1
|
Ni H, Reitman ZJ, Zou W, Akhtar MN, Paul R, Huang M, Zhang D, Zheng H, Zhang R, Ma R, Ngo G, Zhang L, Diffenderfer ES, Motlagh SAO, Kim MM, Minn AJ, Dorsey JF, Foster JB, Metz J, Koumenis C, Kirsch DG, Gong Y, Fan Y. FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy. NATURE CANCER 2025; 6:460-473. [PMID: 39910249 DOI: 10.1038/s43018-025-00905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
FLASH radiotherapy holds promise for treating solid tumors given the potential lower toxicity in normal tissues but its therapeutic effects on tumor immunity remain largely unknown. Using a genetically engineered mouse model of medulloblastoma, we show that FLASH radiation stimulates proinflammatory polarization in tumor macrophages. Single-cell transcriptome analysis shows that FLASH proton beam radiation skews macrophages toward proinflammatory phenotypes and increases T cell infiltration. Furthermore, FLASH radiation reduces peroxisome proliferator-activated receptor-γ (PPARγ) and arginase 1 expression and inhibits immunosuppressive macrophage polarization under stimulus-inducible conditions. Mechanistically, FLASH radiation abrogates lipid oxidase expression and oxidized low-density lipid generation to reduce PPARγ activity, while standard radiation induces reactive oxygen species-dependent PPARγ activation in macrophages. Notably, FLASH radiotherapy improves infiltration and activation of chimeric antigen receptor (CAR) T cells and sensitizes medulloblastoma to GD2 CAR-T cell therapy. Thus, FLASH radiotherapy reprograms macrophage lipid metabolism to reverse tumor immunosuppression. Combination FLASH-CAR radioimmunotherapy may offer exciting opportunities for solid tumor treatment.
Collapse
Affiliation(s)
- Haiwei Ni
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Md Naushad Akhtar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ritama Paul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Zheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruitao Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruiying Ma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gina Ngo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Nikiforov VS, Kotikova AI, Blinova EA, Akleyev AV. Transcriptional Activity of Genes Regulating T-Helper Differentiation in the Accidentally Exposed Population of the Southern Urals. DOKL BIOCHEM BIOPHYS 2024; 519:499-505. [PMID: 39283554 DOI: 10.1134/s1607672924701114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 01/19/2025]
Abstract
The objective of this work was to study the expression of the TBX21, RORC, GATA3, NFKB1, MAPK8, and STAT3 genes responsible for the regulation of the differentiation of various T-helper subpopulations in individuals chronically exposed to radiation. The object of the study was peripheral blood cells obtained from 120 persons chronically exposed to radiation in a wide range of doses on the Techa River. The mean cumulative absorbed dose to red bone marrow in the examined exposed individuals was 742.7 ± 78.6 mGy (dose range, 73.5-3516.1 mGy); in the comparison group, 17.4 ± 2.2 mGy (dose range, 0.0-55.5 mGy). The subpopulation composition of T-helpers (Th1, Th2, and Th17) was analyzed by flow cytofluorometry. The relative mRNA content of the TBX21, RORC, GATA3, NFKB1, MAPK8, and STAT3 genes was estimated by real-time PCR. The study made it possible to note a decrease in the relative number of T-helpers 2 in the populations of T-helpers of the central memory in the group of chronically exposed persons compared to the comparison group. In the population of T-helpers of the central memory, a statistically significant increase in the relative number of T-helpers 1 was shown, depending on the accumulated absorbed dose to red bone marrow. No changes in mRNA expression of the studied genes were observed. The analysis of the correlation between the expression of GATA3, MAPK8, STAT3, RORC, and TBX21 mRNA and the relative number of cells in subpopulations of T-helper types 1, 2, and 17 in the examined people did not reveal statistically significant patterns.
Collapse
Affiliation(s)
- V S Nikiforov
- Urals Research Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia, Chelyabinsk, Russia.
- Chelyabinsk State University, Chelyabinsk, Russia.
| | - A I Kotikova
- Urals Research Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| | - E A Blinova
- Urals Research Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| | - A V Akleyev
- Urals Research Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| |
Collapse
|
3
|
Nikiforov VS, Akleyev AV. mRNA Expression of GATA3, FOXP3, TBX21, STAT3, NFKB1, and MAPK8 Transcription Factors in Humans and Their Cooperative Interactions Long-Term after Exposure to Chronic Radiation. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
The results of mRNA expression of the GATA3, FOXP3, TBX21, STAT3, NFKB1, and MAPK8 transcription factors in peripheral blood cells of 264 residents of the Techa riverside villages of the Chelyabinsk and Kurgan regions, who were affected by chronic low dose-rate exposure in the 1950s, are shown. The range of individual doses to the red bone marrow due to external gamma exposure and 90Sr was 77.8–3507.1 mGy, and the mean dose was 706.3±46.3 mGy. It has been found that changes in the transcriptional response of the cell occur at the molecular level in the long term after chronic exposure. A modified expression of the immunoregulatory genes NFKB1 and MAPK8 in the peripheral blood cells of exposed people was found. A comparative analysis of the interaction of the studied mRNAs demonstrated the presence of a link between the MAPK8 and NFKB1 genes in the group of chronically exposed individuals. The results obtained may indicate the involvement of these transcription factors in the impairment of the immune response in the exposed population.
Collapse
|
4
|
Tian XL, Lu X, Lyu YM, Zhao H, Liu QJ, Tian M. Analysis of Red Blood Cells and their Components in Medical Workers with Occupational Exposure to Low-Dose Ionizing Radiation. Dose Response 2022; 20:15593258221081373. [PMID: 35237116 PMCID: PMC8882952 DOI: 10.1177/15593258221081373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Plenty of reports focus on the effects of low-dose radiation (LDR) on peripheral blood lymphocytes in radiation workers. However, studies on red blood cells (RBCs) in radiation workers are rarely reported. Many studies focused on investigate the hemogram of radiation staffs without detecting other components of RBCs. To explore the potential effect of LDR on RBCs, we detected the level of RBC count, hemoglobin, 2,3-disphosphoglycerate (2,3-DPG), and glutathione (GSH), and then analyzed the factors on these indices in 106 medical radiation workers. As a result, RBC count was affected by sex, age, type of work, length of service (only for females), and annual effective dose (only for males). Hemoglobin status was affected by sex, type of work, and annual effective dose (only for males). Sex, age, and type of work had no effects on the concentration of 2,3-DPG and GSH. Length of service affected 2,3-DPG concentration, and annual effective dose affected GSH level. In conclusion, chronic occupational LDR exposure may have an effect on RBC count, hemoglobin status, and the concentration of 2,3-DPG and GSH in radiation workers to some extent. However, it is still unknown how this kind of influence affects the health of radiation workers.
Collapse
Affiliation(s)
- Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Yu-Min Lyu
- Laboratory of Toxicology, Henan Institute of Occupational Medicine, Zheng Zhou, P.R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
5
|
Verigos KE, Sagredou S, Orfanakos K, Dalezis P, Trafalis DT. 8-Hydroxy-2'-Deoxyguanosine and 8-Nitroguanine Production and Detection in Blood Serum of Breast Cancer Patients in Response to Postoperative Complementary External Ionizing Irradiation of Normal Tissues. Dose Response 2021; 18:1559325820982172. [PMID: 33424517 PMCID: PMC7758665 DOI: 10.1177/1559325820982172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
It is widely known that ionizing irradiation is strongly linked to the production of reactive oxygen (ROS) and nitrative species (RNS) through which DNA damage products like 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NG) are generated, respectively. In the present study, we aimed to investigate the formation of 8-OHdG and 8-NG upon irradiation and to further explore whether alterations in their concentration levels are related to the administered radiation doses and exposure time. Our research work was conducted in blood serum samples collected from 33 breast cancer patients who received adjuvant radiotherapy. The detection of 8-OHdG and 8-NG was assessed by enzyme-linked immunosorbent assay. Our results suggest that both, 8-OHdG and 8-NG, were formed during the radiation regimen. Significant correlations with radiation dose were also demonstrated by the dose-response curves of 8-OHdG and 8-NG, fitted by logarithmic distribution and polynomial regression, respectively. More precisely, 8-OHdG and 8-NG concentrations (ng/mL) were considerably increased when patients received ionizing radiation up to 30 Gy whereas irradiation over 30 Gy did not induce any further increases. The current study supports a) the production of 8-OHdG and 8-NG during radiotherapy and b) significant correlations between either 8-OHdG or 8-NG levels and radiation doses, indicating a radiation-dose-dependent relationship.
Collapse
Affiliation(s)
- Kosmas E Verigos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Radiation Therapy, 401 General Military Hospital, Athens, Greece
| | - Sofia Sagredou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Orfanakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Radiation Therapy Clinic-A, "Metaxa" Cancer Hospital, Piraeus, Greece
| | - Panayiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Horita S, Kusama T, Ban N. Effect of age-related baseline risk on radiation dose response for coronary heart disease. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:1469-1482. [PMID: 30398167 DOI: 10.1088/1361-6498/aae657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We attempted to estimate the mortality risk of radiation-associated coronary heart disease (CHD) by using a model in which radiation was assumed to participate in the atherosclerotic process jointly with ageing. Model parameters were determined by fitting the Life Span Study data of atomic bomb survivors. According to the model, the excess relative risk (ERR) varies depending on the baseline risk; when applied to the death statistics of Japan and the USA, the estimated ERR was consistently higher in the Japanese population. The absolute risk showed an opposite trend, such that the estimated lifetime attributable risk was approximately two times higher in the US population. Excess cases were expected to appear in old age almost synchronously with spontaneous cases; in contrast, the risk is practically unnoticeable for those young to middle aged. Our model suggests that the radiation dose-response curve for CHD, as well as the latency in epidemiological studies, could be modified by the baseline risk.
Collapse
Affiliation(s)
- Shogo Horita
- Faculty of Nursing, Tokyo Healthcare University, 3256 Midoricho, Tachikawa-shi, Tokyo 190-8590, Japan
| | | | | |
Collapse
|
7
|
Soloviev AI, Kizub IV. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem Pharmacol 2018; 159:121-139. [PMID: 30508525 DOI: 10.1016/j.bcp.2018.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Ionizing radiation (IR) leads to a variety of the cardiovascular diseases, including the arterial hypertension. A number of studies have demonstrated that blood vessels represent important target for IR, and the endothelium is one of the most vulnerable components of the vascular wall. IR causes an inhibition of nitric oxide (NO)-mediated endothelium-dependent vasodilatation and generation of reactive oxygen (ROS) and nitrogen (RNS) species trigger this process. Inhibition of NO-mediated vasodilatation could be due to endothelial NO synthase (eNOS) down-regulation, inactivation of endothelium-derived NO, and abnormalities in diffusion of NO from the endothelial cells (ECs) leading to a decrease in NO bioavailability. Beside this, IR suppresses endothelial large conductance Ca2+-activated K+ channels (BKCa) activity, which control NO synthesis. IR also leads to inhibition of the BKCa current in vascular smooth muscle cells (SMCs) which is mediated by protein kinase C (PKC). On the other hand, IR-evoked enhanced vascular contractility may result from PKC-mediated increase in SMCs myofilament Ca2+ sensitivity. Also, IR evokes vascular wall inflammation and atherosclerosis development. Vascular function damaged by IR can be effectively restored by quercetin-filled phosphatidylcholine liposomes and mesenchymal stem cells injection. Using RNA-interference technique targeted to different PKC isoforms can also be a perspective approach for pharmacological treatment of IR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Anatoly I Soloviev
- Department of Pharmacology of Cellular Signaling Systems and Experimental Therapy, Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kiev 03068, Ukraine
| | - Igor V Kizub
- Department of Pharmacology, New York Medical College, 15 Dana Road, Valhalla 10595, NY, United States.
| |
Collapse
|
8
|
Nagayasu A, Kakinuma S, Nishimura M, Shang Y, Sunaoshi M, Tsuruoka C, Ishihara H, Shimada Y, Kobayashi Y. Kinetics of cytokine mRNA and protein expression by plastic adherent cells in the thymus after split-dose irradiation. Cytokine 2018; 114:92-97. [PMID: 30467095 DOI: 10.1016/j.cyto.2018.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
Whole body irradiation causes significant apoptosis in various tissues such as the thymus. If apoptotic cells outnumber the phagocytic capacity of macrophages, apoptosis becomes secondary necrosis, inducing inflammatory cytokine expression in macrophages. Radiation also induces thymic lymphomas in C57BL/6 mice after four consecutive irradiations with 1.6 Gy X-rays with nearly 100% incidence. Since cancer development is modulated by a microenvironment involving macrophages, we examined the kinetics of thymocyte number and plastic adherent cell number in the thymus as well as cytokine mRNA expression by plastic adherent cells in the thymus after split-dose irradiation. Upon split-dose irradiation, thymocyte number changed dramatically, whereas plastic adherent cell number did not. Among cytokine mRNAs tested, IL-1β, IL-11 and IL-12p40 mRNAs were up regulated 2 days after the 1st and 2nd, 3rd and 4th, and 2nd and 3rd irradiations, respectively. On the other hand, TNF-α mRNA was up regulated 2 days after the 3rd irradiation and 2 weeks after the 4th irradiation. The level of IL-11 protein was also increased 2 days after 3rd and 4th irradiations. These results suggest that, upon split-dose irradiation, macrophages in the thymus produce various cytokines in a time-dependent manner, thereby contributing to induction of thymic lymphomas.
Collapse
Affiliation(s)
- Asako Nagayasu
- Division of Molecular Medicine, Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Hiroshi Ishihara
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yoshiro Kobayashi
- Division of Molecular Medicine, Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan.
| |
Collapse
|
9
|
Su L, Wang Z, Huang F, Lan R, Chen X, Han D, Zhang L, Zhang W, Hong J. 18β-Glycyrrhetinic acid mitigates radiation-induced skin damage via NADPH oxidase/ROS/p38MAPK and NF-κB pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:82-90. [PMID: 29677640 DOI: 10.1016/j.etap.2018.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Radiation-induced inflammation plays an important role in radiation-induced tissue injury. 18β-glycyrrhetinic acid (18β-GA) has shown an anti-inflammatory activity. This study aimed to assess the activity of 18β-GA against radiation-induced skin damage, and explore the underlying mechanisms. In vitro assay revealed 18β-GA treatment decreased the production of IL-1β, IL-6, PGE2 and decreased p38MAPK phosphorylation, DNA-binding activity of AP-1, and NF-κB activation in irradiated RAW264.7 macrophages. Additionally, 18β-GA suppressed NF-κB activation by inhibiting NF-κB/p65 and IκB-α phosphorylation and alleviated ROS overproduction in irradiated RAW264.7 macrophages. In vivo assay showed 18β-GA alleviated severity of radiation-induced skin damage, reduced inflammatory cell infiltration and TNF-α, IL-1β and IL-6 levels in cutaneous tissues. Our findings demonstrate that 18β-GA exhibits anti-inflammatory actions against radiation-induced skin damage probably by inhibiting NADPH oxidase activity, ROS production, activation of p38MAPK and NF-κB signaling, and the DNA binding activities of NF-κB and AP-1, consequently suppressing pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Li Su
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Zeng Wang
- Central Research Lab, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Fei Huang
- Central Research Lab, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Ruilong Lan
- Central Research Lab, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Xiuying Chen
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Deping Han
- Shanghai Biotecan Diagnostics Co. Ltd, Shanghai 201030, China
| | - Lurong Zhang
- Central Research Lab, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Weijian Zhang
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Jinsheng Hong
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou 350005, Fujian, China; Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou 350005, Fujian, China.
| |
Collapse
|
10
|
Rithidech KN, Reungpatthanaphong P, Tungjai M, Jangiam W, Honikel L, Whorton EB. Persistent depletion of plasma gelsolin (pGSN) after exposure of mice to heavy silicon ions. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:83-90. [PMID: 29753417 DOI: 10.1016/j.lssr.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Little is known about plasma proteins that can be used as biomarkers for early and late responses to radiation. The purpose of this study was to determine a link between depletion of plasma gelsolin (pGSN) and cell-death as well as inflammatory responses in the lung (one of the tissues known to be radiosensitive) of the same exposed CBA/CaJ mice after exposure to heavy silicon (28Si) ions. To prevent the development of multiple organ dysfunctions, pGSN (an important component of the extracellular actin-scavenging system) is responsible for the removal of actin that is released into the circulation during inflammation and from dying cells. We evaluated the levels of pGSN in plasma collected from groups of mice (5 mice in each) at 1 week (wk) and 1 month (1 mo) after exposure whole body to different doses of 28Si ions, i.e. 0, 0.1, 0.25, or 0.5 Gy (2 fractionated exposures, 15 days apart that totaled each selected dose). In the same mouse, the measurements of pGSN levels were coupled with the quantitation of injuries in the lung, determined by (a) the levels of cleaved poly (ADP-ribose) polymerase (cleaved-PARP), a marker of apoptotic cell-death, (b) the levels of activated nuclear factor-kappa B (NF-κB) and selected cytokines, i.e. tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6, from tissue-lysates of the lung. Further, the ratio of neutrophils and lymphocytes (N/L) was determined in the same mouse. Our data indicated: (i) the magnitude of pGSN depletion was dependent to radiation dose at both harvest times, (ii) a persistent depletion of pGSN up to 1 mo post-exposure to 0.25 or 0.5 Gy of 28Si ions, (iii) an inverse-correlation between pGSN depletion and increased levels of cleaved-PARP, including activated NF-κB/pro-inflammatory cytokines in the lung, and (iv) at both harvest times, statistically significant increases in the N/L ratio in groups of mice exposed to 0.5 Gy only. Our findings suggested that depletion in pGSN levels reflects not only the responses to 28Si-ion exposure at both harvest times but also early and late-occurring damage.
Collapse
Affiliation(s)
| | - Paiboon Reungpatthanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | | |
Collapse
|
11
|
Wu Q, Allouch A, Martins I, Modjtahedi N, Deutsch E, Perfettini JL. Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomed J 2017; 40:200-211. [PMID: 28918908 PMCID: PMC6136289 DOI: 10.1016/j.bj.2017.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/01/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France; Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Nazanine Modjtahedi
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France.
| |
Collapse
|
12
|
Kojima S, Ohshima Y, Nakatsukasa H, Tsukimoto M. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects. Dose Response 2017; 15:1559325817690638. [PMID: 28250717 PMCID: PMC5318813 DOI: 10.1177/1559325817690638] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.
Collapse
Affiliation(s)
- Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Yasuhiro Ohshima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Hiroko Nakatsukasa
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| |
Collapse
|
13
|
Tapio S. Pathology and biology of radiation-induced cardiac disease. JOURNAL OF RADIATION RESEARCH 2016; 57:439-448. [PMID: 27422929 PMCID: PMC5045085 DOI: 10.1093/jrr/rrw064] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/09/2016] [Indexed: 05/08/2023]
Abstract
Heart disease is the leading global cause of death. The risk for this disease is significantly increased in populations exposed to ionizing radiation, but the mechanisms are not fully elucidated yet. This review aims to gather and discuss the latest data about pathological and biological consequences in the radiation-exposed heart in a comprehensive manner. A better understanding of the molecular and cellular mechanisms underlying radiation-induced damage in heart tissue and cardiac vasculature will provide novel targets for therapeutic interventions. These may be valuable for individuals clinically or occupationally exposed to varying doses of ionizing radiation.
Collapse
Affiliation(s)
- Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
14
|
Kim KO, Park H, Kim HS. Effects of High-Protein Diet and/or Resveratrol Supplementation on the Immune Response of Irradiated Rats. Prev Nutr Food Sci 2014; 19:156-63. [PMID: 25320712 PMCID: PMC4195620 DOI: 10.3746/pnf.2014.19.3.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
We investigated the effects of a high-protein diet and resveratrol supplementation on immune cells changes induced by abdominal irradiation in rats. Female Wistar rats were divided into 5 groups: 1) control diet, 2) control diet with irradiation 3) 30% high-protein diet with irradiation, 4) normal diet with resveratrol supplementation and irradiation, and 5) 30% high-protein diet with resveratrol supplementation and irradiation. We measured blood protein and albumin concentrations, lipid profiles, white blood cell (WBC) counts, proinflammatory cytokine production, and splenocyte proliferation in rats that had been treated with a 17.5 Gy dose of radiation 30 days prior. A high-protein diet affected plasma total cholesterol and very low density lipoprotein-cholesterol levels, which were increased by the radiation treatment. In addition, the lymphocyte percentage and immunoglobulin M (IgM) concentration were increased, and the neutrophil percentage was decreased in rats fed a high-protein diet. Resveratrol supplementation decreased the triglyceride (TG) level, but increased the IgM concentration and splenocyte proliferation. Proinflammatory cytokine production was lower in rats fed a high-protein diet supplemented with resveratrol than in rats fed a control diet. The results of the present study indicate that high-protein diets, with or without resveratrol supplementation, might assist with recovery from radiation-induced inflammation by modulating immune cell percentages and cytokine production.
Collapse
Affiliation(s)
- Kyoung Ok Kim
- Division of Food and Nutritional Science & Life Systems, Sookmyung Women's University, Seoul 140-742, Korea
| | - Hyunjin Park
- ICAN Nutrition Education and Research, Seoul 150-877, Korea
| | - Hyun-Sook Kim
- Division of Food and Nutritional Science & Life Systems, Sookmyung Women's University, Seoul 140-742, Korea ; Major in Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul 140-742, Korea
| |
Collapse
|
15
|
Hamada N, Fujimichi Y, Iwasaki T, Fujii N, Furuhashi M, Kubo E, Minamino T, Nomura T, Sato H. Emerging issues in radiogenic cataracts and cardiovascular disease. JOURNAL OF RADIATION RESEARCH 2014; 55:831-46. [PMID: 24824673 PMCID: PMC4202294 DOI: 10.1093/jrr/rru036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/01/2014] [Accepted: 04/06/2014] [Indexed: 05/26/2023]
Abstract
In 2011, the International Commission on Radiological Protection issued a statement on tissue reactions (formerly termed non-stochastic or deterministic effects) to recommend lowering the threshold for cataracts and the occupational equivalent dose limit for the crystalline lens of the eye. Furthermore, this statement was the first to list circulatory disease (cardiovascular and cerebrovascular disease) as a health hazard of radiation exposure and to assign its threshold for the heart and brain. These changes have stimulated various discussions and may have impacts on some radiation workers, such as those in the medical sector. This paper considers emerging issues associated with cataracts and cardiovascular disease. For cataracts, topics dealt with herein include (i) the progressive nature, stochastic nature, target cells and trigger events of lens opacification, (ii) roles of lens protein denaturation, oxidative stress, calcium ions, tumor suppressors and DNA repair factors in cataractogenesis, (iii) dose rate effect, radiation weighting factor, and classification systems for cataracts, and (iv) estimation of the lens dose in clinical settings. Topics for cardiovascular disease include experimental animal models, relevant surrogate markers, latency period, target tissues, and roles of inflammation and cellular senescence. Future research needs are also discussed.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Yuki Fujimichi
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Noriko Fujii
- Kyoto University Research Reactor Institute (KURRI), 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku, Kahoku, Ishikawa 920-0293, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-754 Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Takaharu Nomura
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Hitoshi Sato
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki 300-0394, Japan
| |
Collapse
|
16
|
Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett 2013; 356:58-71. [PMID: 24370566 DOI: 10.1016/j.canlet.2013.12.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 12/30/2022]
Abstract
It is becoming increasingly clear that cells exposed to ionizing radiation (IR) and other genotoxic agents (targeted cells) can communicate their DNA damage response (DDR) status to cells that have not been directly irradiated (bystander cells). The term radiation-induced bystander effects (RIBE) describes facets of this phenomenon, but its molecular underpinnings are incompletely characterized. Consequences of DDR in bystander cells have been extensively studied and include transformation and mutation induction; micronuclei, chromosome aberration and sister chromatid exchange formation; as well as modulations in gene expression, proliferation and differentiation patterns. A fundamental question arising from such observations is why targeted cells induce DNA damage in non-targeted, bystander cells threatening thus their genomic stability and risking the induction of cancer. Here, we review and synthesize available literature to gather support for a model according to which targeted cells modulate as part of DDR their redox status and use it as a source to generate signals for neighboring cells. Such signals can be either small molecules transported to adjacent non-targeted cells via gap-junction intercellular communication (GJIC), or secreted factors that can reach remote, non-targeted cells by diffusion or through the circulation. We review evidence that such signals can induce in the recipient cell modulations of redox status similar to those seen in the originating targeted cell - occasionally though self-amplifying feedback loops. The resulting increase of oxidative stress in bystander cells induces, often in conjunction with DNA replication, the observed DDR-like responses that are at times strong enough to cause apoptosis. We reason that RIBE reflect the function of intercellular communication mechanisms designed to spread within tissues, or the entire organism, information about DNA damage inflicted to individual, constituent cells. Such responses are thought to protect the organism by enhancing repair in a community of cells and by eliminating severely damaged cells.
Collapse
Affiliation(s)
- Holger Klammer
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
17
|
Sugihara T, Murano H, Nakamura M, Tanaka K. In Vivo Partial Bystander Study in a Mouse Model by Chronic Medium-Dose-Rate γ-Ray Irradiation. Radiat Res 2013; 179:221-31. [DOI: 10.1667/rr3081.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| | - Hayato Murano
- Tohoku Environmental Sciences Services Corporation, 330-2 Noduki, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Masako Nakamura
- Tohoku Environmental Sciences Services Corporation, 330-2 Noduki, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| |
Collapse
|
18
|
Rithidech KN, Tungjai M, Reungpatthanaphong P, Honikel L, Simon SR. Attenuation of oxidative damage and inflammatory responses by apigenin given to mice after irradiation. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:29-38. [DOI: 10.1016/j.mrgentox.2012.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 04/08/2023]
|
19
|
Abstract
Damage to normal, nontumor bone tissue following therapeutic irradiation increases the risk of fracture among cancer patients. For example, women treated for various pelvic tumors have been shown to have a greater than 65% increased incidence of hip fracture by 5 years postradiotherapy. Another practical situation in which exposure to ionizing radiation may negatively impact skeletal integrity is during extended spaceflight missions. There is a limited understanding of how spaceflight-relevant doses and types of radiation can influence astronaut bone health, particularly when combined with the significant effects of mechanical unloading experienced in microgravity. Historically, negative effects on osteoblasts have been studied. Radiation exposure has been shown to damage osteoblast precursors. Damage to local vasculature has been observed, ranging from decreased lumen diameter to complete ablation within the irradiated volume, causing a state of hypoxia. These effects result in suppression of bone formation and a general state of low bone turnover. More recently, however, we have demonstrated in pre-clinical mouse models, a very rapid but transient increase in osteoclast activity after exposure to spaceflight and clinically relevant radiation doses. Combined with long-term suppression of bone formation, this skeletal damage may cause long-term deficits. This review will present a broad set of literature outlining our current set knowledge of both clinical therapy and space exploration exposure to ionizing radiation. Additionally, we will discuss prevention of the initial osteoclast-mediated bone loss, the need to promote normal bone turnover and long-term quality of bone tissue, and our hypothesized molecular mechanisms.
Collapse
|
20
|
Finley DS, Pouliot F, Chin AI, Shuch B, Pantuck AJ, Belldegrun AS, Dekernion JB. Immunological therapy in urological malignancy: novel combination strategies. Int J Urol 2010; 18:94-101. [PMID: 21073543 DOI: 10.1111/j.1442-2042.2010.02664.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
At present, immunotherapy in urological malignancy is experiencing a renaissance, particularly with the emergence of a host of innovative cancer vaccines. Herein, we will review promising immunotherapeutic approaches and evaluate the data supporting their inclusion in novel combination strategies.
Collapse
Affiliation(s)
- David S Finley
- Department of Urology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90024, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Rithidech KN, Reungpatthanaphong P, Honikel L, Rusek A, Simon SR. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:405-419. [PMID: 20508943 DOI: 10.1007/s00411-010-0295-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Abstract
The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-kappaB) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min(-1), the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of (137)Cs gamma rays (10 mGy min(-1)). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or (137)Cs gamma rays, delivered at 10 mGy min(-1), was similar. Although statistically significant levels of NF-kappaB activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or <0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min(-1) induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.
Collapse
|
22
|
Kizub IV, Pavlova OO, Ivanova IV, Soloviev AI. Protein kinase C-dependent inhibition of BK(Ca) current in rat aorta smooth muscle cells following gamma-irradiation. Int J Radiat Biol 2010; 86:291-9. [PMID: 20353339 DOI: 10.3109/09553000903564042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The aim of this study was to estimate the effects of non-fatal whole-body gamma-irradiation on outward potassium plasma membrane conductivity in rat vascular smooth muscle cells (VSMC), and to identify underlying mechanisms. MATERIALS AND METHODS Rats were exposed to a 6 Gy dose irradiation from a cobalt(60) source. Whole-cell potassium current was measured in freshly isolated rat aorta smooth muscle cells using standard patch-clamp technique. RESULTS We have determined that whole-body ionising irradiation significantly inhibits whole-cell outward K(+) current in rat aortic VSMC obtained from irradiated rats 9 and 30 days after irradiation, and this inhibition appears to be increased throughout post-irradiation period. Using selective inhibitors of small conductance Ca(2+)-activated K(+) channels (SK(Ca)), apamin (1 microM), intermediate conductance Ca(2+)-activated K(+) channels (IK(Ca,)), charybdotoxin (1 microM) and a large conductance Ca(2+)-activated K(+) channels (BK(Ca)), paxilline (500 nM), we established that the main component of whole-cell outward K(+) current in rat aortic VSMC is due to BK(Ca). It is clear that on the 9th day after irradiation paxilline had only a small effect on whole-cell outward K(+) current in VSMC, and was without effect on the 30th day post-irradiation, suggesting complete suppression of the BK(Ca) current. The PKC inhibitor, chelerythrine (100 nM), effectively reversed the suppression of whole-cell outward K(+) current induced by ionising irradiation in the post-irradiation period of 9 and 30 days. CONCLUSIONS The results suggest that irradiation-evoked inhibition of the BK(Ca) current in aortic VSMC is mediated by PKC. Taken together, our data indicate that one of the mechanisms leading to elevation of vascular tone and related arterial hypertension development under ionising irradiation impact is a PKC-mediated inhibition of BK(Ca) channels in VSMC.
Collapse
Affiliation(s)
- Igor V Kizub
- Experimental Therapeutics Department, Institute of Pharmacology and Toxicology of Academy of Medical Sciences of Ukraine, Kiev, Ukraine.
| | | | | | | |
Collapse
|
23
|
Boerma M, Schutte-Bart CI, Wedekind LE, Beekhuizen H, Wondergem J. Effects of multiple doses of ionizing radiation on cytokine expression in rat and human cells. Int J Radiat Biol 2009; 79:889-96. [PMID: 14698957 DOI: 10.1080/09553000310001626117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To determine the effect of daily fractionated irradiation on the expression of growth factors and cytokines in different cardiac and vascular cell types. MATERIALS AND METHODS Cell cultures of rat cardiac myocytes, fibroblasts, a rat cardiac microvascular endothelial cell line and human artery endothelial cells were irradiated with doses of 2 Gy, given daily during 5 consecutive days. Twenty-four hours after each fraction, gene expression was determined by competitive or semiquantitative polymerase chain reaction. Protein secretion into culture media was determined by enzyme-linked immunoabsorbant assay. RESULTS Of all investigated mRNA levels, transforming growth factor (TGF)-ss1 and fibroblast growth factor (FGF)-2 were slightly upregulated in the rat cardiac endothelial cell line after irradiation. TGF-ss1 protein secretion by these cells was slightly, but non-significantly, elevated. Interleukin 1ss protein levels in myocyte culture media were decreased in control cultures at days 3 and 4 compared with day 2. No significant changes were observed in expression of FGF-2 in either of the four cell types. Moreover, no changes were observed in gene expression of platelet-derived growth factors A, B and interleukin 8 in the human artery endothelial cells. CONCLUSIONS Fractionated irradiation leads to minor changes in the expression of specific cytokines in cardiac myocytes, fibroblasts and endothelial cells.
Collapse
Affiliation(s)
- M Boerma
- Department of Clinical Oncology, Leiden University Medical Center, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Zarate N, Wang XY, White EJ, Boreham D, Rangachari PK, Huizinga JD. Low doses of ionizing radiation can prevent radiation-induced colonic epithelial hyporesponsiveness to muscarinic agonists. Int J Radiat Biol 2009; 82:887-98. [PMID: 17178629 DOI: 10.1080/09553000600969820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Colonic epithelium hyporesponsiveness to different secretagogues occurs after exposure to ionizing radiation, increasing susceptibility to bacterial translocation and intraluminal toxins. Growing evidence suggests that the biological effects of radiation might be hormetic in nature. We investigated if exposure to low doses of ionizing radiation (LDR) can prevent colon hyposecretion due to subsequent larger doses. METHODS Rats were exposed to LDR (0.05 Gy) 24 h prior to 6 Gy, high dose radiation (HDR). The cyclic adenosine monophosphate (cAMP)-mediated pathway was explored using forskolin (FSK) and the intracellular Ca2+-mediated pathway through cholinergic stimulation. Changes in the colonic epithelium at the ultrastructural level were also explored. RESULTS Maximal short circuit current (Isc) response to carbachol was significantly reduced in the group exposed to 6 Gy HDR and this was completely prevented by prior exposure to LDR. Responses to both FSK and electrical field stimulation (EFS) were significantly reduced after HDR but they were not prevented by prior adaption of LDR. Hyposecretion was not prevented by the inducible nitric oxide synthase (iNOS) inhibitor L-N6-(l-iminoethyl)lysine (L-NIL) ruling out a role for iNOS-derived nitric oxide (NO) in the colonic hyposecretion associated with whole body radiation. Prior exposure to LDR diminished the deleterious effect of full HDR on the ultrastructure of colonic epithelium as colonocytes vacuolization, microvilli lost and separation between neighboring cells were less evident. CONCLUSIONS Previous exposure to LDR can prevent intracellular Ca2+-mediated colonic hyposecretion associated with exposure to HDR but fails to modify cAMP-mediated hyposecretion. Morphological damage at the ultrastructural level is less evident after prior LDR.
Collapse
Affiliation(s)
- N Zarate
- Intestinal Disease Research Program, Health Science Center, McMaster University, hamilton, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Rithidech KN, Honikel L, Rieger R, Xie W, Rithidech KN, Honikel L, Rieger R, Xie W, Fischer T, Simon SR. Protein-expression profiles in mouse blood-plasma following acute whole-body exposure to137Cs γ rays. Int J Radiat Biol 2009; 85:432-47. [DOI: 10.1080/09553000902820390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Glover D, Little JB, Lavin MF, Gueven N. Low dose ionizing radiation‐induced activation of connexin 43 expression. Int J Radiat Biol 2009; 79:955-64. [PMID: 14713573 DOI: 10.1080/09553000310001632895] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Connexin 43 has been implicated in the cellular response to ionizing radiation by enabling cell-to-cell communication. It is established here that the expression of connexin 43 is affected by ionizing radiation and the mechanism involved is investigated. MATERIALS AND METHODS The human connexin 43 promoter was cloned into a Luciferase reporter plasmid and activation by ionizing radiation was measured in normal human fibroblasts as well as HeLa cells. The regions responsible for the radiation inducibility were defined using deletion and point mutations of the construct. The results were confirmed by Northern and Western blotting. RESULTS Ionizing radiation activates the human connexin 43 promoter in a time- and dose-dependent manner with a maximal induction (4.2-fold +/-0.58) after 6 h and a dose of 0.5 Gy. Higher doses up to 5 Gy led to a less marked increase (2-fold) over the same period. This promoter activation was associated with comparable increases in both connexin 43 mRNA and protein levels. The low dose radiation response of the promoter is mainly dependent on consensus binding sites for nuclear factor of activated T-cells (NFAT) and activator protein (AP1) in a region -2537 and -2110 bp from the transcriptional start site as determined by mutation analysis. CONCLUSIONS Low doses of ionizing radiation induce the transcriptional upregulation of connexin 43 expression employing NFAT and AP1 sites.
Collapse
Affiliation(s)
- D Glover
- Queensland Institute of Medical Research, Herston, Australia
| | | | | | | |
Collapse
|
27
|
Kubota Y, Takahashi S, Sato H, Suetomi K. Radiation-induced apoptosis in peritoneal resident macrophages of C3H mice: Selective involvement of superoxide anion, but not other reactive oxygen species. Int J Radiat Biol 2009; 81:459-72. [PMID: 16249161 DOI: 10.1080/09553000500172145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Remarkably, apoptosis was induced by gamma-ray-irradiation in peritoneal resident macrophages (PRM) of C3H mice, but not other strains of mice. The mechanism of this strain-specific apoptosis induction was studied. Apoptosis in PRM was detected microscopically. Various radical scavengers were examined to identify the critical radicals involved in apoptosis induction. Intracellular peroxide levels were measured with a redox-sensitive dye, 2',7'-dichlorofluorescin diacetate (DCFH). Superoxide dismutase or catalase was introduced into the cells using commercially available Hemagglutinating Virus of Japan (HVJ) envelope vector kit. The enzyme activity of superoxide dismutase was also measured. Radiation-induced apoptosis in C3H mouse PRM was significantly suppressed by treatment with a pharmacological scavenger of superoxide anion, Tiron, but not with other radical scavengers. Intracellular peroxide levels were not elevated by irradiation at doses high enough to induce apoptosis maximally. Radiation-induced apoptosis in C3H mouse PRM was markedly suppressed by superoxide dismutase introduced into the cells using the HVJ envelope vector, but not catalase. The enzyme activity of superoxide dismutase in C3H mouse PRM was comparable with that in B6 mouse PRM. It was concluded that superoxide played the major role in radiation-induced apoptosis in the C3H mouse PRM and that cellular responses downstream or unrelated to superoxide might be responsible for the strain difference in radiation-induced apoptosis of mouse PRM.
Collapse
Affiliation(s)
- Y Kubota
- Environmental and Toxicological Sciences Research Group, National Institute of Radiological Sciences, Anagawa, Chiba, Japan.
| | | | | | | |
Collapse
|
28
|
Conrad S, Ritter S, Fournier C, Nixdorff K. Differential effects of irradiation with carbon ions and x-rays on macrophage function. JOURNAL OF RADIATION RESEARCH 2009; 50:223-231. [PMID: 19398853 DOI: 10.1269/jrr.08115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Macrophages are potent elicitors of inflammatory reactions that can play both positive and negative roles in radiotherapy. While several studies have investigated the effects of X-rays or gamma-rays on macrophages, virtually no work has been done on the responses of these cells to irradiation with carbon ions. Investigations into the effects of carbon ion irradiation are of particular interest in light of the fact that this type of radiation is being used increasingly for cancer therapy. In the present investigation we compared the effects of 250 kV X-rays with those of 9.8 MeV/u carbon ions on RAW 264.7 macrophages over a wide range of radiation doses. Macrophage functions including vitality, phagocytic activity, production of the proinflammatory cytokines IL-1beta and TNFalpha and production of nitric oxide (NO) were measured. In comparison to lymphocytes and fibroblasts, macrophages showed only a small decrease in vitality after irradiation with either X-rays or carbon ions. Proinflammatory cytokines and NO were induced in macrophages by LPS but not by irradiation alone. X-rays or carbon ions had little modulating effect on LPS-induced TNFalpha production. However, LPS-induced NO increased in a dose dependent manner up to 6-fold after carbon ion irradiation, while X-ray irradiation did not have this effect. Carbon ion irradiation mediated a concomitant decrease in IL-1beta production. Carbon ions also had a greater effect than X-rays in enhancing the phagocytic activity of macrophages. These results underscore the greater potential of carbon ion irradiation with regard to radiobiological effectiveness.
Collapse
Affiliation(s)
- Sandro Conrad
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | | | |
Collapse
|
29
|
Willey JS, Grilly LG, Howard SH, Pecaut MJ, Obenaus A, Gridley DS, Nelson GA, Bateman TA. Bone architectural and structural properties after 56Fe26+ radiation-induced changes in body mass. Radiat Res 2008; 170:201-7. [PMID: 18666808 DOI: 10.1667/rr0832.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 04/21/2008] [Indexed: 11/03/2022]
Abstract
High-energy, high-charge (HZE) radiation, including iron ions ((56)Fe(26+)), is a component of the space environment. We recently observed a profound loss of trabecular bone in mice after whole-body HZE irradiation. The goal of this study was to examine morphology in bones that were excluded from a (56)Fe(26+) beam used to irradiate the body. Using 10-week-old male Sprague-Dawley rats and excluding the hind limbs and pelvis, we irradiated animals with 0, 1, 2 and 4 Gy (56)Fe(26+) ions and killed them humanely after 9 months. Animals grew throughout the experiment. Trabecular bone volume, connectivity and thickness within the proximal tibiae were significantly lower than control in a dose-dependent manner. Irradiated animals generally had less body mass than controls, which largely accounted for the variability in bone parameters as determined by ANCOVA. Likewise, lower cortical parameters were associated with reduced mass. However, lesser trabecular thickness in the 4-Gy group could not be attributed to body mass alone. Indicators of bone metabolism were generally unchanged, suggesting stabilized turnover. Exposure to (56)Fe(26+) ions can alter trabecular microarchitecture in shielded bones. Reduced body mass seems to be correlated with these deficits of trabecular and cortical bone.
Collapse
Affiliation(s)
- J S Willey
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S, Elliott P. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res 2008; 169:99-109. [PMID: 18159955 DOI: 10.1667/rr1070.1] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/29/2007] [Indexed: 11/03/2022]
Abstract
Little, M. P., Tawn, E. J., Tzoulaki, I., Wakeford, R., Hildebrandt, G., Paris, F., Tapio, S. and Elliott, P. A Systematic Review of Epidemiological Associations Between Low and Moderate Doses of Ionizing Radiation and Late Cardiovascular Effects, and Their Possible Mechanisms. Radiat. Res. 169, 99-109 (2008). The link between high doses of ionizing radiation and damage to the heart and coronary arteries is established. In this paper, we systematically review the epidemiological evidence for associations between low and moderate doses (<5 Gy) of ionizing radiation and late-occurring cardiovascular disease. Risks per unit dose in epidemiological studies vary over at least two orders of magnitude, possibly a result of confounding factors. An examination of possible biological mechanisms indicates that the most likely causative effect of radiation exposure is damage to endothelial cells and subsequent induction of an inflammatory response, although it seems unlikely that this would extend to low-dose and low-dose-rate exposure. However, a role for somatic mutation has been proposed that would indicate a stochastic effect. In the absence of a convincing mechanistic explanation of epidemiological evidence that is less than persuasive at present, a cause-and-effect interpretation of the reported statistical associations cannot be reliably inferred, although neither can it be reliably excluded. Further epidemiological and biological evidence will allow a firmer conclusion to be drawn.
Collapse
Affiliation(s)
- M P Little
- Department of Epidemiology and Public Health, Imperial College Faculty of Medicine, London W2 1PG, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kubota Y, Kinoshita K, Suetomi K, Fujimori A, Takahashi S. Mcl-1 Depletion in Apoptosis Elicited by Ionizing Radiation in Peritoneal Resident Macrophages of C3H Mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:2923-31. [PMID: 17312137 DOI: 10.4049/jimmunol.178.5.2923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Remarkably, apoptosis was induced by exposing peritoneal resident macrophages (PRM) of C3H mice, but not other strains of mice, to ionizing radiation. The molecular mechanism of this strain-specific apoptosis in PRM was studied. The apoptosis elicited in C3H mouse PRM 4 h after exposure was effectively blocked by proteasome inhibitors. Irradiation-induced disruption of mitochondrial transmembrane potential and the release of cytochrome c into the cytosol were also suppressed by a proteasome inhibitor but not by a caspase inhibitor. To determine whether the apoptosis occurred due to a depletion of antiapoptotic proteins, Bcl-2 family proteins were examined. Irradiation markedly decreased the level of Mcl-1, but not Bcl-2, Bcl-X(L), Bax, A1, or cIAP1. Mcl-1's depletion was suppressed by a proteasome inhibitor but not by a caspase inhibitor. The amount of Mcl-1 was well correlated with the rate of apoptosis in C3H mouse PRM exposed to irradiation and not affected by irradiation in radioresistant B6 mouse PRM. Irradiation increased rather than decreased the Mcl-1 mRNA expression in C3H mouse PRM. On the other hand, Mcl-1 protein synthesis was markedly suppressed by irradiation. Global protein synthesis was also suppressed by irradiation in C3H mouse PRM but not in B6 mouse PRM. The down-regulation of Mcl-1 expression with Mcl-1-specific small interfering RNA or antisense oligonucleotide significantly induced apoptosis in both C3H and B6 mouse PRM without irradiation. It was concluded that the apoptosis elicited in C3H mouse PRM by ionizing radiation was attributable to the depletion of Mcl-1 through radiation-induced arrest of global protein synthesis.
Collapse
Affiliation(s)
- Yoshihisa Kubota
- Environmental and Toxicological Sciences Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Total-body irradiation (TBI) with 0.02-0.25 Gy has been reported to have antitumor effects. In mice, low-dose TBI induces tumor growth delay, antimetastatic effects, suppressive effects on the incidence of spontaneous thymiclymphoma, sensitization of tumor to ionizing radiation, and decrease in TD50 value. In artificial metastasis, 0.20 Gy TBI suppressed lung metastasis when it was conducted between 3 h before and 3 h after tumor cell injection into a tail vein. In spontaneous metastasis, 0.15-0.20 Gy TBI suppressed lung metastasis. Irradiation with 0.15 Gy twice a week from 11 weeks of age for 40 weeks significantly suppressed the incidence of spontaneous thymic lymphoma in AKR/J mice, which caused prolonged life span. Low-dose TBI has been used in the clinical treatment of lymphomatous malignancies including chronic lymphocytic leukaemia (CLL) and non-Hodgkin's lymphoma (NHL). The usual practice was to give 0.1 Gy TBI three times a week or 0.15 Gy TBI two times a week to a total dose of 1.5 Gy. Despite this low total dose, low-dose fractionated TBI could induce long-term remissions and was as effective as the chemotherapy to which it was compared. Experimental data suggest that the antitumor effects of low-dose TBI could be explained by immune enhancement, induction of apoptosis, and intrinsic hypersensitivity to low-dose irradiation. Possible mechanisms of immune enhancement are elimination of the T-suppressor subset of lymphocytes and augmentation of the immune response including alteration of cytokine release and enhanced proliferative activity of lymphocytes to mitogenic stimuli.
Collapse
Affiliation(s)
- Yoshio Hosoi
- Section of Radiation Biology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan.
| |
Collapse
|
33
|
Otsuka K, Koana T, Tauchi H, Sakai K. Activation of Antioxidative Enzymes Induced by Low-Dose-Rate Whole‐Body γ Irradiation: Adaptive Response in Terms of Initial DNA Damage. Radiat Res 2006; 166:474-8. [PMID: 16953665 DOI: 10.1667/rr0561.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An adaptive response induced by long-term low-dose-rate irradiation in mice was evaluated in terms of the amount of DNA damage in the spleen analyzed by a comet assay. C57BL/ 6N female mice were irradiated with 0.5 Gy of (137)Cs gamma rays at 1.2 mGy/h; thereafter, a challenge dose (0.4, 0.8 or 1.6 Gy) at a high dose rate was given. Less DNA damage was observed in the spleen cells of preirradiated mice than in those of mice that received the challenge dose only; an adaptive response in terms of DNA damage was induced by long-term low-dose-rate irradiation in mice. The gene expression of catalase and Mn-SOD was significantly increased in the spleen after 23 days of the low-dose-rate radiation (0.5 Gy). In addition, the enzymatic activity of catalase corresponded to the gene expression level; the increase in the activity was observed at day 23 (0.5 Gy). These results suggested that an enhancement of the antioxidative capacities played an important role in the reduction of initial DNA damage by low-dose-rate radiation.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Low Dose Radiation Research Center, Central Research Institute of Electric Power Industry, Tokyo, Japan.
| | | | | | | |
Collapse
|
34
|
Olwell PM, Cottell DC, Ní Shúilleabháin S, Maderna P, Seymour C, Mothersill C, Lyng FM. Cytoskeletal Reorganization and Altered Phagocytotic Ability in Primary Cultures of Rainbow Trout Hemopoietic Tissue Exposed to Low-Level Ionizing Radiation. Radiat Res 2005; 164:45-52. [PMID: 15966764 DOI: 10.1667/rr3386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has long been known that the hematopoietic tissue of mammals is one of the most radiosensitive tissues. In vitro studies on prawns have also shown that low doses of radiation have an extremely deleterious effect on cells cultured from this animal's blood-forming tissues. This raises questions about the relative effects of radiation in animals of different species. One of the most important aquatic animals, from both an economic and an ecological point of view, is the fish. With this in mind, primary cultures of the blood-forming tissues of rainbow trout were exposed to radiation followed by a morphological comparison between control and irradiated cultures. The cultured cells were characterized as macrophages after incubation with apoptotic human polymorphonuclear leukocytes and were classified as phagocytotic leukocytes. These cells were found in two morphological forms, stretched and rounded. It was shown that there was a commensurate increase in the number of stretched cells after irradiation. Radiation was also shown to cause a dose-dependent increase in the amounts of apoptosis in these cells over time. The phagocytotic efficacy of these cells was shown to inhibited by the exposure to low doses of radiation.
Collapse
Affiliation(s)
- Peter M Olwell
- Radiation and Environmental Science Centre, FOCAS, Dublin Institute of Technology, Dublin 8, Ireland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
BACKGROUND Cytokines are important for signalling between cells and tissues and constitute a humoral component of the response of cells and tissues to radiotherapy. Although several cytokines have been implicated in mediating radiation-induced reactions of normal tissues to both conventional photon and heavy ion irradiation, the mechanisms are only beginning to be elucidated. MATERIAL AND METHODS Published and own data on radiation-induced cytokine expression from cell culture and clinical studies are reviewed. Current models of cytokine-mediated multicellular interactions in radiation-induced reactions are presented. RESULTS AND CONCLUSION The major cytokines in the radiation response of non-hemopoietic tissues include IL-6, IL-1, TNF-alpha and TGF-beta. Different cell types interact via cytokines in a complex network of effector and receptor cells, including inflammatory cells, tissue-specific functional cells and fibroblasts. TGF-beta appears to be of particular importance in the development of late reactions to radiation therapy, such as fibrosis, in response to both conventional therapy as well as hadron therapy.
Collapse
Affiliation(s)
- Oliver Haase
- Section of Radiobiology & Molecular Environmental Research, Dept. of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany
| | | |
Collapse
|
36
|
McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, Dougherty GJ, Iwamoto KS, Pervan M, Liao YP. A Sense of Danger from Radiation1. Radiat Res 2004; 162:1-19. [PMID: 15222781 DOI: 10.1667/rr3196] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tissue damage caused by exposure to pathogens, chemicals and physical agents such as ionizing radiation triggers production of generic "danger" signals that mobilize the innate and acquired immune system to deal with the intrusion and effect tissue repair with the goal of maintaining the integrity of the tissue and the body. Ionizing radiation appears to do the same, but less is known about the role of "danger" signals in tissue responses to this agent. This review deals with the nature of putative "danger" signals that may be generated by exposure to ionizing radiation and their significance. There are a number of potential consequences of "danger" signaling in response to radiation exposure. "Danger" signals could mediate the pathogenesis of, or recovery from, radiation damage. They could alter intrinsic cellular radiosensitivity or initiate radioadaptive responses to subsequent exposure. They may spread outside the locally damaged site and mediate bystander or "out-of-field" radiation effects. Finally, an important aspect of classical "danger" signals is that they link initial nonspecific immune responses in a pathological site to the development of specific adaptive immunity. Interestingly, in the case of radiation, there is little evidence that "danger" signals efficiently translate radiation-induced tumor cell death into the generation of tumor-specific immunity or normal tissue damage into autoimmunity. The suggestion is that radiation-induced "danger" signals may be inadequate in this respect or that radiation interferes with the generation of specific immunity. There are many issues that need to be resolved regarding "danger" signaling after exposure to ionizing radiation. Evidence of their importance is, in some areas, scant, but the issues are worthy of consideration, if for no other reason than that manipulation of these pathways has the potential to improve the therapeutic benefit of radiation therapy. This article focuses on how normal tissues and tumors sense and respond to danger from ionizing radiation, on the nature of the signals that are sent, and on the impact on the eventual consequences of exposure.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1714, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Safwat A, Aggerholm N, Roitt I, Overgaard J, Hokland M. Tumour burden and interleukin-2 dose affect the interaction between low-dose total body irradiation and interleukin 2. Eur J Cancer 2004; 40:1412-7. [PMID: 15177501 DOI: 10.1016/j.ejca.2004.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/21/2004] [Accepted: 01/26/2004] [Indexed: 11/21/2022]
Abstract
Low-dose total body irradiation (LTBI) has a synergistic immune-mediated antitumour effect when used in combination with interleukin 2 (IL-2) in a murine metastatic malignant melanoma model. To optimise the use of this combination treatment this study was performed to test the effect of tumour burden and dose of both LTBI and IL-2 on the therapeutic potential of this treatment strategy. Ten-week-old female C57BL/6 mice were inoculated intravenously (day 0) with 1 million B16F1 malignant melanoma cells. Groups of mice received no treatment, a single fraction of LTBI alone, IL-2 treatment alone, or a combination of LTBI and IL-2. Two doses of LTBI and IL-2 were tested. LTBI was given on day +10 and IL-2 treatment started on day +11. On day +18 the mice were killed. The lungs were removed and analysed for tumour burden. Lung sections were also tested for infiltrating leucocytes using immunohistochemical staining. In one experiment, mice were treated at day +7 with low-dose IL-2 with and without LTBI. LTBI (in the two tested doses) showed no independent therapeutic effects. An IL-2 dose of 300,000 Cetus units (CU) that was effective and showed synergism with LTBI when mice were treated on day +7 failed to show a therapeutic effect when mice were treated on day +10, at which time the initial tumour burden had doubled. High-dose IL-2 (600,000 CU), in contrast, led to a significant reduction in metastatic burden compared to the control group. Combining high-dose IL-2 with LTBI led to a further significant reduction in tumour burden. Moreover, this combination was associated with a less severe vascular leakage syndrome compared to IL-2 alone. IL-2 and combination treatment was associated with an increase in the number of tumour-infiltrating immune cells, but only the number of tumour-infiltrating natural killer cells reflected therapeutic efficacy. It was concluded that tumour burden at the time of treatment and IL-2 dose are two crucial factors affecting the synergism between LTBI and IL-2. The combination may not only be more effective than IL-2 alone but also less toxic.
Collapse
Affiliation(s)
- Akmal Safwat
- Department of Experimental Clinical Oncology, Aarhus University Hospital, and Institute for Medical Microbiology and Immunology, Aarhus University, Denmark.
| | | | | | | | | |
Collapse
|
38
|
Barthelemy-Brichant N, Bosquée L, Cataldo D, Corhay JL, Gustin M, Seidel L, Thiry A, Ghaye B, Nizet M, Albert A, Deneufbourg JM, Bartsch P, Nusgens B. Increased IL-6 and TGF-beta1 concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy. Int J Radiat Oncol Biol Phys 2004; 58:758-67. [PMID: 14967431 DOI: 10.1016/s0360-3016(03)01614-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 07/22/2003] [Accepted: 07/23/2003] [Indexed: 12/24/2022]
Abstract
PURPOSE To assess, in lung cancer patients, the effects of thoracic radiotherapy (RT) on the concentrations of transforming growth factor-beta(1) (TGF-beta(1)) and interleukin-6 (IL-6) in the bronchoalveolar lavage (BAL) fluid. METHODS AND MATERIALS Eleven patients with lung cancer requiring RT as part of their treatment were studied. BAL was performed bilaterally before, during, and 1, 3, and 6 months after RT. Before each BAL session, the patient's status was assessed clinically using pulmonary function tests and an adapted late effects on normal tissue-subjective, objective, management, analytic (LENT-SOMA) scale, including subjective and objective alterations. The National Cancer Institute Common Toxicity Criteria were used to grade pneumonitis. The TGF-beta(1) and IL-6 levels in the BAL fluid were determined using the Easia kit. RESULTS The TGF-beta(1) and IL-6 concentrations in the BAL fluid recovered from the irradiated areas were significantly increased by thoracic RT. The increase in TGF-beta(1) levels tended to be greater in the group of patients who developed severe pneumonitis. In the BAL fluid from the nonirradiated areas, the TGF-beta(1) and IL-6 concentrations remained unchanged. CONCLUSION The observed increase in TGF-beta(1) and IL-6 concentrations in the BAL fluid recovered from the irradiated lung areas demonstrated that these cytokines may contribute to the process leading to a radiation response in human lung tissue.
Collapse
|
39
|
Marquette C, Linard C, Galonnier M, Van Uye A, Mathieu J, Gourmelon P, Clarençon D. IL-1beta, TNFalpha and IL-6 induction in the rat brain after partial-body irradiation: role of vagal afferents. Int J Radiat Biol 2004; 79:777-85. [PMID: 14630536 DOI: 10.1080/09553000310001610998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To evaluate the central nervous system neuroimmune and inflammatory responses during the prodromal phase of the acute irradiation syndrome in rat brains after partial-body exposure (head-protected) and to investigate the potential neural signalling pathways from the irradiated periphery to the non-irradiated brain. MATERIAL AND METHODS The study included four groups of rats: one irradiated group and one sham irradiated group, each containing non-vagotomized and vagotomized rats. In vagotomized rat groups, the subdiaphragmatic vagal section surgery was carried out 45 days before the irradiation exposure. The rats were partial-body irradiated with the head shielded with (60)Co gamma-rays to a dose of 15 Gy. They were sacrificed 6 h after the end of exposure. The hypothalamus, hippocampus, thalamus and cortex were then collected, and the concentrations of IL-1beta, TNFalpha and IL-6 in each were measured by ELISA assays. RESULTS Six hours after irradiation, IL-1beta levels had increased in the hypothalamus, thalamus and hippocampus, and TNFalpha and IL-6 levels had increased significantly in the hypothalamus. Vagotomy before irradiation prevented these responses. CONCLUSIONS It was concluded that the hypothalamus, hippocampus, thalamus and cortex react rapidly to peripheral irradiation by releasing pro-inflammatory mediators. The results also show that the vagus nerve is one of the major ascending pathways for rapid signalling to the brain with respect to partial body irradiation.
Collapse
Affiliation(s)
- C Marquette
- IRSN BP no. 17 F-92262 Fontenay aux Roses cedex France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Azzam EI, de Toledo SM, Little JB. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 2003; 22:7050-7. [PMID: 14557810 DOI: 10.1038/sj.onc.1206961] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence accumulated over the past two decades has indicated that exposure of cell populations to ionizing radiation results in significant biological effects occurring in both the irradiated and nonirradiated cells in the population. This phenomenon, termed the 'bystander response', has been shown to occur both in vitro and in vivo and has been postulated to impact both the estimation of risks of exposure to low doses/low fluences of ionizing radiation and radiotherapy. Several mechanisms involving secreted soluble factors, oxidative metabolism and gap-junction intercellular communication have been proposed to regulate the radiation-induced bystander effect. Our current knowledge of the biochemical and molecular events involved in the latter two processes is reviewed in this article.
Collapse
Affiliation(s)
- Edouard I Azzam
- Department of Radiology, UMDNJ, New Jersey Medical School, Newark, NJ 07103,
| | | | | |
Collapse
|
41
|
Hodgetts SI, Grounds MD. Irradiation of dystrophic host tissue prior to myoblast transfer therapy enhances initial (but not long-term) survival of donor myoblasts. J Cell Sci 2003; 116:4131-46. [PMID: 12972504 DOI: 10.1242/jcs.00721] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
There is a massive and rapid death of donor myoblasts (<20% surviving) within hours after intramuscular injection in myoblast transfer therapy (MTT), due to host immune cells, especially natural killer (NK) cells. To investigate the role of host immune cells in the dramatic death of donor myoblasts, MTT experiments were performed in irradiated host mice. Cultured normal C57BL/10ScSn male donor myoblasts were injected into muscles of female C57BL/10ScSn-Dmdmdx host mice after one of three treatments: whole body irradiation (WBI) to eliminate all circulating leukocytes, WBI and bone marrow reconstitution (BMR), or local irradiation (or protection) of one limb. Similar experiments were performed in host mice after antibody depletion of NK cells. Numbers of male donor myoblasts were quantified using a Y-chromosome-specific (male) probe following total DNA extraction of injected muscles. WBI prior to MTT resulted in dramatically enhanced survival (approximately 80%) of donor myoblasts at 1 hour after MTT, supporting a central role for host inflammatory cells in the initial death of donor myoblasts seen in untreated host mice. BMR restored the massive and rapid loss (approximately 25% surviving) of donor myoblasts at 1 hour after MTT. Local pre-irradiation also resulted in increased donor myoblast numbers (approximately 35-40%) compared with untreated controls (approximately 10%) at 3 weeks after MTT. Preirradiation of host muscle with 10 Gy did not significantly stimulate proliferation of the injected donor myoblasts. Serum protein levels of TNFalpha, IL-1beta, IL-6 and IL-12 fluctuated following irradiation treatments. These combined results strongly reinforce a major role for host immune cells in the rapid death of injected cultured donor myoblasts.
Collapse
Affiliation(s)
- Stuart I Hodgetts
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia.
| | | |
Collapse
|
42
|
McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 2003; 22:5755-73. [PMID: 12947384 DOI: 10.1038/sj.onc.1206676] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last few years, the ubiquitin(Ub)/proteasome system has become increasingly recognized as a controller of numerous physiological processes, including signal transduction, DNA repair, chromosome maintenance, transcriptional activation, cell cycle progression, cell survival, and certain immune cell functions. This is in addition to its more established roles in the removal of misfolded, damaged, and effete proteins. This review examines the role of the Ub/proteasome system in processes underlying the classical effects of irradiation on cells, such as radiation-induced gene expression, DNA repair and chromosome instability, oxidative damage, cell cycle arrest, and cell death. Furthermore, recent evidence suggests that the proteasome is a redox-sensitive target for ionizing radiation and other oxidative stress signals. In other words, the Ub/proteasome system may not simply be a passive player in radiation-induced responses, but may modulate them. The extent of the modulation will be influenced by the functional and structural diversity that is expressed by the system. Cell types vary in the Ub/proteasome structures they possess and the level at which they function, and this changes as they go from the normal to the cancerous condition. Cancer-related functional changes within the Ub/proteasome system may therefore present unique targets for cancer therapy, especially when targeting agents are used in combination with radio- or chemotherapy. The peptide boronic acid compound PS-341, which was designed to inhibit proteasome chymotryptic activity, is in clinical trials for the treatment of solid and hematogenous tumors. It has shown some efficacy on its own and in combination with chemotherapy. Preclinical studies have shown that PS-341 will also potentiate the cytotoxic effects of radiation therapy. In addition, other drugs in common clinical use have been shown to affect proteasome function, and their activities may be valuably reconsidered from this perspective.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|