1
|
Gómez-García M, Moreno-Jimenez E, Morgado N, García-Sánchez A, Gil-Melcón M, Pérez-Pazos J, Estravís M, Isidoro-García M, Dávila I, Sanz C. The Role of the Gut and Airway Microbiota in Chronic Rhinosinusitis with Nasal Polyps: A Systematic Review. Int J Mol Sci 2024; 25:8223. [PMID: 39125792 PMCID: PMC11311313 DOI: 10.3390/ijms25158223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, there has been growing interest in understanding the potential role of microbiota dysbiosis or alterations in the composition and function of human microbiota in the development of chronic rhinosinusitis with nasal polyposis (CRSwNP). This systematic review evaluated the literature on CRSwNP and host microbiota for the last ten years, including mainly nasal bacteria, viruses, and fungi, following the PRISMA guidelines and using the major scientific publication databases. Seventy original papers, mainly from Asia and Europe, met the inclusion criteria, providing a comprehensive overview of the microbiota composition in CRSwNP patients and its implications for inflammatory processes in nasal polyps. This review also explores the potential impact of microbiota-modulating therapies for the CRSwNP treatment. Despite variability in study populations and methodologies, findings suggest that fluctuations in specific taxa abundance and reduced bacterial diversity can be accepted as critical factors influencing the onset or severity of CRSwNP. These microbiota alterations appear to be implicated in triggering cell-mediated immune responses, cytokine cascade changes, and defects in the epithelial barrier. Although further human studies are required, microbiota-modulating strategies could become integral to future combined CRSwNP treatments, complementing current therapies that mainly target inflammatory mediators and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Manuel Gómez-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Emma Moreno-Jimenez
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - Natalia Morgado
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Biomedical and Diagnostics Sciences Department, University of Salamanca, 37007 Salamanca, Spain
| | - Asunción García-Sánchez
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Biomedical and Diagnostics Sciences Department, University of Salamanca, 37007 Salamanca, Spain
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
| | - María Gil-Melcón
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Otorhinolaryngology and Head and Neck Surgery Department, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Jacqueline Pérez-Pazos
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Centre for Networked Biomedical Research in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28220 Madrid, Spain
| | - Miguel Estravís
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
| | - María Isidoro-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
- Medicine Department, University of Salamanca, 37007 Salamanca, Spain
| | - Ignacio Dávila
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Biomedical and Diagnostics Sciences Department, University of Salamanca, 37007 Salamanca, Spain
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
- Department of Allergy, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
| |
Collapse
|
2
|
Zhang Y, Shen S, Liu Y, Wang Z, Wang Q, Li Y, Wang C, Lan F, Zhang L. The Influence of Body Mass Index on Glucocorticoid Insensitivity in Chronic Rhinosinusitis with Nasal Polyps. J Pers Med 2022; 12:1935. [PMID: 36422111 PMCID: PMC9699528 DOI: 10.3390/jpm12111935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Reasons for glucocorticoid (GC) insensitivity in chronic rhinosinusitis with nasal polyps (CRSwNP) are not completely clear. Here, we investigate the influence of body mass index (BMI) on GC insensitivity in eosinophilic CRSwNP (eosCRSwNP) and noneosinophilic CRSwNP (noneosCRSwNP) patients. METHODS We recruited 699 CRSwNP patients and gave them a course of oral methylprednisolone for 2 weeks (24 mg/day). Patient demographics and clinical features were analyzed in both GC-sensitive and GC-insensitive CRSwNP patients with different BMI levels and phenotypes. RESULTS 35.3% of recruited CRSwNP patients were GC-insensitive, and the majority of GC-insensitive patients were males or prone to overweight & obese. Logistic regression analysis further confirmed that being overweight & obese was an independent risk factor for GC-insensitive of CRSwNP patients (odds ratio = 1.584, p = 0.049). Compared to underweight & normal-weight patients, overweight & obese patients were more likely to be GC insensitivity, particularly in the eosCRSwNP group, but not in the noneosCRSwNP group. However, there was no significant difference between the underweight & normal weight and the overweight & obese GC-insensitive eosCRSwNP patients regarding the number of infiltrated eosinophils, neutrophils, and polyp recurrence rate. CONCLUSIONS Collectively, our findings demonstrate for the first time that BMI contributes to GC insensitivity in eosCRSwNP patients.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Shen Shen
- Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Yating Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zaichuan Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Qiqi Wang
- Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Yan Li
- Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing 100005, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
3
|
Sun J, Wei J, Zhang Y, Li J, Li J, Yan J, Guo M, Han J, Qiao H. Plasma Exosomes Transfer miR-885-3p Targeting the AKT/NFκB Signaling Pathway to Improve the Sensitivity of Intravenous Glucocorticoid Therapy Against Graves Ophthalmopathy. Front Immunol 2022; 13:819680. [PMID: 35265076 PMCID: PMC8900193 DOI: 10.3389/fimmu.2022.819680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Graves ophthalmopathy (GO), a manifestation of Graves' disease, is an organ-specific autoimmune disease. Intravenous glucocorticoid therapy (ivGCs) is the first-line treatment for moderate-to-severe and active GO. However, ivGCs is only effective in 70%-80% of GO patients. Insensitive patients who choose 12-week ivGCs not only were delayed in treatment but also took the risk of adverse reactions of glucocorticoids. At present, there is still a lack of effective indicators to predict the therapeutic effect of ivGCs. Therefore, the purpose of this study is to find biomarkers that can determine the sensitivity of ivGCs before the formulation of treatment, and to clarify the mechanism of its regulation of ivGCs sensitivity. This study first characterized the miRNA profiles of plasma exosomes by miRNA sequencing to identify miRNAs differentially expressed between GO patients with significant improvement (SI) and non-significant improvement (NSI) after ivGCs treatment. Subsequently, we analyzed the function of the predicted target genes of differential miRNAs. According to the function of the target genes, we screened 10 differentially expressed miRNAs. An expanded cohort verification showed that compared with NSI patients, mir-885-3p was upregulated and mir-4474-3p and mir-615-3p were downregulated in the exosomes of SI patients. Based on statistical difference and miRNA function, mir-885-3p was selected for follow-up study. The in vitro functional analysis of exosomes mir-885-3p showed that exosomes from SI patients (SI-exo) could transfer mir-885-3p to orbital fibroblasts (OFs), upregulate the GRE luciferase reporter gene plasmid activity and the level of glucocorticoid receptor (GR), downregulate the level of inflammatory factors, and improve the glucocorticoid sensitivity of OFs. Moreover, these effects can be inhibited by the corresponding miR inhibitor. In addition, we found that high levels of mir-885-3p could inhibit the AKT/NFκB signaling pathway, upregulate the GRE plasmid activity and GR level, and downregulate the level of inflammatory factors of OFs. Moreover, the improvement of glucocorticoid sensitivity by mir-885-3p transmitted by SI-exo can also be inhibited by the AKT/NFκB agonist. Finally, through the in vivo experiment of the GO mouse model, we further determined the relationship between exosomes' mir-885-3p sequence, AKT/NFκB signaling pathway, and glucocorticoid sensitivity. As a conclusion, plasma exosomes deliver mir-885-3p and inhibit the AKT/NFκB signaling pathway to improve the glucocorticoid sensitivity of OFs. Exosome mir-885-3p can be used as a biomarker to determine the sensitivity of ivGCs in GO patients.
Collapse
Affiliation(s)
- Jingxue Sun
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxing Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaguang Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiazhuo Yan
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Min Guo
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Han
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Sun Q, Liu Z, Xu X, Yang Y, Han X, Wang C, Song F, Mou Y, Li Y, Song X. Identification of a circRNA/miRNA/mRNA ceRNA Network as a Cell Cycle-Related Regulator for Chronic Sinusitis with Nasal Polyps. J Inflamm Res 2022; 15:2601-2615. [PMID: 35494315 PMCID: PMC9045834 DOI: 10.2147/jir.s358387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To explore the mechanisms by which circRNA/miRNA/mRNA competitive endogenous RNAs (ceRNA) networks regulate CRSwNP. Methods The expression profiles of circRNAs, miRNAs, and mRNAs from patients with CRSwNP and control subjects were acquired from the Gene Expression Omnibus database. The circRNA/miRNA/mRNA ceRNA network was constructed based on the predicted circRNA–miRNA interactions and miRNA–mRNA interactions. Hub-mRNAs were screened by protein–protein interaction network analysis and Cytoscape molecular complex detection. The expression of factors in tissue and in hsa_circ_0031594 siRNA transfection cells was verified by RT-qPCR and the association between them was revealed by Spearman correlation analysis. Receiver operating characteristic curve analysis was performed with the pROC R package. Results The differential expression of 5423 circRNAs, 415 miRNAs, and 3673 mRNAs was identified in CRSwNP subjects compared to control subjects. Among these, 9 circRNAs, 39 miRNAs, and 78 mRNAs were screened to construct a ceRNA network. Ultimately, a subnetwork including circRNA hsa_circ_0031594, hsa-miR-1260b, hsa-miR-6507-5p, NCAPG2, RACGAP1, CHEK1 and PRC1 was screened out. RT-qPCR validated that the expression of hsa_circ_0031594, NCAPG2, PRC1 was significantly increased, and hsa-miR-1260b and hsa-miR-6507-5p were expressed significantly less in patients with CRSwNP than in control subjects. In addition, the AUCs of hsa_circ_0031594, hsa-miR-1260b, hsa-miR-6507-5p, NCAPG2, and PRC1 to discriminate CRSwNP patients were 0.995, 0.842, 0.862, 0.765, and 0.816. Spearman correlation showed that the expression of hsa_circ_0031594 was negatively correlated with hsa-miR-1260b and hsa-miR-6507-5p, and positively correlated with NCAPG2 and PRC1. In human nasal epithelial cell (HNEpC) line, knocking down hsa_circ_0031594 could increase the expression of hsa-miR-1260b and hsa-miR-6507-5p, and reduce the expression of NCAPG2 and PRC1. Conclusion CeRNA networks including hsa_circ_0031594, hsa-miR-1260b, and NCAPG2, and hsa_circ_0031594, hsa-miR-6507-5p, and PRC1 may be key regulators for CRSwNP occurrence, and may be potential targets for the pathogenesis and treatment development of CRSwNP.
Collapse
Affiliation(s)
- Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xiangya Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, People’s Republic of China
| | - Fei Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Department of Binzhou Medical University, Clinical Medical College Second, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Correspondence: Xicheng Song; Yumei Li, Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, People’s Republic of China, Tel +860535-6691999, Fax +860535-6240341, Email ;
| |
Collapse
|
5
|
Ba G, Tang R, Mao S, Li Z, Ye H, Lin H, Zhang W. The Expression and Regulation of Na+-K+-ATPase in Nasal Epithelial Cells of Chronic Rhinosinusitis with Nasal Polyps. ORL J Otorhinolaryngol Relat Spec 2021; 84:139-146. [PMID: 34551419 DOI: 10.1159/000517101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Na+-K+-ATPase (NKA) is essential in maintaining cell permeability, reserving potential energy, and preventing cellular edema. Nevertheless, how NKA expression is altered and regulated in chronic rhinosinusitis with nasal polyps (CRSwNPs) remain uncertain. Therefore, the present study aimed to explore the expression and regulation of NKA in CRSwNP. METHODS NKA immunolabeling was assessed by the immunohistochemistry method, NKA protein levels were detected with the Western blotting method, and mRNA levels of NKA and aquaporin-5 (AQP5) were assayed by real-time PCR in nasal tissues from CRSwNP and control subjects. The co-localization of NKA with inflammatory cells was evaluated by immunofluorescence staining. In addition, human nasal epithelial cells (HNECs) were cultured and stimulated using various stimulators to evaluate the regulation of NKA. RESULTS We found significantly decreased NKA positive cells, NKA protein levels, and mRNA levels of NKA and AQP5 in nasal tissues from CRSwNP patients compared to control subjects, especially in eosinophilic CRSwNP. Furthermore, NKA mRNA levels in HNECs were downregulated by staphylococcal enterotoxin B (SEB), lipopolysaccharides (LPSs), inflammatory cytokine (IFN)-γ, IL-4, IL-13, and IL-1β. CONCLUSION NKA and AQP5 expressions were decreased in CRSwNP. NKA in HNECs could be suppressed by SEB, LPS, IFN-γ, IL-4, IL-13, and IL-1β. Impairment of NKA may contribute to the genesis and development of CRSwNP via inducing AQP5 downregulation and edema.
Collapse
Affiliation(s)
- Guangyi Ba
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Ye
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
6
|
Wang SB, Chen SM, Zhu KS, Zhou B, Chen L, Zou XY. Increased lipopolysaccharide content is positively correlated with glucocorticoid receptor-beta expression in chronic rhinosinusitis with nasal polyps. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:605-614. [PMID: 32870597 PMCID: PMC7654414 DOI: 10.1002/iid3.346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023]
Abstract
Introduction Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common and frequently occurring disease of the upper respiratory tract. The nasal instillation of the Gram‐negative (G−) bacterial product lipopolysaccharide (LPS) can induce not only acute sinusitis but also the development of CRSwNP in animal models. Nevertheless, the expression and distribution of LPS in patients with CRSwNP have not been investigated. And the study was to investigate the expression of LPS and its relationship with glucocorticoid receptors (GRs) in CRSwNP. Methods Multiple methods, including bacterial culture and immunohistochemistry, were used to detect and analyze nasal bacteria, plasma LPS content, and the levels of LPS and GR‐α/β, cluster of differentiation 68 (CD68), and myeloperoxidase (MPO) expression, as well as their relationship in CRSwNP. Results The number of G− bacteria and Escherichia coli (E. coli) was not significantly different between CRSwNP subjects and the controls. However, the positive rate of LPS was much higher than that of E. coli in CRSwNP subjects and was significantly higher in noneosinophilic CRSwNP subjects than in eosinophilic CRSwNP subjects. Moreover, the LPS levels were positively correlated with GR‐β but not GR‐α expression in CRSwNP. Immunofluorescence assays showed that LPS was mainly detected in CD68+ macrophages and MPO+ neutrophils, in addition to histiocytes, in CRSwNP. Conclusions Persistent LPS in CRSwNP can lead to unresolved mucosal inflammation, eventually leading to tissue remodeling and the development of CRSwNP. Our findings suggest that increased LPS content and possible resistance to glucocorticoids may be one of the important pathogenic mechanisms of G− bacteria in CRSwNP.
Collapse
Affiliation(s)
- Shui-Bin Wang
- Department of Otolaryngology-Head and Neck Surgery, Yichang Yiling Hospital, Yichang, China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Bin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Yichang Yiling Hospital, Yichang, China
| | - Long Chen
- Department of Otolaryngology-Head and Neck Surgery, Yichang Yiling Hospital, Yichang, China
| | - Xiao-Yan Zou
- Department of Laboratory Medicine, Yichang Yiling Hospital, Yichang, China
| |
Collapse
|