1
|
Maleki AH, Rajabivahid M, Khosh E, Khanali Z, Tahmasebi S, Ghorbi MD. Harnessing IL-27: challenges and potential in cancer immunotherapy. Clin Exp Med 2025; 25:34. [PMID: 39797931 PMCID: PMC11724803 DOI: 10.1007/s10238-025-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways. Specifically, IL-27 is identified as augmenting cytokine of immune responses, including Th1 cell differentiation, TCd4 + cell proliferation, and IFN-γ production with the help of IL-12. According to several published studies, due to the pro-inflammatory or anti-inflammatory functions of cytokine related to the biological context in various disorders and diseases, IL-27 has been considered a complex regulator of the immune system. Surprisingly, the dual role of IL-27, the same as the double-edged sword, has also been evidenced in clinical models of various hematological or solid tumors. Predominantly, Il-27 applies anti-tumor functions by inducing the responses of a cytotoxic T lymphocyte (CTL) and Th1 and suppressing the growth, proliferation, angiogenesis, invasiveness, metastasis, and survival of tumor cells. On the other hand, IL-27 may also play a protumor role in cancers and induce tumor progression. The current update study aimed to summarize the protumor anti-tumor and biological functions of IL-27 in different hematological malignancies and solid tumors.
Collapse
Affiliation(s)
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Khanali
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmood Dehghani Ghorbi
- Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kumar S, Mulia GE, Figueiredo ML. Cabozantinib and IL-27 combinatorial therapy for bone-metastatic prostate cancer. Front Mol Biosci 2023; 10:1259336. [PMID: 37842640 PMCID: PMC10568464 DOI: 10.3389/fmolb.2023.1259336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Prostate cancer is the second leading cause of cancer-related death among American men. Prostate tumor cells exhibit significant tropism for the bone and once metastasis occurs, survival rates fall significantly. Current treatment options are not curative and focus on symptom management. Immunotherapies are rapidly emerging as a possible therapeutic option for a variety of cancers including prostate cancer, however, variable patient response remains a concern. Chemotherapies, like cabozantinib, can have immune-priming effects which sensitize tumors to immunotherapies. Additionally, lower doses of chemotherapy can be used in this context which can reduce patient side effects. We hypothesized that a combination of chemotherapy (cabozantinib) and immunotherapy [Interleukin-27 (IL-27)] could be used to treat bone-metastatic prostate cancer and exert pro-osteogenic effects. IL-27 is a multi-functional cytokine, which promotes immune cell recruitment to tumors, while also promoting bone repair. Methods: To test this hypothesis, in vivo experiments were performed where syngeneic C57BL/6J mice were implanted intratibially with TRAMP-C2ras-Luc cells that are able to form tumors in bone. Immunotherapy was administered in the form of intramuscular gene therapy, delivering plasmid DNA encoding a reporter gene (Lucia), and/or a therapeutic gene (IL-27). Sonoporation was used to aid gene delivery. Following immunotherapy, the animals received either cabozantinib or a vehicle control by oral gavage. Bioluminescence imaging was used to monitor tumor size over time. Results: Combinatorial therapy inhibited tumor growth and improved survival. Further, RNA sequencing was used to investigate the mechanisms involved. Microcomputed tomography and differentiation assays indicated that the combination therapy improved bone quality by enhancing osteoblast differentiation and inhibiting osteoclast differentiation. Discussion: Our conclusion is that a chemo-immunotherapy approach such as the one examined in this work has potential to emerge as a novel therapeutic strategy for treating bone-metastatic prostate cancer. This approach will enable a significant reduction in chemotherapy-associated toxicity, enhance sensitivity to immunotherapy, and improve bone quality.
Collapse
Affiliation(s)
| | | | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Gerhardt L, Hong MMY, Yousefi Y, Figueredo R, Maleki Vareki S. IL-12 and IL-27 Promote CD39 Expression on CD8+ T Cells and Differentially Regulate the CD39+CD8+ T Cell Phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1598-1606. [PMID: 37000461 PMCID: PMC10152038 DOI: 10.4049/jimmunol.2200897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Tumor-specific CD8+ T cells are critical components of antitumor immunity; however, factors that modulate their phenotype and function have not been completely elucidated. Cytokines IL-12 and IL-27 have recognized roles in promoting CD8+ T cells' effector function and mediated antitumor responses. Tumor-specific CD8+ tumor-infiltrating lymphocytes (TILs) can be identified based on surface expression of CD39, whereas bystander CD8+ TILs do not express this enzyme. It is currently unclear how and why tumor-specific CD8+ T cells uniquely express CD39. Given the important roles of IL-12 and IL-27 in promoting CD8+ T cell functionality, we investigated whether these cytokines could modulate CD39 expression on these cells. Using in vitro stimulation assays, we identified that murine splenic CD8+ T cells differentially upregulate CD39 in the presence of IL-12 and IL-27. Subsequently, we assessed the exhaustion profile of IL-12- and IL-27-induced CD39+CD8+ T cells. Despite the greatest frequency of exhausted CD39+CD8+ T cells after activation with IL-12, as demonstrated by the coexpression of TIM-3+PD-1+LAG-3+ and reduced degranulation capacity, these cells retained the ability to produce IFN-γ. IL-27-induced CD39+CD8+ T cells expressed PD-1 but did not exhibit a terminally exhausted phenotype. IL-27 was able to attenuate IL-12-mediated inhibitory receptor expression on CD39+CD8+ T cells but did not rescue degranulation ability. Using an immunogenic neuro-2a mouse model, inhibiting IL-12 activity reduced CD39+CD8+ TIL frequency compared with controls without changing the overall CD8+ TIL frequency. These results provide insight into immune regulators of CD39 expression on CD8+ T cells and further highlight the differential impact of CD39-inducing factors on the phenotype and effector functions of CD8+ T cells.
Collapse
Affiliation(s)
- Lara Gerhardt
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Megan M. Y. Hong
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Yeganeh Yousefi
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Rene Figueredo
- Department of Oncology, Western University, London, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Liu JQ, Zhang C, Zhang X, Yan J, Zeng C, Talebian F, Lynch K, Zhao W, Hou X, Du S, Kang DD, Deng B, McComb DW, Bai XF, Dong Y. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release 2022; 345:306-313. [PMID: 35301053 PMCID: PMC9133152 DOI: 10.1016/j.jconrel.2022.03.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/05/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Cytokines are important immunotherapeutics with approved drugs for the treatment of human cancers. However, systemic administration of cytokines often fails to achieve adequate concentrations to immune cells in tumors due to dose-limiting toxicity. Thus, developing localized therapy that directly delivers immune-stimulatory cytokines to tumors may improve the therapeutic efficacy. In this study, we generated novel lipid nanoparticles (LNPs) encapsulated with mRNAs encoding cytokines including IL-12, IL-27 and GM-CSF, and tested their anti-tumor activity. We first synthesized ionizable lipid materials containing di-amino groups with various head groups (DALs). The novel DAL4-LNP effectively delivered different mRNAs in vitro to tumor cells and in vivo to tumors. Intratumoral injection of DAL4-LNP loaded with IL-12 mRNA was most potent in inhibiting B16F10 melanoma tumor growth compared to IL-27 or GM-CSF mRNAs in monotherapy. Furthermore, intratumoral injection of dual DAL4-LNP-IL-12 mRNA and IL-27 mRNA showed a synergistic effect in suppressing tumor growth without causing systematic toxicity. Most importantly, intratumoral delivery of IL-12 and IL-27 mRNAs induced robust infiltration of immune effector cells, including IFN-γ and TNF-α producing NK and CD8+ T cells into tumors. Thus, intratumoral administration of DAL-LNP loaded with IL-12 and IL-27 mRNA provides a new treatment strategy for cancer.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xinfu Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Chunxi Zeng
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Kimberly Lynch
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, United States
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, United States; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Department of Radiation Oncology, Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism, Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
5
|
Ding M, Fei Y, Zhu J, Ma J, Zhu G, Zhen N, Zhu J, Mao S, Sun F, Wang F, Pan Q. IL-27 Improves Adoptive CD8 + T Cells Antitumor Activity via Enhancing Cells Survival and Memory T Cells Differentiation. Cancer Sci 2022; 113:2258-2271. [PMID: 35441753 PMCID: PMC9277268 DOI: 10.1111/cas.15374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
IL-27 is an anti-inflammatory cytokine that triggers enhanced antitumor immunity, particularly cytotoxic T lymphocyte responses. In the present study, we sought to develop IL-27 into a therapeutic adjutant for adoptive T-cell therapy using our well-established models. We have found that IL-27 directly improved the survival status and cytotoxicity of adoptive OT-1 CD8+ T cells in vitro and in vivo. Meanwhile, IL-27 treatment programs memory T cells differentiation in CD8+ T cells, characterized by up regulation of genes associated with T cell memory differentiation (T-bet, Eomes, Blimp1 and Ly6C). Additionally, we engineered the adoptive OT-1 CD8+ T cells to deliver IL-27. In mice, the established tumors treated with OT-1 CD8+ T-IL-27 were completely rejected, which demonstrated that IL-27 delivered via tumor antigen-specific T cells enhance adoptive T cells cancer immunity. To our knowledge, this is the first application of CD8+ T cells as a vehicle to deliver IL-27 to treat tumors. Thus, these studies demonstrate IL-27 is a feasible approach for enhancing CD8+ T cells anti-tumor immunity and can be used as a therapeutic adjutant for T cell adoptive transfer to treat cancer.
Collapse
Affiliation(s)
- Miao Ding
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Fei
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiaotong University affiliated Sixth People's Hospital
| | - Jianmin Zhu
- Key Laboratory of Pediatric Hematology and Oncology, Shanghai Children's Medical Center, Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Ma
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqing Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Zhen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabei Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siwei Mao
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| |
Collapse
|
6
|
Kodet O, Kučera J, Strnadová K, Dvořánková B, Štork J, Lacina L, Smetana K. Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). Int J Oncol 2020; 57:619-630. [PMID: 32705148 PMCID: PMC7384852 DOI: 10.3892/ijo.2020.5090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.
Collapse
Affiliation(s)
- Ondřej Kodet
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jan Kučera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Karolína Strnadová
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Barbora Dvořánková
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jiří Štork
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
7
|
Kubota M, Iizasa E, Chuuma Y, Kiyohara H, Hara H, Yoshida H. Adjuvant activity of Mycobacteria-derived mycolic acids. Heliyon 2020; 6:e04064. [PMID: 32490252 PMCID: PMC7260583 DOI: 10.1016/j.heliyon.2020.e04064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/29/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Successful vaccination, especially with safe vaccines such as component/subunit vaccines, requires proper activation of innate immunity and, for this purpose, adjuvant is used. For clinical use, alum is frequently used while, for experimental use, CFA, containing Mycobacterial components, was often used. In this report, we demonstrated that mycolic acids (MA), major and essential lipid components of the bacterial cell wall of the genus Mycobacterium, has adjuvant activity. MA plus model antigen-immunization induced sufficient humoral response, which was largely comparable to conventional CFA plus antigen-immunization. Importantly, while CFA plus antigen-immunization induced Th17-biased severe and destructive inflammatory responses at the injected site, MA plus antigen-immunization induced Th1-biased mild inflammation at the site. MA induced dendritic cell activation by co-stimulatory molecule induction as well as inflammatory cytokine/chemokine induction. MA plus antigen-immunization successfully protected mice from tumor progression both in prevention and in therapy models. We thus submit that MA is a promising adjuvant candidate material for clinical purposes and for experimental purposes from a perspective of animal welfare.
Collapse
Affiliation(s)
- Mio Kubota
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Saga-ken Medical Center Koseikan, Saga, 840-8571, Japan
| | - Ei'ichi Iizasa
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 890-8544, Japan
| | - Yasushi Chuuma
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, 204-0022, Japan
| | - Hideyasu Kiyohara
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, 204-0022, Japan
| | - Hiromitsu Hara
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 890-8544, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Corresponding author.
| |
Collapse
|
8
|
Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019; 50:851-870. [PMID: 30995503 PMCID: PMC6472917 DOI: 10.1016/j.immuni.2019.03.011] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
The discovery of interleukin (IL)-6 and its receptor subunits provided a foundation to understand the biology of a group of related cytokines: IL-12, IL-23, and IL-27. These family members utilize shared receptors and cytokine subunits and influence the outcome of cancer, infection, and inflammatory diseases. Consequently, many facets of their biology are being therapeutically targeted. Here, we review the landmark discoveries in this field, the combinatorial biology inherent to this family, and how patient datasets have underscored the critical role of these pathways in human disease. We present significant knowledge gaps, including how similar signals from these cytokines can mediate distinct outcomes, and discuss how a better understanding of the biology of the IL-12 family provides new therapeutic opportunities.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Ave., Philadelphia, PA 19104-4539, USA.
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
9
|
IL-27 confers a protumorigenic activity of regulatory T cells via CD39. Proc Natl Acad Sci U S A 2019; 116:3106-3111. [PMID: 30718407 DOI: 10.1073/pnas.1810254116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of ectonucleotidase CD39 contributes to the suppressive activity of Foxp3+ regulatory T cells (Tregs) by hydrolyzing immunogenic ATP into AMP. The molecular mechanism that drives CD39 expression on Tregs remains elusive. We found that tumor-infiltrating Tregs (Ti-Tregs) failed to up-regulate CD39 in mice lacking EBI3 subunit of IL-27 or IL-27Ra. Mixed bone marrow chimera and in vitro studies showed that IL-27 signaling in Tregs directly drives CD39 expression on Ti-Tregs in a STAT1-dependent, but STAT3- and T-bet-independent, manner. Tregs stimulated with IL-27 showed enhanced suppressive activities against CD8+ T cell responses in vitro. Moreover, IL-27Ra-deficient Tregs and STAT1-deficient Tregs were less efficient than WT Tregs in suppressing antitumor immunity in vivo. CD39 inhibition significantly abolished IL-27-induced suppressive activities of Tregs. Thus, IL-27 signaling in Tregs critically contributes to protumorigenic properties of Tregs via up-regulation of CD39.
Collapse
|
10
|
Zhou F, Zhang GX, Rostami A. Distinct Role of IL-27 in Immature and LPS-Induced Mature Dendritic Cell-Mediated Development of CD4 + CD127 +3G11 + Regulatory T Cell Subset. Front Immunol 2018; 9:2562. [PMID: 30483251 PMCID: PMC6244609 DOI: 10.3389/fimmu.2018.02562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Interleukin-27 (IL-27) plays an important role in regulation of anti-inflammatory responses and autoimmunity; however, the molecular mechanisms of IL-27 in modulation of immune tolerance and autoimmunity have not been fully elucidated. Dendritic cells (DCs) play a central role in regulating immune responses mediated by innate and adaptive immune systems, but regulatory mechanisms of DCs in CD4+ T cell-mediated immune responses have not yet been elucidated. Here we show that IL-27 treated mature DCs induced by LPS inhibit immune tolerance mediated by LPS-stimulated DCs. IL-27 treatment facilitates development of the CD4+ CD127+3G11+ regulatory T cell subset in vitro and in vivo. By contrast, IL-27 treated immature DCs fail to modulate development of the CD4+CD127+3G11+ regulatory T cell sub-population in vitro and in vivo. Our results suggest that IL-27 may break immune tolerance induced by LPS-stimulated mature DCs through modulating development of a specific CD4+ regulatory T cell subset mediated by 3G11 and CD127. Our data reveal a new cellular regulatory mechanism of IL-27 that targets DC-mediated immune responses in autoimmune diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Zhu J, Liu JQ, Shi M, Cheng X, Ding M, Zhang JC, Davis JP, Varikuti S, Satoskar AR, Lu L, Pan X, Zheng P, Liu Y, Bai XF. IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy. JCI Insight 2018; 3:e98745. [PMID: 29618655 PMCID: PMC5928864 DOI: 10.1172/jci.insight.98745] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/28/2018] [Indexed: 12/30/2022] Open
Abstract
Tumor-induced expansion of Tregs is a significant obstacle to cancer immunotherapy. However, traditional approaches to deplete Tregs are often inefficient, provoking autoimmunity. We show here that administration of IL-27-expressing recombinant adeno-associated virus (AAV-IL-27) significantly inhibits tumor growth and enhances T cell responses in tumors. Strikingly, we found that AAV-IL-27 treatment causes rapid depletion of Tregs in peripheral blood, lymphoid organs, and - most pronouncedly - tumor microenvironment. AAV-IL-27-mediated Treg depletion is dependent on IL-27 receptor and Stat1 in Tregs and is a combined result of CD25 downregulation in Tregs and inhibition of IL-2 production by T cells. In combination with a GM-CSF vaccine, AAV-IL-27 treatment not only induced nearly complete tumor rejection, but also resulted in amplified neoantigen-specific T cell responses. AAV-IL-27 also dramatically increased the efficacy of anti-PD-1 therapy, presumably due to induction of PD-L1 in T cells and depletion of Tregs. Importantly, AAV-IL-27 therapy did not induce significant adverse events, partially due to its induction of IL-10. In a plasmacytoma mouse model, we found that IL-10 was required for AAV-IL-27-mediated tumor rejection. Thus, our study demonstrates the potential of AAV-IL-27 as an independent cancer therapeutic and as an efficient adjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center
| | - Min Shi
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Cheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Ding
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | - Xueliang Pan
- Center for Biostatistics, Ohio State University, Columbus, Ohio, USA
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA
| | - Yang Liu
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA
| | - Xue-Feng Bai
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology and Comprehensive Cancer Center
| |
Collapse
|
12
|
Kilgore AM, Welsh S, Cheney EE, Chitrakar A, Blain TJ, Kedl BJ, Hunter CA, Pennock ND, Kedl RM. IL-27p28 Production by XCR1 + Dendritic Cells and Monocytes Effectively Predicts Adjuvant-Elicited CD8 + T Cell Responses. Immunohorizons 2018; 2:1-11. [PMID: 29354801 PMCID: PMC5771264 DOI: 10.4049/immunohorizons.1700054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is well accepted that the innate response is a necessary prerequisite to the formation of the adaptive response. This is true for T cell responses against infections or adjuvanted subunit vaccination. However, specific innate parameters with predictive value for the magnitude of an adjuvant-elicited T cell response have yet to be identified. We previously reported how T cell responses induced by subunit vaccination were dependent on the cytokine IL-27. These findings were unexpected, given that T cell responses to an infection typically increase in the absence of IL-27. Using a novel IL-27p28-eGFP reporter mouse, we now show that the degree to which an adjuvant induces IL-27p28 production from dendritic cells and monocytes directly predicts the magnitude of the T cell response elicited. To our knowledge, these data are the first to identify a concrete innate correlate of vaccine-elicited cellular immunity, and they have significant practical and mechanistic implications for subunit vaccine biology.
Collapse
Affiliation(s)
- Augustus M Kilgore
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Seth Welsh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Elizabeth E Cheney
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Alisha Chitrakar
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Trevor J Blain
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Benjamin J Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Chris A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nathan D Pennock
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Ross M Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| |
Collapse
|
13
|
Zhou WJ, Chang KK, Wu K, Yang HL, Mei J, Xie F, Li DJ, Li MQ. Rapamycin Synergizes with Cisplatin in Antiendometrial Cancer Activation by Improving IL-27-Stimulated Cytotoxicity of NK Cells. Neoplasia 2017; 20:69-79. [PMID: 29195127 PMCID: PMC5724748 DOI: 10.1016/j.neo.2017.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cell function is critical for controlling initial tumor growth and determining chemosensitivity of the tumor. A synergistic relationship between rapamycin and cisplatin in uterine endometrial cancer (UEC) in vitro has been reported, but the mechanism and the combined therapeutic strategy for endometrial cancer (EC) are still unknown. We found a positive correlation between the level of IL-27 and the differentiated stage of UEC. The increase of IL-27 in uterine endometrial cancer cell (UECC) lines (Ishikawa, RL95-2 and KLE) led to a high cytotoxic activity of NK cells to UECC in the co-culture system. Exposure with rapamycin enhanced the cytotoxicity of NK cells by upregulating the expression of IL-27 in UECC and IL-27 receptors (IL-27Rs: WSX-1 and gp130) on NK cells and further restricted the growth of UEC in Ishikawa-xenografted nude mice. In addition, treatment with rapamycin resulted in an increased autophagy level of UECC, and IL-27 enhanced this ability of rapamycin. Cisplatin-mediated NK cells' cytotoxic activity and anti-UEC activation were independent of IL-27; however, the combination of rapamycin and cisplatin led to a higher cytotoxic activity of NK cells, smaller UEC volume and longer survival rate in vivo. These results suggest that rapamycin and cisplatin synergistically activate the cytotoxicity of NK cells and inhibit the progression of UEC in both an IL-27–dependent and –independent manner. This provides a scientific basis for potential rapamycin-cisplatin combined therapeutic strategies targeted to UEC, especially for the patients with low differentiated stage or abnormally low level of IL-27.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Kai-Kai Chang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China; Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Ke Wu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Medical Center of Diagnosis and Treatment for Cervical Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China.
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
14
|
Zhang B, Xie F, Dong CL, Gu CJ, Cheng J, Wang Y, Xu XZ, Pu H, Wu YB, Qi XW, Li DJ, Yu JJ, Li MQ. The cross talk between cervical carcinoma cells and vascular endothelial cells mediated by IL-27 restrains angiogenesis. Am J Reprod Immunol 2017; 78. [PMID: 28508429 DOI: 10.1111/aji.12706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
PROBLEM To explore whether cervical carcinoma cell-derived interleukin-27 (IL-27) modulates the angiogenesis of vascular endothelial cells. METHOD OF STUDY The expression of IL-27 in cervical cancer tissues and cervical cell lines was analyzed by immunohistochemistry, ELISA and flow cytometry. Then, the effects of IL-27 on the proliferation and apoptosis-related molecules and angiogenesis in vitro of human umbilical vein endothelial cells (HUVECs) were investigated. Finally, in vivo experiment was performed to further confirm the effects of IL-27. RESULTS Compared with cervicitis, the cervical cancer tissues highly expressed IL-27. Both HeLa and CaSki cells secreted IL-27, and HUVECs expressed low levels of IL-27 receptors (IL-27R). However, the co-culture of cervical cell lines and HUVECs led to a significant elevation of IL-27R on HUVECs. Co-culturing with IL-27-overexpressed HeLa cells downregulated Ki-67 and Bcl-2 and upregulated Fas expression in HUVECs. In addition, overexpression of IL-27 in HeLa cells and CasKi cells secreted less IL-8 and could further restrict angiogenesis compared with control cells in vitro. In the subcutaneous tumorous model of C57/BL6 mouse, there were decreased vessel density and tumor volume when inoculation with IL-27-overexpressed TC-1 cells. CONCLUSION This study indicates that IL-27 secreted by cervical carcinoma cells restricts the angiogenesis in a paracrine manner in the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Medical Center of Diagnosis and Treatment for Cervical Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Chun-Lin Dong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chun-Jie Gu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jiao Cheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xi-Zhong Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hong Pu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yi-Bo Wu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiao-Wei Qi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jin-Jin Yu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
15
|
Xu DH, Zhu Z, Xiao H, Wakefield MR, Bai Q, Nicholl MB, Ding VA, Fang Y. Unveil the mysterious mask of cytokine-based immunotherapy for melanoma. Cancer Lett 2017; 394:43-51. [PMID: 28254411 DOI: 10.1016/j.canlet.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/04/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
Melanoma is the leading cause of death among all skin cancers and its incidence continues to rise rapidly worldwide in the past decades. The available treatment options for melanoma remain limited despite extensive clinical research. Melanoma is an immunogenic tumor and great advances in immunology in recent decades allow for the development of immunotherapeutic agents against melanoma. In recent years, immunotherapy utilizing cytokines has been particularly successful in certain cancers and holds promise for patients with advanced melanoma. In this review, an overview of the current status and emerging perspectives on cytokine immunotherapy for melanoma are discussed in details. Such a study will be helpful to unveil the mysterious mask of cytokine-based immunotherapy for melanoma.
Collapse
Affiliation(s)
- Dixon H Xu
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | - Vivi A Ding
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
16
|
Epstein-Barr Virus-Induced Gene 3 (EBI3) Blocking Leads to Induce Antitumor Cytotoxic T Lymphocyte Response and Suppress Tumor Growth in Colorectal Cancer by Bidirectional Reciprocal-Regulation STAT3 Signaling Pathway. Mediators Inflamm 2016; 2016:3214105. [PMID: 27247488 PMCID: PMC4877478 DOI: 10.1155/2016/3214105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022] Open
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) is a member of the interleukin-12 (IL-12) family structural subunit and can form a heterodimer with IL-27p28 and IL-12p35 subunit to build IL-27 and IL-35, respectively. However, IL-27 stimulates whereas IL-35 inhibits antitumor T cell responses. To date, little is known about the role of EBI3 in tumor microenvironment. In this study, firstly we assessed EBI3, IL-27p28, IL-12p35, gp130, and p-STAT3 expression with clinicopathological parameters of colorectal cancer (CRC) tissues; then we evaluated the antitumor T cell responses and tumor growth with a EBI3 blocking peptide. We found that elevated EBI3 may be associated with IL-12p35, gp130, and p-STAT3 to promote CRC progression. EBI3 blocking peptide promoted antitumor cytotoxic T lymphocyte (CTL) response by inducing Granzyme B, IFN-γ production, and p-STAT3 expression and inhibited CRC cell proliferation and tumor growth to associate with suppressing gp130 and p-STAT3 expression. Taken together, these results suggest that EBI3 may mediate a bidirectional reciprocal-regulation STAT3 signaling pathway to assist the tumor escape immune surveillance in CRC.
Collapse
|
17
|
Pennock ND, Kedl JD, Kedl RM. T Cell Vaccinology: Beyond the Reflection of Infectious Responses. Trends Immunol 2016; 37:170-180. [PMID: 26830540 PMCID: PMC4775298 DOI: 10.1016/j.it.2016.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/31/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
Inducing sustained, robust CD8(+) T cell responses is necessary for therapeutic intervention in chronic infectious diseases and cancer. Unfortunately, most adjuvant formulations fail to induce substantial cellular immunity in humans. Attenuated acute infectious agents induce strong CD8(+) T cell immunity, and are thought to therefore represent a good road map for guiding the development of subunit vaccines capable of inducing the same. However, recent evidence suggests that this assumption may need reconsideration. Here we provide an overview of subunit vaccine history as it pertains to instigating T cell responses. We argue that in light of evidence demonstrating that T cell responses to vaccination differ from those induced by infectious challenge, research in pursuit of cellular immunity-inducing vaccine adjuvants should no longer follow only the infection paradigm.
Collapse
Affiliation(s)
- Nathan D Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Justin D Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO, USA.
| |
Collapse
|
18
|
Li Q, Sato A, Shimozato O, Shingyoji M, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Administration of DNA Encoding the Interleukin-27 Gene Augments Antitumour Responses through Non-adaptive Immunity. Scand J Immunol 2015; 82:320-7. [PMID: 26095954 DOI: 10.1111/sji.12321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/05/2015] [Indexed: 01/05/2023]
Abstract
DNA-mediated immunization of a tumour antigen is a possible immunotherapy for cancer, and interleukin (IL)-27 has diverse functions in adaptive immunity. In this study, we examined whether IL-27 DNA administration enhanced antitumour effects in mice vaccinated with DNA encoding a putative tumour antigen, β-galactosidase (β-gal). An intramuscular injection of cardiotoxin before DNA administration facilitated the exogenous gene expression. In mice received β-gal and IL-27 DNA, growth of β-gal-positive P815 tumours was retarded and survival of the mice was prolonged. Development of β-gal-positive Colon 26 tumours was suppressed by vaccination of β-gal DNA and further inhibited by additional IL-27 DNA administration or IL-12 family cytokines. Nevertheless, a population of β-gal-specific CD8(+) T cells did not increase, and production of anti-β-gal antibody was not enhanced by IL-27 DNA administration. Spleen cells from mice bearing IL-27-expressing Colon 26 tumours showed greater YAC-1-targeted cytotoxicity although CD3(-)/DX5(+) natural killer (NK) cell numbers remained unchanged. Recombinant IL-27 enhanced YAC-1-targeted cytotoxicity of IL-2-primed splenic NK cells and augmented a phosphorylation of signal transducer and activator of transcription 3 and an expression of perforin. These data collectively indicate that IL-27 DNA administration activates NK cells and augments vaccination effects of DNA encoding a tumour antigen through non-adaptive immune responses.
Collapse
Affiliation(s)
- Q Li
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan.,Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Cell Therapy Center, The 1st Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - A Sato
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - O Shimozato
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan
| | - M Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| | - Y Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - K Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - H Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - K Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-Shinden, Yachiyo, Japan
| | - M Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
19
|
Friedman A, Liao KL. The role of the cytokines IL-27 and IL-35 in cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2015; 12:1203-1217. [PMID: 26775857 DOI: 10.3934/mbe.2015.12.1203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cancer-immune interaction is a fast growing field of research in biology, where the goal is to harness the immune system to fight cancer more effectively. In the present paper we review recent work of the interaction between T cells and cancer. CD8+ T cells are activated by IL-27 cytokine and they kill tumor cells. Regulatory T cells produce IL-35 which promotes cancer cells by enhancing angiogenesis, and inhibit CD8+ T cells via TGF-β production. Hence injections of IL-27 and anti-IL-35 are both potentially anti-tumor drugs. The models presented here are based on experimental mouse experiments, and their simulations agree with these experiments. The models are used to suggest effective schedules for drug treatment.
Collapse
Affiliation(s)
- Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, United States
| | | |
Collapse
|
20
|
Li MS, Liu Z, Liu JQ, Zhu X, Liu Z, Bai XF. The Yin and Yang aspects of IL-27 in induction of cancer-specific T-cell responses and immunotherapy. Immunotherapy 2015; 7:191-200. [PMID: 25713993 DOI: 10.2217/imt.14.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidences from animal studies have indicated that both endogenous and exogenous IL-27, an IL-12 family of cytokine, can increase antitumor T-cell activities and inhibit tumor growth. IL-27 can modulate Treg responses, and program effector T cells into a unique T-effector stem cell (TSEC) phenotype, which enhances T-cell survival in the tumor microenvironment. However, animal studies also suggest that IL-27 induces molecular pathways such as IL-10, PD-L1 and CD39, which may downregulate tumor-specific T-cell responses. In this review paper, we will discuss the Yin and Yang aspects of IL-27 in the induction of tumor-specific T-cell responses, and the potential impacts of these functions of IL-27 in the design of cancer immunotherapy.
Collapse
Affiliation(s)
- Ming-Song Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
21
|
Yoshimoto T, Chiba Y, Furusawa JI, Xu M, Tsunoda R, Higuchi K, Mizoguchi I. Potential clinical application of interleukin-27 as an antitumor agent. Cancer Sci 2015; 106:1103-10. [PMID: 26132605 PMCID: PMC4582978 DOI: 10.1111/cas.12731] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapies such as sipuleucel-T and ipilimumab are promising new treatments that harness the power of the immune system to fight cancer and achieve long-lasting remission. Interleukin (IL)-27, a member of the IL-12 heterodimeric cytokine family, has pleiotropic functions in the regulation of immune responses with both pro-inflammatory and anti-inflammatory properties. Evidence obtained using a variety of preclinical mouse models indicates that IL-27 possesses potent antitumor activity against various types of tumors through multiple mechanisms without apparent adverse effects. These mechanisms include those mediated not only by CD8+ T cells, natural killer cells and macrophages, but also by antibody-dependent cell-mediated cytotoxicity, antiangiogenesis, direct antiproliferative effects, inhibition of expression of cyclooxygenase-2 and prostaglandin E2, and suppression of epithelial–mesenchymal transition, depending on the characteristics of individual tumors. However, the endogenous role of IL-27 subunits and one of its receptor subunits, WSX-1, in the susceptibility to tumor development after transplantation of tumor cell lines or endogenously arising tumors seems to be more complicated. IL-27 functions as a double-edged sword: IL-27 increases IL-10 production and the expression of programmed death ligand 1 and T-cell immunoglobulin and mucin domain-3, and promotes the generation of regulatory T cells, and IL-27 receptor α singling enhances transformation; IL-27 may augment protumor effects as well. Here, we review both facets of IL-27, antitumor effects and protumor effects, and discuss the potential clinical application of IL-27 as an antitumor agent.
Collapse
Affiliation(s)
- Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yukino Chiba
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Jun-Ichi Furusawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ren Tsunoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kaname Higuchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
22
|
Duan Y, Jia Y, Wang T, Wang Y, Han X, Liu L. Potent therapeutic target of inflammation, virus and tumor: focus on interleukin-27. Int Immunopharmacol 2015; 26:139-46. [PMID: 25812768 DOI: 10.1016/j.intimp.2015.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Interleukin (IL)-27 is an important pleiotropic immunological regulator for having dual effects on the immune responses. Several distinct findings have been highlighted that in certain conditions, neutralizing IL-27 or its subunit IL-27p28 might be a useful strategy to limit inflammation. Recently more insights have revealed that IL-27 could also exert potent inhibitory functions in some other immune circumstances including virus infection and tumor immunity. In this review, we describe IL-27 receptor subunits and the mechanisms of individual IL-27, and summarize the advances of their preclinical application trials. In addition, the potential role of IL-27 as a clinical therapeutic target will also be discussed.
Collapse
Affiliation(s)
- Yuqing Duan
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Yunlong Jia
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Tingting Wang
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Yu Wang
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Xiaonan Han
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Lihua Liu
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China.
| |
Collapse
|
23
|
Affiliation(s)
- Hiroki Yoshida
- Department of Biomolecular Sciences, Division of Molecular and Cellular Immunoscience, Saga University Faculty of Medicine, Saga 849-8501, Japan;
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4539;
| |
Collapse
|
24
|
Liu Z, Liu JQ, Shi Y, Zhu X, Liu Z, Li MS, Yu J, Wu LC, He Y, Zhang G, Bai XF. Epstein-Barr virus-induced gene 3-deficiency leads to impaired antitumor T-cell responses and accelerated tumor growth. Oncoimmunology 2015; 4:e989137. [PMID: 26140252 DOI: 10.4161/2162402x.2014.989137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) encoded protein can form heterodimers with IL-27P28, and IL-12P35 to form IL-27, and IL-35. However, IL-27 stimulates, whereas IL-35 inhibits antitumor T-cell responses. IL-27 also limits the Foxp3+ regulatory T cell (Treg) population, whereas IL-35 has been shown to expand Tregs and foster Treg suppressive functions. It remains unclear which group of forces are dominant during antitumor T-cell responses. In this study, we evaluated the tumor growth and antitumor T-cell responses in EBI3-deficient mice that lack both IL-27 and IL-35. We found that injecting B16 melanoma cells into EBI3-deficient C57BL/6 mice, or J558 plasmacytoma cells into EBI3-deficient BALB/c mice resulted in significantly increased tumor growth relative to those implanted in wild-type control mice. Tumors from EBI3-deficient mice contained significantly decreased proportions of CD8+ T cells and increased proportions of CD4+FoxP3+ Treg cells as compared to those from EBI3-intact mice. Tumor-infiltrating T cells from EBI3-deficient mice were impaired in their capacity to produce IFNγ. Phenotypically, Tregs from EBI3-deficient mice were highly suppressive and produced IL-10 in the tumor microenvironment. Depletion of Tregs or inactivation of the IL-10 pathway significantly abrogated tumor growth enhancement in Ebi3-/- mice. Finally, we showed that Ebi3-/- mice administered a melanoma vaccine failed to mount a CD8+ T-cell response and the vaccine failed to confer tumor rejection in EBI3-deficient mice. Taken together, these results suggest that Ebi3-/- mice show a phenotype of IL-27-deficiency rather than IL-35-deficiency during anti-tumor T-cell responses. Thus, our results suggest that endogenous IL-27 is critical for both spontaneous and vaccine-induced antitumor T-cell responses.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Yun Shi
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Xiaotong Zhu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Zhihao Liu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA ; Department of Hepatobiliary Surgery; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Ming-Song Li
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Gastroenterology; Nanfang Hospital; Southern Medical University ; Guangzhou, China
| | - Jianhua Yu
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| | - Lai-Chu Wu
- Davis Medical Center; Department of Molecular and Cellular Biochemistry; Ohio State University ; Columbus, OH USA
| | - Yukai He
- Cancer Immunology; Inflammation, and Tolerance Program; Georgia Regents University Cancer Center ; Augusta, GA USA
| | - Guoqiang Zhang
- Department of Thoracic Surgery; Xinqiao Hospital; Third Military Medical University ; Chongqing, China
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center; Ohio State University ; Columbus, OH USA
| |
Collapse
|
25
|
Tian F, Dou C, Qi S, Chen B, Zhao L, Wang X. Dendritic cell-glioma fusion activates T lymphocytes by elevating cytotoxic efficiency as an antitumor vaccine. Cent Eur J Immunol 2014; 39:265-70. [PMID: 26155134 PMCID: PMC4439993 DOI: 10.5114/ceji.2014.45935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hybrid cells produced by fusions of tumor and dendritic cells (DC) have demonstrated remarkable efficacy for priming the anti-tumor immune response. In the current study, we examined the antitumor activity of cytotoxic T lymphocytes (CTLs) primed in response to a tumor vaccine comprising a glioma-DC fusion as part of a therapeutic against glioma. MATERIAL AND METHODS Primary cultured glioma cells were fused with peripheral blood DC under conditions of polyethylene glycol (PEG) incubation. Glioma cell suspensions were designated as three groups to include (1) CTL-effective cell group activated by fused cells; (2) CTL-effective cell group stimulated by co-cultured glioma cells and DC cells; and (3) lymphocyte-only group as a control, which was not stimulated by the DC. Cytotoxicity of CTLs on glioma cells was accessed by MTT assay in vitro. RESULTS Glioma cells with peripheral blood DC were cultured and fused. The killing effect of CTLs pre-activated by fused cells was significantly higher than that of the co-culture CTL group with unsensitized lymphocytes (p < 0.01). The killing activity, as measured by an enhanced efficiency ratio, was increased significantly in the co-cultures of fused cells with CTL groups (p < 0.01). CONCLUSIONS The glioma-dendritic cell fusion vaccine possessed a more effective anticancer activity by stimulating the effector activity of CTLs.
Collapse
Affiliation(s)
- Fuming Tian
- Department of Neurosurgery, Nanfang Hospital, Southern Medial University, Guangzhou, PR China
- Department of Neurosurgery, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia
| | - Changwu Dou
- Department of Neurosurgery, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medial University, Guangzhou, PR China
| | - Bo Chen
- Department of Neurosurgery, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia
| | - Liqun Zhao
- Department of Neurosurgery, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia
| | - Xiaojuan Wang
- Guangdong Foshan Medical University, Foshan, Guangdong, PR China
| |
Collapse
|
26
|
Interleukin 27 inhibits cytotoxic T-lymphocyte-mediated platelet destruction in primary immune thrombocytopenia. Blood 2014; 124:3316-9. [PMID: 25298039 DOI: 10.1182/blood-2014-06-580084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T-lymphocyte (CTL)-mediated platelet destruction and aberrant cytokine profiles play important roles in the pathogenesis of primary immune thrombocytopenia (ITP). Interleukin-27 (IL-27) has pleiotropic immunomodulatory effects. However, the effect of IL-27 on CTL activity in ITP has not been reported. In the present study, platelets from ITP patients were cultured with autologous CTLs in the presence of IL-27. We found that IL-27 could inhibit CTL-mediated platelet destruction. In these IL-27-treated CTLs, granzyme B and T-bet expression decreased significantly, whereas granzyme A, perforin, and eomesodermin were not affected. To further investigate the role of granzyme B in CTL-mediated platelet destruction, granzyme B inhibitor was added and platelet apoptosis was significantly inhibited. These results suggest that IL-27 negatively regulates CTL cytotoxicity toward platelets in ITP by decreasing granzyme B expression, which is associated with reduced T-bet expression. IL-27 may have a therapeutic role in treating ITP patients.
Collapse
|
27
|
Role and therapeutic value of dendritic cells in central nervous system autoimmunity. Cell Death Differ 2014; 22:215-24. [PMID: 25168240 DOI: 10.1038/cdd.2014.125] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that control the generation of adaptive immunity. Consequently, DCs have a central role in the induction of protective immunity to pathogens and also in the pathogenic immune response responsible for the development and progression of autoimmune disorders. Thus the study of the molecular pathways that control DC development and function is likely to result in new strategies for the therapeutic manipulation of the immune response. In this review, we discuss the role and therapeutic value of DCs in autoimmune diseases, with a special focus on multiple sclerosis.
Collapse
|
28
|
Liao KL, Bai XF, Friedman A. Mathematical modeling of interleukin-27 induction of anti-tumor T cells response. PLoS One 2014; 9:e91844. [PMID: 24633175 PMCID: PMC3954918 DOI: 10.1371/journal.pone.0091844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 02/17/2014] [Indexed: 11/30/2022] Open
Abstract
Interleukin-12 is a pro-inflammatory cytokine which promotes Th1 and cytotoxic T lymphocyte activities, such as Interferon- secretion. For this reason Interleukin-12 could be a powerful therapeutic agent for cancer treatment. However, Interleukin-12 is also excessively toxic. Interleukin-27 is an immunoregulatory cytokine from the Interleukin-12 family, but it is not as toxic as Interleukin-12. In recent years, Interleukin-27 has been considered as a potential anti-tumor agent. Recent experiments in vitro and in vivo have shown that cancer cells transfected with IL-27 activate CD8+ T cells to promote the secretion of anti-tumor cytokines Interleukin-10, although, at the same time, IL-27 inhibits the secretion of Interferon- by CD8+ T cells. In the present paper we develop a mathematical model based on these experimental results. The model involves a dynamic network which includes tumor cells, CD8+ T cells and cytokines Interleukin-27, Interleukin-10 and Interferon-. Simulations of the model show how Interleukin-27 promotes CD8+ T cells to secrete Interleukin-10 to inhibit tumor growth. On the other hand Interleukin-27 inhibits the secretion of Interferon- by CD8+ T cells which somewhat diminishes the inhibition of tumor growth. Our numerical results are in qualitative agreement with experimental data. We use the model to design protocols of IL-27 injections for the treatment of cancer and find that, for some special types of cancer, with a fixed total amount of drug, within a certain range, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing, although the decrease in tumor load is only temporary.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
29
|
Gigi V, Stein J, Askenasy N, Yaniv I, Ash S. Early immunisation with dendritic cells after allogeneic bone marrow transplantation elicits graft vs tumour reactivity. Br J Cancer 2013; 108:1092-9. [PMID: 23511628 PMCID: PMC3619065 DOI: 10.1038/bjc.2013.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Perspectives of immunotherapy to cancer mediated by bone marrow transplantation (BMT) in conjunction with dendritic cell (DC)-mediated immune sensitisation have yielded modest success so far. In this study, we assessed the impact of DC on graft vs tumour (GvT) reactions triggered by allogeneic BMT. Methods: H2Ka mice implanted with congenic subcutaneous Neuro-2a neuroblastoma (NB, H2Ka) tumours were irradiated and grafted with allogeneic H2Kb bone marrow cells (BMC) followed by immunisation with tumour-inexperienced or tumour-pulsed DC. Results: Immunisation with tumour-pulsed donor DC after allogeneic BMT suppressed tumour growth through induction of T cell-mediated NB cell lysis. Early post-transplant administration of DC was more effective than delayed immunisation, with similar efficacy of DC inoculated into the tumour and intravenously. In addition, tumour inexperienced DC were equally effective as tumour-pulsed DC in suppression of tumour growth. Immunisation of DC did not impact quantitative immune reconstitution, however, it enhanced T-cell maturation as evident from interferon-γ (IFN-γ) secretion, proliferation in response to mitogenic stimulation and tumour cell lysis in vitro. Dendritic cells potentiate GvT reactivity both through activation of T cells and specific sensitisation against tumour antigens. We found that during pulsing with tumour lysate DC also elaborate a factor that selectively inhibits lymphocyte proliferation, which is however abolished by humoral and DC-mediated lymphocyte activation. Conclusion: These data reveal complex involvement of antigen-presenting cells in GvT reactions, suggesting that the limited success in clinical application is not a result of limited efficacy but suboptimal implementation. Although DC can amplify soluble signals from NB lysates that inhibit lymphocyte proliferation, early administration of DC is a dominant factor in suppression of tumour growth.
Collapse
Affiliation(s)
- V Gigi
- Zaizov Cancer Immunotherapy Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | |
Collapse
|
30
|
Natividad KDT, Junankar SR, Mohd Redzwan N, Nair R, Wirasinha RC, King C, Brink R, Swarbrick A, Batten M. Interleukin-27 signaling promotes immunity against endogenously arising murine tumors. PLoS One 2013; 8:e57469. [PMID: 23554861 PMCID: PMC3595259 DOI: 10.1371/journal.pone.0057469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/21/2013] [Indexed: 12/29/2022] Open
Abstract
Interleukin-27 (IL-27) is a pleiotropic cytokine but its immunosuppressive effects predominate during many in vivo immunological challenges. Despite this, evidence from tumor cell line transfer models suggested that IL-27 could promote immune responses in the tumor context. However, the role of IL-27 in immunity against tumors that develop in situ and in tumor immunosurveillance remain undefined. In this study, we demonstrate that tumor development and growth are accelerated in IL-27 receptor α (Il27ra)-deficient mice. Enhanced tumor growth in both carcinogen-induced fibrosarcoma and oncogene-driven mammary carcinoma was associated with decreased interferon-γ production by CD4 and CD8 T cells and increased numbers of regulatory T-cells (Treg). This is the first study to show that IL-27 promotes protective immune responses against endogenous tumors, which is critical as the basis for future development of an IL-27 based therapeutic agent.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Immune Tolerance/genetics
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukins/genetics
- Interleukins/immunology
- Male
- Mice
- Mice, Knockout
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, Interleukin
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Karlo D. T. Natividad
- Immunological Diseases Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Simon R. Junankar
- Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Norhanani Mohd Redzwan
- Immunological Diseases Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Radhika Nair
- Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Rushika C. Wirasinha
- Immunological Diseases Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Cecile King
- Immunological Diseases Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Robert Brink
- Immunological Diseases Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexander Swarbrick
- Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Marcel Batten
- Immunological Diseases Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
31
|
Murugaiyan G, Saha B. IL-27 in tumor immunity and immunotherapy. Trends Mol Med 2013; 19:108-16. [DOI: 10.1016/j.molmed.2012.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 01/23/2023]
|
32
|
Liu Z, Liu JQ, Talebian F, Wu LC, Li S, Bai XF. IL-27 enhances the survival of tumor antigen-specific CD8+ T cells and programs them into IL-10-producing, memory precursor-like effector cells. Eur J Immunol 2013; 43:468-79. [PMID: 23225163 DOI: 10.1002/eji.201242930] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/29/2012] [Accepted: 11/22/2012] [Indexed: 11/07/2022]
Abstract
IL-27 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p40-related protein subunit, EBV-induced gene 3, and a p35-related subunit, p28. IL-27 functions through IL-27R and has been shown to have potent antitumor activity via activation of a variety of cellular components, including antitumor CD8(+) T-cell responses. However, the exact mechanisms of how IL-27 enhances antitumor CD8(+) T-cell responses remain unclear. Here we show that IL-27 significantly enhances the survival of activated tumor antigen-specific CD8(+) T cells in vitro and in vivo, and programs tumor antigen-specific CD8(+) T cells into memory precursor-like effector cells, characterized by upregulation of Bcl-6, SOCS3, Sca-1, and IL-10. While STAT3 activation and the CTL survival-enhancing effects can be independent of CTL IL-10 production, we show here that IL-27-induced CTL IL-10 production contributes to memory precursor cell phenotype induction, CTL memory, and tumor rejection. Thus, IL-27 enhances antitumor CTL responses via programming tumor antigen-specific CD8(+) T cells into a unique memory precursor type of effector cells characterized by a greater survival advantage. Our results have important implications for designing immunotherapy against human cancer.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Like many cytokines, IL-27 has pleiotropic properties that can limit or enhance ongoing immune responses depending on context. Thus, under certain circumstances, IL-27 can promote TH1 differentiation and has been linked to the activation of CD8(+) T cells and enhanced humoral responses. However, IL-27 also has potent inhibitory properties and mice that lack IL-27 mediated signaling develop exaggerated inflammatory responses in the context of infection or autoimmunity. This chapter reviews in depth the biology of IL-27, including the initial discovery, characterization, and signaling mediated by IL-27 as well as more recent insights into the molecular and cellular basis for its pleiotropic effects. Many of these advances are relevant to human diseases and highlight the potential of therapies that harness the regulatory properties of IL-27.
Collapse
Affiliation(s)
- Aisling O'Hara Hall
- Department of Pathobiology, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
34
|
Ex vivo stimulation of murine dendritic cells by an exopolysaccharide from one of the anamorph of Cordyceps sinensis. Cell Biochem Funct 2011; 29:555-61. [DOI: 10.1002/cbf.1787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/19/2011] [Accepted: 06/06/2011] [Indexed: 11/07/2022]
|
35
|
Nagai H, Oniki S, Fujiwara S, Yoshimoto T, Nishigori C. Antimelanoma immunotherapy: clinical and preclinical applications of IL-12 family members. Immunotherapy 2011; 2:697-709. [PMID: 20874653 DOI: 10.2217/imt.10.46] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malignant melanoma has been considered a prototypical 'immunogenic' tumor through clinical observations, such as the spontaneous regression of primary lesions, their higher incidence in immune-suppressed individuals, and the development of vitiligo after immunotherapy. Among many cytokines, IL-12 is one of the best characterized and the most potent anti-tumor cytokines. Although the systemic application of IL-12 resulted in disappointing results owing to its considerable toxicity, IL-12 is not entirely unusable in the clinical setting. IL-12-related cytokines, IL-23 and IL-27, have also been shown to possess anti-tumor activities in preclinical models. Although belonging to the same cytokine family, IL-12, IL-23 and IL-27 were found to have different anti-tumor mechanisms, adjuvant activity for tumor vaccines and adverse effects in a poorly immunogeneic melanoma model. In addition, their novel activities on melanoma have been clarified. We briefly review the key features of these members of the IL-12 cytokine family and discuss their potential relevance to melanoma immunity and antimelanoma immunotherapy.
Collapse
Affiliation(s)
- Hiroshi Nagai
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | |
Collapse
|
36
|
Karakhanova S, Bedke T, Enk AH, Mahnke K. IL-27 renders DC immunosuppressive by induction of B7-H1. J Leukoc Biol 2011; 89:837-45. [PMID: 21345970 DOI: 10.1189/jlb.1209788] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IL-27, an IL-12 family member, was initially described as a proinflammatory cytokine. Nevertheless, it also poses anti-inflammatory activity, being involved in suppressing development of TH-17 cells as well as in the induction of inhibitory Tr1 cells. Recent data obtained in mice suggest that it can down-modulate the function of APCs. However, until now, nothing was known about the influence of IL-27 on human DCs. We investigated the effect of IL-27 on in vitro human MoDCs and on ex vivo blood DCs. Our results show that treatment of mDCs with IL-27 led to specific up-regulation of surface expression of several molecules, including B7-H1, in the absence of general DC maturation. Moreover, we demonstrated that IL-27-treated DCs exhibit a reduced capacity to stimulate proliferation and cytokine production of allogeneic T cells as compared with control DCs. Decisively, we identified B7-H1 as a crucial molecule, responsible for suppressive effects of "IL-27 DC" on T cells. Our data demonstrate for the first time that in addition to the dual role of IL-27 in the modulation of T cell activation and differentiation, human IL-27 modulates an immune response through DCs, i.e., by inducing immunosuppressive B7-H1 molecules and reducing the stimulatory potential of DCs.
Collapse
Affiliation(s)
- Svetlana Karakhanova
- Department of Dermatology, University of Heidelberg, Im Neuenheimer Feld 350, Heidelberg, Germany.
| | | | | | | |
Collapse
|
37
|
Dzopalic T, Dragicevic A, Vasilijic S, Vucevic D, Majstorovic I, Bozic B, Balint B, Colic M. Loxoribine, a selective Toll-like receptor 7 agonist, induces maturation of human monocyte-derived dendritic cells and stimulates their Th-1- and Th-17-polarizing capability. Int Immunopharmacol 2010; 10:1428-33. [PMID: 20817120 DOI: 10.1016/j.intimp.2010.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/20/2010] [Accepted: 08/17/2010] [Indexed: 02/08/2023]
Abstract
Recently, a guanosine analog, 7-allyl-7,8-dihydro-8-oxo-guanosine (loxoribine), has been identified as a selective Toll-like receptor (TLR)7 agonist. Bearing in mind the controversy regarding the expression of TLR7 by human myeloid dendritic cells (DCs) and its significance for functions of these cells, the goal of this study was to investigate the effect of loxoribine on differentiation, maturation and functions of human monocyte-derived (Mo)DCs. Immature MoDCs were obtained by cultivation of monocytes for 6 days with recombinant granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-4. These cells were stimulated with loxoribine (250 μM) for an additional 48 h. Phenotypic properties of MoDCs were determined by flow cytometry, cytokine production was assayed by ELISA, whereas their allostimulatory capability was tested using a mixed leukocyte reaction. We showed that loxoribine up-regulated the expression of TLR7, CD40, CD54, CD80, CD83 and CCR7 and stimulated the production of IL-12, IL-23, IL-27 and IL-10 by MoDCs, whereas the level of interferon (IFN)-β was not modulated. Allogeneic CD4(+)T cells in co-culture with loxoribine-treated MoDCs proliferated more strongly, at lower DC/CD4(+)T-cell ratio (1:80), and secreted significantly higher levels of IL-17 and IFN-γ compared to the cultures with control MoDCs. The stimulatory effect of loxoribine on T helper (Th)1 polarization capability of MoDCs was further potentiated by ligation of CD40. In conclusion, our results show that loxoribine stimulated differentiation, maturation, allostimulatory as well as Th1 and Th17 polarization capability of human MoDCs and suggests that these effects might be associated with up-regulation of TLR7 expression, but not increased IFN-β production.
Collapse
Affiliation(s)
- Tanja Dzopalic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu M, Mizoguchi I, Morishima N, Chiba Y, Mizuguchi J, Yoshimoto T. Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27. Clin Dev Immunol 2010; 2010:832454. [PMID: 20885915 PMCID: PMC2946577 DOI: 10.1155/2010/832454] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/16/2010] [Indexed: 02/04/2023]
Abstract
The interleukin (IL)-12 family, which is composed of heterodimeric cytokines including IL-12, IL-23, and IL-27, is produced by antigen-presenting cells such as macrophages and dendritic cells and plays critical roles in the regulation of helper T (Th) cell differentiation. IL-12 induces IFN-γ production by NK and T cells and differentiation to Th1 cells. IL-23 induces IL-17 production by memory T cells and expands and maintains inflammatory Th17 cells. IL-27 induces the early Th1 differentiation and generation of IL-10-producing regulatory T cells. In addition, these cytokines induce distinct immune responses to tumors. IL-12 activates signal transducers and activator of transcription (STAT)4 and enhances antitumor cellular immunity through interferon (IFN)-γ production. IL-27 activates STAT1, as does IFN-γ and STAT3 as well, and enhances antitumor immunity by augmenting cellular and humoral immunities. In contrast, although exogenously overexpressed IL-23 enhances antitumor immunity via memory T cells, endogenous IL-23 promotes protumor immunity through STAT3 activation by inducing inflammatory responses including IL-17 production.
Collapse
Affiliation(s)
- Mingli Xu
- Intractable Disease Research Center, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Intractable Disease Research Center, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Noriko Morishima
- Intractable Disease Research Center, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yukino Chiba
- Intractable Disease Research Center, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Junichiro Mizuguchi
- Intractable Disease Research Center, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takayuki Yoshimoto
- Intractable Disease Research Center, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
39
|
Silver JS, Hunter CA. gp130 at the nexus of inflammation, autoimmunity, and cancer. J Leukoc Biol 2010; 88:1145-56. [PMID: 20610800 DOI: 10.1189/jlb.0410217] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycoprotein 130 (gp130) is a shared receptor utilized by several related cytokines, including IL-6, IL-11, IL-27, Leukemia Inhibitory Factor (LIF), Oncostatin M (OSM), Ciliary Neurotrophic Factor (CNTF), Cardiotrophin 1 (CT-1) and Cardiotrophin-like Cytokine (CLC). Gp130 plays critical roles during development and gp130-deficient mice are embryonically lethal. However, the best characterized facet of this receptor and its associated cytokines is the ability to promote or suppress inflammation. The aim of this review is to discuss the role of gp130 in promoting or preventing the development of autoimmunity and cancer, two processes that are associated with aberrant inflammatory responses.
Collapse
Affiliation(s)
- J S Silver
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19143, USA
| | | |
Collapse
|
40
|
Tsai BY, Lin YL, Chiang BL. Autoimmune response induced by dendritic cells exerts anti-tumor effect in murine model of leukemia. J Autoimmun 2010; 34:364-70. [DOI: 10.1016/j.jaut.2009.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/29/2009] [Accepted: 08/29/2009] [Indexed: 01/20/2023]
|
41
|
A pivotal role for interleukin-27 in CD8+ T cell functions and generation of cytotoxic T lymphocytes. J Biomed Biotechnol 2010; 2010:605483. [PMID: 20454646 PMCID: PMC2862320 DOI: 10.1155/2010/605483] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/13/2010] [Indexed: 02/02/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play a critical role in the control of various cancers and infections, and therefore the molecular mechanisms of CTL generation are a critical issue in designing antitumor immunotherapy and vaccines which augment the development of functional and long-lasting memory CTLs. Interleukin (IL)-27, a member of the IL-6/IL-12 heterodimeric cytokine family, acts on naive CD4+ T cells and plays pivotal roles as a proinflammatory cytokine to promote the early initiation of type-1 helper differentiation and also as an antiinflammatory cytokine to limit the T cell hyperactivity and production of pro-inflammatory cytokines. Recent studies revealed that IL-27 plays an important role in CD8+ T cells as well. Therefore, this article reviews current understanding of the role of IL-27 in CD8+ T cell functions and generation of CTLs.
Collapse
|
42
|
Henry CJ, Grayson JM, Brzoza-Lewis KL, Mitchell LM, Westcott MM, Cook AS, Hiltbold EM. The roles of IL-12 and IL-23 in CD8+ T cell-mediated immunity against Listeria monocytogenes: Insights from a DC vaccination model. Cell Immunol 2010; 264:23-31. [PMID: 20483409 PMCID: PMC2902594 DOI: 10.1016/j.cellimm.2010.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/21/2010] [Indexed: 02/02/2023]
Abstract
Listeria monocytogenes infection induces a strong inflammatory response characterized by the production of IL-12 and IFN-gamma and protective immunity against this pathogen is dependent on CD8+ T cells (CTL). Recent studies have suggested that these inflammatory cytokines affect the rate of memory CD8+ T cell generation as well as the number of short-lived effector cells generated. The role of the closely related cytokine, IL-23, in this response has not been examined. We hypothesized that IL-12 and IL-23 produced by dendritic cells collectively enhance the generation and function of memory cells. To test this hypothesis, we employed a DC vaccination approach. Mice lacking IL-12 and IL-23 were vaccinated with wild-type (WT), IL-12(-/-), or IL-12/23(-/-) DC and protection to Lm was monitored. Mice vaccinated with WT and IL-12(-/-) DC were resistant to lethal challenge with Lm. Surprisingly, mice vaccinated with IL-12/23(-/-) DC exhibited significantly reduced protection when challenged. Protection correlated with the relative size of the memory pools generated. In summary, these data indicate that IL-23 can partially compensate for the lack of IL-12 in the generation protective immunity against Lm.
Collapse
Affiliation(s)
- Curtis J. Henry
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 88010
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
| | - Jason M. Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Kristina L. Brzoza-Lewis
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Latoya M. Mitchell
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Department of Microbiology, University of Alabama-Birmingham, Birmingham, AL 35243
| | - Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Anne S. Cook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Elizabeth M. Hiltbold
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
43
|
Jandus C, Speiser D, Romero P. Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res 2009; 22:711-23. [DOI: 10.1111/j.1755-148x.2009.00634.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Yoshida H, Nakaya M, Miyazaki Y. Interleukin 27: a double-edged sword for offense and defense. J Leukoc Biol 2009; 86:1295-303. [DOI: 10.1189/jlb.0609445] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
45
|
Yoshida H. [Immune regulation by IL-27 for therapeutic usage]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2009; 32:202-13. [PMID: 19721340 DOI: 10.2177/jsci.32.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytokine-mediated immunity plays a crucial role in the pathogenesis of various diseases including autoimmunity. Recently, IL-27 was identified, which along with IL-12, 23 and 35 belongs to the IL-12 cytokine family. These family members play roles in regulation of Th cell differentiation. IL-27 is unique in that while it induces Th1 differentiation, the same cytokine suppresses immune responses. In the absence of IL-27-mediated immunosuppression, hyper-production of various pro-inflammatory cytokines concomitant with severe inflammation in affected organs was observed in IL-27 receptor alpha chain (WSX-1)-deficient mice infected with Trypanosoma cruzi. Experimental allergic or inflammatory responses were also enhanced in WSX-1-deficient mice. The immunosuppressive effects of IL-27 depend on inhibition of the development of Th 17 cells (a newly identified inflammatory T helper population), and induction of IL-10 production. Moreover, administration of IL-27 or augmentation of IL-27 signaling suppresses some diseases of autoimmune or allergic origin, including encephalitis, arthritis, and systemic lupus erythematosus, demonstrating its potential in therapy of diseases mediated by inflammatory cytokines.
Collapse
Affiliation(s)
- Hiroki Yoshida
- Department of Biomolecular Sciences, Faculty of Medicine, Saga University
| |
Collapse
|