1
|
Kawakatsu R, Tadagaki K, Yamasaki K, Yoshida T. Venetoclax efficacy on acute myeloid leukemia is enhanced by the combination with butyrate. Sci Rep 2024; 14:4975. [PMID: 38424468 PMCID: PMC10904797 DOI: 10.1038/s41598-024-55286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Venetoclax has been approved recently for treatment of Acute myeloid leukemia (AML). Venetoclax is a BH3-mimetic and induces apoptosis via Bcl-2 inhibition. However, venetoclax's effect is still restrictive and a novel strategy is needed. In the present study, we demonstrate that sodium butyrate (NaB) facilitates the venetoclax's efficacy of cell death in AML cells. As a single agent, NaB or venetoclax exerted just a weak effect on cell death induction for AML cell line KG-1. The combination with NaB and venetoclax drastically induced cell death. NaB upregulated pro-apoptotic factors, Bax and Bak, indicating the synergistic effect by the collaboration with Bcl-2 inhibition by venetoclax. The combined treatment with NaB and venetoclax strongly cleaved a caspase substrate poly (ADP-ribose) polymerase (PARP) and a potent pan-caspase inhibitor Q-VD-OPh almost completely blocked the cell death induced by the combination, meaning that the combination mainly induced apoptosis. The combination with NaB and venetoclax also strongly induced cell death in another AML cell line SKNO-1 but did not affect chronic myeloid leukemia (CML) cell line K562, indicating that the effect was specific for AML cells. Our results provide a novel strategy to strengthen the effect of venetoclax for AML treatment.
Collapse
Affiliation(s)
- Renshi Kawakatsu
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
2
|
Chen JH, Wu CH, Chiang CK. Therapeutic Approaches Targeting Proteostasis in Kidney Disease and Fibrosis. Int J Mol Sci 2021; 22:ijms22168674. [PMID: 34445377 PMCID: PMC8395452 DOI: 10.3390/ijms22168674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pathological insults usually disturb the folding capacity of cellular proteins and lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which leads to so-called “ER stress”. Increasing evidence indicates that ER stress acts as a trigger factor for the development and progression of many kidney diseases. The unfolded protein responses (UPRs), a set of molecular signals that resume proteostasis under ER stress, are thought to restore the adaptive process in chronic kidney disease (CKD) and renal fibrosis. Furthermore, the idea of targeting UPRs for CKD treatment has been well discussed in the past decade. This review summarizes the up-to-date literature regarding studies on the relationship between the UPRs, systemic fibrosis, and renal diseases. We also address the potential therapeutic possibilities of renal diseases based on the modulation of UPRs and ER proteostasis. Finally, we list some of the current UPR modulators and their therapeutic potentials.
Collapse
Affiliation(s)
- Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
| | - Chia-Hsien Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 88347)
| |
Collapse
|
3
|
Al-Keilani MS, Al-Sawalha NA. Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms. Chem Res Toxicol 2017; 30:1767-1777. [DOI: 10.1021/acs.chemrestox.7b00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maha S. Al-Keilani
- Jordan University of Science and Technology, College
of Pharmacy, Department of Clinical Pharmacy, P.O. Box 3030, Irbid 22110, Jordan
| | - Nour A. Al-Sawalha
- Jordan University of Science and Technology, College
of Pharmacy, Department of Clinical Pharmacy, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
4
|
Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A. Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer 2016; 15:69. [PMID: 27825361 PMCID: PMC5101698 DOI: 10.1186/s12943-016-0555-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells. This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy.
Collapse
Affiliation(s)
- Abhijeet Deshmukh
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Kedar Deshpande
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
5
|
Carlisle RE, Brimble E, Werner KE, Cruz GL, Ask K, Ingram AJ, Dickhout JG. 4-Phenylbutyrate inhibits tunicamycin-induced acute kidney injury via CHOP/GADD153 repression. PLoS One 2014; 9:e84663. [PMID: 24416259 PMCID: PMC3885586 DOI: 10.1371/journal.pone.0084663] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/18/2013] [Indexed: 02/02/2023] Open
Abstract
Different forms of acute kidney injury (AKI) have been associated with endoplasmic reticulum (ER) stress; these include AKI caused by acetaminophen, antibiotics, cisplatin, and radiocontrast. Tunicamycin (TM) is a nucleoside antibiotic known to induce ER stress and is a commonly used inducer of AKI. 4-phenylbutyrate (4-PBA) is an FDA approved substance used in children who suffer from urea cycle disorders. 4-PBA acts as an ER stress inhibitor by aiding in protein folding at the molecular level and preventing misfolded protein aggregation. The main objective of this study was to determine if 4-PBA could protect from AKI induced by ER stress, as typified by the TM-model, and what mechanism(s) of 4-PBA's action were responsible for protection. C57BL/6 mice were treated with saline, TM or TM plus 4-PBA. 4-PBA partially protected the anatomic segment most susceptible to damage, the outer medullary stripe, from TM-induced AKI. In vitro work showed that 4-PBA protected human proximal tubular cells from apoptosis and TM-induced CHOP expression, an ER stress inducible proapoptotic gene. Further, immunofluorescent staining in the animal model found similar protection by 4-PBA from CHOP nuclear translocation in the tubular epithelium of the medulla. This was accompanied by a reduction in apoptosis and GRP78 expression. CHOP(-/-) mice were protected from TM-induced AKI. The protective effects of 4-PBA extended to the ultrastructural integrity of proximal tubule cells in the outer medulla. When taken together, these results indicate that 4-PBA acts as an ER stress inhibitor, to partially protect the kidney from TM-induced AKI through the repression of ER stress-induced CHOP expression.
Collapse
Affiliation(s)
- Rachel E. Carlisle
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Elise Brimble
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Kaitlyn E. Werner
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Gaile L. Cruz
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Kjetil Ask
- Department of Medicine, Division of Respirology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Alistair J. Ingram
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Jeffrey G. Dickhout
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Canada
| |
Collapse
|
6
|
Tirandaz H, Mohammadi E. Efficient tumor targeting by anaerobic butyrate-producing bacteria. Med Hypotheses 2013; 80:675-8. [PMID: 23410499 DOI: 10.1016/j.mehy.2013.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/13/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Butyrate as an important short chain fatty acid has been shown to affect different kinds of cancer cells. Butyrate exerts its anti-cancerous effects by several mechanisms and has lead to successful outcomes in phase I and II clinical trials. Moreover, since solid tumors grow rapidly, multiple regions of hypoxia and anoxia forms within them that provide good niches for the growth of anaerobic bacteria. It has been shown that bacterial tumor targeting is an applicable strategy for tumor-selective therapy. Therefore, we propose that nonpathogenic anaerobic butyrate-producing bacteria may be a versatile tool in tumor therapy as they can grow in anoxic and hypoxic regions of tumors and influence tumor cells by producing butyric acid. Moreover, this approach may overcome the existing problems of butyrate delivery to the sites of tumor and enhance its bioavailability. Also reversion of cancer drug resistance by butyrate will be plausible. Tumor targeting with nonpathogenic anaerobic bacteria with a higher capacity to produce butyrate could be the focus of future research.
Collapse
Affiliation(s)
- Hassan Tirandaz
- Biotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran.
| | | |
Collapse
|
7
|
Down-regulation of matrix metalloproteinase-7 inhibits metastasis of human anaplastic thyroid cancer cell line. Clin Exp Metastasis 2011; 29:71-82. [PMID: 22042554 DOI: 10.1007/s10585-011-9430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/07/2011] [Indexed: 12/26/2022]
Abstract
Epigenetic drugs such as histone deacetylase inhibitors (HDACIs) possess anticancer properties due to its ability to regulate genes associated with tumor growth, differentiation, apoptosis and metastasis. In addition to its apoptotic effect, phenylbutyrate (PB), a carboxylic acid HDACI, inhibited an anaplastic (ATC) thyroid cancer cell line ARO from penetrating a matrigel coated transwell with concomitant suppression of a metastasis-associated gene, matrix metalloproteinase-7 (MMP-7) and stimulation of a transformation suppressor protein, reversion-inducing- cysteine-rich protein with Kazal motifs without affecting MMP-2 expression levels. Direct evidence suggesting MMP-7 down-regulated cancer metastasis came from the observation of a decreased pulmonary metastasis in SCID mice xeno-transplanted with MMP-7-knocked-down ARO cells. In addition, H-89, a protein kinase A inhibitor, remarkably restored the down-regulaed MMP-7 level treated by PB. Thus, the suppressive effect of PB on MMP-7 was partially carried out through H3 phosphoacetylation. To conclude, our findings suggest PB inhibits MMP-7 expression epigenetically through phosphoacetylation of histone proteins, and thereby, reduced invasive ability of an ATC thyroid cancer cell line.
Collapse
|
8
|
Abstract
Ovarian cancer is the leading cause of death among gynecological cancers. It is now recognized that in addition to genetic alterations, epigenetic mechanisms, such as DNA methylation, histone modifications and nucleosome remodeling, play an important role in the development and progression of ovarian cancer by modulating chromatin structure, and gene and miRNA expression. Furthermore, epigenetic alterations have been recognized as useful tools for the development of novel biomarkers for diagnosis, prognosis, therapeutic prediction and monitoring of diseases. Moreover, new epigenetic therapies, such as DNA methyltransferase inhibitors and histone deacetylase inhibitors, have been found to be a potential therapeutic option, especially when used in combination with other agents. Here we discuss current developments in ovarian carcinoma epigenome research, the importance of the ovarian carcinoma epigenome for development of diagnostic and prognostic biomarkers, and the current epigenetic therapies used in ovarian cancer.
Collapse
Affiliation(s)
- Leonel Maldonado
- Department of Otolaryngology & Head & Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
9
|
Shelton LM, Huysentruyt LC, Seyfried TN. Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer 2010; 127:2478-85. [PMID: 20473919 PMCID: PMC2946425 DOI: 10.1002/ijc.25431] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic cancer is a major cause of morbidity and mortality. Current therapeutic options consist of chemotherapy, radiation or targeted therapies. However, these therapies are often toxic, effective over a small range of cancer types or result in drug resistance. Therefore, a more global, less toxic strategy for the management of metastatic cancer is required. Although most cancers display increased glucose metabolism, glutamine is also a major energy substrate for many cancers. We evaluated the antimetastatic potential of 6-diazo-5-oxo-L-norleucine (DON), a glutamine analog, using the new VM mouse model of systemic metastasis. We found that primary tumor growth was ∼20-fold less in DON-treated mice than in untreated control mice. We also found that DON treatment inhibited metastasis to liver, lung and kidney as detected by bioluminescence imaging and histology. Our findings provide proof of concept that metabolic therapies targeting glutamine metabolism can manage systemic metastatic cancer.
Collapse
Affiliation(s)
- Laura M. Shelton
- Boston College, Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467
| | | | - Thomas N. Seyfried
- Boston College, Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467
| |
Collapse
|
10
|
Byun SS, Kim FJ, Khandrika L, Kumar B, Koul S, Wilson S, Koul HK. Differential effects of valproic acid on growth, proliferation and metastasis in HTB5 and HTB9 bladder cancer cell lines. Cancer Lett 2009; 281:196-202. [PMID: 19324494 DOI: 10.1016/j.canlet.2009.02.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 11/18/2022]
Abstract
High grade invasive bladder cancer is a leading cause of cancer deaths and treatment options are limited for this type of cancer. Recent studies have reported anticancer effects of valproic acid in many cancers and also in superficial bladder cancer. Acute valproic acid administration suppressed cell proliferation in a time- and dose-dependent manner in two muscle-invasive human bladder cancer cell lines (HTB5 and HTB9), with accompanying G1 phase cell cycle arrest. A significant decrease in colony formation ability and invasiveness was seen with valproic acid treatment though the effectiveness varied with cell type. Our results suggest a role for valproic acid in inhibiting growth and invasion of muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Seok-Soo Byun
- Department of Surgery, University of Colorado at Denver and Health Sciences Center, Aurora, 80045, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Burkitt K, Ljungman M. Phenylbutyrate interferes with the Fanconi anemia and BRCA pathway and sensitizes head and neck cancer cells to cisplatin. Mol Cancer 2008; 7:24. [PMID: 18325101 PMCID: PMC2276233 DOI: 10.1186/1476-4598-7-24] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 03/06/2008] [Indexed: 12/14/2022] Open
Abstract
Background Cisplatin has been widely used to treat head and neck cancer. One of the clinical limitations with this treatment, however, is that tumors that are initially responsive to cisplatin later acquire resistance. We have recently shown that a subset of head and neck cancer cell lines has a defective Fanconi anemia DNA damage response pathway and this defect correlates to cisplatin sensitivity. We have also shown that the histone deacetylase inhibitor phenylbutyrate sensitize human cells to cisplatin. In this study we explored whether phenylbutyrate may sensitize head and neck cancer cells by interfering with the Fanconi anemia pathway. Results We found that the phenylbutyrate sensitizes head and neck cancer cell lines to cisplatin. This sensitization by phenylbutyrate correlated to a significant decrease in the formation of cisplatin-induced FANCD2 nuclear foci, which is a functional read out of the Fanconi anemia and BRCA (FA/BRCA) pathway. This abrogation of the FA/BRCA pathway by phenylbutyrate was not due to loss of FANCD2 monoubiquitylation but rather correlated to a phenylbutyrate-mediated reduction in the expression of the BRCA1 protein. Furthermore, we found that cancer cells defective in the FA pathway were also sensitized to cisplatin by phenylbutyrate suggesting that phenylbutyrate targets additional pathways. Conclusion The results from this study suggest that phenylbutyrate may have therapeutic utility as a cisplatin sensitizer in head and neck cancer by inhibiting the FA/BRCA pathway through the down regulation of BRCA1 as well as by an FA/BRCA-independent mechanism.
Collapse
Affiliation(s)
- Kyunghee Burkitt
- Department of Radiation Oncology, Division of Radiation Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
12
|
Lopez CA, Feng FY, Herman JM, Nyati MK, Lawrence TS, Ljungman M. Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation. Int J Radiat Oncol Biol Phys 2007; 69:214-20. [PMID: 17707275 DOI: 10.1016/j.ijrobp.2007.04.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 04/15/2007] [Accepted: 04/18/2007] [Indexed: 01/25/2023]
Abstract
PURPOSE Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. METHODS AND MATERIALS Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. RESULTS Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G(1) arrest, increase in sub-G(1) fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios (+/- SE) of 1.5 (+/- 0.2) and 1.3 (+/- 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. CONCLUSIONS Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.
Collapse
Affiliation(s)
- Carlos A Lopez
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109-0010, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Rasheed WK, Johnstone RW, Prince HM. Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig Drugs 2007; 16:659-78. [PMID: 17461739 DOI: 10.1517/13543784.16.5.659] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histones are a family of nuclear proteins that interact with DNA, resulting in DNA being wrapped around a core of histone octamer within the nucleosome. Acetylation/deacetylation of histones is an important mechanism that regulates gene expression and chromatin remodeling. Histone deacetylase (HDAC) inhibitors are a new class of chemotherapeutic drugs that regulate gene expression by enhancing the acetylation of histones, and thus inducing chromatin relaxation and altering gene expression. HDAC inhibitors have been shown in preclinical studies to have potent anticancer activities. A range of structurally diverse HDAC inhibitors have been purified as natural products or synthetically produced. Due to the promising preclinical activity of these agents, numerous clinical trials have been initiated. In this review, the results of published data of single agent and combination trials of these drugs are reviewed, with a focus on dosing, scheduling and toxicity. Although still early in drug development, there is a picture that is starting to develop as to the common toxicities and which tumors seem to be the most susceptible to this class of drugs.
Collapse
Affiliation(s)
- Walid K Rasheed
- Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria 8006, Australia
| | | | | |
Collapse
|
14
|
Menegola E, Di Renzo F, Broccia ML, Giavini E. Inhibition of histone deacetylase as a new mechanism of teratogenesis. ACTA ACUST UNITED AC 2007; 78:345-53. [PMID: 17315247 DOI: 10.1002/bdrc.20082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) are nuclear and cytoplasmic enzymes that deacetylate a number of substrates, of which histones are the best known and described in the literature. HDACs are present in eukaryotic and bacteria cells, and are fundamental for a number of cellular functions, including correct gene expression. Surprisingly, only up to 20% of the whole genome is controlled by HDACs, but key processes for survival, proliferation, and differentiation have been strictly linked to HDAC enzyme functioning. The use of HDAC inhibitors (HDACi) has been proposed for the treatment of neoplastic diseases. Their effectiveness has been suggested for a number of liquid and solid tumors, particularly acute promyelocytic leukemia (APL). The role of HDACs in embryo development is currently under investigation. Published data indicate knockout phenotype analysis to be of particular interest, in which a number of HDACs play a key role during development. Little data have been published on the effects of HDACi on embryonic development, although for valproic acid (VPA), literature from the 1980s described its teratogenic effects in experimental animals and humans. To date, all tested HDACi have shown teratogenic effects similar to those described for VPA when tested in zebrafish, Xenopus laevis, and mice. HDACs were also able to alter embryo development in invertebrates and plants. A model, similar to that proposed in APL, involving retinoic acid receptors (RAR) and tissue specific Hox gene expression, is suggested to explain the HDAC effects on embryo development.
Collapse
Affiliation(s)
- Elena Menegola
- Department of Biology, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
15
|
Liu T, Kuljaca S, Tee A, Marshall GM. Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 2006; 32:157-65. [PMID: 16516391 DOI: 10.1016/j.ctrv.2005.12.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/22/2005] [Accepted: 12/29/2005] [Indexed: 11/26/2022]
Abstract
Acetylation and deacetylation of chromatin histone protein by histone deacetylase (HDAC) alters chromatin structure and dynamically affects transcriptional regulation. Many lines of evidence indicate that histone hypo-acetylation induces repression of tumour suppressor gene expression. Small molecule inhibitors of HDAC (HDACI) are highly effective in up-regulating tumour suppressor gene expression, reducing tumour growth and inducing programmed cell death in vitro and in cancer patients in phase I and II clinical trials. HDACI-induced growth inhibition and cytotoxicity have been attributed to acetylation of both histone and non-histone proteins. Less studied, but equally important, is the role of HDAC and HDACI on other components of the malignant phenotype: tumour initiation and progression. In this review, we summarise evidence indicating that the in vivo anti-cancer efficacy of HDACIs is at least in part dependent on suppression of cancer cell migration, invasion, metastasis, blood supply, and angiogenesis. As histone hypo-acetylation is involved in the tumourigenesis of various haematological and solid malignancies, the clinical use of HDACIs in patients at high risk of cancer or with precancerous conditions warrants further investigation.
Collapse
Affiliation(s)
- Tao Liu
- Children's Cancer Institute, Australia for Medical Research, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | | | | | | |
Collapse
|
16
|
Abstract
In addition to a variety of other novel agents, interest in histone deacetylase inhibitors (HDACIs) as antineoplastic drugs has recently accelerated and increasing numbers of these compounds have entered clinical trials in humans. HDACIs represent a prototype of molecularly targeted agents that perturb signal transduction, cell cycle-regulatory and survival-related pathways. Newer generation HDACIs have been introduced into the clinical arena that are considerably more potent on a molar basis than their predecessors and are beginning to show early evidence of activity, particularly in hematopoietic malignancies. In addition, there is an increasing appreciation of the fact that HDACIs may act through mechanisms other than induction of histone acetylation and, as in the case of other molecularly-targeted agents, it is conceivable that the ultimate role of HDACIs in cancer therapy will be as modulators of apoptosis induced by other cytotoxic agents. One particularly promising strategy involves attempts to combine HDACIs with other novel agents to promote tumour cell differentiation or apoptosis. The present review focuses on recent insights into the mechanisms by which HDACIs exert their anticancer effects, either alone or in combination with other compounds, as well as attempts to translate these findings into the clinic.
Collapse
Affiliation(s)
- Roberto R Rosato
- Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
17
|
Li LC, Carroll PR, Dahiya R. Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 2005; 97:103-15. [PMID: 15657340 DOI: 10.1093/jnci/dji010] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer death among men in the United States. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Aberrant epigenetic events such as DNA hypo- and hypermethylation and altered histone acetylation have both been observed in prostate cancer, in which they affect a large number of genes. Although the list of aberrantly epigenetically regulated genes continues to grow, only a few genes have, so far, given promising results as potential tumor biomarkers for early diagnosis and risk assessment of prostate cancer. Thus, large-scale screening of aberrant epigenetic events such as DNA hypermethylation is needed to identify prostate cancer-specific epigenetic fingerprints. The reversibility of epigenetic aberrations has made them attractive targets for cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases, leading to reactivation of silenced genes. More studies into the mechanism and consequence of demethylation are required before the cancer epigenome can be safely manipulated with therapeutics as a treatment modality. In this review, we examine the current literature on epigenetic changes in prostate cancer and discuss the clinical potential of cancer epigenetics for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Long-Cheng Li
- Department of Urology, Veterans Affairs Medical Center, and University of California San Francisco, 94121, USA
| | | | | |
Collapse
|
18
|
Zito F, Costa C, Sciarrino S, Cavalcante C, Poma V, Matranga V. Cell adhesion and communication: a lesson from echinoderm embryos for the exploitation of new therapeutic tools. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 39:7-44. [PMID: 17152692 DOI: 10.1007/3-540-27683-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this chapter, we summarise fundamental findings concerning echinoderms as well as research interests on this phylum for biomedical and evolutionary studies. We discuss how current knowledge of echinoderm biology, in particular of the sea urchin system, can shed light on the understanding of important biological phenomena and in dissecting them at the molecular level. The general principles of sea urchin embryo development are summarised, mainly focusing on cell communication and interactions, with particular attention to the cell-extracellular matrix and cell-cell adhesion molecules and related proteins. Our purpose is not to review all the work done over the years in the field of cellular interaction in echinoderms. On the contrary, we will rather focus on a few arguments in an effort to re-examine some ideas and concepts, with the aim of promoting discussion in this rapidly growing field and opening new routes for research on innovative therapeutic tools.
Collapse
Affiliation(s)
- F Zito
- Istituto di Biomedicina e Immunologia Molecolare (IBIM) Alberto Monroy, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| | | | | | | | | | | |
Collapse
|