1
|
Tüsüz Önata E, Özdemir Ö. Fecal microbiota transplantation in allergic diseases. World J Methodol 2025; 15:101430. [DOI: 10.5662/wjm.v15.i2.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
Microorganisms such as bacteria, fungi, viruses, parasites living in the human intestine constitute the human intestinal microbiota. Dysbiosis refers to compositional and quantitative changes that negatively affect healthy gut microbiota. In recent years, with the demonstration that many diseases are associated with dysbiosis, treatment strategies targeting the correction of dysbiosis in the treatment of these diseases have begun to be investigated. Faecal microbiota transplantation (FMT) is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit. FMT studies have gained popularity after probiotic, prebiotic, symbiotic studies in the treatment of dysbiosis and related diseases. FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance (T helper 1/T helper 2 cells) and thus suppression of allergic responses. In this article, the definition, application, safety and use of FMT in allergic diseases will be discussed with current data.
Collapse
Affiliation(s)
- Ece Tüsüz Önata
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| |
Collapse
|
2
|
Díez-Madueño K, Montero I, Fernández-Gosende M, Martínez-Álvarez N, Hidalgo-Cantabrana C, de la Cueva Dobao P, Coto-Segura P. Compositional and Functional Profile of Gut Microbiota in a Cohort of Adult Spanish Patients with Atopic Dermatitis Using Metagenomics: A Cross-Sectional Study. Dermatitis 2025. [PMID: 40111891 DOI: 10.1089/derm.2024.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Background: The role of gut dysbiosis in the pathophysiology of atopic dermatitis (AD) through immune system (IS) imbalance is a novel line of investigation currently under discussion. This study aimed to characterize compare the composition and functional profile of the gut microbiota (GM) between adults with AD and healthy individuals. Methods: Observational cross-sectional study, where fecal samples from 70 adults (38 patients and 32 controls) were analyzed using metagenomics and bioinformatics. Results: Differences between the GM of patients with AD and healthy individuals were demonstrated. Reduced microbial diversity was found in subjects with AD. Bacterial species with lower abundance primarily belonged to the families Ruminococcaceae, Akkermansiaceae, and Methanobacteriaceae. Several microbial metabolic pathways were found to be decreased in patients with AD, including amino acid biosynthesis, vitamin biosynthesis, fatty acids and lipids biosynthesis, and energy metabolism. Conclusion: Adults with AD exhibited a distinct GM compared to healthy individuals. Changes were demonstrated both compositionally and functionally. Further investigation is mandatory to elucidate the potential link and causal relationship between gut dysbiosis and AD, which may be crucial for a deeper understanding of the disease's pathophysiology and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Kevin Díez-Madueño
- From the Dermatology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | - Pablo de la Cueva Dobao
- From the Dermatology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Pablo Coto-Segura
- Dermatology Department, Hospital Vital Álvarez Buylla, Mieres, Spain
| |
Collapse
|
3
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
4
|
Díez-Madueño K, de la Cueva Dobao P, Torres-Rojas I, Fernández-Gosende M, Hidalgo-Cantabrana C, Coto-Segura P. Gut Dysbiosis and Adult Atopic Dermatitis: A Systematic Review. J Clin Med 2024; 14:19. [PMID: 39797102 PMCID: PMC11721037 DOI: 10.3390/jcm14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Research on the relationship between gut microbiota (GM) and atopic dermatitis (AD) has seen a growing interest in recent years. The aim of this systematic review was to determine whether differences exist between the GM of adults with AD and that of healthy adults (gut dysbiosis). Methods: We conducted a systematic review based on the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The search was performed using PubMed, EMBASE, and Web of Science. Observational and interventional studies were analyzed. Results: Although the studies showed heterogeneous results, some distinguishing characteristics were found in the intestinal microbial composition of adults with dermatitis. Even though no significant differences in diversity were found between healthy and affected adults, certain microorganisms, such as Bacteroidales, Enterobacteriaceae, and Clostridium (perfringens), were more characteristic of the fecal microbiota in adults with AD. Healthy individuals exhibited lower abundances of aerobic bacteria and higher abundances of short-chain fatty acid-producing species and polyamines. Clinical trials showed that the consumption of probiotics (Bifidobacterium and/or Lactobacillus), fecal microbiota transplants, and balneotherapy modified the fecal microbiota composition of participants and were associated with significant improvements in disease management. Conclusions: In anticipation of forthcoming clinical trials, it is essential to conduct meta-analyses that comprehensively evaluate the effectiveness and safety of interventions designed to modify intestinal flora in the context of AD. Preliminary evidence suggests that certain interventions may enhance adult AD management.
Collapse
Affiliation(s)
- Kevin Díez-Madueño
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pablo de la Cueva Dobao
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Torres-Rojas
- Allergy Department, Hospital Universitario Infanta Sofía, 28702 Alcobendas, Spain;
| | | | | | - Pablo Coto-Segura
- Dermatology Department, Hospital Vital Álvarez Buylla, 33611 Mieres, Spain;
| |
Collapse
|
5
|
Wang XZ, Huang JL, Zhang J, Li QH, Zhang PP, Wu C, Jia YY, Su H, Sun X. Fecal microbiota transplantation as a new way for OVA-induced atopic dermatitis of juvenile mice. Int Immunopharmacol 2024; 142:113183. [PMID: 39298815 DOI: 10.1016/j.intimp.2024.113183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Children all over the world suffer from atopic dermatitis (AD), a prevalent condition that impairs their health. Corticosteroids, which have long-term negative effects, are frequently used to treat AD. There has been a growing body of research on the gut microbiota's function in AD. Nevertheless, the function and underlying mechanisms of fecal microbiota transplantation (FMT) in AD children remain to be established. Therefore, in order to assess the preventive effects of FMT treatment on AD and investigate the mechanisms, we constructed an ovalbumin (OVA)-induced juvenile mouse AD model in this investigation. This study explored the role and mechanism of FMT treatment in AD through 16S RNA sequencing, pathological histological staining, molecular biology, and Flow cytometry. Results demonstrated that the FMT treatment improved the gut microbiota's diversity and composition, bringing it back to a level similar to that of a close donor. Following FMT treatment, OVA-specific antibodies were inhibited, immunoglobulin (Ig) E production was decreased, the quantity of mast cells and eosinophils was decreased, and specific inflammatory markers in the skin and serum were decreased. Further mechanistic studies revealed that FMT treatment induced CD103+ DCs and programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) expression in skin-draining lymph nodes and promoted Treg production to induce immune tolerance and suppress skin inflammation. Meanwhile, changes in the gut microbiota were substantially correlated with Th2 cytokines, OVA-specific antibodies, and PD-L1/PD-1. In conclusion, FMT regulates the Th1/Th2 immunological balance and the gut microbiota. It may also inhibit AD-induced allergy responses through the PD-L1/PD-1 pathway, and providing a unique idea and possibly a fresh approach to the treatment of AD.
Collapse
Affiliation(s)
- Xing-Zhi Wang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Jin-Li Huang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Qiu-Hong Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Pan-Pan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Cheng Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Yuan-Yuan Jia
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
7
|
Liu X, Luo Y, Chen X, Wu M, Xu X, Tian J, Gao Y, Zhu J, Wang Z, Zhou Y, Zhang Y, Wang X, Li W, Lu Q, Yao X. Fecal microbiota transplantation against moderate-to-severe atopic dermatitis: A randomized, double-blind controlled explorer trial. Allergy 2024. [PMID: 39470619 DOI: 10.1111/all.16372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is a novel treatment for inflammatory diseases. Herein, we assess its safety, efficacy, and immunological impact in patients with moderate-to-severe atopic dermatitis (AD). METHODS In this randomized, double-blind, placebo-controlled clinical trial, we performed the efficacy and safety assessment of FMT for moderate-to-severe adult patients with AD. All patients received FMT or placebo once a week for 3 weeks, in addition to their standard background treatments. Patients underwent disease severity assessments at weeks 0, 1, 2, 4, 8, 12, and 16, and blood and fecal samples were collected for immunologic analysis and metagenomic shotgun sequencing, respectively. Safety was monitored throughout the trial. RESULTS Improvements in eczema area and severity index (EASI) scores and percentage of patients achieving EASI 50 (50% reduction in EASI score) were greater in patients treated with FMT than in placebo-treated patients. No serious adverse reactions occurred during the trial. FMT treatment decreased the Th2 and Th17 cell proportions among the peripheral blood mononuclear cells, and the levels of TNF-α, and total IgE in serum. By contrast, the expression levels of IL-12p70 and perforin on NK cells were increased. Moreover, FMT altered the abundance of species and functional pathways of the gut microbiota in the patients, especially the abundance of Megamonas funiformis and the pathway for 1,4-dihydroxy-6-naphthoate biosynthesis II. CONCLUSION FMT was a safe and effective therapy in moderate-to-severe adult patients with AD; the treatment changed the gut microbiota compositions and functions.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xingyu Chen
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Mingyang Wu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaoqiang Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jingru Tian
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yingxia Gao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jun Zhu
- 01life Institute, Shenzhen, China
| | | | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yu Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Qianjin Lu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
8
|
Wu M, Chen X, Lu Q, Yao X. Fecal microbiota transplantation for the treatment of chronic inflammatory skin diseases. Heliyon 2024; 10:e37432. [PMID: 39309854 PMCID: PMC11416527 DOI: 10.1016/j.heliyon.2024.e37432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
The regulation of immune functions and the maintenance of homeostasis in the internal environment are both integral to human gut microbiota (GM). If GM is disturbed, it can result in a range of autoimmune diseases, including chronic inflammatory skin conditions. Chronic inflammatory skin diseases driven by T or B-cell-mediated immune reactions are complex, including the most prevalent diseases and some rare diseases. Expanding knowledge of GM dysbiosis in chronic inflammatory skin diseases has emerged. The GM has some causal roles in the pathogenesis of these skin conditions. Targeting microbiota treatment, particularly fecal microbiota transplantation (FMT), is considered to be a promising strategy. FMT was commonly used in intestinal diseases by reshaping and balancing GM, serving as a reasonable administration in these skin inflammatory diseases. This paper summarizes the existing knowledge of GM dysbiosis in chronic inflammatory skin diseases and the research data on FMT treatment for such conditions.
Collapse
Affiliation(s)
- Mingyang Wu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xingyu Chen
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
9
|
MacGibeny MA, Adjei S, Pyle H, Bunick CG, Ghannoum M, Grada A, Harris-Tryon T, Tyring SK, Kong HH. Alterations in the Skin Microbiome in Dermatologic Diseases and with External Exposures: CME Part 2. J Am Acad Dermatol 2024:S0190-9622(24)02672-0. [PMID: 39173885 PMCID: PMC11839956 DOI: 10.1016/j.jaad.2024.07.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 08/24/2024]
Abstract
In Part I of our CME we reviewed the skin microbiome in healthy individuals. Part II reviews the evolving understanding of alterations in the skin microbiome in specific human diseases. We also discuss how the skin microbiome can change with environmental exposures and medications such as antibiotics as well as ongoing research on microbiome-based interventions.
Collapse
Affiliation(s)
| | - Susuana Adjei
- Department of Dermatology, Lake Granbury Medical Center, Dallas, TX, USA
| | - Hunter Pyle
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA
| | - Mahmoud Ghannoum
- Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Ayman Grada
- Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen K Tyring
- Department of Dermatology, Lake Granbury Medical Center, Dallas, TX, USA.
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Mao Q, Wang X, Cai H, Yang J, Zhang Y, Min W, Qian Q, Zeng Y. Research Progress on the Correlation of Atopic Dermatitis with Gut Microbiota. Clin Cosmet Investig Dermatol 2024; 17:1613-1619. [PMID: 39006130 PMCID: PMC11244069 DOI: 10.2147/ccid.s442551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/02/2024] [Indexed: 07/16/2024]
Abstract
Atopic dermatitis (AD) is a common skin disease, the pathogenesis of which has not been fully elucidated. The gut microbiota is the largest micro-ecosystem in the human body that affects the immune system and skin barrier function. Recent studies have shown that in addition to the environmental factors, skin barrier, genetic factors and immune response, gut microbiota disturbance may also cause AD. This review described the correlation of AD with gut microbiota and existing research status of AD treatment via targeting gut microbiota.
Collapse
Affiliation(s)
- Qiuyu Mao
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Wang
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| | - Haibin Cai
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Yang
- Department of Dermatology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yiwen Zhang
- Department of Dermatology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Wei Min
- Department of Dermatology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Qihong Qian
- Department of Dermatology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
12
|
Zhang B, Mei X, Zhao M, Lu Q. The new era of immune skin diseases: Exploring advances in basic research and clinical translations. J Transl Autoimmun 2024; 8:100232. [PMID: 39022635 PMCID: PMC11252396 DOI: 10.1016/j.jtauto.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Affiliation(s)
- Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
13
|
Yang L, Li D, Sun S, Liu D, Wang Y, Liu X, Zhou B, Nie W, Li L, Wang Y, Sha S, Li Y, Shen C, Tao J. Dupilumab therapy improves gut microbiome dysbiosis and tryptophan metabolism in Chinese patients with atopic dermatitis. Int Immunopharmacol 2024; 131:111867. [PMID: 38493690 DOI: 10.1016/j.intimp.2024.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Dupilumab has demonstrate its potential to orchestrate inflammatory skin microenvironment, enhance skin barrier and shift skin microbiome dysbiosis, collectively contributing to clinical improvement in patients with atopic dermatitis (AD). As the second genome of human body, growing evidence suggests that the gut microbiome might relate to the host response to treatments. Little is known about the association between dupilumab treatment and gut microbiome in AD patients. OBJECTIVE We aimed to characterize the gut microbiome among Chinese subjects with or without AD and determine the potential effect of dupilumab on the gut microbiome. RESULTS The 16 s rRNA gene sequencing was conducted on 48 healthy controls (HC), 44 AD patients and 27 AD patients who received dupilumab for 16 weeks. Prior to treatment, we identified the changed beta-diversity, increased Firmicutes/Bacteroidetes ratio, decreased Bifidobacterium and expanded Faecalibacterium among the AD patients compared to HC. After 16 weeks of dupilumab treatment, gut microbiome dysbiosis of the AD patients improved with reversed beta-diversity, closer bacterial connections, increased colonization of Bifidobacterium, Ruminococcus gnavus, and Coprococcus, which were negatively correlated with disease severity indicators. This shift was largely independent of the degree of clinical improvement. Bacterial function analysis revealed further metabolic alterations following dupilumab treatment, including up-regulated expression of genes involved in the indole pathway of tryptophan metabolism, corroborated by quantitative UHPLC-MS/MS analysis. CONCLUSION Dupilumab treatment tends to help shift the gut microbial dysbiosis in AD patients to a healthier state, along with improved intestinal tryptophan metabolism, suggesting the gut flora and its metabolites may mediate part of the synergistic therapeutic effects on the host.
Collapse
Affiliation(s)
- Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Danqi Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shuomin Sun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Danping Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohuan Liu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha 410007, Hunan, China
| | - Bin Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Wenjia Nie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Lu Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yifei Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shanshan Sha
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China.
| |
Collapse
|
14
|
Qu B, Zhang XE, Feng H, Yan B, Bai Y, Liu S, He Y. Microbial perspective on the skin-gut axis and atopic dermatitis. Open Life Sci 2024; 19:20220782. [PMID: 38623584 PMCID: PMC11017189 DOI: 10.1515/biol-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 04/17/2024] Open
Abstract
Atopic dermatitis (AD) is a relapsing inflammatory skin condition that has become a global health issue with complex etiology and mounting prevalence. The association of AD with skin and gut microbiota has been revealed by virtue of the continuous development of sequencing technology and genomics analysis. Also, the gut-brain-skin axis and its mutual crosstalk mechanisms have been gradually verified. Accordingly, the microbiota-skin-gut axis also plays an important role in allergic skin inflammation. Herein, we reviewed the relationship between the microbiota-skin-gut axis and AD, explored the underlying signaling molecules and potential pathways, and focused on the potential mechanisms of probiotics, antimicrobial peptides (AMPs), coagulase-negative staphylococci transplantation, fecal microbiota transplantation, AMPs, and addition of essential fatty acids in alleviating AD, with the aim to provide a new perspective for targeting microbiota in the treatment of allergic skin inflammation.
Collapse
Affiliation(s)
- Bo Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Xue-er Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Bonan Yan
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yingchun Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Shanlin Liu
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yuhua He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| |
Collapse
|
15
|
Greenzaid JD, Chan LJ, Chandani BM, Kiritsis NR, Feldman SR. Microbiome modulators for atopic eczema: a systematic review of experimental and investigational therapeutics. Expert Opin Investig Drugs 2024; 33:415-430. [PMID: 38441984 DOI: 10.1080/13543784.2024.2326625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a common inflammatory cutaneous disease that arises due to dysregulation of the Th2 immune response, impaired skin barrier integrity, and dysbiosis of the skin and gut microbiota. An abundance of Staphylococcus aureus biofilms in AD lesions increases the Th2 immune response, and gut bacteria release breakdown products such as Short Chain Fatty Acids that regulate the systemic immune response. AREAS COVERED We aim to evaluate therapies that modulate the microbiome in humans and discuss the clinical implications of these treatments. We performed a review of the literature in which 2,673 records were screened, and describe the findings of 108 studies that were included after full-text review. All included studies discussed the effects of therapies on the human microbiome and AD severity. Oral probiotics, topical probiotics, biologics, and investigational therapies were included in our analysis. EXPERT OPINION Oral probiotics demonstrate mixed efficacy at relieving AD symptoms. Topical probiotics reduce S. aureus abundance in AD lesional skin, yet for moderate-severe disease, these therapies may not reduce AD severity scores to the standard of biologics. Dupilumab and tralokinumab target key inflammatory pathways in AD and modulate the skin microbiome, further improving disease severity.
Collapse
Affiliation(s)
- Jonathan D Greenzaid
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lina J Chan
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brittany M Chandani
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas R Kiritsis
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Ryguła I, Pikiewicz W, Grabarek BO, Wójcik M, Kaminiów K. The Role of the Gut Microbiome and Microbial Dysbiosis in Common Skin Diseases. Int J Mol Sci 2024; 25:1984. [PMID: 38396663 PMCID: PMC10889245 DOI: 10.3390/ijms25041984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Dermatoses are an increasingly common problem, particularly in developed countries. The causes of this phenomenon include genetic factors and environmental elements. More and more scientific reports suggest that the gut microbiome, more specifically its dysbiosis, also plays an important role in the induction and progression of diseases, including dermatological diseases. The gut microbiome is recognised as the largest endocrine organ, and has a key function in maintaining human homeostasis. In this review, the authors will take a close look at the link between the gut-skin axis and the pathogenesis of dermatoses such as atopic dermatitis, psoriasis, alopecia areata, and acne. The authors will also focus on the role of probiotics in remodelling the microbiome and the alleviation of dermatoses.
Collapse
Affiliation(s)
- Izabella Ryguła
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Wojciech Pikiewicz
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Beniamin Oskar Grabarek
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Michał Wójcik
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| | - Konrad Kaminiów
- Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland; (W.P.); (B.O.G.); (M.W.)
| |
Collapse
|
17
|
Huang T, Lv Y, Wang W, Chen Y, Fan L, Teng Z, Zhou X, Shen H, Fu G. Case Report: Fecal Microbiota Transplantation for the Treatment of Generalized Eczema Occurring After COVID-19 Vaccination. Clin Cosmet Investig Dermatol 2024; 17:229-235. [PMID: 38292322 PMCID: PMC10826708 DOI: 10.2147/ccid.s443542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Adverse skin reactions caused by the COVID-19 vaccine have attracted considerable attention. As we all know, the development mechanism of some skin diseases is related to the gut and skin microbiome. A 78-year-old male patient who received the COVID-19 vaccine developed generalized eczema with multiple dense black patches over the body, a widespread rash, erosion, and scabs on his limbs, as well as facial edema. The patient experienced recurrent flare-ups after conventional treatment, but then recovered well without recurrence after undergoing three fecal microbial transplantation (FMT) treatments. This rare case is reported for the first time in this study. This report demonstrates the possible potential of FMT in targeting refractory skin diseases, such as eczema, as well as diseases associated with gut microbiota disturbance after vaccination.
Collapse
Affiliation(s)
- Tao Huang
- Gastrointestinal Surgery, Wuhan Puren Hospital, Wuhan, People’s Republic of China
| | - Yongling Lv
- Maintainbiotech. Ltd. (Wuhan), Wuhan, People’s Republic of China
| | - Wei Wang
- Gastrointestinal Surgery, Wuhan Puren Hospital, Wuhan, People’s Republic of China
| | - Yunyao Chen
- Gastrointestinal Surgery, Wuhan Puren Hospital, Wuhan, People’s Republic of China
| | - Lixin Fan
- Gastrointestinal Surgery, Wuhan Puren Hospital, Wuhan, People’s Republic of China
| | - Zhaowei Teng
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xianfeng Zhou
- Maintainbiotech. Ltd. (Wuhan), Wuhan, People’s Republic of China
- School of Life Sciences and Health Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| | - Hexiao Shen
- Maintainbiotech. Ltd. (Wuhan), Wuhan, People’s Republic of China
| | - Guang Fu
- Gastrointestinal Surgery, Wuhan Puren Hospital, Wuhan, People’s Republic of China
| |
Collapse
|
18
|
Roslan MAM, Omar MN, Sharif NAM, Raston NHA, Arzmi MH, Neoh HM, Ramzi AB. Recent advances in single-cell engineered live biotherapeutic products research for skin repair and disease treatment. NPJ Biofilms Microbiomes 2023; 9:95. [PMID: 38065982 PMCID: PMC10709320 DOI: 10.1038/s41522-023-00463-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The human microbiome has emerged as a key player in maintaining skin health, and dysbiosis has been linked to various skin disorders. Amidst growing concerns regarding the side effects of antibiotic treatments, the potential of live biotherapeutic products (LBPs) in restoring a healthy microbiome has garnered significant attention. This review aims to evaluate the current state of the art of the genetically or metabolically engineered LBPs, termed single-cell engineered LBPs (eLBPs), for skin repair and disease treatment. While some studies demonstrate promising outcomes, the translation of eLBPs into clinical applications remains a significant hurdle. Substantial concerns arise regarding the practical implementation and scalability of eLBPs, despite the evident potential they hold in targeting specific cells and delivering therapeutic agents. This review underscores the need for further research, robust clinical trials, and the exploration of current advances in eLBP-based bioengineered bacterial chassis and new outlooks to substantiate the viability and effectiveness of eLBPs as a transformative approach in skin repair and disease intervention.
Collapse
Affiliation(s)
| | - Mohd Norfikri Omar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nur Azlina Mohd Sharif
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd Hafiz Arzmi
- Department of Fundamental Dental & Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Melbourne Dental School, The University of Melbourne, 3053, Melbourne, Victoria, Australia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
19
|
Deng WY, Chen WJ, Zhong HJ, Wu LH, He XX. Washed microbiota transplantation: a case report of clinical success with skin and gut microbiota improvement in an adolescent boy with atopic dermatitis. Front Immunol 2023; 14:1275427. [PMID: 38035082 PMCID: PMC10684772 DOI: 10.3389/fimmu.2023.1275427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic, recurrent inflammatory disease characterized by itching. The gut microbiome can help maintain skin immune homeostasis by regulating innate and adaptive immunity. Here, we report a case of AD in a 15-year-old adolescent boy who benefited from washed microbiota transplantation (WMT). WMT was performed for three courses, with each course lasting for three consecutive days and an interval of one month between two courses. Clinical assessments were conducted at each WMT course, and skin, blood, and stool samples were collected for microbial analysis. After three months of WMT treatment, the boy's itchiness was effectively controlled: his skin showed noticeable improvement, with reduced Staphylococcus aureus in the skin lesions. The scores of SCORAD (SCORing Atopic Dermatitis), EASI (Eczema Area and Severity Index), NRS (Numerical Rating Scale), and DLQI (Dermatology Life Quality Index) significantly decreased compared to the baseline. Serum levels of eosinophil ratio, tumor necrotic factor-α, and interleukin-6 also reduced to the normal levels. There was a significant decrease in S. aureus in the skin lesions. Additionally, the intestinal flora became more diverse, and the abundance of Bifidobacterium species, significantly increased after WMT. No adverse events were reported during the treatment and the 1-year follow-up period. This case report provides direct clinical evidence for WMT as a novel promising treatment strategy for AD, and preliminary experimental data suggests the existence of an intestinal-skin axis in terms of the gut microbiota and the skin immune homeostasis.
Collapse
Affiliation(s)
- Wan-Ying Deng
- Department of Dermatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Jia Chen
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao-Jie Zhong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Li-Hao Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
20
|
Liu Y, Liu J, Du M, Yang H, Shi R, Shi Y, Zhang S, Zhao Y, Lan J. Short-chain fatty acid - A critical interfering factor for allergic diseases. Chem Biol Interact 2023; 385:110739. [PMID: 37805176 DOI: 10.1016/j.cbi.2023.110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Allergy is a growing global public health problem with a high socio-economic impact. The incidence of allergic diseases is increasing year by year, which has attracted more and more attention. In recent years, a number of epidemiological investigations and gut microbiota studies have shown that gut microbiota dysbiosis is associated with an increased prevalence of various allergic diseases, such as food allergy, asthma, allergic rhinitis, and atopic dermatitis. However, the underlying mechanisms are complex and have not been fully clarified. Metabolites are one of the main ways in which the gut microbiota functions. Short-chain fatty acids (SCFAs) are the main metabolites of intestinal flora fermentation and are beneficial to human health. Studies have shown that SCFAs play an important role in maintaining intestinal homeostasis and regulating immune responses by recognizing receptors and inhibiting histone deacetylases, and are key molecules involved in the occurrence and development of allergic diseases. In addition, research on the regulation of gut microbiota and the application of SCFAs in the treatment of allergic diseases is also emerging. This article reviews the clinical and experimental evidence on the correlation between SCFAs and allergic diseases and the potential mechanisms by which SCFAs regulate allergic diseases. Furthermore, SCFAs as therapeutic targets for allergic diseases are also summarized and prospected.
Collapse
Affiliation(s)
- Yue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jin Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Mi Du
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Hu Yang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Ruiwen Shi
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yilin Shi
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Shengben Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yajun Zhao
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Jing Lan
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
| |
Collapse
|
21
|
Ng WZJ, van Hasselt J, Aggarwal B, Manoharan A. Association Between Adult Antibiotic Use, Microbial Dysbiosis and Atopic Conditions - A Systematic Review. J Asthma Allergy 2023; 16:1115-1132. [PMID: 37822520 PMCID: PMC10564082 DOI: 10.2147/jaa.s401755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Background Strong associations between early antibiotic exposure and increased risk of childhood allergies have been established. Antibiotics have the potential to induce microbial dysbiosis that may be linked to allergic conditions. This review examines the limited available evidence on the associations between adult antibiotic use, microbial dysbiosis and atopic conditions. Methods A systematic literature search was conducted using PubMed and Embase for relevant studies, published between 01-01-2000 and 08-17-2022. We searched for associations between antibiotic use, microbial dysbiosis, and allergic conditions in adults, defined as over 13 years of age for the purposes of this review. Results Twenty-one studies were analyzed, with the inclusion of four narrative reviews as scarce relevant literature was found when stricter selection criteria were employed. Relevant studies predominantly focused on asthma. Significant microbial differences were observed in most measures between healthy subjects and subjects with allergic conditions. However, no system-wise and strain-wise associations were evident. Notably, at the phyla level, the Bacillota and Pseudomonadota phyla were associated with asthmatics, while the Actinobacteria phylum was linked to healthy controls. Asthmatics tends to reflect upregulation in the Bacillota and Pseudomonadota phyla in both airway and gut microbiomes. Conclusion No compelling evidence could be found between adult antibiotic exposure, consequent microbial dysbiosis, and allergic conditions in adults. Our review is limited by scarce literature and therefore remains inconclusive. However, potential implications of antibiotic use impacting on allergic conditions justify additional research and heightened pharmacovigilance in this area.
Collapse
Affiliation(s)
- Wan Zhen Janice Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Bhumika Aggarwal
- Regional Respiratory Medical Affairs, GSK Plc, Singapore, Singapore
| | - Anand Manoharan
- Infectious Diseases Medical & Scientific Affairs, GSK, Mumbai, India
| |
Collapse
|
22
|
Pessôa R, Clissa PB, Sanabani SS. The Interaction between the Host Genome, Epigenome, and the Gut-Skin Axis Microbiome in Atopic Dermatitis. Int J Mol Sci 2023; 24:14322. [PMID: 37762624 PMCID: PMC10532357 DOI: 10.3390/ijms241814322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that occurs in genetically predisposed individuals. It involves complex interactions among the host immune system, environmental factors (such as skin barrier dysfunction), and microbial dysbiosis. Genome-wide association studies (GWAS) have identified AD risk alleles; however, the associated environmental factors remain largely unknown. Recent evidence suggests that altered microbiota composition (dysbiosis) in the skin and gut may contribute to the pathogenesis of AD. Examples of environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, irritants, pollution, and microbial exposure. Studies have reported alterations in the gut microbiome structure in patients with AD compared to control subjects, characterized by increased abundance of Clostridium difficile and decreased abundance of short-chain fatty acid (SCFA)-producing bacteria such as Bifidobacterium. SCFAs play a critical role in maintaining host health, and reduced SCFA production may lead to intestinal inflammation in AD patients. The specific mechanisms through which dysbiotic bacteria and their metabolites interact with the host genome and epigenome to cause autoimmunity in AD are still unknown. By understanding the combination of environmental factors, such as gut microbiota, the genetic and epigenetic determinants that are associated with the development of autoantibodies may help unravel the pathophysiology of the disease. This review aims to elucidate the interactions between the immune system, susceptibility genes, epigenetic factors, and the gut microbiome in the development of AD.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-002, Brazil;
| | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05508-220, Brazil
- Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil
- Laboratory of Dermatology and Immunodeficiency LIM56/03, Instituto de Medicina Tropical de Sao Paulo, Faculdade de Medicina, University of Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3º Andar, Sao Paulo 05403-000, Brazil
| |
Collapse
|
23
|
Choy CT, Siu PLK, Zhou J, Wong CH, Lee YW, Chan HW, Tsui JCC, Lo CJY, Loo SKF, Tsui SKW. Improvements in Gut Microbiome Composition Predict the Clinical Efficacy of a Novel Synbiotics Formula in Children with Mild to Moderate Atopic Dermatitis. Microorganisms 2023; 11:2175. [PMID: 37764019 PMCID: PMC10536305 DOI: 10.3390/microorganisms11092175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a significant association with various type-2 inflammation-related comorbidities. Ongoing research suggests the crucial involvement of gut microbiome, especially in childhood onset AD, and hence, probiotics have emerged as a potential non-steroid-based therapeutics option to complement existing AD management plans. In order to delineate the impact of probiotics in the gut microbiome of pediatric AD patients from southern China, targeted 16S rRNA sequencing and thorough bioinformatic analysis were performed to analyze the gut microbiome profiles of 24 AD children after taking an orally administered novel synbiotics formula with triple prebiotics for 8 weeks. A notable improvement in Eczema Area and Severity Index (EASI) (p = 0.008) was observed after taking an 8-week course of probiotics, with no adverse effects observed. The relative abundances of key microbial drivers including Bacteroides fragilis and Lactobacillus acidophilus were significantly increased at week 8. We also found that the positive responsiveness towards an 8-week course of probiotics was associated with improvements in the gut microbiome profile with a higher relative abundance of probiotic species. Over-represented functional abundance pathways related to vitamin B synthesis and peptidoglycan recycling may imply the underlying mechanism. In summary, our study suggests how the gut microbial landscape shifts upon probiotic supplementation in AD children, and provides preliminary evidence to support targeted probiotic supplementation for the management of childhood AD.
Collapse
Affiliation(s)
- Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | | | - Claudia Jun Yi Lo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
24
|
Sadowsky RL, Sulejmani P, Lio PA. Atopic Dermatitis: Beyond the Skin and Into the Gut. J Clin Med 2023; 12:5534. [PMID: 37685600 PMCID: PMC10487925 DOI: 10.3390/jcm12175534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Atopic dermatitis (AD) is a common, chronic and recurring inflammatory skin disorder characterized by an intensely pruritic, eczematous dermatitis. The etiology of AD is thought to involve a combination of environmental, genetic, and immunologic factors. Emerging research has investigated factors that may impact individual risk for developing AD, disease severity, and treatment response. One component is the gut microbiome, which is considered to play an essential role in maintaining the homeostasis of several organ systems. The gut microbiome has been described as a major regulator of the "gut-skin axis," yet some studies have yielded conflicting evidence regarding the strength of the association of gut microbiota dysbiosis with AD. This review discusses recent insights into the role of the gut microbiome in AD pathogenesis and its interplay among other complex systems that govern the current assessments of and treatments for AD.
Collapse
Affiliation(s)
- Rachel L. Sadowsky
- Rush Medical College, Rush University, Chicago, IL 60612, USA; (R.L.S.); (P.S.)
| | - Pranvera Sulejmani
- Rush Medical College, Rush University, Chicago, IL 60612, USA; (R.L.S.); (P.S.)
| | - Peter A. Lio
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Medical Dermatology Associates of Chicago, Chicago, IL 60654, USA
| |
Collapse
|
25
|
Nahm DH. Regulatory T Cell-Targeted Immunomodulatory Therapy for Long-Term Clinical Improvement of Atopic Dermatitis: Hypotheses and Perspectives. Life (Basel) 2023; 13:1674. [PMID: 37629531 PMCID: PMC10455293 DOI: 10.3390/life13081674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disorder characterized by itching and eczematous lesions. It is often associated with a personal or familial history of allergic diseases. Allergic inflammation induced by immunoglobulin E and T-helper type 2 (Th2) cell responses to common environmental agents has been suggested to play an essential role in AD pathogenesis. The standard therapies for AD, including topical or systemic agents, focus on controlling skin inflammation. Recently developed monoclonal antibody to interleukin-4 receptor alpha or Janus kinase inhibitors can provide significant clinical improvements in patients with AD by inhibiting Th2 cell-mediated skin inflammation. However, the clinical efficacy of the Th2 cell-targeted therapy is transient and incomplete in patients with AD. Patients with AD are seeking a permanent cure. Therefore, the development of novel immunomodulatory strategies that can improve a long-term clinical outcome and provide a long-term treatment-free clinical remission of AD (disease-modifying therapy) is needed. Regulatory T (Treg) cells play a critical role in the maintenance of immune tolerance and suppress the development of autoimmune and allergic diseases. This review provides three working hypotheses and perspectives for the treatment of AD by Treg cell activation. (1) A decreased number or function of Treg cells is a critical event that causes the activation of Th2 cells, leading to the development and maintenance of AD. (2) Activation of Treg cells is an effective therapeutic approach for AD. (3) Many different immunomodulatory strategies activating Treg cells can provide a long-term clinical improvement of AD by induction of immune tolerance. The Treg cell-targeted immunomodulatory therapies for AD include allergen immunotherapy, microbiota, vitamin D, polyvalent human immunoglobulin G, monoclonal antibodies to the surface antigens of T cell or antigen-presenting cell, and adoptive transfer of autologous Treg cells or genetically engineered Treg cells expanded in vitro.
Collapse
Affiliation(s)
- Dong-Ho Nahm
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
26
|
Bonzano L, Borgia F, Casella R, Miniello A, Nettis E, Gangemi S. Microbiota and IL-33/31 Axis Linkage: Implications and Therapeutic Perspectives in Atopic Dermatitis and Psoriasis. Biomolecules 2023; 13:1100. [PMID: 37509136 PMCID: PMC10377073 DOI: 10.3390/biom13071100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiome dysbiosis and cytokine alternations are key features of atopic dermatitis (AD) and psoriasis (PsO), two of the most prevalent and burdensome pruritic skin conditions worldwide. Interleukin (IL)-33 and IL-31 have been recognized to be major players who act synergistically in the pathogenesis and maintenance of different chronic inflammatory conditions and pruritic skin disorders, including AD and PsO, and their potential role as therapeutic targets is being thoroughly investigated. The bidirectional interplay between dysbiosis and immunological changes has been extensively studied, but there is still debate regarding which of these two factors is the actual causative culprit behind the aetiopathological process that ultimately leads to AD and PsO. We conducted a literature review on the Pubmed database assessing articles of immunology, dermatology, microbiology and allergology with the aim to strengthen the hypothesis that dysbiosis is at the origin of the IL-33/IL-31 dysregulation that contributes to the pathogenesis of AD and PsO. Finally, we discussed the therapeutic options currently in development for the treatment of these skin conditions targeting IL-31, IL-33 and/or the microbiome.
Collapse
Affiliation(s)
- Laura Bonzano
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| | - Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
27
|
Fragoso NM, Masson R, Gillenwater TJ, Shi VY, Hsiao JL. Emerging Treatments and the Clinical Trial Landscape for Hidradenitis Suppurativa-Part II: Procedural and Wound Care Therapies. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00957-5. [PMID: 37402030 PMCID: PMC10366058 DOI: 10.1007/s13555-023-00957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Procedural treatments are a cornerstone of hidradenitis suppurativa (HS) management. New interventional therapies are being studied as part of the upsurge in HS research and clinical trials. Additionally, draining wounds can impart a significant negative impact on patients' quality of life, requiring daily dressing changes. However, standardized guidelines on how to best manage HS wounds both day-to-day and post-procedure are lacking. In part II of this emerging therapies review, procedural treatments and wound care dressings and devices that are being investigated for HS management are discussed.
Collapse
Affiliation(s)
- Natalie M Fragoso
- Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Rahul Masson
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - T Justin Gillenwater
- Division of Plastic and Reconstructive Surgery, University of Southern California, Los Angeles, CA, USA
| | - Vivian Y Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer L Hsiao
- Department of Dermatology, University of Southern California, 1441 Eastlake Ave, Ezralow Tower, Suite 5301, Los Angeles, CA, 90089, USA.
| |
Collapse
|
28
|
Sugita K, Shima A, Takahashi K, Ishihara G, Kawano K, Ohmori K. Pilot evaluation of a single oral fecal microbiota transplantation for canine atopic dermatitis. Sci Rep 2023; 13:8824. [PMID: 37258604 DOI: 10.1038/s41598-023-35565-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
The gut microbiota has been suggested to be involved in the pathogenesis of canine atopic dermatitis (cAD). However, the gut microbiota has not been well characterized in dogs with atopic dermatitis (AD). In addition, the efficacy of fecal microbiota transplantation (FMT) in dogs with AD remains unclear. This research, therefore, aimed to characterize the gut microbiota of dogs with AD and conduct pilot evaluation of the efficacy of a single oral FMT on clinical signs and the gut microbiota of dogs with AD. For these purposes, we used 12 dogs with AD and 20 healthy dogs. The 16S rRNA analysis of the fecal microbiota revealed significant differences between 12 dogs with AD and 20 healthy dogs. Next, a single oral FMT was performed in 12 dogs with AD as a single-arm, open-label clinical trial for 56 days. A single oral FMT significantly decreased Canine Atopic Dermatitis Extent and Severity Index (CADESI)-04 scores from day 0 (median score, 16.5) to day 56 (8) and Pruritus Visual Analog Scale (PVAS) scores from days 0 (median score, 3) to day 56 (1). Furthermore, a single oral FMT changed the composition of the fecal microbiota of dogs with AD at the phylum and genus levels. The number of common amplicon sequence variants in the fecal microbiota between donor dogs and dogs with AD was positively correlated with CADESI-04 and PVAS reduction ratios 56 days after FMT. Our findings suggest that the gut microbiota plays a pivotal role in the pathogenesis of cAD, and that oral FMT could be a new therapeutic approach targeting the gut microbiota in cAD.
Collapse
Affiliation(s)
- Koji Sugita
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Sugita Animal Hospital, Saitama, Japan
| | - Ayaka Shima
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | - Kaho Takahashi
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Koji Kawano
- Tokyo Animal Allergy Center, Tokyo, Japan
- Department of Gastroenterology and Gastroenterological Oncology, Fujita Health University, Aichi, Japan
| | - Keitaro Ohmori
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
29
|
Jiang X, Liu Z, Ma Y, Miao L, Zhao K, Wang D, Wang M, Ruan H, Xu F, Zhou Q, Xu S. Fecal microbiota transplantation affects the recovery of AD-skin lesions and enhances gut microbiota homeostasis. Int Immunopharmacol 2023; 118:110005. [PMID: 36924566 DOI: 10.1016/j.intimp.2023.110005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Accumulating evidence has shown that gut microbiota plays a key role in the progression of atopic dermatitis (AD). Fecal microbiota transplantation (FMT), as an effective method to restore gut microbiota homeostasis, has been successfully applied for treating many inflammatory diseases. However, the therapeutic effect of FMT on AD remains unclear. The following study examined the effect and mechanism of FMT on AD-skin lesions in an AD mouse model. METHODS In this study, we exposed the shaved back skin of BALB/c mice to calcipotriol (MC903) to induce AD model. Mice were then treated with FMT, which was performed with gut microbiota from healthy mice. The gut microbiota of treated mice was tracked by 16S rRNA gene sequencing. Mice skin tissues were examined by histopathology and inflammatory cytokines change in serum by ELISA. RESULTS FMT had a faster trend on the reversion of the increases in skin epidermal layer thicknesses and suppressed some of the representative inflammatory cytokines. The gut microbial community in the natural recovery process varied significantly in the FMT group at day 7 (ANOSIM P = 0.0229, r = 0.2593). Notably, FMT had a long-lasting and beneficial impact on the gut microbial compositions of AD mice by increasing the ratio of Firmicutes to Bacteroidetes and the amount of butyric-producing bacteria (BPB), including Erysipelotrichaceae, Lactobacillaceae, and Eubacteriacea. Furthermore, the relative abundances of gut microbiota-mediated functional pathways involved in the cell growth and death, amino acid, energy, lipid, and carbohydrate metabolisms, and immune system increased after FMT treatment. CONCLUSION FMT modulated the gut microbiota homeostasis and affected the recovery from AD-related inflammations, suggesting that it could be used as a treatment strategy for AD patients in the clinic.
Collapse
Affiliation(s)
- Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Linlin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Keyu Zhao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dianchen Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Mengmeng Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Feng Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China
| | - Qiongyan Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China.
| |
Collapse
|
30
|
Stec A, Sikora M, Maciejewska M, Paralusz-Stec K, Michalska M, Sikorska E, Rudnicka L. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Int J Mol Sci 2023; 24:ijms24043494. [PMID: 36834904 PMCID: PMC9961773 DOI: 10.3390/ijms24043494] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Dysbiosis has been identified in many dermatological conditions (e.g., psoriasis, atopic dermatitis, systemic lupus erythematosus). One of the ways by which the microbiota affect homeostasis is through microbiota-derived molecules (metabolites). There are three main groups of metabolites: short-chain fatty acids (SCFAs), tryptophan metabolites, and amine derivatives including trimethylamine N-oxide (TMAO). Each group has its own uptake and specific receptors through which these metabolites can exert their systemic function. This review provides up-to-date knowledge about the impact that these groups of gut microbiota metabolites may have in dermatological conditions. Special attention is paid to the effect of microbial metabolites on the immune system, including changes in the profile of the immune cells and cytokine disbalance, which are characteristic of several dermatological diseases, especially psoriasis and atopic dermatitis. Targeting the production of microbiota metabolites may serve as a novel therapeutic approach in several immune-mediated dermatological diseases.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence:
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Karolina Paralusz-Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Sikorska
- Department of Experimental and Clinical Physiology Center for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| |
Collapse
|
31
|
Hulme J. Staphylococcus Infection: Relapsing Atopic Dermatitis and Microbial Restoration. Antibiotics (Basel) 2023; 12:antibiotics12020222. [PMID: 36830133 PMCID: PMC9952585 DOI: 10.3390/antibiotics12020222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Atopic Dermatitis (AD) skin is susceptible to Staphylococcus aureus (SA) infection, potentially exposing it to a plethora of toxins and virulent determinants, including Panton-Valentine leukocidin (PVL) (α-hemolysin (Hla) and phenol-soluble modulins (PSMs)), and superantigens. Depending on the degree of infection (superficial or invasive), clinical treatments may encompass permanganate (aq) and bleach solutions coupled with intravenous/oral antibiotics such as amoxicillin, vancomycin, doxycycline, clindamycin, daptomycin, telavancin, linezolid, or tigecycline. However, when the skin is significantly traumatized (sheathing of epidermal sections), an SA infection can rapidly ensue, impairing the immune system, and inducing local and systemic AD presentations in susceptible areas. Furthermore, when AD presents systemically, desensitization can be long (years) and intertwined with periods of relapse. In such circumstances, the identification of triggers (stress or infection) and severity of the flare need careful monitoring (preferably in real-time) so that tailored treatments targeting the underlying pathological mechanisms (SA toxins, elevated immunoglobulins, impaired healing) can be modified, permitting rapid resolution of symptoms.
Collapse
Affiliation(s)
- John Hulme
- Gachon Bio-Nano Institute, Gachon University, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
32
|
Zeldin J, Chaudhary PP, Spathies J, Yadav M, D’Souza BN, Alishahedani ME, Gough P, Matriz J, Ghio AJ, Li Y, Sun AA, Eichenfield LF, Simpson EL, Myles IA. Exposure to isocyanates predicts atopic dermatitis prevalence and disrupts therapeutic pathways in commensal bacteria. SCIENCE ADVANCES 2023; 9:eade8898. [PMID: 36608129 PMCID: PMC9821876 DOI: 10.1126/sciadv.ade8898] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/05/2022] [Indexed: 05/25/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition increasing in industrial nations at a pace that suggests environmental drivers. We hypothesize that the dysbiosis associated with AD may signal microbial adaptations to modern pollutants. Having previously modeled the benefits of health-associated Roseomonas mucosa, we now show that R. mucosa fixes nitrogen in the production of protective glycerolipids and their ceramide by-products. Screening EPA databases against the clinical visit rates identified diisocyanates as the strongest predictor of AD. Diisocyanates disrupted the production of beneficial lipids and therapeutic modeling for isolates of R. mucosa as well as commensal Staphylococcus. Last, while topical R. mucosa failed to meet commercial end points in a placebo-controlled trial, the subgroup who completed the full protocol demonstrated sustained, clinically modest, but statistically significant clinical improvements that differed by study site diisocyanate levels. Therefore, diisocyanates show temporospatial and epidemiological association with AD while also inducing eczematous dysbiosis.
Collapse
Affiliation(s)
- Jordan Zeldin
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Prem Prashant Chaudhary
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Jacquelyn Spathies
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Manoj Yadav
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Brandon N. D’Souza
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Mohammadali E. Alishahedani
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Portia Gough
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Jobel Matriz
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J. Ghio
- U.S. Environmental Protection Agency, Chapel Hill, NC, USA
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Ashleigh A. Sun
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence F. Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| | - Eric L. Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Ian A. Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
The Crosstalk between the Gut Microbiota Composition and the Clinical Course of Allergic Rhinitis: The Use of Probiotics, Prebiotics and Bacterial Lysates in the Treatment of Allergic Rhinitis. Nutrients 2022; 14:nu14204328. [PMID: 36297012 PMCID: PMC9607052 DOI: 10.3390/nu14204328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Although massive progress in discovering allergic rhinitis (AR) aetiology has been made in recent years, its prevalence is still rising and it significantly impacts patients' lives. That is why further and non-conventional research elucidating the role of new factors in AR pathogenesis is needed, facilitating discoveries of new treatment approaches. One of these factors is the gut microbiota, with its specific roles in health and disease. This review presents the process of gut microbiota development, especially in early life, focusing on its impact on the immune system. It emphasizes the link between the gut microbiota composition and immune changes involved in AR development. Specifically, it elucidates the significant link between bacteria colonizing the gut and the Th1/Th2 imbalance. Probiotics, prebiotics and bacterial lysates, which are medications that restore the composition of intestinal bacteria and indirectly affect the clinical course of AR, are also discussed.
Collapse
|
34
|
Comparison of the Gut Microbiome between Atopic and Healthy Dogs—Preliminary Data. Animals (Basel) 2022; 12:ani12182377. [PMID: 36139237 PMCID: PMC9495170 DOI: 10.3390/ani12182377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Atopic dermatitis is a common inflammatory and itchy skin disease, constituting a global issue that affects up to 15% of the general human and dog population. The pathogenesis of this disease is known to be multifactorial and not only consisting of skin barrier dysfunction, but also with immunological dysregulation and skin microbiota changes having a central role. In humans, establishment of the gut microbiota in early life influences the development of allergies, among others also atopic dermatitis in children. To the author’s knowledge, there is currently no study comparing the gut microbiome between allergic and healthy dogs. We now present results demonstrating that allergic dogs have a significantly different gut microbiota when compared to healthy control dogs. Further investigations including a larger number of dogs are now required to confirm these results, in addition to studies utilizing novel interventions targeting the gut microbiota. Abstract Human studies show that in addition to skin barrier and immune cell dysfunction, both the cutaneous and the gut microbiota can influence the pathogenesis of atopic diseases. There is currently no data on the gut-skin axis in allergic canines. Therefore, the aim of this study was to assess the bacterial diversity and composition of the gut microbiome in dogs with atopic dermatitis (AD). Stool samples from adult beagle dogs (n = 3) with spontaneous AD and a healthy control group (n = 4) were collected at Days 0 and 30. After the first sampling, allergic dogs were orally dosed on a daily basis with oclacitinib for 30 days, and then re-sampled. Sequencing of the V3–V4 region of the 16S rRNA gene was performed on the Illumina MiSeq platform and the data were analyzed using QIIME2. The atopic dogs had a significantly lower gut microbiota alpha-diversity than healthy dogs (p = 0.033). In healthy dogs, a higher abundance of the families Lachnospiraceae (p = 0.0006), Anaerovoracaceae (p = 0.006) and Oscillospiraceae (p = 0.021) and genera Lachnospira (p = 0.022), Ruminococcustorques group (p = 0.0001), Fusobacterium (p = 0.022) and Fecalibacterium (p = 0.045) was seen, when compared to allergic dogs. The abundance of Conchiformibius (p = 0.01), Catenibacterium spp. (p = 0.007), Ruminococcus gnavus group (p = 0.0574) and Megamonas (p = 0.0102) were higher in allergic dogs. The differences in alpha-diversity and on the compositional level remained the same after 1 month, adding to the robustness of the data. Additionally, we could also show that a 4-week treatment course with oclacitinib was not associated with changes in the gut microbiota diversity and composition in atopic dogs. This study suggests that alterations in the gut microbiota diversity and composition may be associated with canine AD. Large-scale studies preferably associated to a multi-omics approach and interventions targeting the gut microbiota are needed to confirm these results.
Collapse
|
35
|
Biazzo M, Deidda G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med 2022; 11:jcm11144119. [PMID: 35887883 PMCID: PMC9320118 DOI: 10.3390/jcm11144119] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The human body is home to a variety of micro-organisms. Most of these microbial communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling evidence showed that a number of human pathologies are associated with microbiota dysbiosis, thereby suggesting that the reinstatement of physiological microflora balance and composition might ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics supplementations were shown to provide effective results, but the main limitation remains in the limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition aiming to confer a health benefit. Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic potential for a number of other conditions ranging from gastrointestinal to liver diseases, from cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic syndrome. In this review, we will summarize the commonly used preparation and delivery methods, comprehensively review the evidence obtained in clinical trials in different human conditions and discuss the variability in the results and the pivotal importance of donor selection. The final aim is to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies to be used to ameliorate a number of human conditions.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, Triq San Giljan, SGN 3000 San Gwann, Malta;
- SienabioACTIVE, University of Siena, Via Aldo Moro 1, 53100 Siena, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-6125
| |
Collapse
|
36
|
Tuniyazi M, Li S, Hu X, Fu Y, Zhang N. The Role of Early Life Microbiota Composition in the Development of Allergic Diseases. Microorganisms 2022; 10:1190. [PMID: 35744708 PMCID: PMC9227185 DOI: 10.3390/microorganisms10061190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Allergic diseases are becoming a major healthcare issue in many developed nations, where living environment and lifestyle are most predominantly distinct. Such differences include urbanized, industrialized living environments, overused hygiene products, antibiotics, stationary lifestyle, and fast-food-based diets, which tend to reduce microbial diversity and lead to impaired immune protection, which further increase the development of allergic diseases. At the same time, studies have also shown that modulating a microbiocidal community can ameliorate allergic symptoms. Therefore, in this paper, we aimed to review recent findings on the potential role of human microbiota in the gastrointestinal tract, surface of skin, and respiratory tract in the development of allergic diseases. Furthermore, we addressed a potential therapeutic or even preventive strategy for such allergic diseases by modulating human microbial composition.
Collapse
Affiliation(s)
| | | | | | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (M.T.); (S.L.); (X.H.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (M.T.); (S.L.); (X.H.)
| |
Collapse
|
37
|
Liu Y, Du X, Zhai S, Tang X, Liu C, Li W. Gut microbiota and atopic dermatitis in children: a scoping review. BMC Pediatr 2022; 22:323. [PMID: 35655175 PMCID: PMC9161518 DOI: 10.1186/s12887-022-03390-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Gut microbiota plays an important role in the development of atopic dermatitis (AD). We aimed to elucidate research trends in gut microbiota and AD in children, to provide evidence and insights to the clinical prevention and treatment of AD in children. METHODS A scoping literature review on the studies of gut microbiota and AD were conducted. Two authors independently searched Pubmed et al. databases for studies focused on gut microbiota and AD in children up to January 15, 2022. The literatures were screened and analyzed by two reviewers. RESULTS A total of 44 reports were finally included and analyzed. Current researches have indicated that abnormal human microecology is closely associated with AD, and the disturbance of intestinal microbiota plays an important role in the occurrence and development of AD. Probiotics can correct the microbiota disorder, have the functions of regulating immunity, antioxidant, and help to restore the microecological homeostasis. However, there is still a lack of high-quality research reports on the efficacy and safety of probiotics in the prevention and treatment of AD in children. CONCLUSIONS The changes of gut microbiota are essential to the development of AD in children, which may be an effective target for the prevention and treatment of AD. Future studies with larger sample size and rigorous design are needed to elucidate the effects and safety of probiotics in AD.
Collapse
Affiliation(s)
- Yue Liu
- Department of Acupuncture and Tuina Science, School of Traditional Chinese Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China
| | - Xiaofan Du
- Clinical Medicine Science, Anhui Medical University, Hefei, 230032, China
| | - Shujie Zhai
- Department of Acupuncture and Tuina Science, School of Traditional Chinese Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China
| | - Xiaodong Tang
- Department of Acupuncture and Tuina Science, School of Traditional Chinese Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China
| | - Cuiling Liu
- Logistics Service Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Weihong Li
- Department of Acupuncture and Tuina Science, School of Traditional Chinese Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
38
|
Choden T, Cohen NA. The gut microbiome and the immune system. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The human body contains trillions of microbes which generally live in symbiosis with the host. The interaction of the gut microbiome with elements of the host immune system has far-reaching effects in the development of normal gut and systemic immune responses. Disturbances to this intricate relationship may be responsible for a multitude of gastrointestinal and systemic immune mediated diseases. This review describes the development of the gut microbiome and its interaction with host immune cells in both health and disease states.
Collapse
Affiliation(s)
- Tenzin Choden
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Nathaniel Aviv Cohen
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, IL 60637, USA; Inflammatory Bowel Disease Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
39
|
Mashiah J, Karady T, Fliss‐Isakov N, Sprecher E, Slodownik D, Artzi O, Samuelov L, Ellenbogen E, Godneva A, Segal E, Maharshak N. Clinical efficacy of fecal microbial transplantation treatment in adults with moderate-to-severe atopic dermatitis. Immun Inflamm Dis 2022; 10:e570. [PMID: 34931478 PMCID: PMC8926506 DOI: 10.1002/iid3.570] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a remitting relapsing chronic eczematous pruritic disease. Several studies suggest that gut microbiota may influence AD by immune system regulation. METHODS We performed the first in-human efficacy and safety assessment of fecal microbiota transplantation (FMT) for AD adult patients. All patients received 2 placebo transplantations followed by 4 FMTs each 2 weeks apart. AD severity and fecal microbiome profile were evaluated by the Scoring Atopic Dermatitis Score (SCORAD), the weekly frequency of topical corticosteroids usage, and gut microbiota metagenomic analysis, at the study beginning, before every FMT, and 1-8 months after the last FMT. RESULTS Nine patients completed the study protocol. There was no significant change in the SCORAD score following the two placebo transplants. The average SCORAD score significantly decreased from baseline at Weeks 4-12 (before and 2 weeks after 4 times of FMT) (59.2 ± 34.9%, Wilcoxon p = .011), 50% and 75% decrease was achieved by 7 (77%) and 4 (44%) patients, respectively. At Week 18 (8 weeks after the last FMT) the average SCORAD score decreased from baseline at Week 4 (85.5 ± 8.4%, Wilcoxon p = .018), 50% and 75% decrease was achieved by 7 (77%) and 6 (66.7%) patients respectively. Weekly topical corticosteroids usage was diminished during the study and follow-up period as well. Two patients had a quick relapse and were switched to a different treatment. Two patients developed exacerbations alleviated after an additional fifth FMT. Metagenomic analysis of the fecal microbiota of patients and donors showed bacterial strains transmission from donors to patients. No adverse events were recorded during the study and follow-up period. CONCLUSIONS FMT may be a safe and effective therapeutic intervention for AD patients, associated with transfer of specific microbial species from the donors to the patients. Further studies are required to reconfirm these results.
Collapse
Affiliation(s)
- Jacob Mashiah
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Pediatric Dermatology Unit, Dana Children's HospitalTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Tal Karady
- Department of Computer Science and Applied MathematicsWeizamnn Institute of ScienceRehovotIsrael
| | - Naomi Fliss‐Isakov
- Department of Gastroenterology and Liver DiseasesTel Aviv Medical CenterTel AvivIsrael
| | - Eli Sprecher
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Pediatric Dermatology Unit, Dana Children's HospitalTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Dan Slodownik
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Ofir Artzi
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Liat Samuelov
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Pediatric Dermatology Unit, Dana Children's HospitalTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Eran Ellenbogen
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Anastasia Godneva
- Department of Computer Science and Applied MathematicsWeizamnn Institute of ScienceRehovotIsrael
| | - Eran Segal
- Department of Computer Science and Applied MathematicsWeizamnn Institute of ScienceRehovotIsrael
| | - Nitsan Maharshak
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
- Department of Gastroenterology and Liver DiseasesTel Aviv Medical CenterTel AvivIsrael
| |
Collapse
|