1
|
Ma J, Tang L, Xiao J, Tang K, Zhang H, Huang B. Burning lactic acid: a road to revitalizing antitumor immunity. Front Med 2025:10.1007/s11684-025-1126-6. [PMID: 40119026 DOI: 10.1007/s11684-025-1126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/16/2024] [Indexed: 03/24/2025]
Abstract
Lactic acid (LA) accumulation in tumor microenvironments (TME) has been implicated in immune suppression and tumor progress. Diverse roles of LA have been elucidated, including microenvironmental pH regulation, signal transduction, post-translational modification, and metabolic remodeling. This review summarizes LA functions within TME, focusing on the effects on tumor cells, immune cells, and stromal cells. Reducing LA levels is a potential strategy to attack cancer, which inevitably affects the physiological functions of normal tissues. Alternatively, transporting LA into the mitochondria as an energy source for immune cells is intriguing. We underscore the significance of LA in both tumor biology and immunology, proposing the burning of LA as a potential therapeutic approach to enhance antitumor immune responses.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - Liang Tang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jingxuan Xiao
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Liu Y, Yang Z, Lin N, Liu Y, Chen H. Highly expressed VGLL3 in keloid fibroblasts promotes glycolysis and collagen production via the activation of Wnt/β-catenin signaling. Cell Signal 2025; 127:111604. [PMID: 39826675 DOI: 10.1016/j.cellsig.2025.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE This study investigated the effects and related mechanisms of Vestigial-like family member 3 (VGLL3) on keloid fibroblast (KF) proliferation, apoptosis, collagen production, and glycolysis. METHODS Western blot, qRT-PCR, and immunohistochemistry were used for determining VGLL3 expression. KF viability, proliferation, and apoptosis were assessed using CCK-8 assay, EdU assay, and flow cytometry. Changes in the protein expression levels of α-SMA, fibronectin, collagen I, and collagen III were examined utilizing western blotting. The pathways related to VGLL3 were analyzed using Gene Set Enrichment Analysis. Changes in glycolysis were assessed by measuring oxygen consumption rate (OCR), extracellular acidification rate (ECAR), glucose uptake, and lactate production. WNT2 and β-catenin protein levels were measured using western blotting. RESULTS VGLL3 was upregulated in human keloid tissues. In KFs, overexpression of VGLL3 inhibited cell apoptosis, promoted cell proliferation and protein expression of α-SMA, fibronectin, collagen I, and collagen III. Moreover, it reduced OCR level, and increased the levels of ECAR, glucose uptake, and lactate production. On the other hand, the knockdown of VGLL3 had the opposite effect. WNT2 and β-catenin protein levels were enhanced by overexpression of VGLL3 and reduced by VGLL3 knockdown. Silencing of WNT2 reversed the effects of VGLL3 on apoptosis, proliferation, collagen production, and glycolysis in KFs. CONCLUSIONS VGLL3 promoted glycolysis in KFs and keloid progression, which was achieved through the activation of Wnt signaling pathway. Therefore, targeting VGLL3 may be a promising therapeutic strategy for the treatment of keloids.
Collapse
Affiliation(s)
- Yining Liu
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, PR China; Medical College, Qingdao University, Qingdao 266003, Shandong, PR China
| | - Zelei Yang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Nan Lin
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Huaxia Chen
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China.
| |
Collapse
|
3
|
Bolek H, Kuzu OF, Sertesen Camoz E, Sim S, Sekmek S, Karakas H, Isık S, Günaltılı M, Akkus AF, Tural D, Arslan C, Goksu SS, Sever ON, Karadurmus N, Karacin C, Sendur MAN, Yekedüz E, Urun Y. Evaluating the prognostic role of glucose-to-lymphocyte ratio in patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitors in first line: a study by the Turkish Oncology Group Kidney Cancer Consortium (TKCC). Clin Transl Oncol 2025:10.1007/s12094-024-03813-w. [PMID: 39812937 DOI: 10.1007/s12094-024-03813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Identifying prognostic indicators for risk stratification in metastatic renal cell carcinoma (mRCC) is crucial for optimizing treatment strategies and follow-up plans. This study aims to investigate the prognostic role of the glucose-to-lymphocyte ratio (GLR) in patients with mRCC receiving tyrosine kinase inhibitors (TKIs) as first-line therapy. METHODS A retrospective cohort study was conducted using data from the Turkish Oncology Group Kidney Cancer Consortium Database. GLR was calculated by dividing the fasting glucose (mmol/L) by the lymphocyte count (×109/L). We categorized patients into two categories based on their median GLR level. RESULTS The analysis included a total of 598 patients. We found that progression-free survival (PFS) was significantly longer in the GLR-low group, with a median PFS of 15.05 months (95% CI 12.7-17.4) compared to 7.79 months (95% CI 6.6-9.0) in the GLR-high group (p < 0.001). Multivariate analysis identified GLR as an independent risk factor for poor PFS (HR 1.39, 95% CI 1.12-1.72; p = 0.003). Overall survival (OS) was also significantly longer in the GLR-low group, with a median OS of 38.47 months (95% CI, 30.9-46.0) compared to 24.15 months (95% CI 18.0-30.2) in the GLR-high group (p = 0.001). GLR was an independent predictor for OS in multivariate analysis (HR 1.45, 95% CI 1.12-1.86; p = 0.004). CONCLUSION The GLR can be a valuable prognostic marker for glucose metabolism and systemic inflammatory status in this patient population. Our research highlights the potential prognostic value of GLR in patients with mRCC receiving TKIs, indicating its potential as a useful tool for clinical decision-making.
Collapse
Affiliation(s)
- Hatice Bolek
- Department of Medical Oncology, Ankara University School of Medicine, 06590, Ankara, Türkiye
- Ankara University Cancer Institute, Ankara, Türkiye
| | - Omer Faruk Kuzu
- Department of Medical Oncology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| | - Elif Sertesen Camoz
- Department of Medical Oncology, Dr Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| | - Saadet Sim
- Department of Medical Oncology, Ege University School of Medicine, Izmir, Türkiye
| | - Serhat Sekmek
- Department of Medical Oncology, Bilkent City Hospital, Ankara, Türkiye
| | - Hilal Karakas
- Department of Medical Oncology, Bilkent City Hospital, Ankara, Türkiye
| | - Selver Isık
- Department of Medical Oncology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Murat Günaltılı
- Department of Medical Oncology, Cerrahpasa School of Medicine, Istanbul, Türkiye
| | - Aysun Fatma Akkus
- Department of Medical Oncology, Trakya University School of Medicine, Edirne, Türkiye
| | - Deniz Tural
- Department of Medical Oncology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Cagatay Arslan
- Medical Point Hospital, Izmir University of Economics, Izmir, Türkiye
| | - Sema Sezin Goksu
- Department of Medical Oncology, Akdeniz University School of Medicine, Antalya, Türkiye
| | - Ozlem Nuray Sever
- Department of Medical Oncology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Türkiye
| | - Nuri Karadurmus
- Department of Medical Oncology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| | - Cengiz Karacin
- Department of Medical Oncology, Dr Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| | | | - Emre Yekedüz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuksel Urun
- Department of Medical Oncology, Ankara University School of Medicine, 06590, Ankara, Türkiye.
- Ankara University Cancer Institute, Ankara, Türkiye.
| |
Collapse
|
4
|
Miller ML, Thauland TJ, Nagarajan R, Zuo WE, Moreno Lastre MA, Butte MJ. Enhancing tumor-infiltrating T cells with an exclusive fuel source. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.20.595053. [PMID: 38826342 PMCID: PMC11142041 DOI: 10.1101/2024.05.20.595053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Solid tumors harbor immunosuppressive microenvironments that inhibit tumor-infiltrating lymphocytes (TILs) through the voracious consumption of glucose. We sought to restore TIL function by providing them with an exclusive fuel source. The glucose disaccharide cellobiose, which is the building block of cellulose, contains a β-1,4-glycosidic bond that that animals (or their tumors) cannot hydrolyze, but microbes have evolved enzymes to catabolize cellobiose into useful glucose. We equipped mouse T cells and human CAR-T cells with two proteins enabling import and hydrolysis of cellobiose and demonstrated that cellobiose supplementation during glucose withdrawal restores key anti-tumor T-cell functions: viability, proliferation, cytokine production, and cytotoxic killing. Engineered T cells offered cellobiose suppress murine tumor growth and prolong survival. Offering exclusive access to a natural disaccharide is a new tool that augments cancer immunotherapies. This approach could be used to answer questions about glucose metabolism across many cell types, biological processes, and diseases.
Collapse
|
5
|
Lefler DS, Manobianco SA, Bashir B. Immunotherapy resistance in solid tumors: mechanisms and potential solutions. Cancer Biol Ther 2024; 25:2315655. [PMID: 38389121 PMCID: PMC10896138 DOI: 10.1080/15384047.2024.2315655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
While the emergence of immunotherapies has fundamentally altered the management of solid tumors, cancers exploit many complex biological mechanisms that result in resistance to these agents. These encompass a broad range of cellular activities - from modification of traditional paradigms of immunity via antigen presentation and immunoregulation to metabolic modifications and manipulation of the tumor microenvironment. Intervening on these intricate processes may provide clinical benefit in patients with solid tumors by overcoming resistance to immunotherapies, which is why it has become an area of tremendous research interest with practice-changing implications. This review details the major ways cancers avoid both natural immunity and immunotherapies through primary (innate) and secondary (acquired) mechanisms of resistance, and it considers available and emerging therapeutic approaches to overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Daniel S. Lefler
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven A. Manobianco
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Mi T, Kong X, Chen M, Guo P, He D. Inducing disulfidptosis in tumors:potential pathways and significance. MedComm (Beijing) 2024; 5:e791. [PMID: 39415848 PMCID: PMC11480524 DOI: 10.1002/mco2.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.
Collapse
Affiliation(s)
- Tao Mi
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Xiangpan Kong
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Meiling Chen
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Peng Guo
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
- Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouP.R. China
| | - Dawei He
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| |
Collapse
|
7
|
Guo M, Sun Y, Wang X, Wang Z, Yuan X, Chen X, Yuan X, Wang L. The MCIB Model: A Novel Theory for Describing the Spatial Heterogeneity of the Tumor Microenvironment. Int J Mol Sci 2024; 25:10486. [PMID: 39408814 PMCID: PMC11476373 DOI: 10.3390/ijms251910486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment (TME) can be regarded as a complex and dynamic microecosystem generated by the interactions of tumor cells, interstitial cells, the extracellular matrix, and their products and plays an important role in the occurrence, progression and metastasis of tumors. In a previous study, we constructed an IEO model (prI-, prE-, and pOst-metastatic niche) according to the chronological sequence of TME development. In this paper, to fill the theoretical gap in spatial heterogeneity in the TME, we defined an MCIB model (Metabolic, Circulatory, Immune, and microBial microenvironment). The MCIB model divides the TME into four subtypes that interact with each other in terms of mechanism, corresponding to the four major links of metabolic reprogramming, vascular remodeling, immune response, and microbial action, providing a new way to assess the TME. The combination of the MCIB model and IEO model comprehensively depicts the spatiotemporal evolution of the TME and can provide a theoretical basis for the combination of clinical targeted therapy, immunotherapy, and other comprehensive treatment modalities for tumors according to the combination and crosstalk of different subtypes in the MCIB model and provide a powerful research paradigm for tumor drug-resistance mechanisms and tumor biological behavior.
Collapse
Affiliation(s)
- Minghao Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Yinan Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zikun Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| |
Collapse
|
8
|
Yin B, Liu Q, Zheng Y, Gao H, Lin Y, Zhao Z. The prognostic value and its relationship with immune infiltration of ACLY in clear cell renal cell carcinoma. Transl Oncol 2024; 47:102056. [PMID: 38970915 PMCID: PMC11283030 DOI: 10.1016/j.tranon.2024.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
ATP citrate lyase (ACLY) is activated in various cancers, but its role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. Herein, we investigated the prognostic role and potential mechanism of ACLY in ccRCC. The expression profile of ACLY in ccRCC was explored using Gene Expression Profiling Interactive Analysis 2 (GEPIA2), Gene Expression Omnibus (GEO), UALCAN and western blotting assays. The prognosis was investigated using immunohistochemistry (IHC) and Kaplan-Meier plotter assays. The relationship with immune infiltration was further evaluated using Tumor Immune Estimation Resource 2 (TIMER2) and Tumor Immune System Interactions and DrugBank (TISIDB) databases, respectively. Further biological function of ACLY in ccRCC pathogenesis was explored using in vitro experiments. ACLY level was higher in ccRCC than adjacent kidney tissues, and Kaplan-Meier survival analysis showed ACLY mRNA or protein were predictors of poor prognosis in ccRCC patients. Importantly, we reported for the first time that ACLY gene expression was significantly correlated with numerous immune cells and immune inhibitors in ccRCC. ACLY inhibition significantly impaired cell proliferation, induced cell apoptosis, attenuated cell migration, decreased lipid droplets formation, and suppressed epithelial-mesenchymal transition (EMT) of ccRCC. Moreover, these effects might be acted through mammalian target of rapamycin complex 1 (mTORC1) pathway. Collectively, ACLY was not only implicated in ccRCC tumorigenesis and progression, but also potentially interacted with immune infiltration and mTORC1 pathway. Our findings may provide a novel therapeutic strategy by targeting ACLY for ccRCC treatment.
Collapse
Affiliation(s)
- Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan 250014, China
| | - Qiang Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Yabing Zheng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan 250014, China
| | - Huayu Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Yun Lin
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan 250014, China
| | - Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.
| |
Collapse
|
9
|
Zhuo Z, Wang Y, Xu Y. Advancements in research on lactate dehydrogenase A in urinary system tumors. BMC Urol 2024; 24:187. [PMID: 39215270 PMCID: PMC11363645 DOI: 10.1186/s12894-024-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Tumors of the urinary system, such as prostate cancer, bladder cancer, and renal cell carcinoma, are among the most prevalent types of tumors. They often remain asymptomatic in their early stages, with some patients experiencing recurrence or metastasis post-surgery, leading to disease progression. Lactate dehydrogenase A (LDHA) plays a crucial role in the glycolysis pathway and is closely associated with anaerobic glycolysis in urinary system tumors. Therefore, a comprehensive investigation into the intricate mechanism of LDHA in these tumors can establish a theoretical foundation for early diagnosis and advanced treatment. This review consolidates the current research and applications of LDHA in urinary system tumors, with the aim of providing researchers with a distinct perspective.
Collapse
Affiliation(s)
- Zhiyuan Zhuo
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Yu Wang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Yifan Xu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China.
| |
Collapse
|
10
|
Ucche S, Hayakawa Y. Immunological Aspects of Cancer Cell Metabolism. Int J Mol Sci 2024; 25:5288. [PMID: 38791327 PMCID: PMC11120853 DOI: 10.3390/ijms25105288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer cells adeptly manipulate their metabolic processes to evade immune detection, a phenomenon intensifying the complexity of cancer progression and therapy. This review delves into the critical role of cancer cell metabolism in the immune-editing landscape, highlighting how metabolic reprogramming facilitates tumor cells to thrive despite immune surveillance pressures. We explore the dynamic interactions within the tumor microenvironment (TME), where cancer cells not only accelerate their glucose and amino acid metabolism but also induce an immunosuppressive state that hampers effective immune response. Recent findings underscore the metabolic competition between tumor and immune cells, particularly focusing on how this interaction influences the efficacy of emerging immunotherapies. By integrating cutting-edge research on the metabolic pathways of cancer cells, such as the Warburg effect and glutamine addiction, we shed light on potential therapeutic targets. The review proposes that disrupting these metabolic pathways could enhance the response to immunotherapy, offering a dual-pronged strategy to combat tumor growth and immune evasion.
Collapse
Affiliation(s)
- Sisca Ucche
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yoshihiro Hayakawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
| |
Collapse
|
11
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
12
|
Coffey NJ, Simon MC. Metabolic alterations in hereditary and sporadic renal cell carcinoma. Nat Rev Nephrol 2024; 20:233-250. [PMID: 38253811 PMCID: PMC11165401 DOI: 10.1038/s41581-023-00800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Kidney cancer is the seventh leading cause of cancer in the world, and its incidence is on the rise. Renal cell carcinoma (RCC) is the most common form and is a heterogeneous disease comprising three major subtypes that vary in their histology, clinical course and driver mutations. These subtypes include clear cell RCC, papillary RCC and chromophobe RCC. Molecular analyses of hereditary and sporadic forms of RCC have revealed that this complex and deadly disease is characterized by metabolic pathway alterations in cancer cells that lead to deregulated oxygen and nutrient sensing, as well as impaired tricarboxylic acid cycle activity. These metabolic changes facilitate tumour growth and survival. Specifically, studies of the metabolic features of RCC have led to the discovery of oncometabolites - fumarate and succinate - that can promote tumorigenesis, moonlighting functions of enzymes, and substrate auxotrophy owing to the disruption of pathways that enable the production of arginine and cholesterol. These metabolic alterations within RCC can be exploited to identify new therapeutic targets and interventions, in combination with novel approaches that minimize the systemic toxicity of metabolic inhibitors and reduce the risk of drug resistance owing to metabolic plasticity.
Collapse
Affiliation(s)
- Nathan J Coffey
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Hamadamin PS, Maulood KA. Exploring the anticancer potential of hydrogen sulfide and BAY‑876 on clear cell renal cell carcinoma cells: Uncovering novel mutations in VHL and KDR genes among ccRCC patients. Mol Clin Oncol 2024; 20:21. [PMID: 38332991 PMCID: PMC10851183 DOI: 10.3892/mco.2024.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
The aim of the present study was to determine the cytotoxic effect of BAY-876 and NaSH alone or in combination with sunitinib against the 786-O cell line (renal adenocarcinoma). The IC50 of sunitinib, BAY-876 and NaSH were estimated. Cells were cultured in a 96-well plate and then different concentration of each drug alone was exposed for different incubation time; afterwards, cell cytotoxicity was measured using Cell Counting Kit-8 kit. The IC50 for each drug was used in next experiment to determine the influence of drug combinations. Furthermore, to observe the effect of mutations of few driver genes in development of clear cell renal cell carcinoma (ccRCC), direct sanger sequencing was used to find single nucleotide polymorphisms in exon 1 and exon 13 of tumor suppressor gene Von Hippel Lindau (VHL) and kinase insert domain receptor (KDR) genes respectively in ccRCC formalin fixed paraffin embedded block samples. The results revealed that the IC50 for sunitinib (after 72 h), BAY-876 (after 96 h) and NaSH (after 48 h) was 5.26, 53.56 and 692 µM respectively. The cytotoxic effect of sunitinib and BAY-876, sunitinib and NaSH combinations after 24- and 48-h incubation respectively was significantly higher (P<0.05) compared with the control group as well as to sunitinib group alone. These results proved that each of BAY-876 and NaSH have anticancer effect; thus, they could be used in future for ccRCC treatment purpose. Furthermore, direct sequencing results demonstrated unrecorded mutations of VHL and KDR genes is 43.7 and 31.5% of cases respectively. These findings confirmed the leading role of VHL gene in development of ccRCC and the crucial role of KDR gene in angiogenesis and drug resistance.
Collapse
Affiliation(s)
- Peshraw Salih Hamadamin
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan 44002, Iraq
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan 44001, Iraq
| | - Kalthum Asaf Maulood
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan 44002, Iraq
| |
Collapse
|
14
|
Farah C, Mignion L, Jordan BF. Metabolic Profiling to Assess Response to Targeted and Immune Therapy in Melanoma. Int J Mol Sci 2024; 25:1725. [PMID: 38339003 PMCID: PMC10855758 DOI: 10.3390/ijms25031725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
There is currently no consensus to determine which advanced melanoma patients will benefit from targeted therapy, immunotherapy, or a combination of both, highlighting the critical need to identify early-response biomarkers to advanced melanoma therapy. The goal of this review is to provide scientific rationale to highlight the potential role of metabolic imaging to assess response to targeted and/or immune therapy in melanoma cancer. For that purpose, a brief overview of current melanoma treatments is provided. Then, current knowledge with respect to melanoma metabolism is described with an emphasis on major crosstalks between melanoma cell metabolism and signaling pathways involved in BRAF-targeted therapy as well as in immune checkpoint inhibition therapies. Finally, preclinical and clinical studies using metabolic imaging and/or profiling to assess response to melanoma treatment are summarized with a particular focus on PET (Positron Emission Tomography) imaging and 13C-MRS (Magnetic Resonance Spectroscopy) methods.
Collapse
Affiliation(s)
- Chantale Farah
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| |
Collapse
|
15
|
Zhang X, Song W, Gao Y, Zhang Y, Zhao Y, Hao S, Ni T. The Role of Tumor Metabolic Reprogramming in Tumor Immunity. Int J Mol Sci 2023; 24:17422. [PMID: 38139250 PMCID: PMC10743965 DOI: 10.3390/ijms242417422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The occurrence and development of tumors require the metabolic reprogramming of cancer cells, namely the alteration of flux in an autonomous manner via various metabolic pathways to meet increased bioenergetic and biosynthetic demands. Tumor cells consume large quantities of nutrients and produce related metabolites via their metabolism; this leads to the remodeling of the tumor microenvironment (TME) to better support tumor growth. During TME remodeling, the immune cell metabolism and antitumor immune activity are affected. This further leads to the escape of tumor cells from immune surveillance and therefore to abnormal proliferation. This review summarizes the regulatory functions associated with the abnormal biosynthesis and activity of metabolic signaling molecules during the process of tumor metabolic reprogramming. In addition, we provide a comprehensive description of the competition between immune cells and tumor cells for nutrients in the TME, as well as the metabolites required for tumor metabolism, the metabolic signaling pathways involved, and the functionality of the immune cells. Finally, we summarize current research targeted at the development of tumor immunotherapy. We aim to provide new concepts for future investigations of the mechanisms underlying the metabolic reprogramming of tumors and explore the association of these mechanisms with tumor immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (W.S.); (Y.G.); (Y.Z.); (Y.Z.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (W.S.); (Y.G.); (Y.Z.); (Y.Z.)
| |
Collapse
|
16
|
Wu J, Lu Z, Zhao H, Lu M, Gao Q, Che N, Wang J, Ma T. The expanding Pandora's toolbox of CD8 +T cell: from transcriptional control to metabolic firing. J Transl Med 2023; 21:905. [PMID: 38082437 PMCID: PMC10714647 DOI: 10.1186/s12967-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
CD8+ T cells are the executor in adaptive immune response, especially in anti-tumor immunity. They are the subset immune cells that are of high plasticity and multifunction. Their development, differentiation, activation and metabolism are delicately regulated by multiple factors. Stimuli from the internal and external environment could remodel CD8+ T cells, and correspondingly they will also make adjustments to the microenvironmental changes. Here we describe the most updated progresses in CD8+ T biology from transcriptional regulation to metabolism mechanisms, and also their interactions with the microenvironment, especially in cancer and immunotherapy. The expanding landscape of CD8+ T cell biology and discovery of potential targets to regulate CD8+ T cells will provide new viewpoints for clinical immunotherapy.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhendong Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hong Zhao
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
17
|
Shao J, Jin Y, Jin C. A new approach to overcoming resistance to immunotherapy: nanotechnology. Front Oncol 2023; 13:1210245. [PMID: 37637050 PMCID: PMC10457008 DOI: 10.3389/fonc.2023.1210245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapy for immune response has ushered in a new era of cancer treatment. In recent years, new immunotherapeutic agents have been introduced into clinical trials and even approved for marketing. However, the widespread use of immunotherapeutic agents faces an unavoidable challenge: immunotherapy does not work at all for some patients, or has good efficacy in the initial phase, but immunotherapy resistance develops within a short period of time, and immunotherapy can also cause serious adverse effects such as autoimmune inflammation and non-specific inflammation. How to enable patients to overcome drug resistance, reduce the toxic side effects of drugs, enhance patient compliance and improve patient survival has become a problem that clinicians have to face. The advent of nanotechnology provides an encouraging platform for immunotherapy. It can not only improve the bioavailability and stability of drugs and reduce toxic side effects, but also reduce resistance to immunotherapy. Here, we discuss these research advances and discuss potential challenges and future directions.
Collapse
Affiliation(s)
- Jiangbo Shao
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Chen J, Wu F, Cao Y, Xing Y, Liu Q, Zhao Z. The novel role of LDHA/LDHB in the prognostic value and tumor-immune infiltration in clear cell renal cell carcinoma. PeerJ 2023; 11:e15749. [PMID: 37547725 PMCID: PMC10402698 DOI: 10.7717/peerj.15749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial glycolytic enzyme which mediates the metabolic plasticity of cancer cells, however its clinical significance in renal cell carcinoma (RCC) is poorly understood. Herein, we examined the prognostic significance of the two primary components of LDH, i.e., LDHA and LDHB, in clear cell RCC (ccRCC) patients and further explored their association with immune infiltration in ccRCC. In this study, the expression levels of LDHA and LDHB were examined in ccRCC and adjacent normal tissues by Gene Expression Profiling Interactive Analysis 2 (GEPIA2), UALCAN, and western blotting (WB) analyses, and their prognostic values were estimated in 150 ccRCC and 30 adjacent normal tissues by immunohistochemistry (IHC) analysis. The relationship to immune infiltration of LDHA and LDHB genes was further investigated using tumor immune estimation resource 2 (TIMER2) and Tumor-Immune System Interactions and DrugBank (TISIDB) databases, respectively. Public databases and WB analyses demonstrated higher LDHA and lower LDHB in ccRCC than in non-tumor tissues. IHC analysis revealed that LDHA and LDHB expression profiles were significantly associated with tumor grade, stage, size, and overall survival (OS). Univariate survival analysis displayed that high grade, advanced stage, large tumor, metastasis, high LDHA, and low LDHB expression were significantly associated with a poorer OS, and multivariate analysis revealed tumor stage and LDHB were identified as independent predictors for OS in patients with ccRCC. Further TIMER2 and TISIDB analyses demonstrated that LDHA and LDHB expression was significantly related to multiple immune cells and immune inhibitors in over 500 ccRCC patients. These findings revealed that LDHB was an independent favorable predictor, and LDHA and LDHB correlated with tumor immune infiltrates in ccRCC patients, which indicated LDHA/LDHB could be implicated in the tumorigenesis of ccRCC and might be potential therapeutic targets for patients with ccRCC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yehua Cao
- Department of Gastroenterology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Qingyong Liu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, Shandong, China
| |
Collapse
|
19
|
Nishiwaki N, Noma K, Ohara T, Kunitomo T, Kawasaki K, Akai M, Kobayashi T, Narusaka T, Kashima H, Sato H, Komoto S, Kato T, Maeda N, Kikuchi S, Tanabe S, Tazawa H, Shirakawa Y, Fujiwara T. Overcoming cancer-associated fibroblast-induced immunosuppression by anti-interleukin-6 receptor antibody. Cancer Immunol Immunother 2023; 72:2029-2044. [PMID: 36764954 PMCID: PMC9916502 DOI: 10.1007/s00262-023-03378-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/15/2023] [Indexed: 02/12/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a critical component of the tumor microenvironment and play a central role in tumor progression. Previously, we reported that CAFs might induce tumor immunosuppression via interleukin-6 (IL-6) and promote tumor progression by blocking local IL-6 in the tumor microenvironment with neutralizing antibody. Here, we explore whether an anti-IL-6 receptor antibody could be used as systemic therapy to treat cancer, and further investigate the mechanisms by which IL-6 induces tumor immunosuppression. In clinical samples, IL-6 expression was significantly correlated with α-smooth muscle actin expression, and high IL-6 cases showed tumor immunosuppression. Multivariate analysis showed that IL-6 expression was an independent prognostic factor. In vitro, IL-6 contributed to cell proliferation and differentiation into CAFs. Moreover, IL-6 increased hypoxia-inducible factor 1α (HIF1α) expression and induced tumor immunosuppression by enhancing glucose uptake by cancer cells and competing for glucose with immune cells. MR16-1, a rodent analog of anti-IL-6 receptor antibody, overcame CAF-induced immunosuppression and suppressed tumor progression in immunocompetent murine cancer models by regulating HIF1α activation in vivo. The anti-IL-6 receptor antibody could be systemically employed to overcome tumor immunosuppression and improve patient survival with various cancers. Furthermore, the tumor immunosuppression was suggested to be induced by IL-6 via HIF1α activation.
Collapse
Affiliation(s)
- Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Pathology & Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kento Kawasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaaki Akai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Teruki Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toru Narusaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroaki Sato
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoshi Komoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoaki Maeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Tanabe
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
20
|
Tang T, Huang X, Lu M, Zhang G, Han X, Liang T. Transcriptional control of pancreatic cancer immunosuppression by metabolic enzyme CD73 in a tumor-autonomous and -autocrine manner. Nat Commun 2023; 14:3364. [PMID: 37291128 PMCID: PMC10250326 DOI: 10.1038/s41467-023-38578-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Cancer cell metabolism contributes to the establishment of an immunosuppressive tumor microenvironment. Aberrant expression of CD73, a critical enzyme in ATP metabolism, on the cell surface results in the extracellular accumulation of adenosine, which exhibits direct inhibitory effects on tumor-infiltrating lymphocytes. However, little is known about the influence of CD73 on negative immune regulation-associated signaling molecules and transduction pathways inside tumor cells. This study aims to demonstrate the moonlighting functions of CD73 in immunosuppression in pancreatic cancer, an ideal model characterized by complex crosstalk among cancer metabolism, immune microenvironment, and immunotherapeutic resistance. The synergistic effect of CD73-specific drugs in combination with immune checkpoint blockade is observed in multiple pancreatic cancer models. Cytometry by time-of-flight analysis shows that CD73 inhibition reduces tumor-infiltrating Tregs in pancreatic cancer. Tumor cell-autonomous CD73 is found to facilitate Treg recruitment, in which CCL5 is identified as a significant downstream effector of CD73 using integrated proteomic and transcriptomic analyses. CD73 transcriptionally upregulates CCL5 through tumor cell-autocrine adenosine-Adora2a signaling-mediated activation of the p38-STAT1 axis, recruiting Tregs to pancreatic tumors and causing an immunosuppressive microenvironment. Together, this study highlights that CD73-adenosine metabolism transcriptionally controls pancreatic cancer immunosuppression in a tumor-autonomous and -autocrine manner.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Minghao Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xu Han
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Wu Z, Ge L, Song Y, Deng S, Duan P, Du T, Wu Y, Zhang Z, Hou X, Ma L, Zhang S. ATAD2 promotes glycolysis and tumor progression in clear cell renal cell carcinoma by regulating the transcriptional activity of c-Myc. Discov Oncol 2023; 14:79. [PMID: 37233956 DOI: 10.1007/s12672-023-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urogenital tract. Given that ccRCC is often resistant to radiotherapy and traditional chemotherapy, the clinical treatment of patients with ccRCC remains a challenge. The present study found that ATAD2 was significantly upregulated in ccRCC tissues. In vitro and in vivo experiments showed that the inhibition of ATAD2 expression mitigated the aggressive phenotype of ccRCC. ATAD2 was also associated with glycolysis in ccRCC. Interestingly, we found that ATAD2 could physically interact with c-Myc and promote the expression of its downstream target gene, thereby enhancing the Warburg effect of ccRCC. Overall, our study emphasizes the role of ATAD2 in ccRCC. The targeted expression or functional regulation of ATAD2 could be a promising method to reduce the proliferation and progression of ccRCC.
Collapse
Affiliation(s)
- Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Liyuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yimeng Song
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Shaohui Deng
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Peichen Duan
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Tan Du
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yaqian Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Zhanyi Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xiaofei Hou
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China.
| | - Shudong Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China.
| |
Collapse
|
22
|
Steeghs JPJM, Offermans K, Jenniskens JCA, Samarska I, Fazzi GE, van den Brandt PA, Grabsch HI. Relationship between the Warburg effect in tumour cells and the tumour microenvironment in colorectal cancer patients: Results from a large multicentre study. Pathol Res Pract 2023; 247:154518. [PMID: 37209573 DOI: 10.1016/j.prp.2023.154518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and deadly cancers worldwide. The tumour-node-metastasis stage (TNM) is currently the most clinically important tool to predict prognosis for CRC patients. However, patients with the same TNM stage can have different prognoses. The metabolic status of tumour cells (Warburg-subtype) has been proposed as potential prognostic factor in CRC. However, potential biological mechanisms underlying the relationship between Warburg-subtype and prognosis have not been investigated in detail. One potential mechanism could be that the metabolic status of tumour cells affects the tumour microenvironment (TME). Our objective was to investigate the relationship between Warburg-subtypes and the TME. Haematoxylin/Eosin stained tumour tissue microarray cores from 2171 CRC patients from the Netherlands Cohort Study were semi quantitatively assessed for tumour infiltrating lymphocytes (TILs) and relative tumour stroma content. 5745 cores were assessed by putting each core in one of four categories for both TILs and stroma. The relationship between Warburg-subtype, TILs, and tumour stroma content was investigated. The frequency of CRC in the different TIL categories was (n, %): very low (2538, 44.2), low (2463, 42.9), high (722, 12.6), and very high (22, 0.4). The frequency of CRC in the different tumour stroma content categories was: ≤ 25% (2755, 47.9), > 25% ≤ 50% (1553, 27) > 50% ≤ 75% (905, 15.8), and > 75% (532, 9.3). There was neither an association between Warburg-subtype and tumour stroma content (p = 0.229) nor between Warburg-subtype and TILs (p = 0.429). This is the first study to investigate the relationship between Warburg-subtypes and the TME in a large population-based series of CRC patients. Our data suggest that the prognostic value of Warburg-subtypes cannot be directly attributed to differences in TILs or tumour stroma content. Our results require confirmation in an independent series.
Collapse
Affiliation(s)
- Jorn P J M Steeghs
- Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands; Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kelly Offermans
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Josien C A Jenniskens
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gregorio E Fazzi
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands; Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands; Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| |
Collapse
|
23
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
24
|
Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Immune Checkpoint Inhibitors in Renal Cell Carcinoma: Molecular Basis and Rationale for Their Use in Clinical Practice. Biomedicines 2023; 11:biomedicines11041071. [PMID: 37189689 DOI: 10.3390/biomedicines11041071] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is the seventh most common cancer in men and the ninth most common cancer in women worldwide. There is plenty of evidence about the role of the immune system in surveillance against tumors. Thanks to a better understanding of immunosurveillance mechanisms, immunotherapy has been introduced as a promising cancer treatment in recent years. Renal cell carcinoma (RCC) has long been thought chemoresistant but highly immunogenic. Considering that up to 30% of the patients present metastatic disease at diagnosis, and around 20–30% of patients undergoing surgery will suffer recurrence, we need to identify novel therapeutic targets. The introduction of immune checkpoint inhibitors (ICIs) in the clinical management of RCC has revolutionized the therapeutic approach against this tumor. Several clinical trials have shown that therapy with ICIs in combination or ICIs and the tyrosine kinase inhibitor has a very good response rate. In this review article we summarize the mechanisms of immunity modulation and immune checkpoints in RCC and discuss the potential therapeutic strategies in renal cancer treatment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
25
|
Gao X, Zhang H, Zhang C, Li M, Yu X, Sun Y, Shi Y, Zhang H, He X. The emerging role of long non-coding RNAs in renal cell carcinoma progression and clinical therapy via targeting metabolic regulation. Front Pharmacol 2023; 14:1122065. [PMID: 36969848 PMCID: PMC10034124 DOI: 10.3389/fphar.2023.1122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Graphical AbstractThis review mainly describes that lncRNAs interact with miRNA-mRNA axis, or directly binds to mRNAs and proteins, to influence RCC progression via metabolic regulation, mainly including glucose metabolism, lipid metabolism, amino acid metabolism and mitochondrial dynamics (Created with biorender.com).
Collapse
Affiliation(s)
- Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Minghe Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Reproductive Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hongxia Zhang
- Department of Rehabilitation Medicine, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Xu He, ; Hongxia Zhang,
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xu He, ; Hongxia Zhang,
| |
Collapse
|
26
|
Endoplasmic Reticulum Stress in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054914. [PMID: 36902344 PMCID: PMC10003093 DOI: 10.3390/ijms24054914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The endoplasmic reticulum is an organelle exerting crucial functions in protein production, metabolism homeostasis and cell signaling. Endoplasmic reticulum stress occurs when cells are damaged and the capacity of this organelle to perform its normal functions is reduced. Subsequently, specific signaling cascades, together forming the so-called unfolded protein response, are activated and deeply impact cell fate. In normal renal cells, these molecular pathways strive to either resolve cell injury or activate cell death, depending on the extent of cell damage. Therefore, the activation of the endoplasmic reticulum stress pathway was suggested as an interesting therapeutic strategy for pathologies such as cancer. However, renal cancer cells are known to hijack these stress mechanisms and exploit them to their advantage in order to promote their survival through rewiring of their metabolism, activation of oxidative stress responses, autophagy, inhibition of apoptosis and senescence. Recent data strongly suggest that a certain threshold of endoplasmic reticulum stress activation needs to be attained in cancer cells in order to shift endoplasmic reticulum stress responses from a pro-survival to a pro-apoptotic outcome. Several endoplasmic reticulum stress pharmacological modulators of interest for therapeutic purposes are already available, but only a handful were tested in the case of renal carcinoma, and their effects in an in vivo setting remain poorly known. This review discusses the relevance of endoplasmic reticulum stress activation or suppression in renal cancer cell progression and the therapeutic potential of targeting this cellular process for this cancer.
Collapse
|
27
|
Guo X, Yu X, Zhang Y, Luo H, Huang R, Zeng Y, Duan C, Chen C. A Novel Glycolysis-Related Signature for Predicting the Prognosis and Immune Infiltration of Uveal Melanoma. Ophthalmic Res 2023; 66:692-705. [PMID: 36858025 DOI: 10.1159/000529818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION As the most common aggressive intraocular cancer in adults, uveal melanoma (UVM) threatens the survival and vision of many people. Glycolysis is a novel hallmark of cancer, but the role of glycolysis-related genes in UVM prognosis remains unknown. The purpose of the study was to establish a glycolysis-related gene signature (GRGS) to predict UVM prognosis. METHODS Raw data were obtained from TCGA-UVM and GSE22138 datasets. The GRGS was established by univariate, LASSO, and multivariate Cox regression analyses. Kaplan-Meier survival and time-dependent receiver operating characteristic curves were used to evaluate the predictive ability of the GRGS. The relationships of the GRGS with infiltrating immune cell levels and mutations were analyzed with CIBERSORT and maftools. RESULTS A novel GRGS (risk score = 0.690861*ISG20 + 0.070991*MET - 0.227520*SDC2 + 0.690223*FBP1 + 0.048008*CLN6 - 0.128520*SDC3) was developed for predicting UVM prognosis. The GRGS had robust predictive stability in UVM. Enrichment annotation suggested that the high-risk group had stronger adaptive immune responses and that the low-risk group had more innate immune cell infiltration. Moreover, BAP1 mutation was related to high risk, and SF3B1 mutation was related to low risk. CONCLUSIONS This study developed and validated a novel GRGS to predict UVM prognosis and immune infiltration. The signature revealed an association between glycolysis-related genes and the tumor microenvironment, providing new insights into the role of glycolysis in UVM.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China,
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuying Zhang
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huijuan Luo
- Department of Ophthalmology, The People's Hospital of Yidu, Yichang, China
| | - Rong Huang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuyang Zeng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoye Duan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changzheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Wang Q, Yang X, Ma J, Xie X, Sun Y, Chang X, Bi H, Xue H, Qin Z. PI3K/AKT pathway promotes keloid fibroblasts proliferation by enhancing glycolysis under hypoxia. Wound Repair Regen 2023; 31:139-155. [PMID: 36571288 DOI: 10.1111/wrr.13067] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Our previous study demonstrated altered glucose metabolism and enhanced phosphorylation of the PI3K/AKT pathway in keloid fibroblasts (KFb) under hypoxic conditions. However, whether the PI3K/AKT pathway influences KFb cell function by regulating glucose metabolism under hypoxic conditions remains unclear. Here, we show that when PI3K/AKT pathway was inactivated with LY294002, the protein expression of glycolytic enzymes decreased, while the amount of mitochondria and mitochondrial membrane potential increased. The key parameters of extracellular acidification rate markedly diminished, and those of oxygen consumption rate significantly increased after inhibition of the PI3K/AKT pathway. When the PI3K/AKT pathway was suppressed, the levels of reactive oxygen species (ROS) and mitochondrial ROS (mitoROS) were significantly increased. Meanwhile, cell proliferation, migration and invasion were inhibited, and apoptosis was increased when the PI3K/AKT pathway was blocked. Additionally, cell proliferation was compromised when KFb were treated with both SC79 (an activator of the PI3K/AKT pathway) and 2-deoxy-d-glucose (an inhibitor of glycolysis), compared with the SC79 group. Moreover, a positive feedback mechanism was demonstrated between the PI3K/AKT pathway and hypoxia-inducible factor-1α (HIF-1α). Our data collectively demonstrated that the PI3K/AKT pathway promotes proliferation and inhibits apoptosis in KFb under hypoxia by regulating glycolysis, indicating that the PI3K/AKT signalling pathway could be a therapeutic target for keloids.
Collapse
Affiliation(s)
- Qifei Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Xin Yang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Jianxun Ma
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Xiang Xie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yimou Sun
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Xu Chang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongyu Xue
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Zelian Qin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
29
|
Downstream Targets of VHL/HIF-α Signaling in Renal Clear Cell Carcinoma Progression: Mechanisms and Therapeutic Relevance. Cancers (Basel) 2023; 15:cancers15041316. [PMID: 36831657 PMCID: PMC9953937 DOI: 10.3390/cancers15041316] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
The clear cell variant of renal cell carcinoma (ccRCC) is the most common renal epithelial malignancy and responsible for most of the deaths from kidney cancer. Patients carrying inactivating mutations in the Von Hippel-Lindau (VHL) gene have an increased proclivity to develop several types of tumors including ccRCC. Normally, the Hypoxia Inducible Factor alpha (HIF-α) subunits of the HIF heterodimeric transcription factor complex are regulated by oxygen-dependent prolyl-hydroxylation, VHL-mediated ubiquitination and proteasomal degradation. Loss of pVHL function results in elevated levels of HIF-α due to increased stability, leading to RCC progression. While HIF-1α acts as a tumor suppressor, HIF-2α promotes oncogenic potential by driving tumor progression and metastasis through activation of hypoxia-sensitive signaling pathways and overexpression of HIF-2α target genes. One strategy to suppress ccRCC aggressiveness is directed at inhibition of HIF-2α and the associated molecular pathways leading to cell proliferation, angiogenesis, and metastasis. Indeed, clinical and pre-clinical data demonstrated the effectiveness of HIF-2α targeted therapy in attenuating ccRCC progression. This review focuses on the signaling pathways and the involved genes (cyclin D, c-Myc, VEGF-a, EGFR, TGF-α, GLUT-1) that confer oncogenic potential downstream of the VHL-HIF-2α signaling axis in ccRCC. Discussed as well are current treatment options (including receptor tyrosine kinase inhibitors such as sunitinib), the medical challenges (high prevalence of metastasis at the time of diagnosis, refractory nature of advanced disease to current treatment options), scientific challenges and future directions.
Collapse
|
30
|
Ji Q, Tu Z, Liu J, Huang K, Zhu X, Li J. Identification of a robust scoring system based on metabolic genes followed by in-depth validation of ATP1A3 in glioma. Life Sci 2023; 315:121377. [PMID: 36627101 DOI: 10.1016/j.lfs.2023.121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
AIMS In the past few decades, the prognosis of glioma patients has not significantly improved. Therefore, to provide more precise medical services for glioma patients, it is urgent to identify more clinically meaningful subtypes, establish more robust clinical prediction models, and find more effective therapeutic targets. MATERIALS AND METHODS Four distinct metabolic-associated subtypes were identified by the NMF algorithm based on metabolic genes (MEGs). A robust scoring system was constructed based on the differentially expressed genes (DEGs) screened from the four metabolic-associated subtypes with the LASSO regression algorithm and multivariate Cox regression analysis. Further analysis of scoring systems was done by different R packages. In addition, the ATP1A3 gene was screened and bioinformatics analysis of it was conducted on several public websites. GSEA software was utilized to search hallmark signaling pathways closely related to ATP1A3. Cytological experiments were used to investigate the role of ATP1A3 in the malignant progression of glioblastoma (GBM) cells. KEY FINDINGS Four metabolic-associated subtypes with significantly different clinicopathological characteristics were identified, and a robust scoring system with outstanding clinical application value was established. In addition, a tumor suppressor gene ATP1A3 was found, which is expected to be a potential therapeutic target for glioma. SIGNIFICANCE This study is of great significance in the diagnosis, prognosis, and prediction of the response to immune checkpoint blockers (ICBs) for glioma patients. More importantly, this study found a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China
| | - Junzhe Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China.
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
31
|
Schreier A, Zappasodi R, Serganova I, Brown KA, Demaria S, Andreopoulou E. Facts and Perspectives: Implications of tumor glycolysis on immunotherapy response in triple negative breast cancer. Front Oncol 2023; 12:1061789. [PMID: 36703796 PMCID: PMC9872136 DOI: 10.3389/fonc.2022.1061789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive disease that is difficult to treat and portends a poor prognosis in many patients. Recent efforts to implement immune checkpoint inhibitors into the treatment landscape of TNBC have led to improved outcomes in a subset of patients both in the early stage and metastatic settings. However, a large portion of patients with TNBC remain resistant to immune checkpoint inhibitors and have limited treatment options beyond cytotoxic chemotherapy. The interplay between the anti-tumor immune response and tumor metabolism contributes to immunotherapy response in the preclinical setting, and likely in the clinical setting as well. Specifically, tumor glycolysis and lactate production influence the tumor immune microenvironment through creation of metabolic competition with infiltrating immune cells, which impacts response to immune checkpoint blockade. In this review, we will focus on how glucose metabolism within TNBC tumors influences the response to immune checkpoint blockade and potential ways of harnessing this information to improve clinical outcomes.
Collapse
Affiliation(s)
- Ashley Schreier
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| | - Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sandra Demaria
- Department of Radiation Oncology and Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Eleni Andreopoulou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States,*Correspondence: Eleni Andreopoulou,
| |
Collapse
|
32
|
Miranda-Poma J, Trilla-Fuertes L, López-Vacas R, López-Camacho E, García-Fernández E, Pertejo A, Lumbreras-Herrera MI, Zapater-Moros A, Díaz-Almirón M, Dittmann A, Fresno Vara JÁ, Espinosa E, González-Peramato P, Pinto-Marín Á, Gámez-Pozo A. Proteomics Characterization of Clear Cell Renal Cell Carcinoma. J Clin Med 2023; 12:jcm12010384. [PMID: 36615183 PMCID: PMC9821535 DOI: 10.3390/jcm12010384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To explore the tumor proteome of patients diagnosed with localized clear cell renal cancer (ccRCC) and treated with surgery. MATERIAL AND METHODS A total of 165 FFPE tumor samples from patients diagnosed with ccRCC were analyzed using DIA-proteomics. Proteomics ccRCC subtypes were defined using a consensus cluster algorithm (CCA) and characterized by a functional approach using probabilistic graphical models and survival analyses. RESULTS We identified and quantified 3091 proteins, including 2026 high-confidence proteins. Two proteomics subtypes of ccRCC (CC1 and CC2) were identified by CC using the high-confidence proteins only. Characterization of molecular differences between CC1 and CC2 was performed in two steps. First, we defined 514 proteins showing differential expression between the two subtypes using a significance analysis of microarrays analysis. Proteins overexpressed in CC1 were mainly related to translation and ribosome, while proteins overexpressed in CC2 were mainly related to focal adhesion and membrane. Second, a functional analysis using probabilistic graphical models was performed. CC1 subtype is characterized by an increased expression of proteins related to glycolysis, mitochondria, translation, adhesion proteins related to cytoskeleton and actin, nucleosome, and spliceosome, while CC2 subtype showed higher expression of proteins involved in focal adhesion, extracellular matrix, and collagen organization. CONCLUSIONS ccRCC tumors can be classified in two different proteomics subtypes. CC1 and CC2 present specific proteomics profiles, reflecting alterations of different molecular pathways in each subtype. The knowledge generated in this type of studies could help in the development of new drugs targeting subtype-specific deregulated pathways.
Collapse
Affiliation(s)
- Jesús Miranda-Poma
- Medical Oncology Service, Hospital Universitario Quironsalud Madrid, 28223 Madrid, Spain
- Correspondence: (J.M.-P.); (A.G.-P.)
| | - Lucía Trilla-Fuertes
- Molecular Oncology Laboratory, Hospital Universitario La Paz—IdiPAZ, 28046 Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology Laboratory, Hospital Universitario La Paz—IdiPAZ, 28046 Madrid, Spain
| | | | | | - Ana Pertejo
- Medical Oncology Service, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | | | | | - Antje Dittmann
- Functional Genomics Center Zurich, 8057 Zurich, Switzerland
| | - Juan Ángel Fresno Vara
- Molecular Oncology Laboratory, Hospital Universitario La Paz—IdiPAZ, 28046 Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Enrique Espinosa
- Medical Oncology Service, Hospital Universitario La Paz, 28046 Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, 28029 Madrid, Spain
- Cátedra UAM-Amgen, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Álvaro Pinto-Marín
- Medical Oncology Service, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology Laboratory, Hospital Universitario La Paz—IdiPAZ, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, 28049 Madrid, Spain
- Correspondence: (J.M.-P.); (A.G.-P.)
| |
Collapse
|
33
|
Chen JY, Yiu WH, Tang PMK, Tang SCW. New insights into fibrotic signaling in renal cell carcinoma. Front Cell Dev Biol 2023; 11:1056964. [PMID: 36910160 PMCID: PMC9996540 DOI: 10.3389/fcell.2023.1056964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Fibrotic signaling plays a pivotal role in the development and progression of solid cancers including renal cell carcinoma (RCC). Intratumoral fibrosis (ITF) and pseudo-capsule (PC) fibrosis are significantly correlated to the disease progression of renal cell carcinoma. Targeting classic fibrotic signaling processes such as TGF-β signaling and epithelial-to-mesenchymal transition (EMT) shows promising antitumor effects both preclinically and clinically. Therefore, a better understanding of the pathogenic mechanisms of fibrotic signaling in renal cell carcinoma at molecular resolution can facilitate the development of precision therapies against solid cancers. In this review, we systematically summarized the latest updates on fibrotic signaling, from clinical correlation and molecular mechanisms to its therapeutic strategies for renal cell carcinoma. Importantly, we examined the reported fibrotic signaling on the human renal cell carcinoma dataset at the transcriptome level with single-cell resolution to assess its translational potential in the clinic.
Collapse
Affiliation(s)
- Jiao-Yi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai-Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sydney Chi-Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
34
|
Heuser C, Renner K, Kreutz M, Gattinoni L. Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Semin Cancer Biol 2023; 88:32-45. [PMID: 36496155 DOI: 10.1016/j.semcancer.2022.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors and adoptive T cell therapies have been valuable additions to the toolbox in the fight against cancer. These treatments have profoundly increased the number of patients with a realistic perspective toward a return to a cancer-free life. Yet, in a number of patients and tumor entities, cancer immunotherapies have been ineffective so far. In solid tumors, immune exclusion and the immunosuppressive tumor microenvironment represent substantial roadblocks to successful therapeutic outcomes. A major contributing factor to the depressed anti-tumor activity of immune cells in tumors is the harsh metabolic environment. Hypoxia, nutrient competition with tumor and stromal cells, and accumulating noxious waste products, including lactic acid, pose massive constraints to anti-tumor immune cells. Numerous strategies are being developed to exploit the metabolic vulnerabilities of tumor cells in the hope that these would also alleviate metabolism-inflicted immune suppression. While promising in principle, especially in combination with immunotherapies, these strategies need to be scrutinized for their effect on tumor-fighting immune cells, which share some of their key metabolic properties with tumor cells. Here, we provide an overview of strategies that seek to tackle lactate metabolism in tumor or immune cells to unleash anti-tumor immune responses, thereby opening therapeutic options for patients whose tumors are currently not treatable.
Collapse
Affiliation(s)
- Christoph Heuser
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany.
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Clinical Cooperation Group Immunometabolomics, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany; University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
35
|
Abstract
Significance: Immune cell therapy involves the administration of immune cells into patients, and it has emerged as one of the most common type of immunotherapy for cancer treatment. Knowledge on the biology and metabolism of the adoptively transferred immune cells and the metabolic requirements of different cell types in the tumor is fundamental for the development of immune cell therapy with higher efficacy. Recent Advances: Adoptive T cell therapy has been shown to be effective in limited types of cancer. Different types and generations of adoptive T cell therapies have evolved in the recent decade. This review covers the basic principles and development of these therapies in cancer treatment. Critical Issues: Our review provides an overview on the basic concepts on T cell metabolism and highlights the metabolic requirements of T and adoptively transferred T cells. Future Directions: Integrating the knowledge just cited will facilitate the development of strategies to maximize the expansion of adoptively transferred T cells ex vivo and in vivo and to promote their durability and antitumor effects. Antioxid. Redox Signal. 37, 1303-1324.
Collapse
Affiliation(s)
- Ge Hui Tan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Carmen Chak-Lui Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Center for Oncology and Immunology, Hong Kong Science Park, Hong Kong, SAR, China
| |
Collapse
|
36
|
Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev 2022; 68:81-92. [PMID: 36376165 DOI: 10.1016/j.cytogfr.2022.11.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Metabolites of glycolytic metabolism have been identified as signaling molecules and regulators of gene expression, in addition to their basic function as major energy and biosynthetic source. Immune cells reprogram metabolic pathways to cater to energy and biosynthesis demands upon activation. Most lymphocytes, including inflammatory M1 macrophages, mainly shift from oxidative phosphorylation to glycolysis, whereas regulatory T cells and M2 macrophages preferentially use the tricarboxylic acid (TCA) cycle and have reduced glycolysis. Recent studies have revealed the "non-metabolic" signaling functions of intermediates of the mitochondrial pathway and glycolysis. The roles of citrate, succinate and itaconate in immune response, including post-translational modifications of proteins and macrophages activation, have been highlighted. As an end product of glycolysis, lactate has received considerable interest from researchers. In this review, we specifically focused on studies exploring the integration of lactate into immune cell biology and associated pathologies. Lactate can act as a double-edged sword. On one hand, activated immune cells prefer to use lactate to support their function. On the other hand, accumulated lactate in the tissue microenvironment acts as a signaling molecule that restricts immune cell function. Recently, a novel epigenetic change mediated by histone lysine lactylation has been proposed. The burgeoning researches support the idea that histone lactylation participates in diverse cellular events. This review describes glycolytic metabolism, including the immunoregulation of metabolites of the TCA cycle and lactate. These latest findings strengthen our understanding on tumor and chronic inflammatory diseases and offer potential therapeutic options.
Collapse
Affiliation(s)
- Lei Ye
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China
| | - Yi Jiang
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China
| | - Mingming Zhang
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
37
|
Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Front Oncol 2022; 12:1036477. [PMID: 36518315 PMCID: PMC9742379 DOI: 10.3389/fonc.2022.1036477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become a successful therapeutic strategy in certain solid tumors and hematological malignancies. However, this efficacy of immunotherapy is impeded by limited success rates. Cellular metabolic reprogramming determines the functionality and viability in both cancer cells and immune cells. Extensive research has unraveled that the limited success of immunotherapy is related to immune evasive metabolic reprogramming in tumor cells and immune cells. As an enzyme that catalyzes the final step of glycolysis, lactate dehydrogenase A (LDHA) has become a major focus of research. Here, we have addressed the structure, localization, and biological features of LDHA. Furthermore, we have discussed the various aspects of epigenetic regulation of LDHA expression, such as histone modification, DNA methylation, N6-methyladenosine (m6A) RNA methylation, and transcriptional control by noncoding RNA. With a focus on the extrinsic (tumor cells) and intrinsic (T cells) functions of LDHA in T-cell responses against tumors, in this article, we have reviewed the current status of LDHA inhibitors and their combination with T cell-mediated immunotherapies and postulated different strategies for future therapeutic regimens.
Collapse
Affiliation(s)
- Yu Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yujiao Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
38
|
di Meo NA, Lasorsa F, Rutigliano M, Loizzo D, Ferro M, Stella A, Bizzoca C, Vincenti L, Pandolfo SD, Autorino R, Crocetto F, Montanari E, Spilotros M, Battaglia M, Ditonno P, Lucarelli G. Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232214360. [PMID: 36430837 PMCID: PMC9698586 DOI: 10.3390/ijms232214360] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent histological kidney cancer subtype. Over the last decade, significant progress has been made in identifying the genetic and metabolic alterations driving ccRCC development. In particular, an integrated approach using transcriptomics, metabolomics, and lipidomics has led to a better understanding of ccRCC as a metabolic disease. The metabolic profiling of this cancer could help define and predict its behavior in terms of aggressiveness, prognosis, and therapeutic responsiveness, and would be an innovative strategy for choosing the optimal therapy for a specific patient. This review article describes the current state-of-the-art in research on ccRCC metabolic pathways and potential therapeutic applications. In addition, the clinical implication of pharmacometabolomic intervention is analyzed, which represents a new field for novel stage-related and patient-tailored strategies according to the specific susceptibility to new classes of drugs.
Collapse
Affiliation(s)
- Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Davide Loizzo
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Alessandro Stella
- Laboratory of Human Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Cinzia Bizzoca
- Division of General Surgery, Polyclinic Hospital, 70124 Bari, Italy
| | | | | | | | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Emanuele Montanari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Spilotros
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: or
| |
Collapse
|
39
|
Rial Saborido J, Völkl S, Aigner M, Mackensen A, Mougiakakos D. Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers (Basel) 2022; 14:5442. [PMID: 36358860 PMCID: PMC9658570 DOI: 10.3390/cancers14215442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells hold enormous potential. However, a substantial proportion of patients receiving CAR T cells will not reach long-term full remission. One of the causes lies in their premature exhaustion, which also includes a metabolic anergy of adoptively transferred CAR T cells. T cell phenotypes that have been shown to be particularly well suited for CAR T cell therapy display certain metabolic characteristics; whereas T-stem cell memory (TSCM) cells, characterized by self-renewal and persistence, preferentially meet their energetic demands through oxidative phosphorylation (OXPHOS), effector T cells (TEFF) rely on glycolysis to support their cytotoxic function. Various parameters of CAR T cell design and manufacture co-determine the metabolic profile of the final cell product. A co-stimulatory 4-1BB domain promotes OXPHOS and formation of central memory T cells (TCM), while T cells expressing CARs with CD28 domains predominantly utilize aerobic glycolysis and differentiate into effector memory T cells (TEM). Therefore, modification of CAR co-stimulation represents one of the many strategies currently being investigated for improving CAR T cells' metabolic fitness and survivability within a hostile tumor microenvironment (TME). In this review, we will focus on the role of CAR T cell metabolism in therapeutic efficacy together with potential targets of intervention.
Collapse
Affiliation(s)
- Judit Rial Saborido
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Medical Center, Department of Hematology and Oncology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
40
|
Lei J, Yang Y, Lu Z, Pan H, Fang J, Jing B, Chen Y, Yin L. Taming metabolic competition via glycolysis inhibition for safe and potent tumor immunotherapy. Biochem Pharmacol 2022; 202:115153. [PMID: 35750199 DOI: 10.1016/j.bcp.2022.115153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Metabolic competition between tumors and T cells is fierce in the tumor microenvironment (TME). Tumors usually exhaust glucose and accumulate lactic acid in TME. Nutrient deprivation and lactic acid accumulation in TME blunt T cell functions and antitumor immune responses. Here, we reported that glycolysis-related genes were upregulated in melanoma patients with weak immune responses and T cell poorly infiltrated tumors of BRCA and COAD patients. Dimethyl fumarate (DMF), a GAPDH inhibitor, which is FDA proved to treat autoimmune diseases was identified to promote oxidative pentose phosphate pathway through glucose-6-phosphate dehydrogenase (G6PD) but to suppress aerobic glycolysis and oxidative phosphorylation in tumor cells. Additionally, DMF normalized metabolic competition between tumors and T cells, thus potentiate antitumor responses of tumor infiltrating CD8+ T lymphocytes (TILs). Moreover, DMF optimized the efficiency of immune checkpoint therapy and interleukin-2 (IL-2) therapy while eliminating severe toxicity induced by IL-2 therapy. This study indicates a novel clinically feasible therapy strategy aiming shared metabolic pathway of tumors and T cells for effective and less toxic tumor immunotherapy.
Collapse
Affiliation(s)
- Jun Lei
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaoliang Lu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiyan Pan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jialing Fang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Baowei Jing
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongshun Chen
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
41
|
Peng Q, Hao LY, Guo YL, Zhang ZQ, Ji JM, Xue Y, Liu YW, Lu JL, Li CG, Shi XL. Solute carrier family 2 members 1 and 2 as prognostic biomarkers in hepatocellular carcinoma associated with immune infiltration. World J Clin Cases 2022; 10:3989-4019. [PMID: 35665115 PMCID: PMC9131213 DOI: 10.12998/wjcc.v10.i13.3989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metabolic reprogramming has been identified as a core hallmark of cancer. Solute carrier family 2 is a major glucose carrier family. It consists of 14 members, and we mainly study solute carrier family 2 member 1 (SLC2A1) and solute carrier family 2 member 2 (SLC2A2) here. SLC2A1, mainly existing in human erythrocytes, brain endothelial cells, and normal placenta, was found to be increased in hepatocellular carcinoma (HCC), while SLC2A2, the major transporter of the normal liver, was decreased in HCC. AIM To identify if SLC2A1 and SLC2A2 were associated with immune infiltration in addition to participating in the metabolic reprogramming in HCC. METHODS The expression levels of SLC2A1 and SLC2A2 were tested in HepG2 cells, HepG215 cells, and multiple databases. The clinical characteristics and survival data of SLC2A1 and SLC2A2 were examined by multiple databases. The correlation between SLC2A1 and SLC2A2 was analyzed by multiple databases. The functions and pathways in which SLC2A1, SLC2A2, and frequently altered neighbor genes were involved were discussed in String. Immune infiltration levels and immune marker genes associated with SLC2A1 and SLC2A2 were discussed from multiple databases. RESULTS The expression level of SLC2A1 was up-regulated, but the expression level of SLC2A2 was down-regulated in HepG2 cells, HepG215 cells, and liver cancer patients. The expression levels of SLC2A1 and SLC2A2 were related to tumor volume, grade, and stage in HCC. Interestingly, the expression levels of SLC2A1 and SLC2A2 were negatively correlated. Further, high SLC2A1 expression and low SLC2A2 expression were linked to poor overall survival and relapse-free survival. SLC2A1, SLC2A2, and frequently altered neighbor genes played a major role in the occurrence and development of tumors. Notably, SLC2A1 was positively correlated with tumor immune infiltration, while SLC2A2 was negatively correlated with tumor immune infiltration. Particularly, SLC2A2 methylation was positively correlated with lymphocytes. CONCLUSION SLC2A1 and SLC2A2 are independent therapeutic targets for HCC, and they are quintessential marker molecules for predicting and regulating the number and status of immune cells in HCC.
Collapse
Affiliation(s)
- Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Li-Yuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Ying-Lin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Zhi-Qin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Jing-Min Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yi-Wei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Jun-Lan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Cai-Ge Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Xin-Li Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| |
Collapse
|
42
|
Virumbrales-Muñoz M, Ayuso JM, Loken JR, Denecke KM, Rehman S, Skala MC, Abel EJ, Beebe DJ. Microphysiological model of the renal cell carcinoma to inform anti-angiogenic therapy. Biomaterials 2022; 283:121454. [PMID: 35299086 PMCID: PMC9254636 DOI: 10.1016/j.biomaterials.2022.121454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Renal cell carcinomas are common genitourinary tumors characterized by high vascularization and strong reliance on glycolysis. Despite the many available therapies for renal cell carcinomas, first-line targeted therapies, such as cabozantinib, and durable reaponses are seen in only a small percentage of patients. Yet, little is known about the mechanisms that drive response (or lack thereof). This dearth of knowledge can be explained by the dynamic and complex microenvironment of renal carcinoma, which remains challenging to recapitulate in vitro. Here, we present a microphysiological model of renal cell carcinoma, including a tubular blood vessel model of induced pluripotent stem cell-derived endothelial cells and an adjacent 3D carcinoma model. Our model recapitulated hypoxia, glycolic metabolism, and sprouting angiogenesis. Using our model, we showed that cabozantinib altered cancer cell metabolism and decreased sprouting angiogenesis but did not restore barrier function. This microphysiological model could be helpful to elucidate, through multiple endpoints, the contributions of the relevant environmental components in eliciting a functional response or resistance to therapy in renal cell carcinoma.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jose M Ayuso
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jack R Loken
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Kathryn M Denecke
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Shujah Rehman
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - E Jason Abel
- Department of Urology University of Wisconsin School of Medicine and Public Health, Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
43
|
Yao Z, Zheng Z, Zheng X, Wu H, Zhao W, Mu X, Sun F, Wu K, Zheng J. Comprehensive Characterization of Metabolism-Associated Subtypes of Renal Cell Carcinoma to Aid Clinical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9039732. [PMID: 35265267 PMCID: PMC8898770 DOI: 10.1155/2022/9039732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
Renal cell carcinoma (RCC) is a disease characterized by excessive administration complexity because it exhibits extraordinary nonuniformity among distinct molecular subtypes. We herein intended to delineate the metabolic aspects of clear cell RCC (ccRCC) in terms of the gene expression profile. Recent studies have revealed that metabolic variations within tumors are related to the responsiveness to immune checkpoint inhibitor (ICI) therapy and patient prognosis. We used 100 previously reported metabolic (MTB) pathways to quantify the metabolic landscape of the 729 ccRCC patients. Three MTB subtypes were established, and the MTB scores were calculated using principal component analysis (PCA). The high MTB score group had better overall survival (OS) and was associated with higher expression of immune-checkpoint and immune-activity signatures. The opposite was true of the low MTB score group, which may explain the poor prognosis of these patients. Three ICI-treated cohorts or tyrosine kinase inhibitor (TKI) treated cohort proved that patients with higher MTB scores exhibited notable therapeutic benefits and clinical gains. This research explained that the MTB score could be applied as a powerful prognostic indicator and predictive of ICI or TKI therapy. Assessing the MTB scores in a more extended group will facilitate our perception of tumor metabolism and provide guidance for studies on targeted approaches for ccRCC patients.
Collapse
Affiliation(s)
- Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Hantao Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ke Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev 2022; 16:561. [PMID: 35340885 PMCID: PMC8941341 DOI: 10.4081/oncol.2022.561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
The primary metabolic substrate for cells is glucose, which acts as both a source of energy and a substrate in several processes. However, being lipophilic, the cell membrane is impermeable to glucose and specific carrier proteins are needed to allow transport. In contrast to normal cells, cancer cells are more likely to generate energy by glycolysis; as this process generates fewer molecules of adenosine triphosphate (ATP) than complete oxidative breakdown, more glucose molecules are needed. The increased demand for glucose in cancer cells is satisfied by overexpression of a number of glucose transporters, and decreased levels of others. As specific correlations have been observed between the occurrence of cancer and the expression of glucose carrier proteins, the presence of changes in expression of glucose transporters may be treated as a marker of diagnosis and/or prognosis for cancer patients.
Collapse
|
45
|
van Genugten EAJ, Weijers JAM, Heskamp S, Kneilling M, van den Heuvel MM, Piet B, Bussink J, Hendriks LEL, Aarntzen EHJG. Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Front Oncol 2022; 11:786089. [PMID: 35070990 PMCID: PMC8779734 DOI: 10.3389/fonc.2021.786089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in the micro-environmental metabolic characteristics are recognized as important tools for cancer cells to interact with the resident and infiltrating T-cells within this tumor microenvironment. Cancer-induced metabolic changes in the micro-environment also affect treatment outcomes. In particular, immune therapy efficacy might be blunted because of somatic mutation-driven metabolic determinants of lung cancer such as acidity and oxygenation status. Based on these observations, new onco-immunological treatment strategies increasingly include drugs that interfere with metabolic pathways that consequently affect the composition of the lung cancer tumor microenvironment (TME). Positron emission tomography (PET) imaging has developed a wide array of tracers targeting metabolic pathways, originally intended to improve cancer detection and staging. Paralleling the developments in understanding metabolic reprogramming in cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of studies with additional imaging tracers has been published. These tracers are yet underexploited in the perspective of immune therapy. In this review, we provide an overview of currently available PET tracers for clinical studies and discuss their potential roles in the development of effective immune therapeutic strategies, with a focus on lung cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of interactions between cancer cells and T-cells in the lung cancer microenvironment, and we identify areas of research which are yet unchartered. Thereby, we aim to provide a starting point for molecular imaging driven studies to understand and exploit metabolic features of lung cancer to optimize immune therapy.
Collapse
Affiliation(s)
- Evelien A J van Genugten
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Jetty A M Weijers
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tuebingen, Germany.,Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | - Berber Piet
- Department of Respiratory Diseases, Radboudumc, Nijmegen, Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre (UMC), Maastricht, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
46
|
Manosalva C, Quiroga J, Hidalgo AI, Alarcón P, Ansoleaga N, Hidalgo MA, Burgos RA. Role of Lactate in Inflammatory Processes: Friend or Foe. Front Immunol 2022; 12:808799. [PMID: 35095895 PMCID: PMC8795514 DOI: 10.3389/fimmu.2021.808799] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
During an inflammatory process, shift in the cellular metabolism associated with an increase in extracellular acidification are well-known features. This pH drop in the inflamed tissue is largely attributed to the presence of lactate by an increase in glycolysis. In recent years, evidence has accumulated describing the role of lactate in inflammatory processes; however, there are differences as to whether lactate can currently be considered a pro- or anti-inflammatory mediator. Herein, we review these recent advances on the pleiotropic effects of lactate on the inflammatory process. Taken together, the evidence suggests that lactate could exert differential effects depending on the metabolic status, cell type in which the effects of lactate are studied, and the pathological process analyzed. Additionally, various targets, including post-translational modifications, G-protein coupled receptor and transcription factor activation such as NF-κB and HIF-1, allow lactate to modulate signaling pathways that control the expression of cytokines, chemokines, adhesion molecules, and several enzymes associated with immune response and metabolism. Altogether, this would explain its varied effects on inflammatory processes beyond its well-known role as a waste product of metabolism.
Collapse
Affiliation(s)
- Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra I. Hidalgo
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Nicolás Ansoleaga
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Angélica Hidalgo
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
47
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
48
|
Seth A, Kar S. Understanding the Crosstalk Between Epigenetics and Immunometabolism to Combat Cancer. Subcell Biochem 2022; 100:581-616. [PMID: 36301507 DOI: 10.1007/978-3-031-07634-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The interaction between metabolic and epigenetic events shapes metabolic adaptations of cancer cells and also helps rewire the proliferation and activity of surrounding immune cells in the tumor microenvironment (TME). Recent studies indicate that the TME imposes metabolic constraints on immune cells, inducing them to attain a tolerogenic state, incompetent of mounting effective tumor eradication. Owing to extensive mutations acquired over repeated cell divisions, tumor cells selectively accumulate metabolites that regulate the activity of key epigenetic enzymes to mediate activation/suppression of genes associated with T-cell function and macrophage polarization. Further, multiple modulators connecting epigenetic and metabolic pathways help dictate the preferential induction of cytokines and expression of lineage-specifying genes associated with immunosuppressive T-cell differentiation.In this chapter, we attempt to discuss the mechanisms underpinning the metabolic and epigenetic interplay in immune cells of the TME and how modulating these events can boost the application of existing anticancer immunotherapy.
Collapse
Affiliation(s)
- Anuradha Seth
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India
| | - Susanta Kar
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
49
|
Sędzikowska A, Szablewski L. Human Glucose Transporters in Renal Glucose Homeostasis. Int J Mol Sci 2021; 22:13522. [PMID: 34948317 PMCID: PMC8708129 DOI: 10.3390/ijms222413522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
The kidney plays an important role in glucose homeostasis by releasing glucose into the blood stream to prevent hypoglycemia. It is also responsible for the filtration and subsequent reabsorption or excretion of glucose. As glucose is hydrophilic and soluble in water, it is unable to pass through the lipid bilayer on its own; therefore, transport takes place using carrier proteins localized to the plasma membrane. Both sodium-independent glucose transporters (GLUT proteins) and sodium-dependent glucose transporters (SGLT proteins) are expressed in kidney tissue, and mutations of the genes coding for these glucose transporters lead to renal disorders and diseases, including renal cancers. In addition, several diseases may disturb the expression and/or function of renal glucose transporters. The aim of this review is to describe the role of the kidney in glucose homeostasis and the contribution of glucose transporters in renal physiology and renal diseases.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
50
|
Cazzato G, Colagrande A, Cimmino A, Abbatepaolo C, Bellitti E, Romita P, Lospalluti L, Foti C, Arezzo F, Loizzi V, Lettini T, Sablone S, Resta L, Cormio G, Ingravallo G, Rossi R. GLUT1, GLUT3 Expression and 18FDG-PET/CT in Human Malignant Melanoma: What Relationship Exists? New Insights and Perspectives. Cells 2021; 10:3090. [PMID: 34831313 PMCID: PMC8624914 DOI: 10.3390/cells10113090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Malignant melanoma is the most aggressive of skin cancers and the 19th most common cancer worldwide, with an estimated age-standardized incidence rate of 2.8-3.1 per 100,000; although there have been clear advances in therapeutic treatment, the prognosis of MM patients with Breslow thickness greater than 1 mm is still quite poor today. The study of how melanoma cells manage to survive and proliferate by consuming glucose has been partially addressed in the literature, but some rather interesting results are starting to be present. METHODS A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and a search of PubMed and Web of Sciences (WoS) databases was performed until 27 September 2021 using the terms: glucose transporter 1 and 3 and GLUT1/3 in combination with each of the following: melanoma, neoplasm and immunohistochemistry. RESULTS In total, 46 records were initially identified in the literature search, of which six were duplicates. After screening for eligibility and inclusion criteria, 16 publications were ultimately included. CONCLUSIONS the results discussed regarding the role and expression of GLUT are still far from definitive, but further steps toward understanding and stopping this mechanism have, at least in part, been taken. New studies and new discoveries should lead to further clarification of some aspects since the various mechanisms of glucose uptake by neoplastic cells are not limited to the transporters of the GLUT family alone.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Anna Colagrande
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Antonietta Cimmino
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Caterina Abbatepaolo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Emilio Bellitti
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Paolo Romita
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (P.R.); (L.L.); (C.F.)
| | - Lucia Lospalluti
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (P.R.); (L.L.); (C.F.)
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (P.R.); (L.L.); (C.F.)
| | - Francesca Arezzo
- Section of Ginecology and Obstetrics, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Vera Loizzi
- Section of Ginecology and Obstetrics, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Teresa Lettini
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Sara Sablone
- Section of Legal Medicine, Department of Interdisciplinary Medicine, Bari Policlinico Hospital, University of Bari, “Aldo Moro”, 70124 Bari, Italy;
| | - Leonardo Resta
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Gennaro Cormio
- Section of Ginecology and Obstetrics, Department of Biomedical Sciences and Human Oncology, University of Bari, “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| | - Roberta Rossi
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari, “Aldo Moro”, 70124 Bari, Italy; (A.C.); (A.C.); (C.A.); (E.B.); (T.L.); (L.R.); (G.I.); (R.R.)
| |
Collapse
|