1
|
Lin AE, Mesev EV, Toettcher JE, Ploss A. Engineered chimeric receptors for dissecting interferon signaling. J Virol 2024; 98:e0168023. [PMID: 39291974 PMCID: PMC11495025 DOI: 10.1128/jvi.01680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Though interferons (IFNs) were once heralded as panaceas to numerous diseases, how cells decode varying IFN stimuli and subsequently produce (in)appropriate signaling remain unclear. Our labs recently engineered novel erythropoietin receptor-IFN chimeric receptors, and we highlight their utility in two cases uncovering differential genetic determinants of type I (IFN-α/β) and type III (IFN-λ) IFN signaling. These and other types of synthetic (cytokine) receptors could be expanded to real-time signaling dynamics and in vivo studies.
Collapse
Affiliation(s)
- Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Mesev EV, Lin AE, Guare EG, Heller BL, Douam F, Adamson B, Toettcher JE, Ploss A. Membrane-proximal motifs encode differences in signaling strength between type I and III interferon receptors. Sci Signal 2023; 16:eadf5494. [PMID: 37816090 PMCID: PMC10939449 DOI: 10.1126/scisignal.adf5494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Interferons (IFNs) play crucial roles in antiviral defenses. Despite using the same Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling cascade, type I and III IFN receptors differ in the magnitude and dynamics of their signaling in terms of STAT phosphorylation, gene transcription, and antiviral responses. These differences are not due to ligand-binding affinity and receptor abundance. Here, we investigated the ability of the intracellular domains (ICDs) of IFN receptors to differentiate between type I and III IFN signaling. We engineered synthetic, heterodimeric type I and III IFN receptors that were stably expressed at similar amounts in human cells and responded to a common ligand. We found that our synthetic type I IFN receptors stimulated STAT phosphorylation and gene expression to greater extents than did the corresponding type III IFN receptors. Furthermore, we identified short "box motifs" within ICDs that bind to JAK1 that were sufficient to encode differences between the type I and III IFN receptors. Together, our results indicate that specific regions within the ICDs of IFN receptor subunits encode different downstream signaling strengths that enable type I and III IFN receptors to produce distinct signaling outcomes.
Collapse
Affiliation(s)
- Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emma G. Guare
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brigitte L. Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Florian Douam
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Hyperoxia Alters Ultrastructure and Induces Apoptosis in Leukemia Cell Lines. Biomolecules 2020; 10:biom10020282. [PMID: 32059539 PMCID: PMC7072400 DOI: 10.3390/biom10020282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygenation conditions are crucial for growth and tumor progression. Recent data suggests a decrease in cancer cell proliferation occurring after exposure to normobaric hyperoxia. Those changes are associated with fractal dimension. The purpose of this research was to study the impact of hyperoxia on apoptosis and morphology of leukemia cell lines. Two hematopoietic lymphoid cancer cell lines (a T-lymphoblastoid line, JURKAT and a B lymphoid line, CCRF-SB) were tested under conditions of normobaric hyperoxia (FiO2 > 60%, ± 18h) and compared to a standard group (FiO2 = 21%). We tested for apoptosis using a caspase-3 assay. Cell morphology was evaluated by cytospin, microphotography after coloration, and analysis by a fractal dimension calculation software. Our results showed that exposure of cell cultures to transient normobaric hyperoxia induced apoptosis (elevated caspase-3) as well as significant and precocious modifications in cell complexity, as highlighted by increased fractal dimensions in both cell lines. These features are associated with changes in structure (pycnotic nucleus and apoptosis) recorded by microscopic analysis. Such morphological alterations could be due to several molecular mechanisms and rearrangements in the cancer cell, leading to cell cycle inhibition and apoptosis as shown by caspase-3 activity. T cells seem less resistant to hyperoxia than B cells.
Collapse
|
4
|
Thavarajah S, Choi MJ. The Use of Erythropoiesis-Stimulating Agents in Patients With CKD and Cancer: A Clinical Approach. Am J Kidney Dis 2019; 74:667-674. [DOI: 10.1053/j.ajkd.2019.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/18/2019] [Indexed: 01/13/2023]
|
5
|
Leś D, Saduś-Wojciechowska M, Rutkowski T, Wygoda A, Składowski K. The endogenous erythropoietin in correlation with other erythrocytic parameters in patients with head and neck squamous cell carcinoma treated with platinum-based induction chemotherapy. Contemp Oncol (Pozn) 2019; 23:178-182. [PMID: 31798335 PMCID: PMC6883964 DOI: 10.5114/wo.2019.89247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022] Open
Abstract
Between January 2017 and July 2018 103 patients were included in a prospective study of erythropoietin (EPO) monitoring. The group consisted of 33% patients with oropharynx, 29% with oral cavity, 13% with nasopharynx, 6% with larynx, 6% with hypopharynx, 8% with unknown primary cancer, 4% with nasal cavity, and 1% with salivary gland cancer. Clinic stage: T4 - 50, T3 - 21, T2 - 14, T1 - 10, T0 - 8, and N3 - 19, N2 - 61, N1 - 10, N0 - 13. All patients received from one to four cycles of induction chemotherapy. EPO was measured in blood serum by enzyme-labelled chemiluminescent immunometric assay, using an Immulite 2000XPi analyser before the administration and on day 11 of each chemotherapy cycle. During induction chemotherapy the EPO level was elevated in all patients, which is expressed by means of medians: 10.7 (p = 0.000001) in the middle of cycle 1; 10.9 (p = 0.66) before cycle 2; 14.35 (p = 0.000177) in the middle of cycle 2; 14.95 (p = 0.39) before cycle 3, 17.00 (p = 0.00078) in the middle of cycle 3, and 20.9 after cycle 3 (p = 0.41). The correlation analysis conducted indicates that the administration of one chemotherapy dose results in higher EPO release (two-fold increase in EPO concentration) which intensifies reticulocytes (REC) production but without haemoglobin concentration in reticulocytes (HGB-REC) growth. In consequence, it leads to a decrease in RBC and HGB concentration (29-32 cases). The administration of two and three chemotherapy doses results in the subsequent higher release of EPO, which does not intensify REC production. In consequence, anaemia increases (35 cases).
Collapse
Affiliation(s)
- Dominika Leś
- I Department of Radiotherapy and Chemotherapy, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Maria Saduś-Wojciechowska
- Department of Bone Marrow Transplantation and Haematology-Oncology, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Tomasz Rutkowski
- I Department of Radiotherapy and Chemotherapy, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Andrzej Wygoda
- I Department of Radiotherapy and Chemotherapy, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Składowski
- I Department of Radiotherapy and Chemotherapy, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
6
|
Bussel J, Kulasekararaj A, Cooper N, Verma A, Steidl U, Semple JW, Will B. Mechanisms and therapeutic prospects of thrombopoietin receptor agonists. Semin Hematol 2019; 56:262-278. [PMID: 31836033 DOI: 10.1053/j.seminhematol.2019.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
The second-generation thrombopoietin (TPO) receptor agonists eltrombopag and romiplostim are potent activators of megakaryopoiesis and represent a growing treatment option for patients with thrombocytopenic hematological disorders. Both TPO receptor agonists have been approved worldwide for the treatment of children and adults with chronic immune thrombocytopenia. In the EU and USA, eltrombopag is approved for the treatment of patients with severe aplastic anemia who have had an insufficient response to immunosuppressive therapy and in the USA for the first-line treatment of severe aplastic anemia in combination with immunosuppressive therapy. Eltrombopag has also shown efficacy in several other disease settings, for example, chemotherapy-induced thrombocytopenia, selected inherited thrombocytopenias, and myelodysplastic syndromes. While both TPO receptor agonists stimulate TPO receptor signaling and enhance megakaryopoiesis, their vastly different biochemical structures bestow upon them markedly different molecular and functional properties. Here, we review and discuss results from preclinical and clinical studies on the functional and molecular mechanisms of action of this new class of drug.
Collapse
Affiliation(s)
- James Bussel
- Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY.
| | | | | | - Amit Verma
- Albert Einstein College of Medicine, New York, NY
| | | | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Britta Will
- Albert Einstein College of Medicine, New York, NY.
| |
Collapse
|
7
|
Elliott S. Impact of Inadequate Methods and Data Analysis on Reproducibility. J Pharm Sci 2019; 109:1211-1219. [PMID: 31351867 DOI: 10.1016/j.xphs.2019.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
Failure to reproduce results of articles is recognized, but the causes, and therefore solutions, are not. One possibility is that deficits in quality of the work result in varying or inconclusive results. Erythropoiesis-stimulating agents have been used to treat anemia in patients with cancer, but there are concerns that erythropoiesis-stimulating agents might stimulate Epo receptors on tumor cells (Epo receptor-cancer hypothesis). Articles have been published on the topic, but the data and conclusions conflict, making them suitable for examination of a relationship between quality and reproducibility. Comprehensive literature searches were performed, and 280 relevant articles were identified. Numerous conflicts between and within these articles were apparent. The incidence of faults in quality parameters was high, including absence of adequate controls (90% of articles), inadequate validation of reagents and methods (87% of articles), and inadequate or improper statistical methods (84% of articles) with questionable interpretation of the data (81% of articles). This resulted in false-positive/negative data that varied with the reagents and methods used. The low quality of evidence may explain the poor reproducibility of Epo receptor-cancer articles.
Collapse
|
8
|
Beh CY, Rasedee A, Selvarajah GT, Yazan LS, Omar AR, Foong JN, How CW, Foo JB. Enhanced anti-mammary gland cancer activities of tamoxifen-loaded erythropoietin-coated drug delivery system. PLoS One 2019; 14:e0219285. [PMID: 31291309 PMCID: PMC6619690 DOI: 10.1371/journal.pone.0219285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/20/2019] [Indexed: 12/28/2022] Open
Abstract
Nanomedicine is an emerging area in the medical field, particularly in the treatment of cancers. Nanostructured lipid carrier (NLC) was shown to be a good nanoparticulated carrier for the delivery of tamoxifen (TAM). In this study, the tamoxifen-loaded erythropoietin-coated nanostructured lipid carriers (EPO-TAMNLC) were developed to enhance the anti-cancer properties and targetability of TAM, using EPO as the homing ligand for EPO receptors (EpoRs) on breast cancer tissue cells. Tamoxifen-loaded NLC (TAMNLC) was used for comparison. The LA7 cells and LA7 cell-induced rat mammary gland tumor were used as models in the study. Immunocytochemistry staining showed that LA7 cells express estrogen receptors (ERs) and EpoRs. EPO-TAMNLC and TAMNLC significantly (p<0.05) inhibited proliferation of LA7 in dose- and time-dependent manner. EPO-TAMNLC induced apoptosis and G0/G1 cell cycle arrest of LA7 cells. Both drug delivery systems showed anti-mammary gland tumor properties. At an intravenous dose of 5 mg kg-1 body weight, EPO-TAMNLC and TAMNLC were not toxic to rats, suggesting that both are safe therapeutic compounds. In conclusion, EPO-TAMNLC is not only a unique drug delivery system because of the dual drug-loading feature, but also potentially highly specific in the targeting of breast cancer tissues positive for ERs and EpoRs. The incorporation of TAM into NLC with and without EPO coat had significantly (p<0.05) improved specificity and safety of the drug carriers in the treatment of mammary gland tumors.
Collapse
Affiliation(s)
- Chaw Yee Beh
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: , (AR); (CYB)
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: , (AR); (CYB)
| | | | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Jia Ning Foong
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Chee Wun How
- Centre for Pre-University Studies, Faculty of Pharmacy, MAHSA University, Jenjarom, Kuala Langat, Selangor, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Science, Taylor’s University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Choi MJ, Yee J. Erythropoiesis-Stimulating Agents and Cancer: Myth or Truth. Adv Chronic Kidney Dis 2019; 26:221-224. [PMID: 31477251 DOI: 10.1053/j.ackd.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/11/2022]
|
10
|
Erythropoietin promoted the proliferation of hepatocellular carcinoma through hypoxia induced translocation of its specific receptor. Cancer Cell Int 2017; 17:119. [PMID: 29238266 PMCID: PMC5725980 DOI: 10.1186/s12935-017-0494-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022] Open
Abstract
Background Erythropoietin (EPO) is a hypoxia-inducible stimulator of erythropoiesis. Besides its traditional application in anemia therapy, it offers an effective treatment in the cancer patients, especially those who receive chemotherapy. Several reports indicated that it could promote the tumor cell proliferation through its specific receptor (EPOR). Unfortunately, the role of EPO/EPOR in hepatocellular carcinoma (HCC) progressing is still uncertain. Methods Protein in tumor tissue from HCC patients or H22 tumor-bearing mice was detected with immunohistochemistry. Cells were cultured under 1% oxygen to establish hypoxia. RT-PCR and western blotting were used to measure mRNA and protein of EPO/EPOR, respectively. MTT, flow cytometry and PCNA staining were used to detect cell proliferation. Immunofluorescence staining was applied to study the expression and location of cellular EPOR. The EPOR binding studies were performed with 125I-EPO radiolabeling assay. Results EPO and EPOR protein were up-regulated in HCC tissue of patients and H22-bearing mice. These were positively correlated with hypoxia-inducible factor -1 α and ki-67. Hypoxia up-regulated the expression of EPO and EPOR in HepG2 cells. It also induced the proliferation and increased the percentage of divided cells after 24, 48 and 72 h treatment. These were inhibited in cells pre-treated with 0.5 μg/mL soluble-EPOR. Immunofluorescence staining presented that EPOR was obviously translocated from nucleus to cytoplasm and membrane under hypoxia. EPOR binding activity was also increased after exposure to hypoxia. Recombinant human erythropoietin obviously elevated cell proliferation rate and the percentage of divided under hypoxia but not normoxia, which were also inhibited by soluble-EPOR. Conclusions Our result indicated for the first time that EPO promoted the proliferation of HCC cells through hypoxia induced translocation of it specific receptor. Trial registration TJC20141113, retrospectively registered
Collapse
|
11
|
Miao S, Wang SM, Cheng X, Li YF, Zhang QS, Li G, He SQ, Chen XP, Wu P. Erythropoietin promoted the proliferation of hepatocellular carcinoma through hypoxia induced translocation of its specific receptor. Cancer Cell Int 2017. [PMID: 29238266 DOI: 10.1186/s12935-017-04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Erythropoietin (EPO) is a hypoxia-inducible stimulator of erythropoiesis. Besides its traditional application in anemia therapy, it offers an effective treatment in the cancer patients, especially those who receive chemotherapy. Several reports indicated that it could promote the tumor cell proliferation through its specific receptor (EPOR). Unfortunately, the role of EPO/EPOR in hepatocellular carcinoma (HCC) progressing is still uncertain. METHODS Protein in tumor tissue from HCC patients or H22 tumor-bearing mice was detected with immunohistochemistry. Cells were cultured under 1% oxygen to establish hypoxia. RT-PCR and western blotting were used to measure mRNA and protein of EPO/EPOR, respectively. MTT, flow cytometry and PCNA staining were used to detect cell proliferation. Immunofluorescence staining was applied to study the expression and location of cellular EPOR. The EPOR binding studies were performed with 125I-EPO radiolabeling assay. RESULTS EPO and EPOR protein were up-regulated in HCC tissue of patients and H22-bearing mice. These were positively correlated with hypoxia-inducible factor -1 α and ki-67. Hypoxia up-regulated the expression of EPO and EPOR in HepG2 cells. It also induced the proliferation and increased the percentage of divided cells after 24, 48 and 72 h treatment. These were inhibited in cells pre-treated with 0.5 μg/mL soluble-EPOR. Immunofluorescence staining presented that EPOR was obviously translocated from nucleus to cytoplasm and membrane under hypoxia. EPOR binding activity was also increased after exposure to hypoxia. Recombinant human erythropoietin obviously elevated cell proliferation rate and the percentage of divided under hypoxia but not normoxia, which were also inhibited by soluble-EPOR. CONCLUSIONS Our result indicated for the first time that EPO promoted the proliferation of HCC cells through hypoxia induced translocation of it specific receptor. Trial registration TJC20141113, retrospectively registered.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Su-Mei Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xue Cheng
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yao-Feng Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qing-Song Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolgy, Wuhan, 430030 China
| | - Gang Li
- Department of Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Song-Qing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolgy, Wuhan, 430030 China
| | - Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
12
|
Deepak V, Ram Kumar Pandian S, Sivasubramaniam SD, Nellaiah H, Sundar K. Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology. Prep Biochem Biotechnol 2016; 46:288-97. [PMID: 25831127 DOI: 10.1080/10826068.2015.1031386] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the Western world. Recently, much attention has been focused on decreasing the risk of CRC by consuming probiotics. In the present study, exopolysaccharide (EPS) extracted from Lactobacillus acidophilus was found to inhibit the growth of CaCo2 colon cancer cell line in a dose-dependent manner. The experiment was performed in both normoxic and hypoxic conditions, and EPS was found to reduce the survival of CaCo2 cell line in both the conditions. Quantitative polymerase chain reaction (qPCR) studies demonstrated that EPS treatment upregulated the expression of peroxisome proliferator activator receptor-γ (PPAR-γ) in both normoxia and hypoxia conditions, whereas it upregulated the expression of erythropoietin (EPO) in the normoxic condition, but there was no significant expression under hypoxic conditions. Hence, the EPS production was optimized by Plackett-Burman design followed by central composite rotatory design. The optimized production of EPS at 24 hr was found to be 400 mg/L. During batch cultivation the production peaked at 21 hr, resulting in an EPS concentration of 597 mg/L.
Collapse
Affiliation(s)
- Venkataraman Deepak
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamilnadu , India.,b School of Science and Technology , Nottingham Trent University , Nottingham , United Kingdom
| | | | - Shiva D Sivasubramaniam
- b School of Science and Technology , Nottingham Trent University , Nottingham , United Kingdom
| | - Hariharan Nellaiah
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamilnadu , India
| | - Krishnan Sundar
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamilnadu , India
| |
Collapse
|
13
|
Fecková B, Kimáková P, Ilkovičová L, Szentpéteriová E, Debeljak N, Solárová Z, Sačková V, Šemeláková M, Bhide M, Solár P. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody. Oncol Lett 2016; 12:1575-1580. [PMID: 27446474 DOI: 10.3892/ol.2016.4782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/24/2016] [Indexed: 12/13/2022] Open
Abstract
The erythropoietin receptor (EpoR) is a member of the cytokine receptor family. The interaction between erythropoietin (Epo) and EpoR is important for the production and maturation of erythroid cells, resulting in the stimulation of hematopoiesis. The fact that EpoR was also detected in neoplastic cells has opened the question about the relevance of anemia treatment with recombinant Epo in cancer patients. Numerous studies have reported pro-stimulating and anti-apoptotic effects of Epo in cancer cells, thus demonstrating EpoR functionality in these cells. By contrast, a previous study claims the absence of EpoR in tumor cells. This apparent discrepancy is based, according to certain authors, on the use of non-specific anti-EpoR antibodies. With the aim of bypassing the direct detection of EpoR with an anti-EpoR antibody, the present authors propose a far-western blot methodology, which in addition, confirms the interaction of Epo with EpoR. Applying this technique, the presence of EpoR and its interaction with Epo in human ovarian adenocarcinoma A2780 and normal human umbilical vein endothelial cells was confirmed. Furthermore, modified immunoprecipitation of EpoR followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis confirmed a 57 kDa protein as a human Epo-interacting protein in both cell lines.
Collapse
Affiliation(s)
- Barbora Fecková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Patrícia Kimáková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Lenka Ilkovičová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Erika Szentpéteriová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Nataša Debeljak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zuzana Solárová
- Institute of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, SK-04001 Košice, Slovak Republic
| | - Veronika Sačková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Martina Šemeláková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine, SK-04181 Košice, Slovak Republic
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| |
Collapse
|
14
|
Tögel FE, Ahlstrom JD, Yang Y, Hu Z, Zhang P, Westenfelder C. Carbamylated Erythropoietin Outperforms Erythropoietin in the Treatment of AKI-on-CKD and Other AKI Models. J Am Soc Nephrol 2016; 27:3394-3404. [PMID: 26984884 DOI: 10.1681/asn.2015091059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/05/2016] [Indexed: 12/31/2022] Open
Abstract
Erythropoietin (EPO) may be a beneficial tissue-protective cytokine. However, high doses of EPO are associate with adverse effects, including thrombosis, tumor growth, and hypertension. Carbamylated erythropoietin (CEPO) lacks both erythropoietic and vasoconstrictive actions. In this study, we compared the renoprotective, hemodynamic, and hematologic activities and survival effects of identical EPO and CEPO doses in rat models of clinically relevant AKI presentations, including ischemia-reperfusion-induced AKI superimposed on CKD (5000 U/kg EPO or CEPO; three subcutaneous injections) and ischemia-reperfusion-induced AKI in old versus young animals and male versus female animals (1000 U/kg EPO or CEPO; three subcutaneous injections). Compared with EPO therapy, CEPO therapy induced greater improvements in renal function and body weight in AKI on CKD animals, with smaller increases in hematocrit levels and similarly improved survival. Compared with EPO therapy in the other AKI groups, CEPO therapy induced greater improvements in protection and recovery of renal function and survival, with smaller increases in systolic BP and hematocrit levels. Overall, old or male animals had more severe loss in kidney function and higher mortality rates than young or female animals, respectively. Notably, mRNA and protein expression analyses confirmed the renal expression of the heterodimeric EPO receptor/CD131 complex, which is required for the tissue-protective effects of CEPO signaling. In conclusion, CEPO improves renal function, body and kidney weight, and survival in AKI models without raising hematocrit levels and BP as substantially as EPO. Thus, CEPO therapy may be superior to EPO in improving outcomes in common forms of clinical AKI.
Collapse
Affiliation(s)
- Florian E Tögel
- Department of Medicine, Massachusetts General Hospital Medicine Group, Boston, Massachusetts
| | - Jon D Ahlstrom
- Department of Medicine, Division of Nephrology and.,Department of Medicine, Section of Nephrology, Veterans Affairs Medical Center Salt Lake City, Salt Lake City, Utah
| | - Ying Yang
- Department of Medicine, Division of Nephrology and
| | - Zhuma Hu
- Department of Medicine, Division of Nephrology and
| | - Ping Zhang
- Department of Medicine, Division of Nephrology and
| | - Christof Westenfelder
- Department of Medicine, Division of Nephrology and .,Department of Medicine, Section of Nephrology, Veterans Affairs Medical Center Salt Lake City, Salt Lake City, Utah.,Department of Physiology, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
15
|
Elliott S. Bad Science: Cause and Consequence. J Pharm Sci 2016; 105:1358-61. [PMID: 26886309 DOI: 10.1016/j.xphs.2016.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Scientific progress is dependent on accumulation of quality data with appropriate data analysis. Unfortunately, there are a troubling number of accounts describing an inability to replicate published work. Some explanations are lack of access to proprietary reagents and equipment, or lack of expertise and know how. However, it is clear that there are many publications that are fatally flawed, and it is difficult to ascertain which ones they are, but there are clues. Many articles are improperly controlled, resulting in false-positive or -negative results. Reagents and procedures are used without verifying their specificity. There is also confirmation bias, a tendency to seek and find conclusions that we like, which is exacerbated by faithful acceptance by readers of the publication record without assessment of merit. These and other issues have slowed progress, resulted in waste of scarce funds, and even put patients at risk when clinical decisions are made according to flawed data. Solving these and related problems requires recognition of the problem and better training. We also need to take personal responsibility for not only our own work, but also for the accuracy of information in the scientific domain.
Collapse
|
16
|
Meyer FRL, Steinborn R, Grausgruber H, Wolfesberger B, Walter I. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma. Vet J 2015; 206:67-74. [PMID: 26189892 PMCID: PMC4582422 DOI: 10.1016/j.tvjl.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
The discovery of expression of the erythropoietin receptor (EPO-R) on neoplastic cells has led to concerns about the safety of treating anaemic cancer patients with EPO. In addition to its endocrine function, the receptor may play a role in tumour progression through an autocrine mechanism. In this study, the expression of EPO, EPO-R and platelet-derived growth factor BB (PDGF-BB) was analysed in five feline and 13 canine osteosarcomas using immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR). EPO expression was positive in all tumours by IHC, but EPO mRNA was only detected in 38% of the canine and 40% of the feline samples. EPO-R was expressed in all samples by quantitative RT-PCR (RT-qPCR) and IHC. EPO-R mRNA was expressed at higher levels in all feline tumours, tumour cell lines, and kidney when compared to canine tissues. PDGF-BB expression was variable by IHC, but mRNA was detected in all samples. To assess the functionality of the EPO-R on tumour cells, the proliferation of canine and feline osteosarcoma cell lines was evaluated after EPO administration using an alamarBlue assay and Ki67 immunostaining. All primary cell lines responded to EPO treatment in at least one of the performed assays, but the effect on proliferation was very low indicating only a weak responsiveness of EPO-R. In conclusion, since EPO and its receptor are expressed by canine and feline osteosarcomas, an autocrine or paracrine tumour progression mechanism cannot be excluded, although in vitro data suggest a minimal role of EPO-R in osteosarcoma cell proliferation.
Collapse
Affiliation(s)
- F R L Meyer
- Institute of Anatomy, Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - R Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - H Grausgruber
- Division of Plant Breeding, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Strasse 24, 3430 Vienna, Austria
| | - B Wolfesberger
- Department for Companion Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - I Walter
- Institute of Anatomy, Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
17
|
Doleschel D, Rix A, Arns S, Palmowski K, Gremse F, Merkle R, Salopiata F, Klingmüller U, Jarsch M, Kiessling F, Lederle W. Erythropoietin improves the accumulation and therapeutic effects of carboplatin by enhancing tumor vascularization and perfusion. Am J Cancer Res 2015; 5:905-18. [PMID: 26000061 PMCID: PMC4440446 DOI: 10.7150/thno.11304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/27/2015] [Indexed: 11/05/2022] Open
Abstract
Recombinant human erythropoietin (rhuEpo) is currently under debate for the treatment of chemotherapy-induced anemia due to clinical trials showing adverse effects in Epo-treated patients and the discovery of the erythropoietin-receptor (EpoR) in tumor and endothelial cells. Here, using Epo-Cy5.5 as theranostic near-infrared fluorescent probe we analyzed the effects of rhuEpo as co-medication to carboplatin in non-small-cell-lung-cancer (NSCLC)-xenografts with different tumor cell EpoR-expression (H838 ~8-fold higher than A549). Nude mice bearing subcutaneous A549 and H838 NSCLC-xenografts received either only carboplatin or carboplatin and co-medication of rhuEpo in two different doses. Tumor sizes and relative blood volumes (rBV) were longitudinally measured by 3D-contrast-enhanced ultrasound (3D-US). Tumoral EpoR-levels were determined by combined fluorescence molecular tomography (FMT)/ micro computed tomography (µCT) hybrid imaging. We found that rhuEpo predominantly acted on the tumor endothelium. In both xenografts, rhuEpo co-medication significantly increased vessel densities, diameters and the amount of perfused vessels. Accordingly, rhuEpo induced EpoR-phoshorylation and stimulated proliferation of endothelial cells. However, compared with solely carboplatin-treated tumors, tumor growth was significantly slower in the groups co-medicated with rhuEpo. This is explained by the Epo-mediated vascular remodeling leading to improved drug delivery as obvious by a more than 2-fold higher carboplatin accumulation and significantly enhanced tumor apoptosis. In addition, co-medication of rhuEpo reduced tumor hypoxia and diminished intratumoral EpoR-levels which continuously increased during carboplatin (Cp) -treatment. These findings suggest that co-medication of rhuEpo in well balanced doses can be used to improve the accumulation of anticancer drugs. Doses and indications may be personalized and refined using theranostic EpoR-probes.
Collapse
|
18
|
Jin W, Lin Z, Zhang X, Kong L, Yang L. Effects and mechanism of recombinant human erythropoietin on the growth of human breast cancer MDA-MB-231 cells in nude mice. Pathol Res Pract 2015; 211:570-6. [PMID: 26008780 DOI: 10.1016/j.prp.2015.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
This study aimed to explore the effects of recombinant human erythropoietin (rhEPO) on the growth of human breast cancer MDA-MB-231 cells in nude mice, and investigate its functions in regulating tumor growth, angiogenesis and apoptosis. A tumor-bearing nude mice model was established by subcutaneous injection of human breast cancer MDA-MB-231 cells. Two weeks later, the mice were randomly divided into four groups (n=6 for each group): negative control group, rhEPO group, EPO antibody group and EPO+EPO antibody group. Drugs were administered to the corresponding mice once every 3 days for five times. The size and weight of tumors were measured after the mice were sacrificed by cervical dislocation. The expression levels of EPO/EPOR, TNF-α, IL-10, and Bcl-2 in the tumor tissues were determined using RT-PCR and Western blot. The microvessel density (MVD) and expression of VEGF in the tumors were detected using immunohistochemistry. TUNEL assay was used to determine apoptosis in tumors. Results show that rhEPO significantly promoted the growth of MDA-MB-231 cells in nude mice (P<0.05). Compared with the negative control group, the expression levels of EPO, EPOR, TNF-α, IL-10, and VEGF, as well as the MVD values, were significantly elevated in the rhEPO group. However, the apoptotic index was significantly reduced (P<0.05). The ability of rhEPO to promote tumor growth may be associated with its functions in promoting microvessel formation and inhibiting tumor cell apoptosis.
Collapse
Affiliation(s)
- Wen Jin
- Department of Pathology, Fujian Medical University, Fuzhou 350004, China.
| | - Zhiwu Lin
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xiaorong Zhang
- Department of Pathology, The Affiliated Hospital of Jiujiang College, Jiangxi 332000, China
| | - Lingying Kong
- Department of Pathology, The People's Hospital of Fujian Province, Fuzhou 350001, China
| | - Li Yang
- Department of Pathology, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
19
|
Patterson SD, Rossi JM, Paweletz KL, Fitzpatrick VD, Begley CG, Busse L, Elliott S, McCaffery I. Functional EpoR pathway utilization is not detected in primary tumor cells isolated from human breast, non-small cell lung, colorectal, and ovarian tumor tissues. PLoS One 2015; 10:e0122149. [PMID: 25807104 PMCID: PMC4373902 DOI: 10.1371/journal.pone.0122149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/19/2015] [Indexed: 01/22/2023] Open
Abstract
Several clinical trials in oncology have reported increased mortality or disease progression associated with erythropoiesis-stimulating agents. One hypothesis proposes that erythropoiesis-stimulating agents directly stimulate tumor proliferation and/or survival through cell-surface receptors. To test this hypothesis and examine if human tumors utilize the erythropoietin receptor pathway, the response of tumor cells to human recombinant erythropoietin was investigated in disaggregated tumor cells obtained from 186 patients with colorectal, breast, lung, ovarian, head and neck, and other tumors. A cocktail of well characterized tumor growth factors (EGF, HGF, and IGF-1) were analyzed in parallel as a positive control to determine whether freshly-isolated tumor cells were able to respond to growth factor activation ex vivo. Exposing tumor cells to the growth factor cocktail resulted in stimulation of survival and proliferation pathways as measured by an increase in phosphorylation of the downstream signaling proteins AKT and ERK. In contrast, no activation by human recombinant erythropoietin was observed in isolated tumor cells. Though tumor samples exhibited a broad range of cell-surface expression of EGFR, c-Met, and IGF-1R, no cell-surface erythropoietin receptor was detected in tumor cells from the 186 tumors examined (by flow cytometry or Western blot). Erythropoiesis-stimulating agents did not act directly upon isolated tumor cells to stimulate pathways known to promote proliferation or survival of human tumor cells isolated from primary and metastatic tumor tissues.
Collapse
Affiliation(s)
- Scott D Patterson
- Department of Medical Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - John M Rossi
- Department of Molecular Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Katherine L Paweletz
- Department of Molecular Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - V Dan Fitzpatrick
- Department of Molecular Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - C Glenn Begley
- Department of Oncology Research, Amgen Inc., Thousand Oaks, California, United States of America
| | - Leigh Busse
- Department of Molecular Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Steve Elliott
- Department of Oncology Research, Amgen Inc., Thousand Oaks, California, United States of America
| | - Ian McCaffery
- Department of Molecular Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| |
Collapse
|
20
|
Rölfing JHD, Baatrup A, Stiehler M, Jensen J, Lysdahl H, Bünger C. The osteogenic effect of erythropoietin on human mesenchymal stromal cells is dose-dependent and involves non-hematopoietic receptors and multiple intracellular signaling pathways. Stem Cell Rev Rep 2015; 10:69-78. [PMID: 24052411 DOI: 10.1007/s12015-013-9476-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Erythropoietin (EPO) is a pleiotropic growth factor. Of interest for skeletal tissue engineering, the non-hematopoietic capabilities of EPO include its osteogenic and angiogenic potencies. The main aim of this study was to investigate the dose-response relationship and determine the lowest effective dose of EPO that reliably increases the osteogenic differentiation of human mesenchymal stromal cells (hMSCs). Additional aims were to elucidate the surface receptors and to investigate the role of the intracellular signaling pathways by blocking the mammalian target of rapamycin (mTOR), Jak-2 protein tyrosine kinase (JAK2), and phosphoinositide 3-kinases (PI3K). The primary outcome measures were two mineralization assays, Arsenazo III and alizarin red, applied after 10, 14, and 21 days. Moreover, alkaline phosphatase activity, cell number, and cell viability were determined after 2 and 7 days. A proportional dose-response relationship was observed. In vivo, the lowest effective dose of 20 IU/ml should be used for further research to accommodate safety concerns about adverse effects. Ex vivo, the most effective dose of 100 IU/ml could facilitate vascularization and bone ingrowth in cell-based scaffolds. The expression of non-hematopoietic receptors EPOR and CD131 was documented, and EPO triggered all three examined intracellular pathways. Future studies of the efficacy of EPO in cell-based tissue engineering can benefit from our findings.
Collapse
Affiliation(s)
- Jan Hendrik Duedal Rölfing
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark, Noerrebrogade 44, Building 1A, 1.tv, 8000, Aarhus, Denmark,
| | | | | | | | | | | |
Collapse
|
21
|
Progress in detecting cell-surface protein receptors: the erythropoietin receptor example. Ann Hematol 2013; 93:181-92. [PMID: 24337485 PMCID: PMC3890056 DOI: 10.1007/s00277-013-1947-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/02/2013] [Indexed: 12/18/2022]
Abstract
Testing for the presence of specific cell-surface receptors (such as EGFR or HER2) on tumor cells is an integral part of cancer care in terms of treatment decisions and prognosis. Understanding the strengths and limitations of these tests is important because inaccurate results may occur if procedures designed to prevent false-negative or false-positive outcomes are not employed. This review discusses tests commonly used to identify and characterize cell-surface receptors, such as the erythropoietin receptor (EpoR). First, a summary is provided on the biology of the Epo/EpoR system, describing how EpoR is expressed on erythrocytic progenitors and precursors in the bone marrow where it mediates red blood cell production in response to Epo. Second, studies are described that investigated whether erythropoiesis-stimulating agents could stimulate tumor progression in cancer patients and whether EpoR is expressed and functional on tumor cells or on endothelial cells. The methods used in these studies included immunohistochemistry, Northern blotting, Western blotting, and binding assays. This review summarizes the strengths and limitations of these methods. Critically analyzing data from tests for cell-surface receptors such as EpoR requires understanding the techniques utilized and demonstrating that results are consistent with current knowledge about receptor biology.
Collapse
|
22
|
Jelkmann W, Elliott S. Erythropoietin and the vascular wall: the controversy continues. Nutr Metab Cardiovasc Dis 2013; 23 Suppl 1:S37-S43. [PMID: 22682530 DOI: 10.1016/j.numecd.2012.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Erythropoietin (EPO) stimulates erythropoiesis through its specific receptor (EPO-R). Preclinical work has assigned a role for the EPO/EPO-R system in the heart and blood vessels. The potential use of erythropoiesis-stimulating agents (ESAs) for nonhematopoietic indications is a focus of current research. This article considers proven actions of EPO in the cardiovascular system, with emphasis on the human responses. DATA SYNTHESIS By use of specific anti-EPO-R antibody no EPO-R protein was detected by Western blotting in normal non-erythroid tissues. Clinical trials failed to demonstrate clear beneficial effects of high-dosed ESAs in patients with coronary syndrome or myocardial infarct. While ESA therapy may lead to an elevation in arterial blood pressure in previously anemic patients, several studies have reported no effects on vessels/blood pressure with ESAs. EPO has been reported to stimulate angiogenesis. EPO-R mRNA is detectable in human vascular endothelium. However, in most vitro studies very high concentrations of EPO were applied and well-designed studies have failed to show direct effects of ESAs on endothelial cells. Whether EPO promotes the mobilization of myeloid progenitor cells into the blood stream still needs to be studied in more detail, as this effect may prove useful for augmenting the neovascularization of ischemic tissues. With respect to the administration of ESAs to tumor patients, a deeper insight into the role of EPO for tumor angiogenesis is desirable. CONCLUSIONS The enthusiastic reports of the nonhematopoietic cytoprotective potential of EPO and its derivatives in the cardiovascular system have not yet been confirmed in placebo-controlled clinical trials.
Collapse
Affiliation(s)
- W Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23562 Luebeck, Germany.
| | - S Elliott
- Department of Hematology, Hematology/Oncology, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
23
|
Jelkmann I, Jelkmann W. Impact of erythropoietin on intensive care unit patients. ACTA ACUST UNITED AC 2013; 40:310-8. [PMID: 24273484 DOI: 10.1159/000354128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Anemia is common in intensive care unit (ICU) patients. Red blood cell (RBC) transfusions are mainstays of their treatment and can be life-saving. Allogeneic blood components inherently bear risks of infection and immune reactions. Although these risks are rare in developed countries, recombinant human erythropoietin (rhEpo) and other erythropoiesis-stimulating agents (ESAs) have been considered alternative anti-anemia treatment options. As summarized herein, however, most of the clinical studies suggest that ESAs are not usually advisable in ICU patients unless approved indications exist (e.g., renal disease). First, ESAs act in a delayed way, inducing an increase in reticulocytes only after a lag of 3-4 days. Second, many critically ill patients present with ESA resistance as inflammatory mediators impair erythropoietic cell proliferation and iron availability. Third, the ESA doses used for treatment of ICU patients are very high. Fourth, ESAs are not legally approved for general use in ICU patients. Solely in distinct cases, such as Jehovah's Witnesses who refuse allogeneic blood transfusions due to religious beliefs, ESAs may be considered an exceptional therapy.
Collapse
Affiliation(s)
- Ines Jelkmann
- Department of Surgery, University of Lübeck, Germany
| | | |
Collapse
|
24
|
Jelkmann W. Physiology and pharmacology of erythropoietin. ACTA ACUST UNITED AC 2013; 40:302-9. [PMID: 24273483 DOI: 10.1159/000356193] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 12/13/2022]
Abstract
Human erythropoietin (Epo) is a 30.4 kDa glycoprotein hormone composed of a single 165 amino acid residues chain to which four glycans are attached. The kidneys are the primary sources of Epo, its synthesis is controlled by hypoxia-inducible transcription factors (HIFs). Epo is an essential factor for the viability and proliferation of erythrocytic progenitors. Whether Epo exerts cytoprotection outside the bone marrow still needs to be clarified. Epo deficiency is the primary cause of the anemia in chronic kidney disease (CKD). Treatment with recombinant human Epo (rhEpo, epoetin) can be beneficial not only in CKD but also for other indications, primarily anemia in cancer patients receiving chemotherapy. Considering unwanted events, the administration of rhEpo or its analogs may increase the incidence of thromboembolism. The expiry of the patents for the original epoetins has initiated the production of similar biological medicinal products ('biosimilars'). Furthermore, analogs (darbepoetin alfa, methoxy PEG-epoetin beta) with prolonged survival in circulation have been developed ('biobetter'). New erythropoiesis-stimulating agents are in clinical trials. These include compounds that augment erythropoiesis directly (e.g. Epo mimetic peptides or activin A binding protein) and chemicals that act indirectly by stimulating endogenous Epo synthesis (HIF stabilizers).
Collapse
|
25
|
Elliott S, Swift S, Busse L, Scully S, Van G, Rossi J, Johnson C. Epo receptors are not detectable in primary human tumor tissue samples. PLoS One 2013; 8:e68083. [PMID: 23861852 PMCID: PMC3701640 DOI: 10.1371/journal.pone.0068083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/24/2013] [Indexed: 01/03/2023] Open
Abstract
Erythropoietin (Epo) is a cytokine that binds and activates an Epo receptor (EpoR) expressed on the surface of erythroid progenitor cells to promote erythropoiesis. While early studies suggested EpoR transcripts were expressed exclusively in the erythroid compartment, low-level EpoR transcripts were detected in nonhematopoietic tissues and tumor cell lines using sensitive RT-PCR methods. However due to the widespread use of nonspecific anti-EpoR antibodies there are conflicting data on EpoR protein expression. In tumor cell lines and normal human tissues examined with a specific and sensitive monoclonal antibody to human EpoR (A82), little/no EpoR protein was detected and it was not functional. In contrast, EpoR protein was reportedly detectable in a breast tumor cell line (MCF-7) and breast cancer tissues with an anti-EpoR polyclonal antibody (M-20), and functional responses to rHuEpo were reported with MCF-7 cells. In another study, a functional response was reported with the lung tumor cell line (NCI-H838) at physiological levels of rHuEpo. However, the specificity of M-20 is in question and the absence of appropriate negative controls raise questions about possible false-positive effects. Here we show that with A82, no EpoR protein was detectable in normal human and matching cancer tissues from breast, lung, colon, ovary and skin with little/no EpoR in MCF-7 and most other breast and lung tumor cell lines. We show further that M-20 provides false positive staining with tissues and it binds to a non-EpoR protein that migrates at the same size as EpoR with MCF-7 lysates. EpoR protein was detectable with NCI-H838 cells, but no rHuEpo-induced phosphorylation of AKT, STAT3, pS6RP or STAT5 was observed suggesting the EpoR was not functional. Taken together these results raise questions about the hypothesis that most tumors express high levels of functional EpoR protein.
Collapse
Affiliation(s)
- Steve Elliott
- Amgen Inc, Thousand Oaks, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
26
|
Nozaki R, Murata S, Nowatari T, Maruyama T, Ikeda N, Kawasaki T, Fukunaga K, Ohkohchi N. Effects of thrombopoietin on growth of hepatocellular carcinoma: Is thrombopoietin therapy for liver disease safe or not? Hepatol Res 2013; 43:610-20. [PMID: 23157389 DOI: 10.1111/hepr.12006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/19/2012] [Accepted: 10/15/2012] [Indexed: 12/13/2022]
Abstract
AIM Liver cirrhosis (LC) is the end stage of chronic liver disease. No definitive pharmacological treatment is currently available. We previously reported that thrombopoietin (TPO) promoted liver regeneration and improved liver cirrhosis by increasing platelet count. TPO is therefore considered to be a therapeutic agent for LC; however, it is unclear whether TPO has proliferative effects on hepatocellular carcinoma (HCC), which arises frequently in cirrhotic livers. In this study, we examined the effects of TPO on growth of HCC. METHODS Expression of the TPO receptor, myeloproliferative leukemia virus oncogene (MPL) was examined in various liver tumor cell lines and liver cell types. In an in vitro study, the effects of TPO on signal transduction, cell proliferation, migration and invasion were examined in Huh7 cells, in which MPL is highly expressed. In an in vivo study, we subcutaneously transplanted Huh7 cells into nude mice that were divided into a TPO-treated group and a control group, and the tumor volume of each group was measured. RESULTS MPL was expressed strongly in hepatocytes but not in other cell types. Among liver tumor cell lines, Huh7 showed the highest expression of MPL. In Huh7, the addition of TPO activated Akt phosphorylation but not cell proliferation, migration or invasion. In the mouse experiment, there was no significant difference in tumor volume between the two groups. CONCLUSION TPO had no proliferative effect on HCC in vitro or in vivo, and could therefore be useful in the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Reiji Nozaki
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
The erythropoietin receptor is a downstream effector of Klotho-induced cytoprotection. Kidney Int 2013; 84:468-81. [PMID: 23636173 PMCID: PMC3758776 DOI: 10.1038/ki.2013.149] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 12/22/2022]
Abstract
Although the role of the erythropoietin (EPO) receptor (EpoR) in erythropoiesis has been known for decades, its role in nonhematopoietic tissues is still not well defined. Klotho has been shown and EPo has been suggested to protect against acute ischemia-reperfusion injury in the kidney. Here we found in rat kidney and in a rat renal tubular epithelial cell line (NRK cells) EpoR transcript and antigen, and EpoR activity signified as EPo-induced phosphorylation of Jak2, ErK, Akt, and Stat5 indicating the presence of functional EpoR. Transgenic overexpression of Klotho or addition of exogenous recombinant Klotho increased kidney EpoR protein and transcript. In NRK cells, Klotho increased EpoR protein, enhanced EPo-triggered phosphorylation of Jak2 and Stat5, the nuclear translocation of phospho-Stat5, and protected NRK cells from hydrogen peroxide cytotoxicity. Knockdown of endogenous EpoR rendered NRK cells more vulnerable, and overexpression of EpoR more resistant to peroxide-induced cytotoxicity, indicating that EpoR mitigates oxidative damage. Knockdown of EpoR by siRNA abolished Epo-induced Jak2, and Stat5 phosphorylation, and blunted the protective effect of Klotho against peroxide-induced cytotoxicity. Thus in the kidney, EpoR and its activity are downstream effectors of Klotho enabling it to function as a cytoprotective protein against oxidative injury.
Collapse
|
28
|
Fujisue Y, Nakagawa T, Takahara K, Inamoto T, Kiyama S, Azuma H, Asahi M. Induction of erythropoietin increases the cell proliferation rate in a hypoxia-inducible factor-1-dependent and -independent manner in renal cell carcinoma cell lines. Oncol Lett 2013; 5:1765-1770. [PMID: 23833638 PMCID: PMC3701060 DOI: 10.3892/ol.2013.1283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/25/2013] [Indexed: 11/09/2022] Open
Abstract
Erythropoietin (Epo) is a potent inducer of erythropoiesis that is mainly produced in the kidney. Epo is expressed not only in the normal kidney, but also in renal cell carcinomas (RCCs). The aim of the present study was to gain insights into the roles of Epo and its receptor (EpoR) in RCC cells. The study used two RCC cell lines, Caki-1 and SKRC44, in which Epo and EpoR are known to be highly expressed. The proliferation rate and expression level of hypoxia-inducible factor-1α (HIF-1α) were measured prior to and following Epo treatment and under normoxic and hypoxic conditions. To examine whether HIF-1α or Epo were involved in cellular proliferation during hypoxia, these proteins were knocked down using small interfering RNA (siRNA) in Caki-1 and SKRC44 cells. The results demonstrated that Epo enhanced the proliferation of the Caki-1 and SKRC44 cells. HIF-1α expression was increased upon the induction of hypoxia in the Caki-1 cells, but remained unaffected in the SKRC44 cells. The proliferation rate was increased under hypoxic conditions in the Caki-1 cells, but was decreased in the SKRC44 cells. Under hypoxic conditions, the proliferation of the Caki-1 cells was significantly reduced by the knock-down of HIF-1α or Epo, while the proliferation of the SKRC44 cells was significantly suppressed by the knock-down of Epo, but not HIF-1α. In conclusion, these data suggest that the induction of Epo may accelerate the proliferation of the RCC cell lines in either a HIF-1α-dependent or -independent manner.
Collapse
Affiliation(s)
- Yutaka Fujisue
- Departments of Urology, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang C, Duan X, Xu L, Ye J, Zhao J, Liu Y. Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in HER2-positive breast cancer cells. Breast Cancer Res Treat 2012; 136:739-48. [PMID: 23117856 DOI: 10.1007/s10549-012-2316-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/25/2012] [Indexed: 11/24/2022]
Abstract
Resistance to trastuzumab is a major issue in the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Several potential resistance mechanisms have been investigated, but the results are controversial and no conclusion has been reached. Erythropoietin receptor (EPOR) may function in cell growth, and expressed in various cancer cells. Because the downstream signaling pathways for EPOR and HER2 partially overlapped, we hypothesized that EPOR may play a role in the inhibition effect of trastuzumab and resistance to trastuzumab. Here, we detected the expression of EPOR mRNA and protein in HER2-positive breast cancer cell lines and tissues. EPOR expressed in SKBR3, MDA-MB-453, and UACC-812 cell lines, but not in BT474. Of the 55 HER2-positive cancer tissues, EPOR was positive in 42 samples and highly expressed (H-score ≥ 25) in 24 by immunohistochemistry. The difference between EPOR expression and Ki67 index was significant (P = 0.033), and EPOR expression also positively correlated with higher pathological stage (Spearman correlation coefficient = 0.359; P = 0.007). Exogenous EPO antagonized trastuzumab-induced inhibition of cell proliferation in HER2/EPOR dual-positive breast cancer cells. We then exposed SKBR3 cells to trastuzumab for 4 months to obtain trastuzumab-resistant SKBR3 cell line, which demonstrated higher phosphorylated EPOR level, higher EPO expression and more extracellular secretion than non-resistant parental SKBR3 cells. Downregulation EPOR expression using short hairpin RNA resensitized trastuzumab-resistant cells to this drug, and SKBR3 cells with EPOR downregulation demonstrated attenuated trastuzumab resistance after the same resistance induction. EPOR downregulation plus trastuzumab produced a synergetic action in the inhibition of cell proliferation and invasion in SKBR3 and MDA-MB-453 cell lines. Therefore, EPOR expression may be involved in tumor progression and proliferation in HER2-positive breast cancer. EPO/EPOR contributes to the mechanism of trastuzumab resistance in SKBR3 cell lines, and EPOR downregulation can reverse the resistance to trastuzumab and increase the inhibition effect of this drug.
Collapse
Affiliation(s)
- Chi Zhang
- Peking University First Hospital Breast Disease Centre, Xishiku Street 8#, Xicheng District, Beijing, China
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells.
Collapse
|
31
|
Jelkmann W. Biosimilar recombinant human erythropoietins ("epoetins") and future erythropoiesis-stimulating treatments. Expert Opin Biol Ther 2012; 12:581-92. [PMID: 22471247 DOI: 10.1517/14712598.2012.672968] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Recombinant human erythropoietin (rhEPO, epoetin) has prospered in the treatment of renal and chemotherapy-associated anemias. Since the patents of the original epoetins expired, biosimilars have been launched. Because these are not fully identical to the original products, non-clinical and clinical studies are necessary to show similarity with respect to quality, safety, and efficacy. AREAS COVERED The article summarizes experiences with EU-approved biosimilar epoetins. In particular, the issue of immunogenicity is considered. Neutralizing anti-EPO antibodies can cause pure red cell aplasia (PRCA). Further, a first view is offered on future erythropoiesis-stimulating therapies. EXPERT OPINION The term "biosimilar" should only be used for follow-on biopharmaceuticals approved under a defined regulatory pathway. The primary rationale for the therapy with biosimilars is cost saving. Two biosimilar epoetins are available in the EU that are used at the same dose(s) and dosing regimen(s) for indications of the reference product. Their advent has stimulated innovator companies to develop second-generation products with improved pharmacokinetic properties. EPO-mimicking peptides are a new therapeutic option. Other strategies focus on orally active chemical drugs that induce endogenous EPO production ("HIF stabilizers"). Epo gene transfer is also possible, but needs to be further explored with respect to efficacy and safety.
Collapse
|
32
|
Aapro M, Jelkmann W, Constantinescu SN, Leyland-Jones B. Effects of erythropoietin receptors and erythropoiesis-stimulating agents on disease progression in cancer. Br J Cancer 2012; 106:1249-58. [PMID: 22395661 PMCID: PMC3314780 DOI: 10.1038/bjc.2012.42] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Erythropoiesis-stimulating agents (ESAs) increase red blood cell (RBC) production in bone marrow by activating the erythropoietin receptor (EpoR) on erythrocytic-progenitor cells. Erythropoiesis-stimulating agents are approved in the United States and Europe for treating anaemia in cancer patients receiving chemotherapy based on randomised, placebo-controlled trials showing that ESAs reduce RBC transfusions. Erythropoiesis-stimulating agent-safety issues include thromboembolic events and concerns regarding whether ESAs increase disease progression and/or mortality in cancer patients. Several trials have reported an association between ESA use and increased disease progression and/or mortality, whereas other trials in the same tumour types have not provided similar findings. This review thoroughly examines available evidence regarding whether ESAs affect disease progression. Both clinical-trial data on ESAs and disease progression, and preclinical data on how ESAs could affect tumour growth are summarised. Preclinical topics include (i) whether tumour cells express EpoR and could be directly stimulated to grow by ESA exposure and (ii) whether endothelial cells express EpoR and could be stimulated by ESA exposure to undergo angiogenesis and indirectly promote tumour growth. Although assessment and definition of disease progression vary across studies, the current clinical data suggest that ESAs may have little effect on disease progression in chemotherapy patients, and preclinical data indicate a direct or indirect effect of ESAs on tumour growth is not strongly supported.
Collapse
Affiliation(s)
- M Aapro
- Institut Multidisciplinaire d' Oncologie, Clinique de Genolier, Route du Muids 3, PO Box 100, Genolier CH-1272, Switzerland.
| | | | | | | |
Collapse
|
33
|
Erythropoietin mimetic compound AGEM400(HES) binds to the same receptor as erythropoietin but displays a different spectrum of activities. Cytokine 2012; 57:226-37. [DOI: 10.1016/j.cyto.2011.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 09/03/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022]
|
34
|
Elliott S, Busse L, Swift S, McCaffery I, Rossi J, Kassner P, Begley CG. Lack of expression and function of erythropoietin receptors in the kidney. Nephrol Dial Transplant 2011; 27:2733-45. [DOI: 10.1093/ndt/gfr698] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
|
36
|
Li R, Yuan L, Wang J, Wang J. Co-expression of erythropoietin receptor with human epidermal growth factor 2 may counteract trastuzumab inhibition in gastric cancer. Med Hypotheses 2011; 77:948-52. [PMID: 21944379 DOI: 10.1016/j.mehy.2011.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 07/07/2011] [Indexed: 02/06/2023]
Abstract
Gastric cancer has high prevalence and high modality worldwide. For many years, few improvements in the efficacy of treatments were reported for advanced gastric cancer settings. Although a novel molecular target agent trastuzumab, in combination with chemotherapy, prolongs overall survival time in advanced gastric cancer, resistance to this drug still exists among human epidermal growth factor receptor-2 (HER2) positive patients. HER2 and erythropoietin receptor (EPOR) downstream signaling pathway have some common factors like Akt, Erk and STATs. Also there exist evidences that EPOR may express on some solid tumors and probably promote tumor progression. So it is reasonable for us to hypothesis that HER2 and EPOR may be co-expressed in the same gastric cancer cell and if so, EPOR signaling pathway may overlaps that with HER2 and promotes HER2 induced signal transduction to cell proliferation. In clinical settings, a stimulation of EPOR will play antagonistic effects on trastuzumab-induced anti-tumor activity to HER2-positive gastric cancer patients. Co-expression of EPOR and HER2 is a predictive factor for resistance of trastuzumab in gastric cancer.
Collapse
Affiliation(s)
- Rui Li
- Department of Medical Oncology, Changzheng Hospital, The Second Military Medical University, No 64, Hetian Road, Shanghai 200070, China.
| | | | | | | |
Collapse
|
37
|
Hedley BD, Chu JE, Ormond DG, Beausoleil MS, Boasie A, Allan AL, Xenocostas A. Recombinant Human Erythropoietin in Combination with Chemotherapy Increases Breast Cancer Metastasis in Preclinical Mouse Models. Clin Cancer Res 2011; 17:6151-62. [DOI: 10.1158/1078-0432.ccr-10-3298] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Welsch T, Zschäbitz S, Becker V, Giese T, Bergmann F, Hinz U, Keleg S, Heller A, Sipos B, Klingmüller U, Büchler MW, Werner J, Giese NA. Prognostic significance of erythropoietin in pancreatic adenocarcinoma. PLoS One 2011; 6:e23151. [PMID: 21829709 PMCID: PMC3148251 DOI: 10.1371/journal.pone.0023151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/07/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Erythropoietin (Epo) administration has been reported to have tumor-promoting effects in anemic cancer patients. We investigated the prognostic impact of endogenous Epo in patients with pancreatic ductal adenocarcinoma (PDAC). METHODOLOGY The clinico-pathological relevance of hemoglobin (Hb, n = 150), serum Epo (sEpo, n = 87) and tissue expression of Epo/Epo receptor (EpoR, n = 104) was analyzed in patients with PDAC. Epo/EpoR expression, signaling, growth, invasion and chemoresistance were studied in Epo-exposed PDAC cell lines. RESULTS Compared to donors, median preoperative Hb levels were reduced by 15% in both chronic pancreatitis (CP, p<0.05) and PDAC (p<0.001), reaching anemic grade in one third of patients. While inversely correlating to Hb (r = -0.46), 95% of sEPO values lay within the normal range. The individual levels of compensation were adequate in CP (observed to predicted ratio, O/P = 0.99) but not in PDAC (O/P = 0.85). Strikingly, lower sEPO values yielding inadequate Epo responses were prominent in non-metastatic M0-patients, whereas these parameters were restored in metastatic M1-group (8 vs. 13 mU/mL; O/P = 0.82 vs. 0.96; p<0.01)--although Hb levels and the prevalence of anemia were comparable. Higher sEpo values (upper quartile ≥ 16 mU/ml) were not significantly different in M0 (20%) and M1 (30%) groups, but were an independent prognostic factor for shorter survival (HR 2.20, 10 vs. 17 months, p<0.05). The pattern of Epo expression in pancreas and liver suggested ectopic release of Epo by capillaries/vasa vasorum and hepatocytes, regulated by but not emanating from tumor cells. Epo could initiate PI3K/Akt signaling via EpoR in PDAC cells but failed to alter their functions, probably due to co-expression of the soluble EpoR isoform, known to antagonize Epo. CONCLUSION/SIGNIFICANCE Higher sEPO levels counteract anemia but worsen outcome in PDAC patients. Further trials are required to clarify how overcoming a sEPO threshold ≥16 mU/ml by endogenous or exogenous means may predispose to or promote metastatic progression.
Collapse
Affiliation(s)
- Thilo Welsch
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Zschäbitz
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Verena Becker
- Division Systems Biology of Signal Transduction, German Cancer Research Center and Bioquant, Heidelberg University, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulf Hinz
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Shereen Keleg
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Anette Heller
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Bence Sipos
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center and Bioquant, Heidelberg University, Heidelberg, Germany
| | - Markus W. Büchler
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia A. Giese
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Lopez TV, Lappin TR, Maxwell P, Shi Z, Lopez-Marure R, Aguilar C, Rocha-Zavaleta L. Autocrine/paracrine erythropoietin signalling promotes JAK/STAT-dependent proliferation of human cervical cancer cells. Int J Cancer 2011; 129:2566-76. [DOI: 10.1002/ijc.25935] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 11/29/2010] [Indexed: 01/23/2023]
|
40
|
Kang JK, Chang CH, Nam HJ, Kim SK, Ahn KJ, Seok H, Park SJ, Kang YJ, Jo YS, Shong M, Kim H. Downregulation of erythropoietin receptor by overexpression of phospholipase C-gamma 1 is critical for decrease on focal adhesion in transformed cells. Cell Oncol (Dordr) 2011; 34:11-21. [DOI: 10.1007/s13402-010-0001-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2010] [Indexed: 10/18/2022] Open
|
41
|
Abstract
Erythropoiesis is the process whereby erythroid progenitor cells differentiate and divide, resulting in increased numbers of red blood cells (RBCs). RBCs contain hemoglobin, the main oxygen carrying component in blood. The large number of RBCs found in blood is required to support the prodigious consumption of oxygen by tissues as they undergo oxygen-dependent processes. Erythropoietin is a hormone that when it binds and activates Epo receptors resident on the surface of cells results in stimulation of erythropoiesis. Successful cloning of the EPO gene allowed for the first time production of recombinant human erythropoietin and other erythropoiesis stimulating agents (ESAs), which are used to treat anemia in patients. In this chapter, the control of Epo levels and erythropoiesis, the various forms of ESAs used commercially, and their physical and biological properties are discussed.
Collapse
Affiliation(s)
- Steve Elliott
- Department of Hematology, Amgen, Inc., Thousand Oaks, CA 91320, USA.
| |
Collapse
|
42
|
Abaci N, Cosan F, Gulec C, Azakli H, Emrence Z, Sirma-Ekmekci S, Cakiris A, Oku B, Ustek D. Hypoxia Induces Erythropoietin Receptor Expression on K562 Cell Line. BIOTECHNOL BIOTEC EQ 2011. [DOI: 10.5504/bbeq.2011.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Glaspy JA. Randomized controlled trials of the erythroid-stimulating agents in cancer patients. Cancer Treat Res 2011; 157:195-215. [PMID: 21052958 DOI: 10.1007/978-1-4419-7073-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- John A Glaspy
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine/UCLA, University of California-Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Thrombopoietin receptor levels in tumor cell lines and primary tumors. JOURNAL OF ONCOLOGY 2010; 2010:135354. [PMID: 21318160 PMCID: PMC3026977 DOI: 10.1155/2010/135354] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022]
Abstract
Thrombopoietin (TPO) receptor agonists represent a new approach for the treatment of thrombocytopenia, which may develop as a consequence of immune thrombocytopenia, chemotherapy treatment, chronic hepatitis C infection, or myelodysplastic syndromes. There are concerns that use of certain growth factors can hasten disease progression in some types of hematologic malignancies and solid tumors. In this study, expression of MPL (TPO-R) mRNA was examined in tumor cell lines, patient tumor samples (renal cell carcinoma, prostatic carcinoma, soft tissue and bony/cartilage sarcoma, colon cancer, and lymphoma), and normal tissues using microarray analysis and qRT-PCR. MPL mRNA is expressed at very low or undetectable levels compared with erythropoietin receptor (EPOR), human epidermal growth factor (ERBB2; HER2), and insulin-like growth factor-1 receptor (IGF1R) in these patient samples. These data suggest TPO-R agonists will likely preferentially stimulate proliferation and differentiation of cells of megakaryocytic lineage, potentially demonstrating their utility for correcting thrombocytopenia in clinical settings.
Collapse
|
45
|
SØLLING CHRISTOFFER, NYGAARD UFFE, CHRISTENSEN ANTONT, WOGENSEN LISE, KROG JAN, TØNNESEN ELSEK. Lymphocyte apoptosis is resistant to erythropoietin in porcine endotoxemia. APMIS 2010; 119:143-54. [DOI: 10.1111/j.1600-0463.2010.02704.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Jelkmann W. Biosimilar epoetins and other "follow-on" biologics: update on the European experiences. Am J Hematol 2010; 85:771-80. [PMID: 20706990 DOI: 10.1002/ajh.21805] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After the patents of biopharmaceuticals have expired, based on specific regulatory approval pathways copied products ("biosimilars" or "follow-on biologics") have been launched in the EU. This article summarizes experiences with hematopoietic medicines, namely the epoetins (two biosimilars traded under five different brand names) and the filgrastims (two biosimilars, six brand names). Physicians and pharmacists should be familiar with the legal and pharmacological specialities of biosimilars: The production process can differ from that of the original, clinical indications can be extrapolated, glycoproteins contain varying isoforms, the formulation may differ from the original, and biopharmaceuticals are potentially immunogenic. Only on proof of quality, efficacy and safety, biosimilars are a viable option because of their lower costs.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, Luebeck, Germany.
| |
Collapse
|
47
|
Bennett CL, Boyle SN, Kuykendal A, Fisher MJ, Samaras AT, Barnato SE, Wagner RL, Goldstein CE, Tallman J, Munshi HG, Lai SY, Henke M. Association between pharmaceutical support and basic science research on erythropoiesis-stimulating agents. ARCHIVES OF INTERNAL MEDICINE 2010; 170:1490-8. [PMID: 20837837 PMCID: PMC4138541 DOI: 10.1001/archinternmed.2010.309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND To our knowledge, no prior research has evaluated the association between pharmaceutical industry funding and basic science research results. When erythropoiesis-stimulating agents (ESAs) were licensed to treat chemotherapy-associated anemia, basic science concerns related to potential cancer stimulation were raised. We evaluated associations between pharmaceutical industry support and reported findings evaluating ESA effects on cancer cells. METHODS Articles identified in MEDLINE and EMBASE databases (1988-2008) investigating basic science findings related to ESA administration in the solid tumor setting were reviewed. Outcomes included information on erythropoietin receptors (EpoRs), Epo-induced signaling events, cellular function, and qualitative conclusions. Information on study funding (academic investigators with no reported funding from ESA manufacturers [64 studies], academic investigators with grant funding from ESA manufacturers [7 studies], and investigators employed by the ESA manufacturers [3 studies]) was evaluated. Some studies did not include information on each outcome. RESULTS Investigators without funding from ESA manufacturers were more likely than academic investigators with such funding or investigators employed by ESA manufacturers to identify EpoRs on solid tumor cells (100%, 60%, and 67%, respectively; P = .009), Epo-induced signaling events (94%, 0%, and 0%, respectively; P = .001), or changes in cellular function (57%, 0%, and 0%, respectively; P = .007) and to conclude that ESAs had potentially harmful effects on cancer cells (57%, 0%, and 0%, respectively; P = .008). CONCLUSIONS Researchers who do not have pharmaceutical industry support are more likely than those with pharmaceutical support to identify detrimental in vitro effects of ESAs. The potential for conflicts of interest to affect basic science research should be considered.
Collapse
Affiliation(s)
- Charles L. Bennett
- The VA Center for the Management of Complex Chronic Care of the VA Chicago Healthcare System, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Hematology/Oncology, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Simone N. Boyle
- The VA Center for the Management of Complex Chronic Care of the VA Chicago Healthcare System, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Hematology/Oncology, Chicago, IL
| | - Adam Kuykendal
- Northwestern University, McGaw Medical Center, Chicago, IL
| | - Matthew J. Fisher
- The VA Center for the Management of Complex Chronic Care of the VA Chicago Healthcare System, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Hematology/Oncology, Chicago, IL
| | - Athena T. Samaras
- The VA Center for the Management of Complex Chronic Care of the VA Chicago Healthcare System, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Hematology/Oncology, Chicago, IL
| | | | - Robin L. Wagner
- The VA Center for the Management of Complex Chronic Care of the VA Chicago Healthcare System, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Hematology/Oncology, Chicago, IL
| | - Carolyn E. Goldstein
- The VA Center for the Management of Complex Chronic Care of the VA Chicago Healthcare System, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Hematology/Oncology, Chicago, IL
| | - Jacob Tallman
- The VA Center for the Management of Complex Chronic Care of the VA Chicago Healthcare System, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Hematology/Oncology, Chicago, IL
| | - Hidayatullah G. Munshi
- The VA Center for the Management of Complex Chronic Care of the VA Chicago Healthcare System, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Hematology/Oncology, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Stephen Y. Lai
- University of Texas M. D. Anderson Cancer Center, Department of Head and Neck Surgery, Houston, TX
| | - Michael Henke
- Clinic for Radiation Oncology, University Hospital, Freiburg, Germany
| |
Collapse
|
48
|
Greif F, Ben-Ari Z, Taya R, Pappo O, Kurtzwald E, Cheporko Y, Ravid A, Hochhauser E. Dual effect of erythropoietin on liver protection and regeneration after subtotal hepatectomy in rats. Liver Transpl 2010; 16:631-8. [PMID: 20440772 DOI: 10.1002/lt.22046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The only currently offered curative option for many patients with primary or secondary liver tumors is the resection of hepatic tumors. The aim of this study was to evaluate the role of recombinant human erythropoietin (rhEPO) in liver protection and regeneration after subtotal hepatectomy in rats. Rats undergoing 70% hepatectomy received an intraperitoneal injection of saline (control) or rhEPO (4 U/g) 30 minutes prior to resection. Liver function was assessed by the measurement of the international normalized ratio (INR) levels, and hepatic injury was assessed by serum alanine aminotransferase and aspartate aminotransferase levels. Hepatic apoptosis was assessed by intrahepatic caspase-3 activity and morphological criteria. The regeneration capacity of remnant livers was assessed over 7 days with the regenerated liver/body weight ratio, immunohistochemistry markers of cell proliferation (Ki-67) and angiogenesis (von Willebrand factor), and phosphorylated extracellular signal-regulated kinase signaling. Two and 4 days after subtotal hepatectomy, the regenerated liver/body weight ratio was significantly higher in animals treated with rhEPO versus the control group (P < 0.005). Serum liver enzymes and INR levels on days 2 and 4 post-hepatectomy were significantly lower in animals pretreated with rhEPO in comparison with the control group (P < 0.005). No statistically significant difference was noted in intrahepatic hepatic caspase-3 activity, immunohistochemistry for caspase-3, or a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay between the hepatectomized groups. In the rhEPO-pretreated group, the mitotic index, Ki-67 and von Willebrand factor expression, and extracellular signal-regulated kinase activity were significantly higher on day 2 post-hepatectomy (P < 0.05) in comparison with the control group. In conclusion, rhEPO treatment may offer a unique beneficial dual-function strategy for hepatic protection and regeneration immediately after subtotal hepatectomy in rats.
Collapse
Affiliation(s)
- Franklin Greif
- Department of Surgery A, Rabin Medical Center, Beilinson Hospital, Petah Tiqwa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Szenajch J, Wcislo G, Jeong JY, Szczylik C, Feldman L. The role of erythropoietin and its receptor in growth, survival and therapeutic response of human tumor cells From clinic to bench - a critical review. Biochim Biophys Acta Rev Cancer 2010; 1806:82-95. [PMID: 20406667 DOI: 10.1016/j.bbcan.2010.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/05/2010] [Accepted: 04/11/2010] [Indexed: 12/27/2022]
Abstract
Recombinant human erythropoietin (rhEPO) has been used clinically to alleviate cancer- and chemotherapy-related anemia. However, recent clinical trials have reported that rhEPO also may adversely impact disease progression and survival. The expression of functional EPO receptors (EPOR) has been demonstrated in many human cancer cells where, at least in vitro, rhEPO can stimulate cell growth and survival and may induce resistance to selected therapies. Responses to rhEPO measured by alterations in tumor cell growth or survival, activation of signaling pathways or modulation of sensitivity to anticancer agents are variable. Both methodological and inherent biological issues underlie the differential cell responses, including reported difficulties in EPOR protein detection, potential involvement of EPOR isoforms or of cytoplasmic EPOR, possible differential structure and/or binding affinities of hematopoietic versus non-hematopoietic cell EPOR, possible aberrant regulation of EPOR activity, and a functional EPO/EPOR autocrine/paracrine loop. The modulation by rhEPO of tumor cell response to anticancer agents is coincident with modulation of multiple signaling pathways, BCL-2 family proteins, caspases and NFkB. The molecular interplay of pro-survival and pro-death signals, triggered by EPO and/or by anticancer agents, is multifactorial and tightly coordinated. Expression microarray analysis may prove critical for deciphering this potentially novel network and its broad spectrum of genes and proteins.
Collapse
Affiliation(s)
- Jolanta Szenajch
- Laboratory for Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | | |
Collapse
|
50
|
Swift SE, Elliott S, Sinclair AM, Begley CG. Erythropoietin Receptor in Ovarian Cancer Cells – Letter: Figure 1. Mol Cancer Ther 2010; 9:1070-1; author reply 1071. [DOI: 10.1158/1535-7163.mct-09-0439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|