432 DOI: 10.3390/nu7105412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/08/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023] Open
Abstract
In this study, we evaluated the effects of dietary plant sterols and stanols as their fatty acid esters on the development of experimental colitis. The effects were studied both in high- and low-fat diet conditions in two models, one acute and another chronic model of experimental colitis that resembles gene expression in human inflammatory bowel disease (IBD). In the first experiments in the high fat diet (HFD), we did not observe a beneficial effect of the addition of plant sterols and stanols on the development of acute dextran sulphate sodium (DSS) colitis. In the chronic CD4CD45RB T cell transfer colitis model, we mainly observed an effect of the presence of high fat on the development of colitis. In this HFD condition, the presence of plant sterol or stanol did not result in any additional effect. In the second experiments with low fat, we could clearly observe a beneficial effect of the addition of plant sterols on colitis parameters in the T cell transfer model, but not in the DSS model. This positive effect was related to the gender of the mice and on Treg presence in the colon. This suggests that especially dietary plant sterol esters may improve intestinal inflammation in a T cell dependent manner.
Collapse
|