1
|
Han J, Shin YH, Kim E, Park HM, Kim JY. Proteomic Characterization of NEDD4 Unveils Its Potential Novel Downstream Effectors in Gastric Cancer. J Proteome Res 2025; 24:891-902. [PMID: 39874481 DOI: 10.1021/acs.jproteome.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression. We found that the inhibition of NEDD4 expression significantly reduced the migratory and proliferative abilities of GC cells, with minimal impact on the PTEN expression or p-AKT activation, suggesting that NEDD4 may exert its GC-promoting effects through alternative pathways. To gain novel insights into the role of NEDD4 in GC, we performed a comprehensive proteomic analysis to search for proteins with altered expression levels following NEDD4 gene knockdown, identifying a total of 3916 proteins. Pathway analysis of differentially expressed proteins (DEPs) indicated the potential involvement of NEDD4 in cancer-related metabolic pathways. Furthermore, the protein-protein interaction network of the DEPs revealed enriched core modules, highlighting key cellular processes and signaling pathways regulated by NEDD4 in GC. Additionally, we identified proteins whose expression was altered by NEDD4 inhibition, some of which were associated with poor prognosis in GC. These findings suggest that these proteins may act as downstream effectors that contribute to NEDD4-mediated GC progression.
Collapse
Affiliation(s)
- Jisoo Han
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoon-Hee Shin
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Eunjung Kim
- Natural Product Systems Biology Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Ali SI, Najaf-Panah MJ, Pyper KB, Lujan FE, Sena J, Ashley AK. Comparative analysis of basal and etoposide-induced alterations in gene expression by DNA-PKcs kinase activity. Front Genet 2024; 15:1276365. [PMID: 38577247 PMCID: PMC10991847 DOI: 10.3389/fgene.2024.1276365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Maintenance of the genome is essential for cell survival, and impairment of the DNA damage response is associated with multiple pathologies including cancer and neurological abnormalities. DNA-PKcs is a DNA repair protein and a core component of the classical nonhomologous end-joining pathway, but it also has roles in modulating gene expression and thus, the overall cellular response to DNA damage. Methods: Using cells producing either wild-type (WT) or kinase-inactive (KR) DNA-PKcs, we assessed global alterations in gene expression in the absence or presence of DNA damage. We evaluated differential gene expression in untreated cells and observed differences in genes associated with cellular adhesion, cell cycle regulation, and inflammation-related pathways. Following exposure to etoposide, we compared how KR versus WT cells responded transcriptionally to DNA damage. Results: Downregulated genes were mostly involved in protein, sugar, and nucleic acid biosynthesis pathways in both genotypes, but enriched biological pathways were divergent, again with KR cells manifesting a more robust inflammatory response compared to WT cells. To determine what major transcriptional regulators are controlling the differences in gene expression noted, we used pathway analysis and found that many master regulators of histone modifications, proinflammatory pathways, cell cycle regulation, Wnt/β-catenin signaling, and cellular development and differentiation were impacted by DNA-PKcs status. Finally, we have used qPCR to validate selected genes among the differentially regulated pathways to validate RNA sequence data. Conclusion: Overall, our results indicate that DNA-PKcs, in a kinase-dependent fashion, decreases proinflammatory signaling following genotoxic insult. As multiple DNA-PK kinase inhibitors are in clinical trials as cancer therapeutics utilized in combination with DNA damaging agents, understanding the transcriptional response when DNA-PKcs cannot phosphorylate downstream targets will inform the overall patient response to combined treatment.
Collapse
Affiliation(s)
- Sk Imran Ali
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Mohammad J. Najaf-Panah
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Kennedi B. Pyper
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - F. Ester Lujan
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Johnny Sena
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Amanda K. Ashley
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
3
|
Lin KM, Weng LF, Chen SYJ, Lin SJ, Tsai CH. Upregulation of IQGAP2 by EBV transactivator Rta and its influence on EBV life cycle. J Virol 2023; 97:e0054023. [PMID: 37504571 PMCID: PMC10506479 DOI: 10.1128/jvi.00540-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human oncogenic γ-herpesvirus that establishes persistent infection in more than 90% of the world's population. EBV has two life cycles, latency and lytic replication. Reactivation of EBV from latency to the lytic cycle is initiated and controlled by two viral immediate-early transcription factors, Zta and Rta, encoded by BZLF1 and BRLF1, respectively. In this study, we found that IQGAP2 expression was elevated in EBV-infected B cells and identified Rta as a viral gene responsible for the IQGAP2 upregulation in both B cells and nasopharyngeal carcinoma cell lines. Mechanistically, we showed that Rta increases IQGAP2 expression through direct binding to the Rta-responsive element in the IQGAP2 promoter. We also demonstrated the direct interaction between Rta and IQGAP2 as well as their colocalization in the nucleus. Functionally, we showed that the induced IQGAP2 is required for the Rta-mediated Rta promoter activation in the EBV lytic cycle progression and may influence lymphoblastoid cell line clumping morphology through regulating E-cadherin expression. IMPORTANCE Elevated levels of antibodies against EBV lytic proteins and increased EBV DNA copy numbers in the sera have been reported in patients suffering from Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, indicating that EBV lytic cycle progression may play an important role in the pathogenesis of EBV-associated diseases and highlighting the need for a more complete mechanistic understanding of the EBV lytic cycle. Rta acts as an essential transcriptional activator to induce lytic gene expression and thus trigger EBV reactivation. In this study, scaffolding protein IQGAP2 was found to be upregulated prominently following EBV infection via the direct binding of Rta to the RRE in the IQGAP2 promoter but not in response to other biological stimuli. Importantly, IQGAP2 was demonstrated to interact with Rta and promote the EBV lytic cycle progression. Suppression of IQGAP2 was also found to decrease E-cadherin expression and affect the clumping morphology of lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Fang Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Campolo F, Sesti F, Feola T, Puliani G, Faggiano A, Tarsitano MG, Tenuta M, Hasenmajer V, Ferretti E, Verrico M, Gianfrilli D, Venneri MA, Isidori AM, Giannetta E. Platelet-derived circRNAs signature in patients with gastroenteropancreatic neuroendocrine tumors. J Transl Med 2023; 21:548. [PMID: 37587471 PMCID: PMC10428534 DOI: 10.1186/s12967-023-04417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Neuroendocrine tumors (NETs) early diagnosis is a clinical challenge that require a deep understanding of molecular and genetic features of this heterogeneous group of neoplasms. However, few biomarkers exist to aid diagnosis and to predict prognosis and treatment response. In the oncological field, tumor-educated platelets (TEPs) have been implicated as central players in the systemic and local responses to tumor growth, thereby altering tumor specific RNA profile. Although TEPs have been found to be enriched in RNAs, few studies have investigated the potential of a type of RNA, circular RNAs (circRNA), as platelet-derived biomarkers for cancer. In this proof-of-concept study, we aim to demonstrate whether the circRNAs signature of tumor educated platelets can be used as a liquid biopsy biomarker for the detection of gastroenteropancreatic (GEP)-NETs and the prediction of the early response to treatment. METHODS We performed a 24-months, prospective proof-of-concept study in men and women with histologically proven well-differentiated G1-G2 GEP-NET, aged 18-80 years, naïve to treatment. We performed a RNAseq analysis of circRNAs obtained from TEPs samples of 10 GEP-NETs patients at baseline and after 3 months from therapy (somatostatin analogs or surgery) and from 5 patients affected by non-malignant endocrinological diseases enrolled as a control group. RESULTS Statistical analysis based on p < 0.05 resulted in the identification of 252 circRNAs differentially expressed between GEP-NET and controls of which 109 were up-regulated and 143 were down-regulated in NET patients. Further analysis based on an FDR value ≤ 0.05 resulted in the selection of 5 circRNAs all highly significant downregulated. The same analysis on GEP-NETs at baseline and after therapy in 5 patients revealed an average of 4983 remarkably differentially expressed circRNAs between follow-up and baseline samples of which 2648 up-regulated and 2334 down-regulated, respectively. Applying p ≤ 0.05 and FDR ≤ 0.05 filters, only 3/5 comparisons gave statistically significant results. CONCLUSIONS Our findings identified for the first time a circRNAs signature from TEPs as potential diagnostic and predictive biomarkers for GEP-NETs.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Feola
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | | | - Marta Tenuta
- UOC Endocrinology, Metabolic Diseases, Andrology SMIC08, Policlinico Umberto I, Rome, Italy
| | - Valeria Hasenmajer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Monica Verrico
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (ENDO-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Chen T, Fan X, Li G, Meng Y. Multi-omics data integration reveals the molecular network of dysregulation IQGAP2-mTOR promotes cell proliferation. Hum Cell 2023:10.1007/s13577-023-00912-8. [PMID: 37154877 DOI: 10.1007/s13577-023-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
IQGAP2 as a tumor suppressor gene can influence cell proliferation in multiple tumor cell lines. However, the regulation network of cell proliferation resulting solely from the deficiency of IQGAP2 in cells was still unclear. Here, we integrated transcriptome, proteome, and phosphoproteome analyses to investigate the regulatory network of cell proliferation in IQGAP2 knockdown HaCaT and HEK293 cells. Our findings revealed that the dysregulation of the IQGAP2-mTOR molecular network led to increased cell proliferation. We demonstrated that IQGAP2 knockdown enhanced the phosphorylation levels of AKT and S6K, leading to increased cell proliferation. Additionally, we found that AKT and mTOR inhibitors partially rescued abnormal cell proliferation by reducing hyperphosphorylation. Our data suggest a potential connection between the mTOR signaling pathway and aberrant cell proliferation in IQGAP2 knockdown cells. These findings offer a new therapeutic strategy for patients with IQGAP2 deficiency.
Collapse
Affiliation(s)
- Tao Chen
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., No. 10 Luoxuan 3Rd Road, Guangzhou International Biotech Island, Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xijie Fan
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., No. 10 Luoxuan 3Rd Road, Guangzhou International Biotech Island, Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China
| | - Guibin Li
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., No. 10 Luoxuan 3Rd Road, Guangzhou International Biotech Island, Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China
| | - Yuhuan Meng
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., No. 10 Luoxuan 3Rd Road, Guangzhou International Biotech Island, Guangzhou, China.
- Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China.
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Song F, Dai Q, Grimm MO, Steinbach D. The Antithetic Roles of IQGAP2 and IQGAP3 in Cancers. Cancers (Basel) 2023; 15:cancers15041115. [PMID: 36831467 PMCID: PMC9953781 DOI: 10.3390/cancers15041115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The scaffold protein family of IQ motif-containing GTPase-activating proteins (IQGAP1, 2, and 3) share a high degree of homology and comprise six functional domains. IQGAPs bind and regulate the cytoskeleton, interact with MAP kinases and calmodulin, and have GTPase-related activity, as well as a RasGAP domain. Thus, IQGAPs regulate multiple cellular processes and pathways, affecting cell division, growth, cell-cell interactions, migration, and invasion. In the past decade, significant evidence on the function of IQGAPs in signal transduction during carcinogenesis has emerged. Compared with IQGAP1, IQGAP2 and IQGAP3 were less analyzed. In this review, we summarize the different signaling pathways affected by IQGAP2 and IQGAP3, and the antithetic roles of IQGAP2 and IQGAP3 in different types of cancer. IQGAP2 expression is reduced and plays a tumor suppressor role in most solid cancer types, while IQGAP3 is overexpressed and acts as an oncogene. In lymphoma, for example, IQGAPs have partially opposite functions. There is considerable evidence that IQGAPs regulate a multitude of pathways to modulate cancer processes and chemoresistance, but some questions, such as how they trigger this signaling, through which domains, and why they play opposite roles on the same pathways, are still unanswered.
Collapse
Affiliation(s)
- Fei Song
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07740 Jena, Germany
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
- Correspondence:
| |
Collapse
|
8
|
Xie R, Chen W, Lv Y, Xu D, Huang D, Zhou T, Zhang S, Xiong C, Yu J. Overexpressed ZC3H13 suppresses papillary thyroid carcinoma growth through m6A modification-mediated IQGAP1 degradation. J Formos Med Assoc 2023:S0929-6646(22)00477-6. [PMID: 36739231 DOI: 10.1016/j.jfma.2022.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE The purpose of this study was to clarify the effect of ZC3H13 on the growth of papillary thyroid carcinoma (PTC). METHODS Firstly, we used qRT-PCR and Western blot to compare the difference in the expression of ZC3H13 between normal thyroid epithelial cells and PTC cell lines. Then, ZC3H13 overexpression/knockout thyroid cancer cells were constructed by lentivirus transfection, and the effects of overexpression of ZC3H13 on the proliferation, migration and invasion of PTC cells were detected by CCK8 and transwell experiments. Lastly, MeRIP-qPCR, RIP and o Actinomycin D were used to verify that ZC3H13 regulated the expression of downstream target gene IQGAP1 through m6A modification. RESULTS ZC3H13 expression was decreased in PTC cell lines BCPAP, KTC-1, k1, HTH83, and TPC-1. Proliferation, invasion, and migration of PTC cells were inhibited by overexpressed ZC3H13 but increased by knockdown of ZC3H13. IQGAP1 expression was suppressed by ZC3H13 overexpression but enhanced by ZC3H13 knockdown. In ZC3H13-overexpressed PTC cells, the m6A level of IQGAP1 mRNA was increased, and the IQGAP1 mRNA expression was decreased with the increasing time of Actinomycin D treatment. YTHDF2 enriched more IQGAP1 mRNA than IgG and knockdown of YTHDF2 reversed the effect of ZC3H13 overexpression on IQGAP1 mRNA stability. The xenograft tumor experiment in nude mice confirmed that the overexpression of ZC3H13 inhibited tumor growth, while overexpression of IQGAP1 could reverse the inhibitory effect of ZC3H13 overexpression on tumor growth. CONCLUSION ZC3H13 mediates IQGAP1 mRNA degradation by promoting m6A modification of IQGAP1 mRNA, this provides a prospective therapeutic target for PTC.
Collapse
Affiliation(s)
- Rong Xie
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China
| | - Wanzhi Chen
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China
| | - Yunxia Lv
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China
| | - Debin Xu
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China
| | - Da Huang
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China
| | - Tao Zhou
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China
| | - Shuyong Zhang
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China
| | - Chengfeng Xiong
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China
| | - Jichun Yu
- Department of Thyroid Surgery, Hongjiaozhou Branch of the Second Affiliated Hospital of Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
9
|
Song F, Kotolloshi R, Gajda M, Hölzer M, Grimm MO, Steinbach D. Reduced IQGAP2 Promotes Bladder Cancer through Regulation of MAPK/ERK Pathway and Cytokines. Int J Mol Sci 2022; 23:ijms232113508. [PMID: 36362301 PMCID: PMC9655856 DOI: 10.3390/ijms232113508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The progression of non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) is a major challenge in urologic oncology. However, understanding of the molecular processes remains limited. The dysregulation of IQGAP2 is becoming increasingly evident in most tumor entities, and it plays a role in multiple oncogenic pathways, so we evaluated the role of IQGAP2 in bladder cancer. IQGAP2 was downregulated in tumors compared with normal urothelium tissues and cells. IQGAP2 effectively attenuated bladder cancer cell growth independently from apoptosis. Reduced IQGAP2 promoted EMT in bladder cancer cells via activation of the MAPK/ERK pathway. In addition, IQGAP2 might influence key cellular processes, such as proliferation and metastasis, through the regulation of cytokines. In conclusion, we suggest that IQGAP2 plays a tumor-suppressing role in bladder cancer, possibly via inhibiting the MAPK/ERK pathway and reducing cytokines.
Collapse
Affiliation(s)
- Fei Song
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Roland Kotolloshi
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Mieczyslaw Gajda
- Section of Pathology, Department of Forensic Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
- Correspondence:
| |
Collapse
|
10
|
Li W, Wang Z, Wang H, Zhang J, Wang X, Xing S, Chen S. IQGAP3 in clear cell renal cell carcinoma contributes to drug resistance and genome stability. PeerJ 2022; 10:e14201. [PMID: 36275458 PMCID: PMC9586079 DOI: 10.7717/peerj.14201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Background Clear cell renal clear cell carcinoma (ccRCC) is resistant to most chemotherapeutic drugs and the molecular mechanisms have not been fully revealed. Genomic instability and the abnormal activation of bypass DNA repair pathway is the potential cause of tumor resistance to radiotherapy and chemotherapy. IQ-motif GTPase activating protein 3 (IQGAP3) regulates cell migration and intercellular adhesion. This study aims to analysis the effects of IQGAP3 expression on cell survival, genome stability and clinical prognosis in ccRCC. Methods Multiple bioinformatics analysis based on TCGA database and IHC analysis on clinical specimens were included. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB) were used to determine protein expression level. MTT assay and 3D spheroid cell growth assay were used to assess cell proliferation and drug resistance in RNAi transfected ccRCC cells. Cell invasion capacity was evaluated by transwell assay. The influence of IQGAP3 on genome instability was revealed by micronuclei number and γ H2AX recruitment test. Results The highly expressed IQGAP3 in multiple subtypes of renal cell carcinoma has a clear prognostic value. Deletion of IQGAP3 inhibits cell growth in 3D Matrigel. IQGAP3 depletion lso increases accumulated DNA damage, and improves cell sensitivity to ionizing radiation and chemotherapeutic drugs. Therefore, targeting DNA damage repair function of IQGAP3 in tumorigenesis can provide ideas for the development of new targets for early diagnosis.
Collapse
Affiliation(s)
- Wen Li
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China,Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Hanlin Wang
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Zhang
- Department of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaobin Wang
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China,Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong, China
| | - Shaojun Xing
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Si Chen
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Kumar D, Patel SA, Khan R, Chawla S, Mohapatra N, Dixit M. IQ Motif-Containing GTPase-Activating Protein 2 Inhibits Breast Cancer Angiogenesis By Suppressing VEGFR2-AKT Signaling. Mol Cancer Res 2021; 20:77-91. [PMID: 34615693 DOI: 10.1158/1541-7786.mcr-20-1044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/17/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
Antiangiogenesis cancer therapies are facing setbacks due to side effects and resistance. Parallel targeting of multiple pathways can help in the development of more effective therapies. This requires the discovery of new molecules that can regulate multiple cellular processes. Our study has recently established the association of reduced IQGAP2 expression in breast cancer with EMT and poor prognosis of the patient. Existing literature indirectly suggests the role of IQGAP2 in angiogenesis that is still unexplored. In this study, we searched the role of IQGAP2 in tumor angiogenesis in a comprehensive manner using cell culture, patients, and animal models. Depletion of IQGAP2 in breast cancer cells increased proliferation, migration, and tubulogenesis of HUVECs. Findings were validated in ex ovo CAM, Matrigel plug and skin wound-healing assays in mouse model, showing that the reduction of IQGAP2 significantly increased angiogenesis. As a confirmation, IHC analysis of the patient's tissues showed a negative correlation of IQGAP2 expression with the microvessel density. Mechanistically, loss of IQGAP2 appeared to activate VEGF-A via ERK activation in tumor cells, which activated the VEGFR2-AKT axis in HUVECs. IMPLICATIONS: The findings of this study suggest the antiangiogenic properties of IQGAP2 in breast cancer. The Dual effect of IQGAP2 on EMT and angiogenesis makes it a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India
| | - Saket Awadhesbhai Patel
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India
| | - Rehan Khan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India
| | | | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India.
| |
Collapse
|
12
|
Tang T, Wang J, Zhang L, Cheng Y, Saleh L, Gu Y, Zhang H. IQGAP2 acts as an independent prognostic factor and is related to immunosuppression in DLBCL. BMC Cancer 2021; 21:603. [PMID: 34034707 PMCID: PMC8152057 DOI: 10.1186/s12885-021-08086-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Almost one-third of patients with diffuse large B-cell lymphoma (DLBCL) cannot be cured with initial therapy and will eventually succumb to the disease. Further elaboration of prognostic markers of DLBCL will provide therapeutic targets. IQ motif-containing GTPase activating protein 2 (IQGAP2) acts as a tumour suppressor in hepatocellular, prostate, and gastric cancers. However, the role of IQGAP2 in DLBCL remains unclear. Methods We collected mRNA expression data from 614 samples and the corresponding clinical information. The survival time of patients was compared between groups according to the mRNA expression level of IQGAP2. Survival analyses were performed in different subgroups when considering the effect of age, tumour stage, serum lactate dehydrogenase (LDH) concentration, performance status, and the number of extra nodal disease sites. The biological processes associated with IQGAP2-associated mRNAs were analysed to predict the function of IQGAP2. The correlation of IQGAP2 mRNA with immunosuppressive genes and leukocyte infiltration were analysed. Results The overall survival of patients with increased IQGAP2 mRNA levels was reduced even after aggressive treatment independent of age, tumour stage, serum LDH concentration, performance status, and the number of extra nodal disease sites. Furthermore, the biological processes of IQGAP2-associated mRNAs were mainly immune processes. IQGAP2 mRNA expression was correlated with the expression of immunosuppressive genes and leukocyte infiltration. Conclusion IQGAP2 mRNA is an independent prognostic factor and is related to immunosuppression in DLBCL. This discovery may provide a promising target for further development of therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08086-y.
Collapse
Affiliation(s)
- Tianjiao Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.,Department of General Practice, University of Chinese Academy of Sciences Chongqing Hospital, Chongqing, China
| | - Jing Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lidan Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ying Cheng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Laura Saleh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanni Gu
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
13
|
Kumar D, Patel SA, Hassan MK, Mohapatra N, Pattanaik N, Dixit M. Reduced IQGAP2 expression promotes EMT and inhibits apoptosis by modulating the MEK-ERK and p38 signaling in breast cancer irrespective of ER status. Cell Death Dis 2021; 12:389. [PMID: 33846302 PMCID: PMC8041781 DOI: 10.1038/s41419-021-03673-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022]
Abstract
IQGAP2, a member of the IQGAP family, functions as a tumor suppressor in most of the cancers. Unlike IQGAP1 and IQGAP3, which function as oncogenes in breast cancer, the role of IQGAP2 is still unexplored. Here we report a reduced expression of IQGAP2, which was associated with lymph node positivity, lymphovascular invasion, and higher age in breast cancer patients. We found an inverse correlation of IQGAP2 expression levels with oncogenic properties of breast cancer cell lines in estrogen receptor (ER) independent manner. IQGAP2 expression enhanced apoptosis via reactive oxygen species (ROS)-P38-p53 pathway and reduced epithelial-mesenchymal transition (EMT) in a MEK-ERK-dependent manner. IQGAP2-IQGAP1 ratio correlated negatively with phospho-ERK levels in breast cancer patients. Pull-down assay showed interaction of IQGAP1 and IQGAP2. IQGAP2 overexpression rescued, IQGAP1-mediated ERK activation, suggesting the possibility of IQGAP1 sequestration by IQGAP2. IQGAP2 depletion, in a tumor xenograft model, increased tumor volume, tumor weight, and phospho-ERK expression. Overall, our findings suggest that IQGAP2 is negatively associated with proliferative and metastatic abilities of breast cancer cells. Suppression of IQGAP1-mediated ERK activation is a possible route via which IQGAP2 restricts oncogenic properties of breast cancer cells. Our study highlights the candidature of IQGAP2 as a potent target for therapeutic intervention.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, P.O. Jatni, Khurda, Odisha, 752050, India
| | - Saket Awadesbhai Patel
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, P.O. Jatni, Khurda, Odisha, 752050, India
| | - Md Khurshidul Hassan
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, P.O. Jatni, Khurda, Odisha, 752050, India
| | - Nachiketa Mohapatra
- Apollo Hospitals, Plot No. 251, Old Sainik School Road, Bhubaneswar, Odisha, 750015, India
| | - Niharika Pattanaik
- AMRI Hospital, Plot No. 1, Near Jayadev Vatika Park, Khandagiri, Bhubaneswar, Odisha, 751019, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, P.O. Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
14
|
Meng Y, Yu C, Chen M, Yu X, Sun M, Yan H, Zhao W, Yu S. Mutation landscape of TSC1/TSC2 in Chinese patients with tuberous sclerosis complex. J Hum Genet 2020; 66:227-236. [PMID: 32917966 DOI: 10.1038/s10038-020-00839-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 01/22/2023]
Abstract
Genetic testing of TSC1 and TSC2 is important for the diagnosis of tuberous sclerosis complex (TSC), an autosomal dominant neurocutaneous disease. This study retrospectively reviewed 347 samples from patients with clinically suspected TSC being tested for mutations in TSC1 and TSC2 genes using next-generation sequencing and multiplex ligation-dependent probe amplification. Two hundred eighty-one patients (80.98%) were classified as definite/possible/uncertain diagnosis of TSC and the mutational spectrum of TSC1/TSC2 was described. Two hundred eighteen unique nonsynonymous SNVs/Indels (64 in TSC1, 154 in TSC2) and 13 copy number variants (CNVs) were identified in 241 samples (85.77%), including 82 novel variants. CNVs involving 12 large deletions and one duplication were detected exclusively in TSC2. Both TSC1 and TSC2 mutations were nearly uniformly distributed in their protein-coding regions. Furthermore, a string of non-TSC1/TSC2 deleterious variants in 12 genes was identified in the patients, especially overwhelmingly present in the patients with no mutation identified (NMI) in TSC1/TSC2. Our study provides a comprehensive TSC1/TSC2 mutation landscape and reveal some potential risk non-TSCs variants present in patients with NMI.
Collapse
Affiliation(s)
- Yuhuan Meng
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Changshun Yu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co. Ltd., Guangzhou, China
| | - Meijun Chen
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaokang Yu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co. Ltd., Guangzhou, China
| | - Mingming Sun
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co. Ltd., Guangzhou, China
| | - Hui Yan
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., Guangzhou, China
| | - Weiwei Zhao
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co. Ltd., Guangzhou, China. .,Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China.
| | - Shihui Yu
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., Guangzhou, China. .,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China. .,Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China.
| |
Collapse
|
15
|
Liu Z, Li X, Ma J, Li D, Ju H, Liu Y, Chen Y, He X, Zhu Y. Integrative Analysis of the IQ Motif-Containing GTPase-Activating Protein Family Indicates That the IQGAP3-PIK3C2B Axis Promotes Invasion in Colon Cancer. Onco Targets Ther 2020; 13:8299-8311. [PMID: 32903879 PMCID: PMC7445521 DOI: 10.2147/ott.s257729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Colon cancer (CRC) is a common type of tumour, and IQGAP family proteins play an important role in many tumours. However, their roles in CRC remain unclear. Methods First, we searched many public databases to comprehensively analyze expression of IQGAPs in CRC. Next, real-time PCR, immunohistochemical (IHC), transwell, siRNA transfection and Western blot assays were used to evaluate relationships among IQGAP3 expression, clinical pathological parameters and CRC prognosis, and the underlying molecular mechanism was investigated. Results IQGAP3 was elevated in CRC tissues, whereas there was no significant change in expression of IQGAP1 or IQGAP2. Additionally, IQGAP3 expression in CRC tissues was associated with tumour progression, invasion and poor prognosis. In mechanistic studies, we found that IQGAP3 was positively coexpressed with PIK3C2B. In an in vitro assay, the PIK3C2B expression level was increased after exogenous overexpression of IQGAP3, resulting in the promotion of cell invasion, which was blocked by pretransfecting cells with PIK3C2B siRNA. Furthermore, we found that high expression of IQGAP3 and PIK3C2B correlated with tumour stage and vessel invasion in human CRC, whereby patients with high expression of both in tumours had a worse prognosis compared with patients with single-positive or double-negative tumours. Conclusion The results of our current study and corresponding previous studies provide evidence that IQGAP3 is elevated in CRC and promotes colon cancer growth and metastasis by regulating PIK3C2B activation.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Xiao Li
- The 2nd Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Dechuan Li
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Haixing Ju
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Yong Liu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Yinbo Chen
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Xujun He
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Yuping Zhu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| |
Collapse
|
16
|
Enhancement of Migration and Invasion of Gastric Cancer Cells by IQGAP3. Biomolecules 2020; 10:biom10081194. [PMID: 32824461 PMCID: PMC7465220 DOI: 10.3390/biom10081194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Although gastric cancer is one of the most common causes of cancer death in the world, mechanisms underlying this type of tumor have not been fully understood. In this study, we found that IQGAP3, a member of the IQGAP gene family, was significantly up-regulated in human gastric cancer starting from the early stages of tumor progression. Overexpression of IQGAP3 in 293T and NIH3T3 cells, which have no endogenous IQGAP3 expression, resulted in morphological change with multiple dendritic-like protrusions and enhanced migration. Overexpression of IQGAP3 also led to reduced cell–cell adhesion in 293T cells, likely as a result of its interactions with e-cadherin or β-catenin proteins. Additionally, IQGAP3 accumulated along the leading edge of migrating cells and at the cleavage furrow of dividing cells. In contrast, suppression of IQGAP3 by short-interfering RNA (siRNA) markedly reduced invasion and anchorage-independent growth of MKN1 and TMK-1 gastric cancer cells. We further confirmed that IQGAP3 interacted with Rho family GTPases, and had an important role in cytokinesis. Taken together, we demonstrated that IQGAP3 plays critical roles in migration and invasion of human gastric cancer cells, and regulates cytoskeletal remodeling, cell migration and adhesion. These findings may open a new avenue for the diagnosis and treatment of gastric cancer.
Collapse
|
17
|
Su S, Xu A, Chen Y, Li W, Zha X, Wang Y, Sun G. Transcriptomic Analysis of Pulmonary Microvascular Endothelial Cells with IQGAP1 Knockdown. DNA Cell Biol 2020; 39:1127-1140. [PMID: 32364766 DOI: 10.1089/dna.2020.5451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shihong Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aihui Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanzhen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yani Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Xu L, Shao Y, Ren L, Liu X, Li Y, Xu J, Ye Y. IQGAP2 Inhibits Migration and Invasion of Gastric Cancer Cells via Elevating SHIP2 Phosphatase Activity. Int J Mol Sci 2020; 21:ijms21061968. [PMID: 32183047 PMCID: PMC7139352 DOI: 10.3390/ijms21061968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown reduced expression of Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) and its tumor-suppressive role in gastric cancer (GC). However, the precise role of SHIP2 in the migration and invasion of GC cells remains unclear. Here, an IQ motif containing the GTPase-activating protein 2 (IQGAP2) as a SHIP2 binding partner, was screened and identified by co-immunoprecipitation and mass spectrometry studies. While IQGAP2 ubiquitously expressed in GC cells, IQGAP2 and SHIP2 co-localized in the cytoplasm of GC cells, and this physical association was confirmed by the binding of IQGAP2 to PRD and SAM domains of SHIP2. The knockdown of either SHIP2 or IQGAP2 promoted cell migration and invasion by inhibiting SHIP2 phosphatase activity, activating Akt and subsequently increasing epithelial–mesenchymal transition (EMT). Furthermore, knockdown of IQGAP2 in SHIP2-overexpressing GC cells reversed the inhibition of cell migration and invasion by SHIP2 induction, which was associated with the suppression of elevated SHIP2 phosphatase activity. Moreover, the deletion of PRD and SAM domains of SHIP2 abrogated the interaction and restored cell migration and invasion. Collectively, these results indicate that IQGAP2 interacts with SHIP2, leading to the increment of SHIP2 phosphatase activity, and thereby inhibiting the migration and invasion of GC cells via the inactivation of Akt and reduction in EMT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Ye
- Correspondence: ; Tel.: +86-551-65161139
| |
Collapse
|
19
|
Xie Y, Zheng L, Tao L. Downregulation of IQGAP2 Correlates with Prostate Cancer Recurrence and Metastasis. Transl Oncol 2018; 12:236-244. [PMID: 30428404 PMCID: PMC6232700 DOI: 10.1016/j.tranon.2018.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023] Open
Abstract
IQGAP2 was recently reported as a tumor suppressor of prostate cancer (PC). Nonetheless, its clinical implications remain unknown. To address this issue, we extracted data related to IQGAP2 mRNA expression and genomic alterations from multiple large datasets within the Oncomine and cBioPortal databases and performed in silico analyses to determine a potential association of IQGAP2 mRNA expression and its genomic alterations with PC progression. In 4 cohorts consisting of 118 normal prostate tissues and 277 PCs, IQGAP2 mRNA expression was significantly elevated particularly in low-grade (primary Gleason score ≤3) PCs; these changes separate PC from normal tissues with area under curve values of 0.7-0.8. Significant reductions in IQGAP2 mRNA levels and gene copy number occurred in more than 70 metastases compared to at least 230 local PCs. This duo-alteration in IQGAP2 expression supports IQGAP2 elevation suppressing and its downregulation facilitating PC progression. Deletion and missense mutations were detected in 23 of 492 primary PCs; these alterations significantly associate with PC recurrence (HR=2.71; 95% CI: 1.35-5.44; P=.005) after adjusting for known risk factors and correlate with reductions in disease-free survival (DFS, P=.002). IQGAP2 (5q13.3) genomic alterations were observed in SPOP-marked PCs and co-occurred with deletion in the RN7SK (16p12.2), SNORA50A (16q21), and SNORA50C (17q23.3) genes; the co-occurrence associated with reductions in DFS (P=4.14e-4). In two independent PC populations, MSKCC (n=130) and TCGA provisional (n=490), reductions in IQGAP2 mRNA expression were significantly associated with DFS. Collectively, this investigation reveals an association of IQGAP2 with PC progression.
Collapse
Affiliation(s)
- Yanyun Xie
- Division of Nephrology, Xiangya Hospital, Central South University, Hunan, Changsha, China.
| | - Linfeng Zheng
- Division of Nephrology, Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Lijian Tao
- Division of Nephrology, Xiangya Hospital, Central South University, Hunan, Changsha, China
| |
Collapse
|
20
|
Fattahi S, Golpour M, Amjadi-Moheb F, Sharifi-Pasandi M, Khodadadi P, Pilehchian-Langroudi M, Ashrafi GH, Akhavan-Niaki H. DNA methyltransferases and gastric cancer: insight into targeted therapy. Epigenomics 2018; 10:1477-1497. [PMID: 30325215 DOI: 10.2217/epi-2018-0096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is a major health problem worldwide occupying most frequent causes of cancer-related mortality. In addition to genetic modifications, epigenetic alterations catalyzed by DNA methyltransferases (DNMTs) are a well-characterized epigenetic hallmark in gastric cancer. The reversible nature of epigenetic alterations and central role of DNA methylation in diverse biological processes provides an opportunity for using DNMT inhibitors to enhance the efficacy of chemotherapeutics. In this review, we discussed key factors or mechanisms such as SNPs, infections and genetic modifications that trigger DNMTs level modification in gastric cancer, and their potential roles in cancer progression. Finally, we focused on how inhibitors of the DNMTs can most effectively be used for the treatment of gastric cancer with multidrug resistance.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, 4717647745, Babol, Iran.,North Research Center, Pasteur Institute, Amol, 4615885399, Iran
| | - Monireh Golpour
- Molecular & Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, 4817844718, Iran
| | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| | - Marzieh Sharifi-Pasandi
- Molecular & Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, 4817844718, Iran
| | - Parastesh Khodadadi
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| | | | - Gholam Hossein Ashrafi
- School of Life Science, Pharmacy & Chemistry, SEC Faculty, Cancer Theme, Kingston University London, Kingston upon Thames, London KT1 2EE, UK
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| |
Collapse
|
21
|
Kumar D, Hassan MK, Pattnaik N, Mohapatra N, Dixit M. Reduced expression of IQGAP2 and higher expression of IQGAP3 correlates with poor prognosis in cancers. PLoS One 2017; 12:e0186977. [PMID: 29073199 PMCID: PMC5658114 DOI: 10.1371/journal.pone.0186977] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
IQGAPs is a family of proteins which comprises three members, in humans. The expression pattern and role of IQGAP1 has been well established in many cancers, whereas those of IQGAP2 and IQGAP3, have mostly remained unexplored. We used available large datasets, to explore the pan-cancer status of these two genes in-silico. Here we have analysed their mRNA expression and correlation with survivability in eight different cancers, including lung, breast, gastric, brain, colorectal, prostate, liver and kidney cancers and, their subtypes. The mRNA expression of IQGAP2 and IQGAP3 in individual cancers were analysed in two different publicly available databases viz. Oncomine and TCGA. The prognostic value of these genes in lung, breast and gastric cancer was analysed using Kaplan-Meier Plotter database, whereas for brain, colorectal, liver, prostate and kidney cancers, SurvExpress database was used. These results were validated by immunohistochemistry in cancer tissues (stomach, prostate, brain, colorectal). Moreover, we did IQGAP2 and IQGAP3 genomic alteration and, promoter methylation analysis using cBioportal and Wanderer web tool, respectively. Most of the cancer types (lung, breast, prostate, brain, gastric, liver, kidney and colorectal) showed increased IQGAP3 mRNA expression. In contrast, the IQGAP2 transcript levels were reduced across different cancers viz. lung, breast, gastric, liver, kidney and colorectal cancer. IQGAP2 expression correlated positively with survivability, on the contrary, IQGAP3 expression levels correlated inversely with survivability, in most of the cancers. Collectively, enhanced IQGAP3 and reduced IQGAP2 levels were frequently observed in multiple cancers with the former predicting poor survivability and the later opposite. Methylation pattern was significantly altered in most of the cancer types. We found copy no. variation and mutations in specific cancers, for IQGAP2 and IQGAP3. Our in-vivo (IHC) data confirmed the in-silico findings completely. Hence, IQGAP2 and IQGAP3 have potential to be used as prognostic markers or therapeutic targets in specific cancers.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Odisha, India
| | - Md. Khurshidul Hassan
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Odisha, India
| | | | | | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Odisha, India
- * E-mail:
| |
Collapse
|
22
|
Ucal Y, Eravci M, Tokat F, Duren M, Ince U, Ozpinar A. Proteomic analysis reveals differential protein expression in variants of papillary thyroid carcinoma. EUPA OPEN PROTEOMICS 2017; 17:1-6. [PMID: 29900122 PMCID: PMC5988514 DOI: 10.1016/j.euprot.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/09/2017] [Indexed: 12/14/2022]
Abstract
Introduction Fine Needle Aspiration Biopsy (FNAB) allows the cytological differentiation of benign and malignant thyroid nodules. However, the method itself is not adequate in determining some cases. For example, the diagnosis of Follicular Variant Papillary Thyroid Carcinoma (FV-PTC) can be challenging. In the current study we investigate the protein profiles of FV-PTC and classical variant PTC (CV-PTC) with no lymph node metastasis and compare it with benign thyroid tissue. Method We used CV-PTC (n = 6), FV-PTC (n = 6) and benign thyroid tissues (n = 6) to prepare tissue lysates. Proteins from each group were trypsin and lys-C digested. The samples were analyzed on a Q Exactive Orbitrap mass spectrometer. Results We identified 2560 proteins across all 18 specimens. Protein profiles revealed that there was no clear distinction between benign and FV-PTC samples. However, further examination of our data showed that proteins in energy metabolism have altered in FV-PTC. Proteomic pathway analysis showed marked alteration of the actin cytoskeleton proteins, especially several members of Arp2/3 complex were significantly increased in CV-PTC. We made the novel observation that IQGAP1 protein was significantly increased in CV-PTC, whereas IQGAP2 protein was highly expressed in FV-PTC lesions, suggesting differential roles of IQGAP proteins in thyroid pathology. Conclusion In the present study, mass spectrometry based label free quantification approach was applied to investigate the protein profiles of FV-PTC, CV-PTC and benign thyroid tissues. This study pointed out that actin cytoskeleton proteins, IQGAP proteins and changes in energy metabolism play predominant roles in thyroid pathology.
Collapse
Affiliation(s)
- Yasemin Ucal
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Murat Eravci
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany
| | - Fatma Tokat
- Acibadem Maslak Hospital, Pathology, Istanbul, Turkey
| | - Mete Duren
- Acibadem Maslak Hospital, General Surgery, Istanbul, Turkey
| | - Umit Ince
- Acibadem Maslak Hospital, Pathology, Istanbul, Turkey
| | - Aysel Ozpinar
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
23
|
Manshian BB, Martens TF, Kantner K, Braeckmans K, De Smedt SC, Demeester J, Jenkins GJS, Parak WJ, Pelaz B, Doak SH, Himmelreich U, Soenen SJ. The role of intracellular trafficking of CdSe/ZnS QDs on their consequent toxicity profile. J Nanobiotechnology 2017; 15:45. [PMID: 28619032 PMCID: PMC5472855 DOI: 10.1186/s12951-017-0279-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 11/21/2022] Open
Abstract
Background Nanoparticle interactions with cellular membranes and the kinetics of their transport and localization are important determinants of their functionality and their biological consequences. Understanding these phenomena is fundamental for the translation of such NPs from in vitro to in vivo systems for bioimaging and medical applications. Two CdSe/ZnS quantum dots (QD) with differing surface functionality (NH2 or COOH moieties) were used here for investigating the intracellular uptake and transport kinetics of these QDs. Results In water, the COOH- and NH2-QDs were negatively and positively charged, respectively, while in serum-containing medium the NH2-QDs were agglomerated, whereas the COOH-QDs remained dispersed. Though intracellular levels of NH2- and COOH-QDs were very similar after 24 h exposure, COOH-QDs appeared to be continuously internalised and transported by endosomes and lysosomes, while NH2-QDs mainly remained in the lysosomes. The results of (intra)cellular QD trafficking were correlated to their toxicity profiles investigating levels of reactive oxygen species (ROS), mitochondrial ROS, autophagy, changes to cellular morphology and alterations in genes involved in cellular stress, toxicity and cytoskeletal integrity. The continuous flux of COOH-QDs perhaps explains their higher toxicity compared to the NH2-QDs, mainly resulting in mitochondrial ROS and cytoskeletal remodelling which are phenomena that occur early during cellular exposure. Conclusions Together, these data reveal that although cellular QD levels were similar after 24 h, differences in the nature and extent of their cellular trafficking resulted in differences in consequent gene alterations and toxicological effects. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0279-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bella B Manshian
- Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Herestraat 49, 3000, Louvain, Belgium. .,Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| | - Thomas F Martens
- Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium.,Center of Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Karsten Kantner
- Philipps University of Marburg, Renthof 7, 35032, Marburg, Germany
| | - Kevin Braeckmans
- Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium.,Center of Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Stefaan C De Smedt
- Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Jo Demeester
- Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Gareth J S Jenkins
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Wolfgang J Parak
- Philipps University of Marburg, Renthof 7, 35032, Marburg, Germany.,CICBiomagune, San Sebastian, Spain
| | - Beatriz Pelaz
- Philipps University of Marburg, Renthof 7, 35032, Marburg, Germany
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Uwe Himmelreich
- Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Herestraat 49, 3000, Louvain, Belgium
| | - Stefaan J Soenen
- Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Herestraat 49, 3000, Louvain, Belgium
| |
Collapse
|
24
|
Zhu XH, Wang JM, Yang SS, Wang FF, Hu JL, Xin SN, Men H, Lu GF, Lan XL, Zhang D, Wang XY, Liao WT, Ding YQ, Liang L. Down-regulation of DAB2IP promotes colorectal cancer invasion and metastasis by translocating hnRNPK into nucleus to enhance the transcription of MMP2. Int J Cancer 2017; 141:172-183. [PMID: 28335083 DOI: 10.1002/ijc.30701] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
DOC-2/DAB2 interacting protein (DAB2IP) is a RasGAP protein that shows a suppressive effect on cancer progression. Our previous study showed the involvement of transcription regulation of DAB2IP in metastasis of colorectal cancer (CRC). However, the molecular mechanisms of DAB2IP in regulating the progression of CRC need to be further explored. Here, we identified heterogeneous nuclear ribonucleoprotein K (hnRNPK) and matrix metalloproteinase 2 (MMP2) as vital downstream targets of DAB2IP in CRC cells by two-dimensional fluorescence difference gel electrophoresis and cDNA microassay, respectively. Mechanistically, down-regulation of DAB2IP increased the level of hnRNPK through MAPK/ERK signaling pathway. Subsequently, translocation of hnRNPK into nucleus enhanced the transcription activity of MMP2, and therefore promoted invasion and metastasis of CRC. Down-regulation of DAB2IP correlated negatively with hnRNPK and MMP2 expressions in CRC tissues. In conclusion, our study elucidates a novel mechanism of the DAB2IP/hnRNPK/MMP2 axis in the regulation of CRC invasion and metastasis, which may be a potential therapeutic target.
Collapse
Affiliation(s)
- X H Zhu
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - J M Wang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - S S Yang
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - F F Wang
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - J L Hu
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - S N Xin
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - H Men
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - G F Lu
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - X L Lan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - D Zhang
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - X Y Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - W T Liao
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - Y Q Ding
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - L Liang
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
25
|
Zoheir KM, Abd-Rabou AA, Harisa GI, Kumar A, Ahmad SF, Ansari MA, Abd-Allah AR. IQGAP1 gene silencing induces apoptosis and decreases the invasive capacity of human hepatocellular carcinoma cells. Tumour Biol 2016; 37:13927-13939. [PMID: 27488117 DOI: 10.1007/s13277-016-5283-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 12/24/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) belong to a conserved family, and they are involved in various intracellular processes. IQGAP1 is expressed in all cells, while IQGAP2 and IQGAP3 are mainly expressed in hepatic cells. IQGAP1 has been suggested to be an oncogene, while IQGAP2 is considered a tumor-suppressor gene. However, the relationship between RAS family genes and IQGAP genes remains unclear. We recently demonstrated this interaction in a chemically induced mouse liver cancer. In this study, IQGAP1 expression was partially silenced in human hepatocellular carcinoma (HepG2) cells. We investigated the impact of IQGAP1 silencing on the interactions of IQGAP and RAS with several apoptotic proteins, including caspase-3 (CASP3), BCL2-associated X protein (BAX), and B-cell leukemia/lymphoma 2 (BCL2). Additionally, we investigated the effects of the interactions of these genes on cell viability, proliferation, apoptosis, and invasive capacity. IQGAP1 siRNA-treated HepG2 cells showed lower invasive capacity than the control cells, and this reduction was time- and vector concentration-dependent. In addition, IQGAP1 silencing resulted in significantly lower IQGAP1 level and subsequently higher IQGAP2 and IQGAP3 expression in HepG2 cells than in the control. Flow cytometry analyses indicated that the silencing of IQGAP1 can induce early and late apoptosis in HepG2 cells. Additionally, IQGAP2, IQGAP3, CASP3, and BAX were upregulated whereas IQGAP1 and BCL2 were downregulated in the siRNA-treated cells. Furthermore, we observed that the mRNA levels of HRAS, KRAS, NRAS, and MRAS decreased upon IQGAP1 silencing. These findings indicate that IQGAP1 potentially regulates the expression of IQGAP and RAS gene families and demonstrate its regulatory role in the apoptotic network. Taken together, our findings suggest that IQGAP1 silencing plays crucial roles in the apoptosis of HepG2 cells and lowers their proliferative and invasive capacities.
Collapse
Affiliation(s)
- Khairy Ma Zoheir
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. .,Cell Biology Department, National Research Centre, Cairo, 12622, Egypt.
| | - Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 11451, Riyadh, Saudi Arabia
| | - Ashok Kumar
- Vitiligo Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adel R Abd-Allah
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
26
|
Abstract
ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement.
Collapse
Affiliation(s)
- Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria Santander, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria Santander, Spain
| |
Collapse
|
27
|
Rusinek D, Swierniak M, Chmielik E, Kowal M, Kowalska M, Cyplinska R, Czarniecka A, Piglowski W, Korfanty J, Chekan M, Krajewska J, Szpak-Ulczok S, Jarzab M, Widlak W, Jarzab B. BRAFV600E-Associated Gene Expression Profile: Early Changes in the Transcriptome, Based on a Transgenic Mouse Model of Papillary Thyroid Carcinoma. PLoS One 2015; 10:e0143688. [PMID: 26625260 PMCID: PMC4666467 DOI: 10.1371/journal.pone.0143688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023] Open
Abstract
Background The molecular mechanisms driving the papillary thyroid carcinoma (PTC) are still poorly understood. The most frequent genetic alteration in PTC is the BRAFV600E mutation–its impact may extend even beyond PTC genomic profile and influence the tumor characteristics and even clinical behavior. Methods In order to identify BRAF-dependent signature of early carcinogenesis in PTC, a transgenic mouse model with BRAFV600E-induced PTC was developed. Mice thyroid samples were used in microarray analysis and the data were referred to a human thyroid dataset. Results Most of BRAF(+) mice developed malignant lesions. Nevertheless, 16% of BRAF(+) mice displayed only benign hyperplastic lesions or apparently asymptomatic thyroids. After comparison of non-malignant BRAF(+) thyroids to BRAF(−) ones, we selected 862 significantly deregulated genes. When the mouse BRAF-dependent signature was transposed to the human HG-U133A microarray, we identified 532 genes, potentially indicating the BRAF signature (representing early changes, not related to developed malignant tumor). Comparing BRAF(+) PTCs to healthy human thyroids, PTCs without BRAF and RET alterations and RET(+), RAS(+) PTCs, 18 of these 532 genes displayed significantly deregulated expression in all subgroups. All 18 genes, among them 7 novel and previously not reported, were validated as BRAFV600E-specific in the dataset of independent PTC samples, made available by The Cancer Genome Atlas Project. Conclusion The study identified 7 BRAF-induced genes that are specific for BRAF V600E-driven PTC and not previously reported as related to BRAF mutation or thyroid carcinoma: MMD, ITPR3, AACS, LAD1, PVRL3, ALDH3B1, and RASA1. The full signature of BRAF-related 532 genes may encompass other BRAF-related important transcripts and require further study.
Collapse
Affiliation(s)
- Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
- * E-mail:
| | - Michal Swierniak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
- Genomic Medicine, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Chmielik
- Department of Tumor Pathology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Monika Kowal
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Malgorzata Kowalska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Renata Cyplinska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Department of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Wojciech Piglowski
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Joanna Korfanty
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Mykola Chekan
- Department of Tumor Pathology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Sylwia Szpak-Ulczok
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Michal Jarzab
- III Department of Radiotherapy and Chemotherapy, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Wieslawa Widlak
- III Department of Radiotherapy and Chemotherapy, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
- II Department of Radiotherapy and Chemotherapy, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
28
|
Deng Z, Wang L, Hou H, Zhou J, Li X. Epigenetic regulation of IQGAP2 promotes ovarian cancer progression via activating Wnt/β-catenin signaling. Int J Oncol 2015; 48:153-60. [PMID: 26549344 DOI: 10.3892/ijo.2015.3228] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and most cases are diagnosed at an advanced stage with metastases; however, the molecular events supporting ovarian cancer development and progression remain poorly understood. In this study, by analysis of the genome-scale DNA methylation profiles of 8 healthy ovaries, 89 ovarian cancers and the corresponding 4 normal ovaries from The Cancer Genome Atlas, we unveiled the abnormalities in gene methylation of ovarian cancers, and found that IQGAP2 one of the most frequently altered genes, was significantly hypermethylated in ovarian cancer. There was an inverse correlation between IQGAP2 DNA methylation and mRNA expression, and IQGAP2 expression was downregulated in ovarian cancer. Further survival analysis indicated that decreased IQGAP2 was associated with a worse progression-free survival of patient with ovarian cancer, and biological function studies demonstrated that IQGAP2 inhibited ovarian cancer cell epithelial-mesenchymal transition, migration and invasion via suppression of Wnt-induced β-catenin nuclear translocation and transcriptional activity. Thus, these data identified IQGAP2 as a novel tumor suppressor for ovarian cancer to inhibit cell invasion through regulating Wnt/β-catenin signaling, and provided a new biomarker and potential therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Zhuo Deng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710061, P.R. China
| | - Lijie Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710061, P.R. China
| | - Huilian Hou
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710061, P.R. China
| | - Jiancheng Zhou
- Department of Urology, Shaanxi Provincal People's Hospital, Xi'an 710068, P.R. China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710061, P.R. China
| |
Collapse
|
29
|
Watanabe T, Wang S, Kaibuchi K. IQGAPs as Key Regulators of Actin-cytoskeleton Dynamics. Cell Struct Funct 2015; 40:69-77. [PMID: 26051604 DOI: 10.1247/csf.15003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The actin-cytoskeleton plays a critical role in various biological processes, including cell migration, development, tissue remodeling, and memory formation. Both extracellular and intracellular signals regulate reorganization of the actin-cytoskeleton to modulate tissue architecture and cellular morphology in a spatiotemporal manner. Since the discovery that activation of Rho family GTPases induces actin-cytoskeleton reorganization, the mode of action of Rho family GTPases has been extensively studied and individual effectors have been characterized. The actin-binding protein IQGAP1 was identified as an effector of Rac and Cdc42 and is the founding member of the IQGAP family with two additional isoforms. The IQGAP family shows conserved domain organization, and each member displays a specific expression pattern in mammalian tissues. IQGAPs regulate the actin-cytoskeleton alone and with their binding partners, thereby controlling diverse cellular processes, such as cell migration and adhesion. Here, we introduce IQGAPs as an actin-cytoskeleton regulator.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine
| | | | | |
Collapse
|
30
|
Ghaleb AM, Bialkowska AB, Snider AJ, Gnatenko DV, Hannun YA, Yang VW, Schmidt VA. IQ Motif-Containing GTPase-Activating Protein 2 (IQGAP2) Is a Novel Regulator of Colonic Inflammation in Mice. PLoS One 2015; 10:e0129314. [PMID: 26047140 PMCID: PMC4457730 DOI: 10.1371/journal.pone.0129314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/08/2015] [Indexed: 01/05/2023] Open
Abstract
IQ motif-containing GTPase-activating protein 2 (IQGAP2) is a multidomain scaffolding protein that plays a role in cytoskeleton regulation by juxtaposing Rho GTPase and Ca2+/calmodulin signals. While IQGAP2 suppresses tumorigenesis in liver, its role in pathophysiology of the gastrointestinal tract remains unexplored. Here we report that IQGAP2 is required for the inflammatory response in colon. Mice lacking Iqgap2 gene (Iqgap2-/- mice) were resistant to chemically-induced colitis. Unlike wild-type controls, Iqgap2-/- mice treated with 3% dextran sulfate sodium (DSS) in water for 13 days displayed no injury to colonic epithelium. Mechanistically, resistance to colitis was associated with suppression of colonic NF-κB signaling and IL-6 synthesis, along with diminished neutrophil and macrophage production and recruitment in Iqgap2-/- mice. Finally, alterations in IQGAP2 expression were found in colons of patients with inflammatory bowel disease (IBD). Our findings indicate that IQGAP2 promotes inflammatory response at two distinct levels; locally, in colonic epithelium through TLR4/NF-κB signaling pathway, and systemically, via control of maturation and recruitment of myeloid immune cells. This work identifies a novel mechanism of colonic inflammation mediated by signal transducing scaffolding protein IQGAP2. IQGAP2 domain-specific blocking agents may represent a conceptually novel strategy for therapy of IBD and other inflammation-associated disorders, including cancer.
Collapse
Affiliation(s)
- Amr M. Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Northport Veterans Affairs Medical Center, Northport, New York, United States of America
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
| | - Dmitri V. Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Genomics Core Facility, Stony Brook University, Stony Brook, New York, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
| | - Valentina A. Schmidt
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol 2015; 25:171-84. [PMID: 25618329 DOI: 10.1016/j.tcb.2014.12.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
Abstract
Since its discovery in 1994, recognized cellular functions for the scaffold protein IQGAP1 have expanded immensely. Over 100 unique IQGAP1-interacting proteins have been identified, implicating IQGAP1 as a critical integrator of cellular signaling pathways. Initial research established functions for IQGAP1 in cell-cell adhesion, cell migration, and cell signaling. Recent studies have revealed additional IQGAP1 binding partners, expanding the biological roles of IQGAP1. These include crosstalk between signaling cascades, regulation of nuclear function, and Wnt pathway potentiation. Investigation of the IQGAP2 and IQGAP3 homologs demonstrates unique functions, some of which differ from those of IQGAP1. Summarized here are recent observations that enhance our understanding of IQGAP proteins in the integration of diverse signaling pathways.
Collapse
|
32
|
Maertens O, Cichowski K. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer. Adv Biol Regul 2014; 55:1-14. [PMID: 24814062 DOI: 10.1016/j.jbior.2014.04.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
The RAS pathway is one of the most commonly deregulated pathways in human cancer. Mutations in RAS genes occur in nearly 30% of all human tumors. However in some tumor types RAS mutations are conspicuously absent or rare, despite the fact that RAS and downstream effector pathways are hyperactivated. Recently, RAS GTPase Activating Proteins (RAS GAPs) have emerged as an expanding class of tumor suppressors that, when inactivated, provide an alternative mechanism of activating RAS. RAS GAPs normally turn off RAS by catalyzing the hydrolysis of RAS-GTP. As such, the loss of a RAS GAP would be expected to promote excessive RAS activation. Indeed, this is the case for the NF1 gene, which plays an established role in a familial tumor predisposition syndrome and a variety of sporadic cancers. However, there are 13 additional RAS GAP family members in the human genome. We are only now beginning to understand why there are so many RAS GAPs, how they differentially function, and what their potential role(s) in human cancer are. This review will focus on our current understanding of RAS GAPs in human disease and will highlight important outstanding questions.
Collapse
Affiliation(s)
- Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Abstract
INTRODUCTION The Rho GTPases are a family of proteins that control fundamental cellular processes in response to extracellular stimuli and internal programs. Rho GTPases function as molecular switches in which the GTP-bound proteins are active and GDP-bound proteins are inactive. This article will focus on one Rho family member, Cdc42, which is overexpressed in a number of human cancers, and which might provide new therapeutic targets in malignancies. AREAS COVERED In this article, the key regulators and effectors of Cdc42 and their molecular alterations are described. The complex interactions between the signaling cascades regulated by Cdc42 are also analyzed. EXPERT OPINION While mutations in Cdc42 have not been reported in human cancer, aberrant expression of Cdc42 has been reported in a variety of tumor types and in some instances has been correlated with poor prognosis. Recently, it has been shown that Cdc42 activation by oncogenic Ras is crucial for Ras-mediated tumorigenesis, suggesting that targeting Cdc42 or its effectors might be useful in tumors harboring activating Ras mutations.
Collapse
Affiliation(s)
- Luis E Arias-Romero
- Cancer Biology Program, Fox Chase Cancer Center , Philadelphia, PA , USA +1 215 728 5319 ; +1 215 728 3616 ;
| | | |
Collapse
|
34
|
Hu XT, He C. Recent progress in the study of methylated tumor suppressor genes in gastric cancer. CHINESE JOURNAL OF CANCER 2013; 32:31-41. [PMID: 22059906 PMCID: PMC3845584 DOI: 10.5732/cjc.011.10175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/27/2011] [Accepted: 08/17/2011] [Indexed: 12/14/2022]
Abstract
Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide. The pathogenesis mechanisms of gastric cancer are still not fully clear. Inactivation of tumor suppressor genes and activation of oncogenes caused by genetic and epigenetic alterations are known to play significant roles in carcinogenesis. Accumulating evidence has shown that epigenetic silencing of the tumor suppressor genes, particularly caused by hypermethylation of CpG islands in promoters, is critical to carcinogenesis and metastasis. Here, we review the recent progress in the study of methylations of tumor suppressor genes involved in the pathogenesis of gastric cancer. We also briefly describe the mechanisms that induce tumor suppressor gene methylation and the status of translating these molecular mechanisms into clinical applications.
Collapse
Affiliation(s)
- Xiao-Tong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province,
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province,
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang 310016, P. R. China.
| |
Collapse
|
35
|
Lyn is involved in CD24-induced ERK1/2 activation in colorectal cancer. Mol Cancer 2012; 11:43. [PMID: 22731636 PMCID: PMC3464950 DOI: 10.1186/1476-4598-11-43] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022] Open
Abstract
Background and aim CD24 expression is associated with human colorectal cancer (CRC). Our previous data indicated that CD24 promoted the proliferation and invasion of colorectal cancer cells through the activation of ERK1/2. Since Src family kinases are frequently deregulated in CRC and closely related to the MAPK signaling pathway, we investigated the impact of Lyn, an important member of SFKs, on CD24-induced ERK1/2 activation in CRC. Methods and Results The interaction of CD24 and Lyn was identified by co-immunoprecipitation (Co-IP) and ectopic expression of CD24-induced Lyn activation. Inhibition of Lyn activation by phosphatase PP2 in SW480CD24cells abrogated CD24-induced invasion. The results of the Co-IP and immunofluorescence assay revealed that overexpression of CD24 enhanced the interaction of Lyn and ERK1/2 and induced the nuclear translocation of Lyn. However, inhibition of Lyn activity attenuated CD24-induced ERK1/2 activation, and depletion of CD24 disrupted Lyn-ERK1/2 interaction. Immunohistochemistry analysis for 202 cases of CRC showed that the expression of both CD24 and Lyn was positively correlated with tumor grade, stage, lymph node and distant metastasis. Patients with lower expression of CD24 or Lyn had a higher survival rate. The Cox multivariate analysis showed that CD24 expression, but not Lyn expression, was an independent prognostic factor of CRC. Conclusions Our results suggest that Lyn is involved in CD24-induced ERK1/2 activation in CRC. The expression of CD24 is associated with activation of Lyn and ERK1/2, which might be a novel mechanism related to CD24-mediated regulation of CRC development.
Collapse
|
36
|
Fan B, Dachrut S, Coral H, Yuen ST, Chu KM, Law S, Zhang L, Ji J, Leung SY, Chen X. Integration of DNA copy number alterations and transcriptional expression analysis in human gastric cancer. PLoS One 2012; 7:e29824. [PMID: 22539939 PMCID: PMC3335165 DOI: 10.1371/journal.pone.0029824] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/03/2011] [Indexed: 12/16/2022] Open
Abstract
Background Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level. Principal Findings We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis. Conclusions This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.
Collapse
Affiliation(s)
- Biao Fan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Surgery, Beijing Cancer Hospital & Institute, Peking University School of Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing, China
| | - Somkid Dachrut
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ho Coral
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Siu Tsan Yuen
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kent Man Chu
- Department of Surgery; The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery; The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Lianhai Zhang
- Department of Surgery, Beijing Cancer Hospital & Institute, Peking University School of Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing, China
| | - Jiafu Ji
- Department of Surgery, Beijing Cancer Hospital & Institute, Peking University School of Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing, China
- * E-mail: (XC); (SYL); (JFJ)
| | - Suet Yi Leung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- * E-mail: (XC); (SYL); (JFJ)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (XC); (SYL); (JFJ)
| |
Collapse
|
37
|
Xie Y, Yan J, Cutz JC, Rybak AP, He L, Wei F, Kapoor A, Schmidt VA, Tao L, Tang D. IQGAP2, A candidate tumour suppressor of prostate tumorigenesis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:875-84. [PMID: 22406297 DOI: 10.1016/j.bbadis.2012.02.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/10/2012] [Accepted: 02/23/2012] [Indexed: 12/23/2022]
Abstract
Loss of IQGAP2 contributes to the tumorigenesis of hepatocellular carcinoma and gastric cancer. However, whether IQGAP2 also suppresses prostate tumorigenesis remains unclear. We report here that IQGAP2 is a candidate tumour suppressor of prostate cancer (PC). Elevated IQGAP2 was detected in prostatic intraepithelial neoplasia (PIN), early stages of PCs (Gleason score ≤3), and androgen-dependent LNCaP PC cells. However, IQGAP2 was expressed at substantially reduced levels not only in prostate glands and non-tumorigenic BPH-1 prostate epithelial cells but also in advanced (Gleason score 4 or 5) and androgen-independent PCs. Furthermore, xenograft tumours that were derived from stem-like DU145 cells displayed advanced features and lower levels of IQGAP2 in comparison to xenograft tumours that were produced from non stem-like DU145 cells. Collectively, these results suggest that IQGAP2 functions in the surveillance of prostate tumorigenesis. Consistent with this concept, ectopic IQGAP2 reduced the proliferation of DU145, PC3, and 293T cells as well as the invasion ability of DU145 cells. While ectopic IQGAP2 up-regulated E-cadherin in DU145 and PC3 cells, knockdown of IQGAP2 reduced E-cadherin expression. In primary PC and DU145 cells-derived xenograft tumours, the majority of tumours with high levels of IQGAP2 were strongly-positive for E-cadherin. Therefore, IQGAP2 may suppress PC tumorigenesis, at least in part, by up-regulation of E-cadherin. Mechanistically, overexpression of IQGAP2 significantly reduced AKT activation in DU145 cells and inhibition of AKT activation upregulated E-cadherin, suggesting that IQGAP2 increases E-cadherin expression by inhibiting AKT activation. Taken together, we demonstrate here that IQGAP2 is a candidate tumour suppressor of PC.
Collapse
Affiliation(s)
- Yanyun Xie
- Division of Nephrology, Department of Medicine, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kang GH. CpG island hypermethylation in gastric carcinoma and its premalignant lesions. KOREAN JOURNAL OF PATHOLOGY 2012; 46:1-9. [PMID: 23109971 PMCID: PMC3479707 DOI: 10.4132/koreanjpathol.2012.46.1.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 11/15/2011] [Accepted: 11/21/2011] [Indexed: 12/13/2022]
Abstract
Gastric cancers arise through a multistep process characterized by the progressive accumulation of molecular alterations in which genetic and epigenetic mechanisms have been implicated. Gastric cancer is one of the human malignancies in which aberrant promoter CpG island hypermethylation is frequently found. Helicobacter pylori and Epstein-Barr virus, which are known carcinogens for gastric cancer, are closely associated with enhanced hypermethylation of CpG island loci in gastric non-neoplastic epithelial cells and cancer cells, respectively. Aberrant CpG island hypermethylation occurs early in the multistep cascade of gastric carcinogenesis and tends to increase with the step-wise progression of the lesion. Approximately 400 genes that are actively expressed in normal gastric epithelial cells are estimated to be inactivated in gastric cancers as a result of promoter CpG island hypermethylation. In this review, a variety of information is summarized regarding CpG island hypermethylation in gastric cancer.
Collapse
Affiliation(s)
- Gyeong Hoon Kang
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Watch the GAP: Emerging Roles for IQ Motif-Containing GTPase-Activating Proteins IQGAPs in Hepatocellular Carcinoma. Int J Hepatol 2012; 2012:958673. [PMID: 22973521 PMCID: PMC3438877 DOI: 10.1155/2012/958673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 12/12/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins IQGAP1 and IQGAP2 are highly homologous multidomain scaffolding proteins. Their major function consists of integration of Rho GTPase and Ca(2+)/calmodulin signals with cell adhesive and cytoskeletal reorganizational events. Recent studies showed that they play an important role in carcinogenesis. There is growing evidence that IQGAP2 is a novel tumor suppressor counteracting the effects of IQGAP1, an oncogene, in several cancers, especially in hepatocellular carcinoma (HCC). While HCC is highly prevalent and one of the deadliest cancers worldwide, the signaling pathways involved are not fully understood and treatment of advanced disease still represents an area of high unmet medical need. This paper compiles various findings from studies in mouse models, cell lines, and patient samples that support future development of IQGAPs into new therapeutic targets. It also discusses distinct features of IQGAP2 in an attempt to provide insight into the mechanism of the seemingly paradoxical opposing roles of the two very similar IQGAP proteins in carcinogenesis.
Collapse
|
40
|
White CD, Khurana H, Gnatenko DV, Li Z, Odze RD, Sacks DB, Schmidt VA. IQGAP1 and IQGAP2 are reciprocally altered in hepatocellular carcinoma. BMC Gastroenterol 2010; 10:125. [PMID: 20977743 PMCID: PMC2988069 DOI: 10.1186/1471-230x-10-125] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/26/2010] [Indexed: 01/16/2023] Open
Abstract
Background IQGAP1 and IQGAP2 are homologous members of the IQGAP family of scaffold proteins. Accumulating evidence implicates IQGAPs in tumorigenesis. We recently reported that IQGAP2 deficiency leads to the development of hepatocellular carcinoma (HCC) in mice. In the current study we extend these findings, and investigate IQGAP1 and IQGAP2 expression in human HCC. Methods IQGAP1 and IQGAP2 protein expression was assessed by Western blotting and immunohistochemistry. IQGAP mRNA was measured by quantitative RT-PCR. The methylation status of the Iqgap2 promoter was determined by pyrosequencing of bisulfite-treated genomic DNA. Results IQGAP1 and IQGAP2 expression was reciprocally altered in 6/6 liver cancer cell lines. Similarly, immunohistochemical staining of 82 HCC samples showed that IQGAP2 protein expression was reduced in 64/82 (78.0%), while IQGAP1 was present in 69/82 (84.1%). No IQGAP1 staining was detected in 23/28 (82.1%) normal livers, 4/4 (100.0%) hepatic adenomas and 23/23 (100.0%) cirrhosis cases, while IQGAP2 was increased in 22/28 (78.6%), 4/4 (100.0%) and 23/23 (100.0%), respectively. Although the Iqgap2 promoter was not hypermethylated in HCC at any of the 25 CpG sites studied (N = 17), IQGAP2 mRNA levels were significantly lower in HCC specimens (N = 23) than normal livers (N = 6). Conclusions We conclude that increased IQGAP1 and/or decreased IQGAP2 contribute to the pathogenesis of human HCC. Furthermore, downregulation of IQGAP2 in HCC occurs independently of hypermethylation of the Iqgap2 promoter. Immunostaining of IQGAP1 and IQGAP2 may aid in the diagnosis of HCC, and their pharmacologic modulation may represent a novel therapeutic strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Colin D White
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
White CD, Brown MD, Sacks DB. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett 2009; 583:1817-24. [PMID: 19433088 PMCID: PMC2743239 DOI: 10.1016/j.febslet.2009.05.007] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 04/28/2009] [Accepted: 05/02/2009] [Indexed: 12/13/2022]
Abstract
The IQGAP family comprises three proteins in humans. The best characterized is IQGAP1, which participates in protein-protein interactions and integrates diverse signaling pathways. IQGAP2 and IQGAP3 harbor all the domains identified in IQGAP1, but their biological roles are poorly defined. Proteins that bind IQGAP1 include Cdc42 and Rac1, E-cadherin, beta-catenin, calmodulin and components of the mitogen-activated protein kinase pathway, all of which are involved in cancer. Here, we summarize the biological functions of IQGAPs that may contribute to neoplasia. Additionally, we review published data which implicate IQGAPs in cancer and tumorigenesis. The cumulative evidence suggests IQGAP1 is an oncogene while IQGAP2 may be a tumor suppressor.
Collapse
Affiliation(s)
- Colin D. White
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Matthew D. Brown
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - David B. Sacks
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
42
|
Johnson M, Sharma M, Henderson BR. IQGAP1 regulation and roles in cancer. Cell Signal 2009; 21:1471-8. [PMID: 19269319 DOI: 10.1016/j.cellsig.2009.02.023] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 02/26/2009] [Indexed: 01/01/2023]
Abstract
IQGAP1 is a key mediator of several distinct cellular processes, in particular cytoskeletal rearrangements. Recent studies have implicated a potential role for IQGAP1 in cancer, supported by the over-expression and distinct membrane localisation of IQGAP1 observed in a range of tumours. IQGAP1 is thought to contribute to the transformed cancer cell phenotype by regulating signalling pathways involved in cell proliferation and transformation, weakening of cell:cell adhesion contacts and stimulation of cell motility and invasion. In this review we discuss these different functional and regulatory roles of IQGAP1 and its homologues in relation to their potential impact on tumourigenesis.
Collapse
Affiliation(s)
- Michael Johnson
- Westmead Institute for Cancer Research, Westmead Millennium Institute at Westmead Hospital, University of Sydney, NSW 2145, Australia
| | | | | |
Collapse
|
43
|
Sun YL, Liu F, Lu HZ, Lv N, Zhou LP, Cai JQ, Liu SM, Zhao XH. Expression of IQGAP2 and its clinical significance in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2008; 16:1309-1316. [DOI: 10.11569/wcjd.v16.i12.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of IQ motif containing GTPase activating protein 2 (IQGAP2) and its correlation with the clinicopathological parameters in hepatocellular carcinoma (HCC), and to reveal the potential mechanisms of IQGAP2 underlying human hepatocarcinogenesis.
METHODS: Western blot, immunofluorescence staining and immunohistochemical staining (IHC) were used to detect the expression and subcellular localization of IQGAP2 in 7 liver cancer and normal liver cell lines, as well as in 51 HCC tissue specimens. Meanwhile, the corresponding clinical data were analyzed retrospectively.
RESULTS: Only two liver cancer cell lines, HepG2 and Hep3B, expressed IQGAP2 at the protein level. In addition, immunofluorescence results revealed that IQGAP2 was localized in cytoplasm and nuclei. Apparent nucleolus and karyotheca staining was observed in HepG2 cells. Furthermore, histological validation of clinical samples showed that IQGAP2 expression was significantly down-regulated in tumor tissues (56.9%, 29/51). Meanwhile, the expression of IQGAP2 was associated with tumor size, AJCC staging and alpha-fetoprotein (AFP) expression level (P = 0.020; P = 0.017; P = 0.002). The immunohistochemical staining results from 38 HCC specimens showed that IQGAP2 was mainly localized at cytoplasm in the tumor and adjacent normal liver cells. In addition, partial cells had cell membrane and nuclear localization. However, definite association was not observed between IQGAP2 levels and tumor size, histological degree, AJCC staging or AFP expression status.
CONCLUSION: IQGAP2 expression is down-regulated in tumor tissues of HCC cases, and IQGAP2 may be a potential marker and tumor suppressor gene involved in HCC. These novel findings may provide a basis for the determination of mechanism(s) underlying human hepatocarcinogenesis.
Collapse
|