1
|
Zhao W, Li X, Guan J, Yan S, Teng L, Sun X, Dong Y, Wang H, Tao W. Potential and development of cellular vesicle vaccines in cancer immunotherapy. Discov Oncol 2025; 16:48. [PMID: 39812959 PMCID: PMC11735706 DOI: 10.1007/s12672-025-01781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Cancer vaccines are promising as an effective means of stimulating the immune system to clear tumors as well as to establish immune surveillance. In this paper, we discuss the main platforms and current status of cancer vaccines and propose a new cancer vaccine platform, the cytosolic vesicle vaccine. This vaccine has a unique structure that can integrate antigen and adjuvant carriers to improve the delivery efficiency and immune activation ability, which brings new ideas for cancer vaccine design. Tumor exosomes carry antigens and MHC-peptide complexes, which can provide tumor antigens to antigen-processing cells and increase the chances of recognition of tumor antigens by immune cells. DEVs play a role in amplifying the immune response by acting as carriers for the dissemination of antigenic substances in dendritic cells. OMVs, with their natural adjuvant properties, are one of the advantages for the preparation of antitumor vaccines. This paper presents the advantages of these three bacteria/extracellular vesicles as cancer vaccines and discusses the potential applications of functionally modified extracellular vesicles as cancer vaccines after cellular engineering or genetic engineering, as well as current clinical trials of extracellular vesicle vaccines. In summary, extracellular vesicle vaccines are a promising direction for cancer vaccine research.
Collapse
Affiliation(s)
- Wenxi Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Xianjun Li
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Jialu Guan
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Shuai Yan
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Lizhi Teng
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Xitong Sun
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Yuhan Dong
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Hongyue Wang
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
2
|
Pampeno C, Opp S, Hurtado A, Meruelo D. Sindbis Virus Vaccine Platform: A Promising Oncolytic Virus-Mediated Approach for Ovarian Cancer Treatment. Int J Mol Sci 2024; 25:2925. [PMID: 38474178 PMCID: PMC10932354 DOI: 10.3390/ijms25052925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.
Collapse
Affiliation(s)
- Christine Pampeno
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | | | - Alicia Hurtado
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
3
|
Pampeno C, Hurtado A, Opp S, Meruelo D. Channeling the Natural Properties of Sindbis Alphavirus for Targeted Tumor Therapy. Int J Mol Sci 2023; 24:14948. [PMID: 37834397 PMCID: PMC10573789 DOI: 10.3390/ijms241914948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Sindbis alphavirus vectors offer a promising platform for cancer therapy, serving as valuable models for alphavirus-based treatment. This review emphasizes key studies that support the targeted delivery of Sindbis vectors to tumor cells, highlighting their effectiveness in expressing tumor-associated antigens and immunomodulating proteins. Among the various alphavirus vectors developed for cancer therapy, Sindbis-vector-based imaging studies have been particularly extensive. Imaging modalities that enable the in vivo localization of Sindbis vectors within lymph nodes and tumors are discussed. The correlation between laminin receptor expression, tumorigenesis, and Sindbis virus infection is examined. Additionally, we present alternative entry receptors for Sindbis and related alphaviruses, such as Semliki Forest virus and Venezuelan equine encephalitis virus. The review also discusses cancer treatments that are based on the alphavirus vector expression of anti-tumor agents, including tumor-associated antigens, cytokines, checkpoint inhibitors, and costimulatory immune molecules.
Collapse
Affiliation(s)
| | | | | | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
4
|
Ji P, Deng XC, Jin XK, Zhang SM, Wang JW, Feng J, Chen WH, Zhang XZ. Fused Cytomembrane-Camouflaged Nanoparticles for Tumor-Specific Immunotherapy. Adv Healthc Mater 2023; 12:e2300323. [PMID: 37212324 DOI: 10.1002/adhm.202300323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Tumor immunotherapy is commonly hindered by inefficient delivery and presentation of tumor antigens as well as immunosuppressive tumor microenvironment. To overcome these barriers, a tumor-specific nanovaccine capable of delivering tumor antigens and adjuvants to antigen-presenting cells and modulating the immune microenvironment to elicit strong antitumor immunity is reported. This nanovaccine, named FCM@4RM, is designed by coating the nanocore (FCM) with a bioreconstituted cytomembrane (4RM). The 4RM, which is derived from fused cells of tumorous 4T1 cells and RAW264.7 macrophages, enables effective antigen presentation and stimulation of effector T cells. FCM is self-assembled from Fe(II), unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG), and metformin (MET). CpG, as the stimulator of toll-like receptor 9, induces the production of pro-inflammatory cytokine and the maturation of cytotoxic T lymphocytes (CTLs), thereby enhancing antitumor immunity. Meanwhile, MET functions as the programmed cell death ligand 1 inhibitor and can restore the immune responses of T cells against tumor cells. Therefore, FCM@4RM exhibits high targeting capabilities toward homologous tumors that develop from 4T1 cells. This work offers a paradigm for developing a nanovaccine that systematically regulates multiple immune-related processes to achieve optimal antitumor immunotherapy.
Collapse
Affiliation(s)
- Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
5
|
Wen J, Creaven D, Luan X, Wang J. Comparison of immunotherapy mediated by apoptotic bodies, microvesicles and exosomes: apoptotic bodies' unique anti-inflammatory potential. J Transl Med 2023; 21:478. [PMID: 37461033 DOI: 10.1186/s12967-023-04342-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Immunotherapy, including immunostimulation and immunosuppression, has seen significant development in the last 10 years. Immunostimulation has been verified as effective in anti-cancer treatment, while immunosuppression is used in the treatment of autoimmune disease and inflammation. Currently, with the update of newly-invented simplified isolation methods and the findings of potent triggered immune responses, extracellular vesicle-based immunotherapy is very eye-catching. However, the research on three main types of extracellular vesicles, exosomes, microvesicles and apoptotic bodies, needs to be more balanced. These three subtypes share a certain level of similarity, and at the same time, they have their own properties caused by the different methods of biogensis. Herein, we summarized respectively the status of immunotherapy based on each kind of vesicle and discuss the possible involved mechanisms. In conclusion, we highlighted that the effect of the apoptotic body is clear and strong. Apoptotic bodies have an excellent potential in immunosuppressive and anti-inflammatory therapies .
Collapse
Affiliation(s)
- Jing Wen
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Dale Creaven
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Xiangshu Luan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiemin Wang
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
Bolouri MR, Ghods R, Zarnani K, Vafaei S, Falak R, Zarnani AH. Human amniotic epithelial cells exert anti-cancer effects through secretion of immunomodulatory small extracellular vesicles (sEV). Cancer Cell Int 2022; 22:329. [PMID: 36307848 PMCID: PMC9616706 DOI: 10.1186/s12935-022-02755-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
We identified here mechanism by which hAECs exert their anti-cancer effects. We showed that vaccination with live hAEC conferred effective protection against murine colon cancer and melanoma but not against breast cancer in an orthotopic cancer cell inoculation model. hAEC induced strong cross-reactive antibody response to CT26 cells, but not against B16F10 and 4T1 cells. Neither heterotopic injection of tumor cells in AEC-vaccinated mice nor vaccination with hAEC lysate conferred protection against melanoma or colon cancer. Nano-sized AEC-derived small-extracellular vesicles (sEV) (AD-sEV) induced apoptosis in CT26 cells and inhibited their proliferation. Co-administration of AD-sEV with tumor cells substantially inhibited tumor development and increased CTL responses in vaccinated mice. AD-sEV triggered the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. Our results clearly showed that it is AD-sEV but not the cross-reactive immune responses against tumor cells that mediate inhibitory effects of hAEC on cancer development. Our results highlight the potential anti-cancer effects of extracellular vesicles derived from hAEC. Anti-cancer effects of hAEC depend on cancer type. Cross-reactive humoral responses do not mediate anti-cancer effects of hAEC. Anti-cancer effects of hAECs are mainly mediated by small-extracellular vesicles (sEV). hAEC-derived sEV (AD-sEV) trigger the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. AD-sEV substantially inhibits tumor development and increases survival and CTL responses.
Collapse
|
7
|
Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J, Coosemans A, Datsi A, Fučíková J, Kinget L, Neyns B, Schreibelt G, Smits E, Sorg RV, Spisek R, Thielemans K, Tuyaerts S, De Vleeschouwer S, de Vries IJM, Xiao Y, Garg AD. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022; 11:2096363. [PMID: 35800158 PMCID: PMC9255073 DOI: 10.1080/2162402x.2022.2096363] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/01/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borras
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Zwi N Berneman
- Department of Haematology, Antwerp University Hospital, Edegem, Belgium
- Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | - Kalijn F Bol
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - an Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Ku Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jitka Fučíková
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Lisa Kinget
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
| | - Gerty Schreibelt
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Guttman O, Le Thomas A, Marsters S, Lawrence DA, Gutgesell L, Zuazo-Gaztelu I, Harnoss JM, Haag SM, Murthy A, Strasser G, Modrusan Z, Wu T, Mellman I, Ashkenazi A. Antigen-derived peptides engage the ER stress sensor IRE1α to curb dendritic cell cross-presentation. J Biophys Biochem Cytol 2022; 221:213173. [PMID: 35446348 PMCID: PMC9036094 DOI: 10.1083/jcb.202111068] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) promote adaptive immunity by cross-presenting antigen-based epitopes to CD8+ T cells. DCs process internalized protein antigens into peptides that enter the endoplasmic reticulum (ER), bind to major histocompatibility type I (MHC-I) protein complexes, and are transported to the cell surface for cross-presentation. DCs can exhibit activation of the ER stress sensor IRE1α without ER stress, but the underlying mechanism remains obscure. Here, we show that antigen-derived hydrophobic peptides can directly engage ER-resident IRE1α, masquerading as unfolded proteins. IRE1α activation depletes MHC-I heavy-chain mRNAs through regulated IRE1α-dependent decay (RIDD), curtailing antigen cross-presentation. In tumor-bearing mice, IRE1α disruption increased MHC-I expression on tumor-infiltrating DCs and enhanced recruitment and activation of CD8+ T cells. Moreover, IRE1α inhibition synergized with anti–PD-L1 antibody treatment to cause tumor regression. Our findings identify an unexpected cell-biological mechanism of antigen-driven IRE1α activation in DCs, revealing translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Ofer Guttman
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Adrien Le Thomas
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Scot Marsters
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - David A Lawrence
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Lauren Gutgesell
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | | | | | - Simone M Haag
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Aditya Murthy
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | | | - Zora Modrusan
- Departments of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA
| | - Thomas Wu
- Departments of Oncology Bioinformatics, Genentech, South San Francisco, CA
| | - Ira Mellman
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Avi Ashkenazi
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
9
|
Vošmik M, Banni MA, Hruška L. The role of radiotherapy in renal cell carcinoma and the potential of its combination with immunotherapy. ONKOLOGIE 2022; 16:16-19. [DOI: 10.36290/xon.2022.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
|
10
|
Droste M, Thakur BK, Eliceiri BP. Tumor-Derived Extracellular Vesicles and the Immune System-Lessons From Immune-Competent Mouse-Tumor Models. Front Immunol 2020; 11:606859. [PMID: 33391275 PMCID: PMC7772428 DOI: 10.3389/fimmu.2020.606859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived extracellular vesicles (TEVs) are important regulators of the immune response in cancer; however, most research so far has been carried out using cell culture systems. Immune-competent murine tumor models currently provide the best platform to assess proposed roles of TEVs using in vivo animal models and therefore are important for examining interactions between TEVs and the immune system. In this review, we present the current knowledge on TEVs using in vivo tumor-bearing animal models, with a focus on the role of TEVs in mediating crosstalk between tumor cells and both adaptive and innate immune cells. In particular, we address the question how animal models can clarify the reported heterogeneity of TEV effects in both anti-tumor responses and evasion of immune surveillance. The potential of TEVs in mediating direct antigen-presenting functions supports their potential as cancer vaccine therapeutics, therefore, we provide an overview of key findings of TEV trials that have the potential as novel immunotherapies, and shed light on challenges in the path toward the first in-human trials. We also highlight the important updates on the methods that continue to enhance the rigor and reproducibility of EV studies, particularly in functional animal models.
Collapse
Affiliation(s)
- Marvin Droste
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, UC San Diego School of Medicine, San Diego, CA, United States.,Department of Pediatrics II (Pediatric Nephrology), University Hospital Essen, Essen, Germany
| | - Basant K Thakur
- Cancer Exosomes Laboratory, Department of Pediatrics III, University Hospital Essen, Essen, Germany
| | - Brian P Eliceiri
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, UC San Diego School of Medicine, San Diego, CA, United States
| |
Collapse
|
11
|
Gergelis KR, Jethwa KR, Tryggestad EJ, Ashman JB, Haddock MG, Hallemeier CL. Proton beam radiotherapy for esophagus cancer: state of the art. J Thorac Dis 2020; 12:7002-7010. [PMID: 33282405 PMCID: PMC7711403 DOI: 10.21037/jtd-2019-cptn-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The majority of esophageal cancer patients are diagnosed with locoregionally confined disease, which is often amenable to curative intent therapy. Chemoradiotherapy (CRT) improves overall survival (OS) in stage II and III esophagus cancer in the neoadjuvant and definitive settings. Due to the close proximity of organs at risk (OARs), including lungs, heart, stomach, bowel, kidneys, and spinal cord, esophageal CRT can result in profound acute and late toxicities. Acute toxicities can include esophagitis, nausea, vomiting, fatigue, and cytopenias. Late complications may also occur months or years after completion of thoracic radiotherapy, including significant cardiac, pulmonary, liver, kidney, or bowel toxicities, which can be life-threatening or fatal. Photon-based radiotherapy exposes OARs to significant doses of radiation, whereas proton beam therapy (PBT) has unique physical properties, as it lacks an exit dose. This allows PBT to deliver, a more conformal dose to the target and minimize the volume of OARs exposed to radiation. This dosimetric advantage may portend an increased therapeutic ratio of CRT for esophagus cancer. The objective of this review is to discuss the evolution of photon and proton-based radiotherapy techniques, rationale, dosimetric and clinical studies comparing outcomes of photon- and proton-based techniques, ongoing prospective trials, and future directions of PBT as a means of reducing toxicity and improving oncologic outcomes for patients with esophagus cancer.
Collapse
Affiliation(s)
| | - Krishan R Jethwa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Jonathan B Ashman
- Department of Radiation Oncology, Mayo Clinic, Phoenix/Scottsdale, AZ, USA
| | | | | |
Collapse
|
12
|
Roszak J, Smok-Pieniążek A, Jeżak K, Domeradzka-Gajda K, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Celichowski G, Stępnik M. Combined effect of silver nanoparticles and aluminium chloride, butylparaben or diethylphthalate on the malignancy of MDA-MB-231 breast cancer cells and tumor-specific immune responses of human macrophages and monocyte-derived dendritic cells. Toxicol In Vitro 2020; 65:104774. [PMID: 31954849 DOI: 10.1016/j.tiv.2020.104774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to assess whether silver nanoparticles (AgNP) or selected cosmetic ingredients may modify functions of various immunocompetent cell populations. To this end, the effect of two AgNP (size of 15 nm or 45 nm), alone and in combination with aluminium chloride, butyl paraben, di-n-butyl phthalate or diethyl phthalate was assessed on: (1) migration and invasion of MDA-MB-231 human breast cancer cells; (2) M1/M2 polarization of phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages (M0) and (3) activation/maturation of monocyte-derived dendritic cells (DCs). The results of this study showed that neither any of the test chemicals alone nor the mixtures significantly changed the migration or invasion ability of MDA-MB-231 cells following, both 72-h and 21-day exposure. Analysis of the expression of marker genes for both M1 (IL-1B, CXCL9, TNF) and M2 (DCSIGN, MRC1) polarization revealed that the chemicals/mixtures did not activate M1/M2 differentiation of the M0 macrophages. In addition, no significant changes were observed in the expression of CD86, HLA-DR and CD54 surface markers and phagocytic activity of DCs following 48-h exposure to AgNP alone or in combination with test compounds. Our study suggests that AgNP alone or in combination with tested cosmetic ingredients do not alter function of immunocompetent cells studied.
Collapse
Affiliation(s)
- Joanna Roszak
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland.
| | - Anna Smok-Pieniążek
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| | - Karolina Jeżak
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| | - Katarzyna Domeradzka-Gajda
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, University of Łódź, 163 Pomorska St, 90-236 Łódź, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, University of Łódź, 163 Pomorska St, 90-236 Łódź, Poland
| | | | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, University of Łódź, 163 Pomorska St, 90-236 Łódź, Poland
| | - Maciej Stępnik
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| |
Collapse
|
13
|
Irradiated lactic acid-stimulated tumour cells promote the antitumour immunity as a therapeutic vaccine. Cancer Lett 2020; 469:367-379. [DOI: 10.1016/j.canlet.2019.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 02/04/2023]
|
14
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Gui C, Kleinberg LR, Lim M, Redmond KJ. Extracranial Abscopal Responses after Radiation Therapy for Intracranial Metastases: A Review of the Clinical Literature and Commentary on Mechanism. Cureus 2019; 11:e4207. [PMID: 31114726 PMCID: PMC6505720 DOI: 10.7759/cureus.4207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The current literature contains a small number of case series and individual case reports that describe radiographic regression of extracranial tumors after treatment of one or more brain metastases with radiation therapy. These observations suggest an abscopal effect that traverses the blood-brain barrier. The purpose of this review is to describe the clinical evidence for this phenomenon and potential mechanistic relationships between radiation, the blood-brain barrier, and the abscopal effect. Among reported cases, the majority of patients received systemic immunotherapy, which is consistent with an immunologic mechanism underlying abscopal responses. Preclinical data suggest that radiation may play multiple roles in this process, including the release of tumor-associated antigens and disruption of the blood-brain barrier. Future studies investigating the abscopal effect would benefit from more rigorous methods to control for patient and treatment factors that may affect distant tumor response.
Collapse
Affiliation(s)
- Chengcheng Gui
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Lawrence R Kleinberg
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Michael Lim
- Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kristin J Redmond
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
16
|
Tanaka Y, Araki K, Tanaka S, Miyagawa Y, Suzuki H, Kamide D, Tomifuji M, Uno K, Harada E, Yamashita T, Ueda Y, Inoue M, Shiotani A. Oncolytic Sendai virus‐induced tumor‐specific immunoresponses suppress “simulated metastasis” of squamous cell carcinoma in an immunocompetent mouse model. Head Neck 2019; 41:1676-1686. [DOI: 10.1002/hed.25642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/10/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yuya Tanaka
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Koji Araki
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Shingo Tanaka
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Yoshihiro Miyagawa
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Hiroshi Suzuki
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Daisuke Kamide
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Masayuki Tomifuji
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Kosuke Uno
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Eiko Harada
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| | - Taku Yamashita
- Department of Otolaryngology‐Head and Neck SurgeryKitasato University School of Medicine Sagamihara Japan
| | | | | | - Akihiro Shiotani
- Department of Otolaryngology‐Head and Neck SurgeryNational Defense Medical College Tokorozawa Japan
| |
Collapse
|
17
|
Twardowski P, Wong JYC, Pal SK, Maughan BL, Frankel PH, Franklin K, Junqueira M, Prajapati MR, Nachaegari G, Harwood D, Agarwal N. Randomized phase II trial of sipuleucel-T immunotherapy preceded by sensitizing radiation therapy and sipuleucel-T alone in patients with metastatic castrate resistant prostate cancer. Cancer Treat Res Commun 2019; 19:100116. [PMID: 30682445 DOI: 10.1016/j.ctarc.2018.100116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Sipuleucel-T is an autologous cellular immunotherapy indicated for patients with asymptomatic or minimally symptomatic metastatic castration resistant prostate cancer (mCRPC). Since radiation therapy (RT) can suppress bone marrow function and immune responses, previous studies evaluating sipuleucel-T excluded patients who received RT less than or equal to 28 days prior to sipuleucel-T therapy. Recent evidence suggests that RT may act synergistically with immunotherapy to enhance and broaden antitumor immune response. METHODS Patients who met standard criteria for sipuleucel-T were randomized to receive sipuleucel-T alone (Arm A) or sipuleucel-T initiated 1 week after completing sensitizing RT to single metastatic site (Arm B). RT was delivered at 300cGy/day to 3000 cGy total. The primary endpoint was the ability to safely combine sipuleucel-T preceded by RT and generate sipuleucel-T with adequate product immune activation parameters. Secondary endpoints included the measurement of systemic immune responses to prostatic acid phosphatase (PAP), a target for sipuleucel-T immune therapy and PA20204 (recombinant fusion protein utilized in the generation of sipuleucel-T). RESULTS 51 pts were enrolled, 2 did not receive any sipuleucel-T because of vascular access problems and were excluded. 24 were treated on Arm A, 25 on Arm B. 47/49 patients received all 3 sipuleucel-T infusions. Median age was 66 yrs (range 45-90). Sipuleucel-T product parameters including: total nucleated cell (TNC) count, antigen presenting cell (APC) count were similar in both groups. Cumulative APC upregulation was higher in Arm A. 1 patient in Arm A demonstrated PSA response. Median progression free survival (PFS) was 2.46 months on Arm A and 3.65 months on Arm B (p = 0.06). Both arms showed similar increases in humoral responses to PA2024 and PAP. IFN-ƴ ELISPOT T-cell activation responses to PA20204 were observed in both arms, but were more robust in the Arm A (p = 0.028). Both arms were well-tolerated, with fatigue as the most common grade 2 adverse event (1 patient in Arm A and 3 patients in Arm B). CONCLUSIONS Sensitizing RT completed 1 week before generation of sipuleucel-T did not affect the majority of product parameters and the ability to deliver sipuleucel-T therapy. RT did not enhance the humoral and cellular responses associated with sipuleucel-T therapy.
Collapse
Affiliation(s)
| | - Jeffrey Y C Wong
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Sumanta K Pal
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Benjamin L Maughan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | | | - Kelly Franklin
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | | | | - Gayatri Nachaegari
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Deborah Harwood
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
18
|
Xu A, Zhang L, Yuan J, Babikr F, Freywald A, Chibbar R, Moser M, Zhang W, Zhang B, Fu Z, Xiang J. TLR9 agonist enhances radiofrequency ablation-induced CTL responses, leading to the potent inhibition of primary tumor growth and lung metastasis. Cell Mol Immunol 2018; 16:820-832. [PMID: 30467420 DOI: 10.1038/s41423-018-0184-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Radiofrequency ablation (RFA) is the most common approach to thermal ablation for cancer therapy. Unfortunately, its efficacy is limited by incomplete ablation, and further optimization of RFA is required. Here, we demonstrate that incubation at 65 °C triggers more EG7 tumor cell death by necrosis than treatment at 45 °C, and the 65 °C-treated cells are more effective at inducing antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses after injection in mice than the 45 °C-treated ones. Dendritic cells (DCs) that phagocytose 65 °C-treated EG7 cells become mature with upregulated MHCII and CD80 expression and are capable of efficiently inducing effector CTLs in mouse tumor models. RFA (65 °C) therapy of EG7 tumors induces large areas of tumor necrosis and stimulates CTL responses. This leads to complete regression of small (~100 mm3) tumors but fails to suppress the growth of larger (~350 mm3) tumors. The administration of the Toll-like receptor-9 (TLR9) agonist unmethylated cytosine-phosphorothioate-guanine oligonucleotide (CpG) to DCs phagocytosing 65 °C-treated EG7 cells enhances the expression of MHCII and CD40 on DCs as well as DC-induced stimulation of CTL responses. Importantly, the intratumoral administration of CpG following RFA also increases the frequencies of tumor-associated immunogenic CD11b-CD11c+CD103+ DC2 and CD11b+F4/80+MHCII+ M1 macrophages and increases CD4+ and CD8+ T-cell tumor infiltration, leading to enhanced CD4+ T cell-dependent CTL responses and potent inhibition of primary RFA-treated or distant untreated tumor growth as well as tumor lung metastasis in mice bearing larger tumors. Overall, our data indicate that CpG administration, which enhances RFA-induced CTL responses and ultimately potentiates the inhibition of primary tumor growth and lung metastasis, is a promising strategy for improving RFA treatment, which may assist in optimizing this important cancer therapy.
Collapse
Affiliation(s)
- Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Oncology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lifeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingying Yuan
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Oncology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fatma Babikr
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Oncology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rajni Chibbar
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wenjun Zhang
- Department of Bioengineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bing Zhang
- Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zhaoying Fu
- Department of Immunology, College of Medicine, Yian-An University, Yian-An, China
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada. .,Department of Oncology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
19
|
Landi A, Aligodarzi MT, Khodadadi A, Babiuk LA, van Drunen Littel-van den Hurk S. Defining a standard and weighted mathematical index for maturation of dendritic cells. Immunology 2017; 153:532-544. [PMID: 29068058 DOI: 10.1111/imm.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 11/26/2022] Open
Abstract
The concept of dendritic cell (DC) maturation generally refers to the changes in morphology and function of DCs. Conventionally, DC maturity is based on three criteria: loss of endocytic ability, gain of high-level capacity to present antigens and induce proliferation of T cells, and mobility of DCs toward high concentrations of CCL19. Impairment of DC maturation has been suggested as the main reason for infectivity or chronicity of several infectious agents. In the case of hepatitis C virus, this has been a matter of controversy for the last two decades. However, insufficient attention has been paid to the method of ex vivo maturation as the possible source of such controversies. We previously reported striking differences between DCs matured with different methods, so we propose the use of a standard quantitative index to determine the level of maturity in DCs as an approach to compare results from different studies. We designed and formulated a mathematically calculated index to numerically define the level of maturity based on experimental data from ex vivo assays. This introduces a standard maturation index (SMI) and weighted maturation index (WMI) based on strictly standardized mean differences between different methods of generating mature DCs. By calculating an SMI and a WMI, numerical values were assigned to the level of maturity achieved by DCs matured with different methods. SMI and WMI could be used as a standard tool to compare diversely generated mature DCs and so better interpret outcomes of ex vivo and in vivo studies with mature DCs.
Collapse
Affiliation(s)
- Abdolamir Landi
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ali Khodadadi
- Cancer Petroleum & Environmental Pollutants Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Sylvia van Drunen Littel-van den Hurk
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.,VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
20
|
Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017; 6:e1328341. [PMID: 28811970 DOI: 10.1080/2162402x.2017.1328341] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Monica Vara Perez
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Marco Schaaf
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
21
|
Cirincione R, Di Maggio FM, Forte GI, Minafra L, Bravatà V, Castiglia L, Cavalieri V, Borasi G, Russo G, Lio D, Messa C, Gilardi MC, Cammarata FP. High-Intensity Focused Ultrasound- and Radiation Therapy-Induced Immuno-Modulation: Comparison and Potential Opportunities. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:398-411. [PMID: 27780661 DOI: 10.1016/j.ultrasmedbio.2016.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 05/12/2023]
Abstract
In recent years, high-intensity focused ultrasound (HIFU) has emerged as a new and promising non-invasive and non-ionizing ablative technique for the treatment of localized solid tumors. Extensive pre-clinical and clinical studies have evidenced that, in addition to direct destruction of the primary tumor, HIFU-thermoablation may elicit long-term systemic host anti-tumor immunity. In particular, an important consequence of HIFU treatment includes the release of tumor-associated antigens (TAAs), the secretion of immuno-suppressing factors by cancer cells and the induction of cytotoxic T lymphocyte (CTL) activity. Radiation therapy (RT) is the main treatment modality used for many types of tumors and about 50% of all cancer patients receive RT, often used in combination with surgery and chemotherapy. It is well known that RT can modulate anti-tumor immune responses, modifying micro-environment and stimulating inflammatory factors that can greatly affect cell invasion, bystander effects, radiation tissue complications (such as fibrosis), genomic instability and thus, intrinsic cellular radio-sensitivity. To date, various combined therapeutic strategies (such as immuno-therapy) have been performed in order to enhance RT success in treating locally advanced and recurrent tumors. Recent works suggested the combined use of HIFU and RT treatments to increase the tumor cell radio-sensitivity, in order to synergize the effects reaching the maximum results with minimal doses of ionizing radiation (IR). Here, we highlight the opposite immuno-modulation roles of RT and HIFU, providing scientific reasons to test, by experimental approaches, the use of HIFU immune-stimulatory capacity to improve tumor radio-sensitivity, to reduce the RT induced inflammatory response and to decrease the dose-correlated side effects in normal tissues.
Collapse
Affiliation(s)
| | - Federica Maria Di Maggio
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | | | - Valentina Bravatà
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | - Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | | | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
22
|
Johnson BL, Midura EF, Prakash PS, Rice TC, Kunz N, Kalies K, Caldwell CC. Neutrophil derived microparticles increase mortality and the counter-inflammatory response in a murine model of sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2554-2563. [PMID: 28108420 DOI: 10.1016/j.bbadis.2017.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Although advances in medical care have significantly improved sepsis survival, sepsis remains the leading cause of death in the ICU. This is likely due to a lack of complete understanding of the pathophysiologic mechanisms that lead to dysfunctional immunity. Neutrophil derived microparticles (NDMPs) have been shown to be the predominant microparticle present at infectious and inflamed foci in human models, however their effect on the immune response to inflammation and infection is sepsis has not been fully elucidated. As NDMPs may be a potential diagnostic and therapeutic target, we sought to determine the impact NDMPs on the immune response to a murine polymicrobial sepsis. We found that peritoneal neutrophil numbers, bacterial loads, and NDMPs were increased in our abdominal sepsis model. When NDMPs were injected into septic mice, we observed increased bacterial load, decreased neutrophil recruitment, increased expression of IL-10 and worsened mortality. Furthermore, the NDMPs express phosphatidylserine and are ingested by F4/80 macrophages via a Tim-4 and MFG-E8 dependent mechanism. Finally, upon treatment, NDMPs decrease macrophage activation, increase IL-10 release and decrease macrophage numbers. Altogether, these data suggest that NDMPs enhance immune dysfunction in sepsis by blunting the function of neutrophils and macrophages, two key cell populations involved in the early immune response to infection. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Bobby L Johnson
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Emily F Midura
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Priya S Prakash
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Teresa C Rice
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Natalia Kunz
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States; Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Kathrin Kalies
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States; Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
23
|
Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response. Tumour Biol 2016; 37:12089-12102. [PMID: 27209409 DOI: 10.1007/s13277-016-5093-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/15/2016] [Indexed: 12/26/2022] Open
Abstract
The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.
Collapse
|
24
|
Gupta SK, Tiwari AK, Gandham RK, Sahoo AP. Combined administration of the apoptin gene and poly (I:C) induces potent anti-tumor immune response and inhibits growth of mouse mammary tumors. Int Immunopharmacol 2016; 35:163-173. [PMID: 27064544 DOI: 10.1016/j.intimp.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Many viral proteins exhibit selective cytotoxicity for tumor cells without affecting the normal diploid cells. The apoptin protein of chicken infectious anemia virus is one of such proteins, which has been shown to kill tumor cells specifically. However, an effective cancer treatment strategy also requires assistance from the immune system. Recently, poly (I:C) has been shown to be an effective cancer vaccine adjuvant. AIM In this study, we assessed the anti-tumor potential of apoptin gene transfer alone and in combination with poly (I:C) in a 4T1 mouse mammary tumor model. METHODS 4T1 cells were used to induce mammary tumor in Balb/c mice. Mice bearing tumors were divided into 6 groups, and each group received six intratumoral injections during a period of one month. After the last immunization, the animals were sacrificed, and peripheral blood, spleen, lungs, liver, heart, kidney and tumor tissues were collected for immunological, molecular and pathological analysis. RESULTS We report that intratumoral administration of apoptin plasmid along with poly (I:C) not only significantly inhibited the growth of mammary tumor, but also induced a potent anti-tumor immune response as indicated by the increase in blood CD4+, CD8+ cells and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed increased secretion of Th1 cytokines (IFN-γ and IL-2). CONCLUSIONS The results of our study demonstrate that the inclusion of poly (I:C) significantly enhanced the anti-tumor activity of apoptin mainly by inducing a potent anti-tumor immune response. Therefore, we report the use of apoptin and poly (I:C) combination as a novel and powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India.
| | - Ashok K Tiwari
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India.
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India
| | - A P Sahoo
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India
| |
Collapse
|
25
|
Bernstein MB, Krishnan S, Hodge JW, Chang JY. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol 2016; 13:516-24. [PMID: 26951040 DOI: 10.1038/nrclinonc.2016.30] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conventional radiotherapy, in addition to its well-established tumoricidal effects, can also activate the host immune system. Radiation therapy modulates tumour phenotypes, enhances antigen presentation and tumour immunogenicity, increases production of cytokines and alters the tumour microenvironment, enabling destruction of the tumour by the immune system. Investigating the combination of radiotherapy with immunotherapeutic agents, which also promote the host antitumour immune response is, therefore, a logical progression. As the spectrum of clinical use of stereotactic radiotherapy continues to broaden, the question arose as to whether the ablative radiation doses used can also stimulate immune responses and, if so, whether we can amplify these effects by combining immunotherapy and stereotactic ablative radiotherapy (SABR). In this Perspectives article, we explore the preclinical and clinical evidence supporting activation of the immune system following SABR. We then examine studies that provide data on the effectiveness of combining these two techniques - immunotherapy and SABR - in an approach that we have termed 'ISABR'. Lastly, we provide general guiding principles for the development of future clinical trials to investigate the efficacy of ISABR in the hope of generating further interest in these exciting developments.
Collapse
Affiliation(s)
- Michael B Bernstein
- Division of Radiation Oncology, MD Anderson Cancer Center, Unit 97, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Sunil Krishnan
- Division of Radiation Oncology, MD Anderson Cancer Center, Unit 97, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Building 10, Room 8B13, Bethesda, Maryland 20892-1750, USA
| | - Joe Y Chang
- Division of Radiation Oncology, MD Anderson Cancer Center, Unit 97, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model. Virus Res 2016; 213:289-298. [DOI: 10.1016/j.virusres.2015.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023]
|
27
|
Enhanced protective immunity derived from dendritic cells with phagocytosis of CD40 ligand transgene-engineered apoptotic tumor cells via increased dendritic cell maturation. TUMORI JOURNAL 2015; 101:637-43. [PMID: 25983089 DOI: 10.5301/tj.5000297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 01/01/2023]
Abstract
AIMS AND BACKGROUND Dendritic cells (DCs) play a pivotal role in regulating CD8+ cytotoxic T-lymphocyte (CTL) responses. Currently, DC vaccines have been used in experimental animal models and clinical trials for evaluation of antitumor immunity. However, their efficacy is limited, warranting the improvement of DC-based cancer vaccines. CD40 ligand (CD40L) stimulates DC activation and maturation via CD40-CD40L interaction. We demonstrated that DCs that had phagocytized apoptotic tumor cells induced antitumor immunity. METHODS We generated CD40L-expressing (EG7-CD40L) and the control (EG7-Null) EG7 tumor cells by transfection of EG7 tumor cells with CD40L-expressing adenoviral vector AdVCD40L and the control vector AdV(pLpA), respectively. We also generated DC vaccines (DC-EG7/CD40L and the control DC-EG7/Null) using DCs with phagocytosis of irradiated EG7-CD40L and EG7-Null tumor cells, and assessed their phenotype and immunogenicity by flow cytometry and animal studies in C57BL/6 mice. RESULTS We demonstrate that an irradiation of 9000-rad induced Annexin V-expressing cell apoptosis in most (~75%) tumor cells, and provide evidence for phagocytosis of apoptotic tumor cells by flow cytometry and confocal microscopy. The DC-EG7/CD40L cells showed higher expression of DC maturation markers (Ia(b), CD40, CD80, and CD86) and peptide/major histocompatibility complex I than the control DC-EG7/Null cells. In addition, DC-EG7/CD40L vaccine stimulates more efficient (0.97%) tumor-specific CTL responses than DC-EG7/Null cells (0.31%). Furthermore, 80% (4/5) of mice immunized with DC-EG7/CD40L vaccine become tumor-free after EG7 tumor cell challenge, whereas DC-EG7/Null vaccine only delays immunized mouse death. CONCLUSIONS Dendritic cells that have phagocytized CD40L-expressing apoptotic tumor cells appear to offer new strategies in DC cancer vaccines.
Collapse
|
28
|
Wang J, Wang Z, Mo Y, Zeng Z, Wei P, Li T. Effect of hyperthermic CO 2-treated dendritic cell-derived exosomes on the human gastric cancer AGS cell line. Oncol Lett 2015; 10:71-76. [PMID: 26170979 DOI: 10.3892/ol.2015.3155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the antitumor effects of hyperthermic CO2 (HT-CO2)-treated dendritic cell (DC)-derived exosomes (Dex) on human gastric cancer AGS cells. Mouse-derived DCs were incubated in HT-CO2 at 43°C for 4 h. The exosomes in the cell culture supernatant were then isolated. Cell proliferation was analyzed using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was observed using flow cytometry, Hoechst 33258 staining and the analysis of caspase-3 activity. In addition, the proliferation of tumor cells was evaluated in xenotransplant nude mice. HT-CO2 markedly inhibited cell proliferation, as assessed by the CCK-8 assay, and also induced apoptosis in a time-dependent manner, as demonstrated by Annexin V/propidium iodide flow cytometry, caspase-3 activity and morphological analysis using Hoechst fluorescent dye. It was also revealed that HT-CO2-treated Dex decreased the expression of heat shock protein 70 and inhibited tumor growth in nude mice. In conclusion, HT-CO2 exerted an efficacious immune-enhancing effect on DCs. These findings may provide a novel strategy for the elimination of free cancer cells during laparoscopic resection. However, the potential cellular mechanisms underlying this process require further investigation.
Collapse
Affiliation(s)
- Jinlin Wang
- Department of General Surgery, Dongguan People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Zhiyong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Yanxia Mo
- Department of General Surgery, Dongguan People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Zhaohui Zeng
- Department of General Surgery, Dongguan People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Pei Wei
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Tao Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
29
|
Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M. Immunotherapeutic approaches for cancer therapy: An updated review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:769-79. [PMID: 25801036 DOI: 10.3109/21691401.2015.1019669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In spite of specific immune effector mechanisms raised against tumor cells, there are mechanisms employed by the tumor cells to keep them away from immune recognition and elimination; some of these mechanisms have been identified, while others are still poorly understood. Manipulation or augmentation of specific antitumor immune responses are now the preferred approaches for treatment of malignancies, and traditional therapeutic approaches are being replaced by the use of agents which potentiate immune effector mechanisms, broadly called "immunotherapy". Cancer immunotherapy is generally classified into two main classes including active and passive methods. Interventions to augment the immune system of the patient, for example, vaccination or adjuvant therapy, actively promote antitumor effector mechanisms to improve cancer elimination. On the other hand, administration of specific monoclonal antibodies (mAbs) against different tumor antigens and adoptive transfer of genetically-modified specific T cells are currently the most rapidly developing approaches for cancer targeted therapy. In this review, we will discuss the different modalities for active and passive immunotherapy for cancer.
Collapse
Affiliation(s)
- Tohid Kazemi
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Younesi
- c Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Farhad Jadidi-Niaragh
- c Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Mehdi Yousefi
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
30
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
31
|
Finkelstein SE, Salenius S, Mantz CA, Shore ND, Fernandez EB, Shulman J, Myslicki FA, Agassi AM, Rotterman Y, DeVries T, Sims R. Combining Immunotherapy and Radiation for Prostate Cancer. Clin Genitourin Cancer 2015; 13:1-9. [DOI: 10.1016/j.clgc.2014.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/29/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023]
|
32
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|
33
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Verbrugge I, Gasparini A, Haynes NM, Hagekyriakou J, Galli M, Stewart TJ, Abrams SI, Yagita H, Verheij M, Johnstone RW, Borst J, Neefjes J. The Curative Outcome of Radioimmunotherapy in a Mouse Breast Cancer Model Relies on mTOR Signaling. Radiat Res 2014; 182:219-29. [DOI: 10.1667/rr13511.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Inge Verbrugge
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alessia Gasparini
- Division of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nicole M. Haynes
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Jim Hagekyriakou
- Department of Physical Chemistry, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Mara Galli
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Trina J. Stewart
- Griffith Health Institute, School of Medical Sciences, Griffith University, Gold Coast, Australia
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan; and
| | - Marcel Verheij
- Division of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ricky W. Johnstone
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Jannie Borst
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Li D, Wang W, Shi HS, Fu YJ, Chen X, Chen XC, Liu YT, Kan B, Wang YS. Gene therapy with beta-defensin 2 induces antitumor immunity and enhances local antitumor effects. Hum Gene Ther 2013; 25:63-72. [PMID: 24134464 DOI: 10.1089/hum.2013.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Beta-defensins, small antimicrobial peptides, are involved in host immune responses to tumors. In this study, we used beta-defensin 2 (BD2) to explore the possible role of beta-defensins in cancer gene therapy. A recombinant plasmid expressing a secretable form of BD2 was constructed. The biological activities of BD2 in immature dendritic cells (iDCs) were tested in vitro and in vivo. The antitumor effects were investigated in three established tumor models. The secreted BD2 was detected and exhibited chemotactic activity in iDCs both in vitro and in vivo. Recruitment and activation of iDCs in tumor niches resulted in significant tumor growth inhibition. Adoptive transfer of splenocytes and depletion of immune cell subsets revealed that CD8(+) T lymphocyte responses mediated the increased tumor inhibition. Furthermore, we also found that chemotactic and maturation-inducing activities in iDCs in tumor milieu contributed to enhanced local antitumor effects. Our study indicates that gene therapy with BD2 can mediate specific antitumor immunity and augment local antitumor effects. Our study also suggested that beta-defensins may merit further exploration for cancer immunotherapy as promising immunogenes.
Collapse
Affiliation(s)
- Dan Li
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu 610042, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Benencia F. RNA vaccines for anti-tumor therapy. World J Exp Med 2013; 3:62-73. [DOI: 10.5493/wjem.v3.i4.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
The immune system is able to recognize tumor antigens and this has been the basis for the development of cancer immunotherapies. The immune system can be instructed to recognize and attack tumor cells by means of vaccination strategies. One such strategy involves the delivery of tumor antigen as genetic material. Herewith we describe the use of RNA encoding tumor antigens for vaccination purposes in tumor settings. RNA has features that are interesting for vaccination. Upon transfection, the RNA has no possibility of integration into the genome, and the tumor translated proteins enter the intrinsic antigen processing pathway thus enabling presentation by MHC-I molecules. This can specifically activate cytotoxic CD8 T cells that can attack and kill tumor cells. RNA can be delivered as a naked molecule for vaccination purposes or can be used to transfect dendritic cells. The combination of RNA technology with dendritic cell vaccination provides a powerful tool for cancer immunotherapies.
Collapse
|
37
|
Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771. [PMID: 24286020 PMCID: PMC3841205 DOI: 10.4161/onci.25771] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Campisano S, Mac Keon S, Gazzaniga S, Ruiz MS, Traian MD, Mordoh J, Wainstok R. Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors. Vaccine 2012; 31:354-61. [PMID: 23146677 DOI: 10.1016/j.vaccine.2012.10.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/25/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
We have initially shown that DC/ApoNec vaccine can induce protection against the poorly immunogenic B16F1 melanoma in mice. The population of DC obtained for vaccination after 7days culture with murine GM-CSF is heterogeneous and presents about 60% of CD11c+ DC. Therefore, our purpose was to identify the phenotype of the cells obtained after differentiation and its immunogenicity once injected. DC were separated with anti-CD11c microbeads and the two populations identified in terms of CD11c positivity (DC+ and DC-) were also studied. Approximately 26.6% of the cells in DC+ fraction co-expressed CD11c+ and F4/80 markers and 75.4% were double positive for CD11c and CD11b markers. DC+ fraction also expressed Ly6G. DC- fraction was richer in CD11c-/F4/80+ macrophages (44.7%), some of which co-expressed Ly6G (41.8%), and F4/80-/Ly6-G+ neutrophils (34.6%). Both DC+ and DC- fractions displayed similar capacity to phagocyte and endocyte antigens and even expressed levels of MHC Class II and CD80, CD83 and CD86 costimulatory molecules similar to those in the DC fraction. However, only DC/ApoNec vaccine was capable to induce protection in mice (p<0.01). After 24h co-culture, no detectable level of IL-12 was recorded in DC/ApoNec vaccine, either in supernatant or intracellularly. Therefore, the protection obtained with DC/ApoNec vaccine seemed to be independent of the vaccine's ability to secrete this inflammatory cytokine at the time of injection. In conclusion, we demonstrated that all cell types derived from the culture of mouse bone marrow with GM-CSF are necessary to induce antitumor protection in vivo.
Collapse
Affiliation(s)
- Sabrina Campisano
- Depto. de Química Biológica, Ciudad Universitaria, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
39
|
Kwilas AR, Donahue RN, Bernstein MB, Hodge JW. In the field: exploiting the untapped potential of immunogenic modulation by radiation in combination with immunotherapy for the treatment of cancer. Front Oncol 2012; 2:104. [PMID: 22973551 PMCID: PMC3434425 DOI: 10.3389/fonc.2012.00104] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/09/2012] [Indexed: 02/05/2023] Open
Abstract
Radiation has long been the standard of care for many types of cancer. It is employed to locally eradicate tumor cells as well as alter tumor stroma with either curative or palliative intent. Radiation-induced cell damage is an immunologically active process in which danger signals are released that stimulate immune cells to phagocytose and present locally released tumor-associated antigens (TAAs). Recent studies have indicated that radiotherapy can also alter the phenotype of cancer cells that remain after treatment. These cells upregulate TAAs as well as markers, including major histocompatibility complex and costimulatory molecules, that make them much more immunostimulatory. As our understanding of the immunomodulatory effects of radiation has improved, interest in combining this type of therapy with immune-based therapies for the treatment of cancer has grown. Therapeutic cancer vaccines have been shown to initiate the dynamic process of host immune system activation, culminating in the recognition of host cancer cells as foreign. The environment created after radiotherapy can be exploited by active therapeutic cancer vaccines in order to achieve further, more robust immune system activation. This review highlights preclinical studies that have examined the alteration of the tumor microenvironment with regard to immunostimulatory molecules following different types of radiotherapy, including external beam radiation, radiolabeled monoclonal antibodies, bone-seeking radionuclides, and brachytherapy. We also emphasize how combination therapy with a cancer vaccine can exploit these changes to achieve improved therapeutic benefit. Lastly, we describe how these laboratory findings are translating into clinical benefit for patients undergoing combined radiotherapy and cancer vaccination.
Collapse
Affiliation(s)
- Anna R. Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Renee N. Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Michael B. Bernstein
- Department of Radiation Oncology, Albert Einstein College of MedicineNew York, NY, USA
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
40
|
Lee NJ, Choi DY, Song JK, Jung YY, Kim DH, Kim TM, Kim DJ, Kwon SM, Kim KB, Choi KE, Moon DC, Kim Y, Han SB, Hong JT. Deficiency of C–C chemokine receptor 5 suppresses tumor development via inactivation of NF–ĸB and inhibition of monocyte chemoattractant protein-1 in urethane-induced lung tumor model. Carcinogenesis 2012; 33:2520-8. [DOI: 10.1093/carcin/bgs265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
41
|
James BR, Tomanek-Chalkley A, Askeland EJ, Kucaba T, Griffith TS, Norian LA. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. THE JOURNAL OF IMMUNOLOGY 2012; 189:1311-21. [PMID: 22745381 DOI: 10.4049/jimmunol.1100587] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity is a mounting health concern in the United States and is associated with an increased risk for developing several cancers, including renal cell carcinoma (RCC). Despite this, little is known regarding the impact of obesity on antitumor immunity. Because dendritic cells (DC) are critical regulators of antitumor immunity, we examined the combined effects of obesity and tumor outgrowth on DC function. Using a diet-induced obesity (DIO) model, DC function was evaluated in mice bearing orthotopic RCC and in tumor-free controls. Tumor-free DIO mice had profoundly altered serum cytokine and chemokine profiles, with upregulation of 15 proteins, including IL-1α, IL-17, and LIF. Tumor-free DIO mice had elevated percentages of conventional splenic DC that were impaired in their ability to stimulate naive T cell expansion, although they were phenotypically similar to normal weight (NW) controls. In DIO mice, intrarenal RCC tumor challenge in the absence of therapy led to increased local infiltration by T cell-suppressive DC and accelerated early tumor outgrowth. Following administration of a DC-dependent immunotherapy, established RCC tumors regressed in normal weight mice. The same immunotherapy was ineffective in DIO mice and was characterized by an accumulation of regulatory DC in tumor-bearing kidneys, decreased local infiltration by IFN-γ-producing CD8 T cells, and progressive tumor outgrowth. Our results suggest that the presence of obesity as a comorbidity can impair the efficacy of DC-dependent antitumor immunotherapies.
Collapse
Affiliation(s)
- Britnie R James
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
42
|
Landi A, Babiuk LA, van Drunen Littel-van den Hurk S. Dendritic cells matured by a prostaglandin E2-containing cocktail can produce high levels of IL-12p70 and are more mature and Th1-biased than dendritic cells treated with TNF-α or LPS. Immunobiology 2010; 216:649-62. [PMID: 21183242 DOI: 10.1016/j.imbio.2010.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/11/2010] [Accepted: 11/17/2010] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DCs) play a crucial role in the initiation of an immune response. As maturation is critical for effective antigen presentation, different methods have been used to generate mature DCs (mDCs) ex vivo. The use of a maturation cocktail (MC) consisting of IL-1β, IL-6, TNF-α, and prostaglandin E2 (PGE2) initially showed promising results, but then was challenged because of low production of IL-12p70 and the potential for induction of Th2-type immune responses. To investigate this contention, we compared two of the most commonly used maturation factors, TNF-α and LPS, with MC. Maturation cocktail was superior to TNF-α and LPS with respect to enhancement of mDC-specific surface marker expression (CD83, CD86, and HLA-DR), induction of T cell proliferation by mDCs, and directional motility of mDCs toward CCL19. These results were supported by increased expression of a significant number of additional maturation-related genes by MC in comparison to TNF-α and LPS. In addition, we did not observe a Th2-biased shift in the gene expression profile of mDCs generated by MC. Conversely, MC induced more Th1-promoting transcriptional changes than LPS or TNF-α, including increased transcript levels of Th1-type cytokines such as IL-15, IL-12β, and EBI3 (IL-27β) and MHC class I molecules, Th1-promoting changes in the transcripts of CXCL16, CCL13, and CCL18, and reduced transcript levels of MHC class II molecules. More interestingly, the Th1-promoting characteristics of MC-mDCs were confirmed by their potential to produce large amounts of IL-12p70 after effective stimulation simulating in vivo events.
Collapse
Affiliation(s)
- Abdolamir Landi
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd, Saskatoon, SK S7N5E3, Canada
| | | | | |
Collapse
|
43
|
Marques-da-Silva C, Burnstock G, Ojcius DM, Coutinho-Silva R. Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunobiology 2010; 216:1-11. [PMID: 20471713 DOI: 10.1016/j.imbio.2010.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/13/2010] [Accepted: 03/25/2010] [Indexed: 12/20/2022]
Abstract
Phagocytosis plays an important role in controlling inflammation and antigen cross-presentation through the uptake of apoptotic bodies from dying cells. As dying cells are known to release nucleotides and other "danger signals", we investigated whether extracellular nucleotides may affect phagocytosis through binding to P2 purinergic receptors on phagocytic cells. We here show that the purinergic receptor agonists, ATP, ADP, α,β-methylene ATP (α,β-meATP), 3'-O-(4-benzoyl)benzoyl ATP, UTP and UDP, increased phagocytosis of latex beads, and some of them increased endocytosis and/or macropinocytosis of dextran by macrophages. The enhanced phagocytosis could be inhibited by pre-treatment with the P2X and P2Y antagonists, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid and suramin, and the P2Y₁-selective antagonist, MRS2179. The nucleotides induced upregulation in macrophages of the β2 integrin CD11b/CD18 (Mac-1) and the vitronectin receptor (α(v)β3, CD51/CD61), both of which are involved in recognition and internalization of apoptotic cells. In addition, ATP and α,β-meATP increased adhesion of apoptotic cells to macrophages, both in vitro and in vivo, and α,β-meATP had a small effect on adhesion of necrotic cells. The nucleotides had no effect on adhesion of viable cells. We propose that engagement of the P2 receptors (P2X₁, or P2X₃) by extracellular nucleotides released from dying cells increases the ability of macrophages to bind apoptotic bodies, thus enhancing their ability to internalize and present antigens from the dying cells.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil
| | | | | | | |
Collapse
|
44
|
Abstract
Although cancer vaccines with defined antigens are commonly used, the use of whole tumor cell preparations in tumor immunotherapy is a very promising approach and can obviate some important limitations in vaccine development. Whole tumor cells are a good source of TAAs and can induce simultaneous CTLs and CD4(+) T helper cell activation. We review current approaches to prepare whole tumor cell vaccines, including traditional methods of freeze-thaw lysates, tumor cells treated with ultraviolet irradiation, and RNA electroporation, along with more recent methods to increase tumor cell immunogenicity with HOCl oxidation or infection with replication-incompetent herpes simplex virus.
Collapse
|
45
|
Cao Q, Jin Y, Jin M, He S, Gu Q, He S, Qiu Y, Ge H, Yoneyama H, Zhang Y. Therapeutic effect of MIP-1alpha-recruited dendritic cells on preestablished solid and metastatic tumors. Cancer Lett 2010; 295:17-26. [PMID: 20202744 DOI: 10.1016/j.canlet.2010.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 11/17/2022]
Abstract
We previously found that dendritic cell (DC) precursors could be recruited into the peripheral blood of B6 mice by administration of macrophage inflammatory protein (MIP)-1alpha. These MIP-1alpha-recruited DCs could induce anti-tumor protective immunity when pulsed with tumor cell lysate. In this study, MIP-1alpha-recruited DCs could not effectively suppress preestablished tumor when pulsed with B16 tumor cell lysate. However, inoculation with these DCs expressing MAGE-1 induced an anti-tumor immunity against preestablished solid and metastatic tumor from B16-MAGE-1 cells. These MIP-1alpha-recruited DCs expressed higher level of CCR7 and displayed a more significant chemotactic response toward secondary lymphoid tissue. Therefore, they are superior in the induction of cytotoxic T lymphocytes and the inhibition of tumor development and metastasis than bone marrow-derived DCs. This study established a novel approach to the treatment of preestablished solid and metastatic tumors using MIP-1alpha-recruited DCs transduced with tumor antigen gene.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor
- Chemokine CCL3/pharmacology
- Chemotaxis
- Cytotoxicity, Immunologic
- Dendritic Cells/immunology
- Female
- Immunotherapy
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Lymphocyte Activation
- Melanoma, Experimental/immunology
- Melanoma, Experimental/prevention & control
- Melanoma, Experimental/secondary
- Melanoma, Experimental/therapy
- Melanoma-Specific Antigens
- Mice
- Mice, Inbred C57BL
- Neoplasm Proteins/genetics
- Receptors, CCR7/metabolism
- Recombinant Proteins/pharmacology
- T-Lymphocytes, Cytotoxic/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- Qi Cao
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Knudsen S, Schardt A, Buhl T, Boeckmann L, Schön MP, Neumann C, Haenssle HA. Enhanced T-cell activation by immature dendritic cells loaded with HSP70-expressing heat-killed melanoma cells. Exp Dermatol 2010; 19:108-16. [DOI: 10.1111/j.1600-0625.2009.00962.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Abstract
Standard therapies for many common cancers remain toxic and are often ineffective. Cellular immunotherapy has the potential to be a highly targeted alternative, with low toxicity to normal tissues but a high capacity to eradicate tumor. In this chapter we describe approaches that generate cellular therapies using active immunization with cells, proteins, peptides, or nucleic acids, as well as efforts that use adoptive transfer of effector cells that directly target antigens on malignant cells. Many of these approaches are proving successful in hematologic malignancy and in melanoma. In this chapter we discuss the advantages and limitations of each and how over the next decade investigators will attempt to broaden their reach, increase their efficacy, and simplify their application.
Collapse
Affiliation(s)
- Fatma V Okur
- Baylor College of Medicine, Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | |
Collapse
|
48
|
Karalkin PA, Lupatov AY, Yarygin KN. Endocytosis of micro- and nanosized particles in vitro by human dendritic cells. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2009. [DOI: 10.1134/s1990747809040072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Yan S, Zhang H, Xie Y, Sheng W, Xiang J, Ye Z, Chen W, Yang J. Recombinant Human Interleukin-24 Suppresses Gastric Carcinoma Cell GrowthIn VitroandIn Vivo. Cancer Invest 2009; 28:85-93. [DOI: 10.3109/07357900903095672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Xie Y, Bai O, Yuan J, Chibbar R, Slattery K, Wei Y, Deng Y, Xiang J. Tumor apoptotic bodies inhibit CTL responses and antitumor immunity via membrane-bound transforming growth factor-beta1 inducing CD8+ T-cell anergy and CD4+ Tr1 cell responses. Cancer Res 2009; 69:7756-66. [PMID: 19789353 DOI: 10.1158/0008-5472.can-09-0496] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor cell apoptosis induced by radiation therapy results in apoptotic tumor cells and apparition of membrane blebs termed apoptotic bodies (APB). The immune responses induced by apoptotic tumor cells have been extensively studied. However, the role of APB in modulation of tumor immune responses is elusive. In this study, we induced apoptosis in 90% ovabumin-expressing EG7 tumor cells by in vitro irradiation (9,000 rad) of tumor cells with a subsequent cell culture for 9 hours. APB purified from irradiation-induced apoptotic EG7 cell culture supernatant by differential ultracentrifugation were vesicles with 50 to 90 nm in diameter and expressed apoptosis-specific Annexin V, 14-3-3, and Histone H3. We then investigated its potential modulation in DC(OVA)-induced T-cell responses and antitumor immunity. We found that EG7-derived APB were tolerogenic and capable of suppressing DC(OVA)-stimulated CD8+ CTL responses and antitumor immunity via its induction of CD8+ T-cell anergy and type 1 regulatory CD4+ T-cell responses. Analysis of apoptotic tumor cells and APB revealed the expression of membrane-bound transforming growth factor (TGF)-beta1 associated with irradiation-induced apoptosis formation, which is a result from activation of transcriptional factor NF-AT specific for TGF-beta1 promoters. Our data further elucidate that it is the membrane-bound TGF-beta1 expression on APB that contributes to its in vitro antiproliferative effect as shown by using neutralizing TGF-beta1-specific antibody. Administration of anti-TGF-beta1 antibody in vivo also blocked APB-mediated immune suppression of CD8+ CTL responses and antitumor immunity. Therefore, our study may have great impact in designing a combined radiation therapy with immunotherapy of cancer.
Collapse
Affiliation(s)
- Yufeng Xie
- Research Unit, Saskatchewan Cancer Agency, Departments of Oncology, Pathology, and Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | | | |
Collapse
|