1
|
Han R, Pareja F, Ross DS, Grabenstetter A, Wen HY, Brogi E. Frank Invasion in Tall Cell Carcinoma With Reversed Polarity of the Breast: Report of Two Cases. Mod Pathol 2025; 38:100714. [PMID: 39828059 DOI: 10.1016/j.modpat.2025.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Tall cell carcinoma with reversed polarity (TCCRP) is a rare neoplasm of the breast composed of columnar tumor cells arranged in solid and solid-papillary nests with evidence of apical nuclear polarity. No frank invasion is evident despite the lack of a myoepithelial cell layer throughout the tumor. TCCRP has a triple-negative or hormone receptor-low immunophenotype. Recurrent IDH2 R172 hotspot mutation coexisting with genetic alterations in the PI3K pathway characterizes this tumor. Here, we report on 2 postmenopausal patients with TCCRP with frank stromal invasion. IDH2 R172 mutations were detected in both tumors by immunohistochemistry. Targeted sequencing of case 2 demonstrated the presence of IDH2 R172T and RTEL1 E839K mutations. Both patients underwent breast conservation surgery, radiation therapy, and adjuvant endocrine therapy with anastrozole and demonstrated no evidence of disease at 65 and 25 months, respectively. This study suggests that TCCRP may give rise to frank invasive carcinoma, the prognostic significance of which is yet unknown.
Collapse
Affiliation(s)
- Rachel Han
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York; Sunnybrook Health Sciences Centre, Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Toronto, Ontario, Canada
| | - Fresia Pareja
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Dara S Ross
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Anne Grabenstetter
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Hannah Y Wen
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Edi Brogi
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York.
| |
Collapse
|
2
|
Joo JE, Viana-Errasti J, Buchanan DD, Valle L. Genetics, genomics and clinical features of adenomatous polyposis. Fam Cancer 2025; 24:38. [PMID: 40237887 PMCID: PMC12003455 DOI: 10.1007/s10689-025-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025]
Abstract
Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.
Collapse
Affiliation(s)
- Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Doctoral Program in Biomedicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain.
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Aguilar D, Garza-Rodríguez ML, Pérez-Ibave DC, Muñiz-Garza CE, Treviño V, Villarreal-Garza CM, Vidal-Gutiérrez O, Burciaga-Flores CH. Landscape of Multilocus Inherited Neoplasia Allele Syndrome in Mexican Population. JCO Glob Oncol 2025; 11:e2400065. [PMID: 39778127 DOI: 10.1200/go.24.00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Hereditary cancer syndromes (HCS) explain 5%-10% of all cancer cases. Patients with more than one germline pathogenic variant (GPV) result in a clinical syndrome known as multilocus inherited neoplasia allele syndrome (MINAS). In recent years, an increasing number of MINAS cases have been reported. This study aims to identify the prevalence of MINAS and determine the effect of two GPVs in HCS on patients from Northern Mexico. METHODS Patients (N = 2,282) were recruited from four public oncology centers and two private institutions with hereditary cancer detection programs in Nuevo León, México. A medical geneticist collected all the patient's clinical data and gave genetic counseling. Patients with MINAS were detected using multigene panels to detect GPVs; findings were classified according to American College of Medical Genetics and Genomics guidelines. The genetic data of patients with MINAS were evaluated by their frequency and combination. RESULTS We found 386 (16.9%) patients with one or more variants and 23 (5.9%) MINAS patients (all females). The most frequent diagnosis was breast cancer (BC) in 20 (86.95%) cases, whereas 16 (69.56%) had triple-negative BC. We found 13 patients with BRCA1 GPVs (56.52%) as the most frequent, followed by MUTYH with five cases (21.73%). The combinations of BRCA1/CHEK2, BRCA1/CDKN2A, and BRCA1/BRCA2 were the most frequent. We found no atypical presentation in the cohort. CONCLUSION This is the first Mexican MINAS report and the largest Latin American cohort. We detected a higher prevalence of MINAS than other populations (5.9%). We found a tendency for additive phenotypical effect and, in some MINAS combinations, a modification in the age of diagnosis.
Collapse
Affiliation(s)
- Dione Aguilar
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, San Pedro Garza Garcia, México
| | - María L Garza-Rodríguez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Diana C Pérez-Ibave
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Carolina E Muñiz-Garza
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Victor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, México
| | | | - Oscar Vidal-Gutiérrez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Carlos H Burciaga-Flores
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
- Instituto Mexicano del Seguro Social, Hospital de Ginecología y Obstetricia No. 23, Monterrey, México
| |
Collapse
|
4
|
La Vecchia M, Sala G, Sculco M, Aspesi A, Dianzani I. Genetics, diet, microbiota, and metabolome: partners in crime for colon carcinogenesis. Clin Exp Med 2024; 24:248. [PMID: 39470880 PMCID: PMC11522171 DOI: 10.1007/s10238-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors worldwide, with a multifactorial etiology encompassing genetic, environmental, and life-style factors, as well as the intestinal microbiota and its metabolome. These risk factors often work together in specific groups of patients, influencing how CRC develops and progresses. Importantly, alterations in the gut microbiota act as a critical nexus in this interplay, significantly affecting susceptibility to CRC. This review highlights recent insights into unmodifiable and modifiable risk factors for CRC and how they might interact with the gut microbiota and its metabolome. Understanding the mechanisms of these interactions will help us develop targeted, precision-medicine strategies that can adjust the composition of the gut microbiota to meet individual health needs, preventing or treating CRC more effectively.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
5
|
Rodrigues LM, Maistro S, Katayama MLH, Rocha VM, Lopez RVM, Lopes EFDT, Gonçalves FT, Fridman C, Serio PADMP, Barros LRC, Leite LAS, Segatelli V, Estevez-Diz MDP, Guindalini RSC, Ribeiro Junior U, Folgueira MAAK. Prevalence of germline variants in Brazilian pancreatic carcinoma patients. Sci Rep 2024; 14:21083. [PMID: 39256447 PMCID: PMC11387492 DOI: 10.1038/s41598-024-71884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
We evaluated the prevalence of pathogenic/likely pathogenic germline variants (PGV) in Brazilian pancreatic adenocarcinoma (PC) patients, that represent a multiethnic population, in a cross-sectional study. We included 192 PC patients unselected for family history of cancer. We evaluated a panel of 113 cancer genes, through genomic DNA sequencing and 46 ancestry-informative markers, through multiplex PCR. The median age was 61 years; 63.5% of the patients presented disease clinical stages III or IV; 8.3% reported personal history of cancer; 4.7% and 16.1% reported first-degree relatives with PC or breast and/or prostate cancer, respectively. Although the main ancestry was European, there was considerable genetic composition admixture. Twelve patients (6.25%) were PGV carriers in PC predisposition genes (ATM, BRCA1, BRCA2, CDKN2A, MSH2, PALB2) and another 25 (13.0%) were PGV carriers in genes with a limited association or not previously associated with PC (ACD, BLM, BRIP1, CHEK2, ERCC4, FANCA, FANCE, FANCM, GALNT12, MITF, MRE11, MUTYH, POLE, RAD51B, RAD51C, RECQL4, SDHA, TERF2IP). The most frequently affected genes were CHEK2, ATM and FANC. In tumor samples from PGV carriers in ACD, BRIP1, MRE11, POLE, SDHA, TERF2IP, which were examined through exome sequencing, the main single base substitutions (SBS) mutational signature was SBS1+5+18, probably associated with age, tobacco smoking and reactive oxygen species. SBS3 associated with homologous repair deficiency was also represented, but on a lower scale. There was no difference in the frequency of PGV carriers between: (a) patients with or without first-degree relatives with cancer; and (b) patients with admixed ancestry versus those with predominantly European ancestry. Furthermore, there was no difference in overall survival between PGV carriers and non-carriers. Therefore, genetic testing should be offered to all Brazilian pancreatic cancer patients, regardless of their ancestry. Genes with limited or previously unrecognized associations with pancreatic cancer should be further investigated to clarify their role in cancer risk.
Collapse
Affiliation(s)
- Lívia Munhoz Rodrigues
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Simone Maistro
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Maria Lucia Hirata Katayama
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Vinícius Marques Rocha
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Rossana Veronica Mendoza Lopez
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Edia Filomena di Tullio Lopes
- Registro Hospitalar de Cancer, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, São Paulo, SP, Brazil
| | - Fernanda Toledo Gonçalves
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Luciana Rodrigues Carvalho Barros
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Luiz Antonio Senna Leite
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Vanderlei Segatelli
- Departamento de Patologia Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Maria Del Pilar Estevez-Diz
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Ulysses Ribeiro Junior
- Division of Digestive Surgery, Department of Gastroenterology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo FMUSP, Sao Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
6
|
Faria JP, Assumpção JG, de Oliveira Matos L, Soardi FC, Bretz GPM, Friedman E, De Marco L. Spectrum of germline pathogenic variants in Brazilian hereditary breast/ovarian cancer cases. Breast Cancer Res Treat 2024:10.1007/s10549-024-07383-x. [PMID: 38874686 DOI: 10.1007/s10549-024-07383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To define the spectrum of germline pathogenic variants (PVs) and copy number variant (CNV) in cancer susceptibility genes to the burden of breast and ovarian cancer (BC, OvC) in high-risk Brazilians in Minas Gerais with health insurance, southeast Brazil, undergoing multigene panel testing (MGPT). METHODS Genotyping eligible individuals with health insurance in the Brazilian healthcare system for Hereditary Breast and Ovarian Cancer Syndrome to undergo molecular testing for 44 or 141-gene panels, a decision that was insurance driven. RESULTS Overall, 701 individuals clinically defined as high BC/OvC risk, underwent MGPT from 1/2021 to 10/2022, with ~ 50% genotyped with a 44-gene panel and the rest with a 141-gene panel. Overall, 16.4% and 22.6% of genotyped individuals harbored PVs using 44-gene and the 141 gene panel, respectively. The most frequently mutated genes were: BRCA2 (3.7%); BRCA1 (3.6%) and monoallelic MUTYH (3.1%). CONCLUSION The rate of PVs detected in high-risk individuals in this study was twice the 10% threshold used in Brazilian health guidelines. MGPT doubled the detection rate of PVs in cancer susceptibility genes in high-risk individuals compared with BRCA1/BRCA2 genotyping alone. The spectrum of PVs in Southern Brazil is diverse, with few recurring variants such as TP53 (0.6%), suggesting regional founder effects. The use of MGPT in hereditary cancer in Minas Gerais significantly increased the detection rate of P/LPVs compared to existing guidelines and should be considered as the primary genotyping modality in assessing hereditary cancer risk in Brazil.
Collapse
Affiliation(s)
| | | | | | | | | | - Eitan Friedman
- The Preventive Personalized Medicine Center, Assuta Medical Center and the School of Medicine, Tel-Aviv, Israel
| | - Luiz De Marco
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Sun J, Luo J, Jiang F, Zhao J, Zhou S, Wang L, Zhang D, Ding Y, Li X. Exploring the cross-cancer effect of circulating proteins and discovering potential intervention targets for 13 site-specific cancers. J Natl Cancer Inst 2024; 116:565-573. [PMID: 38039160 DOI: 10.1093/jnci/djad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The proteome is an important reservoir of potential therapeutic targets for cancer. This study aimed to examine the causal associations between plasma proteins and cancer risk and to identify proteins with cross-cancer effects. METHODS Genetic instruments for 3991 plasma proteins were extracted from a large-scale proteomic study. Summary-level data of 13 site-specific cancers were derived from publicly available datasets. Proteome-wide Mendelian randomization and colocalization analyses were used to investigate the causal effect of circulating proteins on cancers. Protein-protein interactions and druggability assessment were conducted to prioritize potential therapeutic targets. Finally, systematical Mendelian randomization analysis between healthy lifestyle factors and cancer-related proteins was conducted to identify which proteins could act as interventional targets by lifestyle changes. RESULTS Genetically determined circulating levels of 58 proteins were statistically significantly associated with 7 site-specific cancers. A total of 39 proteins were prioritized by colocalization, of them, 11 proteins (ADPGK, CD86, CLSTN3, CSF2RA, CXCL10, GZMM, IL6R, NCR3, SIGLEC5, SIGLEC14, and TAPBP) were observed to have cross-cancer effects. Notably, 5 of these identified proteins (CD86, CSF2RA, CXCL10, IL6R, and TAPBP) have been targeted for drug development in cancer therapy; 8 proteins (ADPGK, CD86, CXCL10, GZMM, IL6R, SIGLEC5, SIGLEC14, TAPBP) could be modulated by healthy lifestyles. CONCLUSION Our study identified 39 circulating protein biomarkers with convincing causal evidence for 7 site-specific cancers, with 11 proteins demonstrating cross-cancer effects, and prioritized the proteins as potential intervention targets by either drugs or lifestyle changes, which provided new insights into the etiology, prevention, and treatment of cancers.
Collapse
Affiliation(s)
- Jing Sun
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyun Zhou
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Mak LS, Li X, Chan WYK, Leung AWK, Cheuk DKL, Yuen LYP, So JCC, Ha SY, Liu APY. Case report: Therapy-related myeloid neoplasms in three pediatric cases with medulloblastoma. Front Oncol 2024; 14:1364199. [PMID: 38595820 PMCID: PMC11002154 DOI: 10.3389/fonc.2024.1364199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Medulloblastoma is the most common malignant brain tumor in children, often requiring intensive multimodal therapy, including chemotherapy with alkylating agents. However, therapy-related complications, such as therapy-related myeloid neoplasms (t-MNs), can arise, particularly in patients with genetic predisposition syndromes. This case report presents three pediatric cases of medulloblastoma with subsequent development of t-MNs, highlighting the potential role of genetic predisposition and the importance of surveillance for hematological abnormalities in long-term survivors. Case presentation We describe three cases of pediatric medulloblastoma who developed t-MNs after receiving chemotherapy, including alkylating agents. Two of the patients had underlying genetic predisposition syndromes (TP53 pathologic variants). The latency period between initial diagnosis of medulloblastoma and the development of secondary cancer varied among the cases, ranging from 17 to 65 months. The three cases eventually succumbed from secondary malignancy, therapy-related complications and progression of primary disease, respectively. Conclusions This report highlights the potential association between genetic predisposition syndromes and the development of therapy-related myeloid neoplasms in pediatric medulloblastoma survivors. It underscores the importance of surveillance for hematological abnormalities among such patients.
Collapse
Affiliation(s)
- Li Shun Mak
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Xiuling Li
- Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Wilson Y. K. Chan
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Alex W. K. Leung
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Daniel K. L. Cheuk
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Liz Y. P. Yuen
- Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Jason C. C. So
- Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Shau Yin Ha
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Anthony P. Y. Liu
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Peña-López J, Jiménez-Bou D, Ruíz-Gutiérrez I, Martín-Montalvo G, Alameda-Guijarro M, Rueda-Lara A, Ruíz-Giménez L, Higuera-Gómez O, Gallego A, Pertejo-Fernández A, Sánchez-Cabrero D, Feliu J, Rodríguez-Salas N. Prevalence and Distribution of MUTYH Pathogenic Variants, Is There a Relation with an Increased Risk of Breast Cancer? Cancers (Basel) 2024; 16:315. [PMID: 38254803 PMCID: PMC10813893 DOI: 10.3390/cancers16020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND MUTYH has been implicated in hereditary colonic polyposis and colorectal carcinoma. However, there are conflicting data refgarding its relationship to hereditary breast cancer. Therefore, we aimed to assess if MUTYH mutations contribute to breast cancer susceptibility. METHODS We retrospectively reviewed 3598 patients evaluated from June 2018 to June 2023 at the Hereditary Cancer Unit of La Paz University Hospital, focusing on those with detected MUTYH variants. RESULTS Variants of MUTYH were detected in 56 patients (1.6%, 95%CI: 1.2-2.0). Of the 766 patients with breast cancer, 14 patients were carriers of MUTYH mutations (1.8%, 95%CI: 0.5-3.0). The prevalence of MUTYH mutation was significantly higher in the subpopulation with colonic polyposis (11.3% vs. 1.1%, p < 0.00001, OR = 11.2, 95%CI: 6.2-22.3). However, there was no significant difference in the prevalence within the subpopulation with breast cancer (1.8% vs. 1.5%, p = 0.49, OR = 1.2, 95%CI: 0.7-2.3). CONCLUSION In our population, we could not establish a relationship between MUTYH and breast cancer. These findings highlight the necessity for a careful interpretation when assessing the role of MUTYH mutations in breast cancer risk.
Collapse
Affiliation(s)
- Jesús Peña-López
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Diego Jiménez-Bou
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Icíar Ruíz-Gutiérrez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Gema Martín-Montalvo
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | - Antonio Rueda-Lara
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Leticia Ruíz-Giménez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Oliver Higuera-Gómez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Alejandro Gallego
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | | | | | - Jaime Feliu
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | |
Collapse
|
10
|
Hutchcraft ML, Zhang S, Lin N, Pickarski JC, Belcher EA, Wei S, Bocklage T, Miller RW, Villano JL, Cavnar MJ, Kim J, Arnold SM, Ueland FR, Kolesar JM. Feasibility and Clinical Utility of Reporting Hereditary Cancer Predisposition Pathogenic Variants Identified in Research Germline Sequencing: A Prospective Interventional Study. JCO Precis Oncol 2024; 8:e2300266. [PMID: 38295319 PMCID: PMC10843325 DOI: 10.1200/po.23.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE Patients with cancer frequently undergo research-grade germline sequencing but clinically actionable results are not routinely disclosed. The objective of this study is to evaluate the feasibility of reporting clinically relevant secondary findings (SF) identified in germline research sequencing using the institutional molecular tumor board (MTB) and the treating oncology physician. METHODS This prospective, interventional cohort study enrolled Total Cancer Care participants with any cancer diagnosis at a single institution. Patients underwent research-grade germline whole-exome sequencing, with bioinformatic analysis in a Clinical Laboratory Improvement Amendments-certified laboratory to verify pathogenic/likely pathogenic germline variants (PGVs) in any American College of Medical Genomics and Genetics SF v2.0 genes. After a protocol modification in consenting patients, the MTB reported PGVs to treating oncology physicians with recommendations for referral to a licensed genetic counselor and clinical confirmatory testing. RESULTS Of the 781 enrolled participants, 32 (4.1%) harbored cancer predisposition PGVs, 24 (3.1%) were heterozygous carriers of an autosomal recessive cancer predisposition syndrome, and 14 (1.8%) had other hereditary disease PGVs. Guideline-directed testing would have missed 37.5% (12/32) of the inherited cancer predisposition PGVs, which included BRCA1, BRCA2, MSH6, SDHAF2, SDHB, and TP53 variants. Three hundred fifteen participants consented to reporting results; results for all living patients were reported to the clinical team with half referred to a licensed genetic counselor. There was concordance between all research variants identified in patients (n = 9) who underwent clinical confirmatory sequencing. CONCLUSION MTB reporting of research-grade germline sequencing to the clinical oncology team is feasible. Over a third of PGVs identified using a universal testing strategy would have been missed by guideline-based approach, suggesting a role for expanding germline testing.
Collapse
Affiliation(s)
- Megan L. Hutchcraft
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Shulin Zhang
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY
| | - Nan Lin
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY
| | | | - Elizabeth A. Belcher
- Department of Clinical Research, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Sainan Wei
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
| | - Thèrése Bocklage
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
| | - Rachel W. Miller
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - John L. Villano
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Michael J. Cavnar
- Division of Surgical Oncology, Department of Surgery, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Joseph Kim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Susanne M. Arnold
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Frederick R. Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Jill M. Kolesar
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY
| |
Collapse
|
11
|
Zhao B, Sun W, Wang Y, Wu X, Li Y, Wang W, Ni M, Yan P, Dou X, Wang L, Chen M. Monoallelic deleterious MUTYH mutations generate colorectal cancer: A case report. Clin Case Rep 2023; 11:e8229. [PMID: 38033687 PMCID: PMC10686896 DOI: 10.1002/ccr3.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Here we reported a particular case of MUTYH-associated polyposis (MAP) that had only one rare heterozygous variant, but some particular clinical manifestations contributed to occur in this male patient by only one defective MUTYH allele were worth of further investigation. We reported a case of MAP. It is about a 33-year-old man with chief complaints of hematochezia who had multiple polyps that were found in his colon via colonoscopy. He followed his doctor's advice and performed a genetic analysis examination. Germline test was positive for a major heterozygous variant: chr1:45800165 on the MUTYH gene. MUTYH gene sequence analysis confirmed the following heterozygous variant: c.55CT (p.R19X) in exon 2 (ClinVar NM_001128425). Unfortunately, his mother and daughter have the ILK variant according to genetic analysis. However, this variant at the site was not detected in his father. Various types of polyps were found on repeated colonoscopy, which tended to become latent cancerous in the future. This case indicated that awareness of the risk of carcinogenesis of polyps in carriers of monoallelic variants might accordingly increase, and our understanding of the type of genetically related disease will be enhanced by us.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Wenqi Sun
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yunrong Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xinrong Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yifan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Weiwei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Muhan Ni
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Yan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiaotan Dou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Min Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
12
|
Sukpan P, Sangkhathat S, Sriplung H, Laochareonsuk W, Choochuen P, Auseng N, Khoonjan W, Salaeh R, Thangnaphadol K, Wanawanakorn K, Kanokwiroon K. Exome Sequencing Reveals Novel Germline Variants in Breast Cancer Patients in the Southernmost Region of Thailand. J Pers Med 2023; 13:1587. [PMID: 38003901 PMCID: PMC10672121 DOI: 10.3390/jpm13111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Germline carriers of pathogenic variants in cancer susceptibility genes are at an increased risk of breast cancer (BC). We characterized germline variants in a cohort of 151 patients diagnosed with epithelial BC in the southernmost region of Thailand, where the predominant ethnicity differs from that of the rest of the country. Whole exome sequencing was used to identify and subsequently filter variants present in 26 genes known to be associated with cancer predisposition. Of the 151 individuals assessed, 23, corresponding to 15.2% of the sample, exhibited the presence of one or more pathogenic or likely pathogenic variants associated with BC susceptibility. We identified novel germline truncating variants in BRIP1, CHEK2, MSH6, PALB2, and PTEN and annotated variants of uncertain significance (VUSs), both novel and previously documented. Therefore, it is advisable to use genetic testing as an additional risk screening method for BC in this area.
Collapse
Affiliation(s)
- Panupong Sukpan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.S.); (W.L.); (P.C.)
- Medical Education Center, Naradhiwas Rajanagarindra Hospital, Narathiwat 96000, Thailand; (N.A.); (W.K.)
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.S.); (W.L.); (P.C.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Hutcha Sriplung
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Wison Laochareonsuk
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.S.); (W.L.); (P.C.)
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.S.); (W.L.); (P.C.)
| | - Nasuha Auseng
- Medical Education Center, Naradhiwas Rajanagarindra Hospital, Narathiwat 96000, Thailand; (N.A.); (W.K.)
| | - Weerawan Khoonjan
- Medical Education Center, Naradhiwas Rajanagarindra Hospital, Narathiwat 96000, Thailand; (N.A.); (W.K.)
| | - Rusta Salaeh
- Department of Surgery, Pattani Hospital, Pattani 94000, Thailand;
| | | | | | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.S.); (W.L.); (P.C.)
| |
Collapse
|
13
|
Nguyen HT, Lu YT, Tran DH, Tieu BL, Le KT, Pham TVN, Do TTT, Truong DK, Giang H, Tang HS. Prevalence and genetic spectrum associated with hereditary colorectal cancer syndromes, the need to improve cancer risk awareness, and family cascade testing in Vietnam. Fam Cancer 2023; 22:449-458. [PMID: 37516717 DOI: 10.1007/s10689-023-00344-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
In Vietnam, colorectal cancer is one of the top diagnosed cancers, with 5-10% originating from inherited mutations. This study aims to define the mutation spectrum associated with hereditary colorectal cancer syndromes (HCCS) in Vietnam, evaluate the influence of genetic testing on carriers' awareness, and also investigate the barriers in familial testing. Genetic test reports were collected to identify HCCS cases, then cases underwent a survey investigating self-risk and familial-risk awareness, proactive cancer screening, and familial testing barriers. Participant characteristics, mutation prevalence, and results from the survey were descriptively analyzed and reported. Of all genetic test results, 3% (49/1632) were identified with mutations related to HCCS. Over 77% of them belonged to Lynch syndrome. PMS2 appeared to be the gene with the highest mutation frequency, while MLH1 was the lowest. 44% of cases further undertook cancer screening tests, and 48% of cases' families had uptake genetic testing. The biggest barrier of familial members for not taking genetic test was psychological reasons (fear, not being interested, or not feeling necessary). This study provided new evidence for HCCS mutation spectrum in Vietnamese population and the success in promoting cascade test in high-risk family members through financial and technical support. Also, study has suggested the needs of an innovative genetic testing process focusing on the quality of pre-and post-test consultancy, an increase in follow-ups, and the change in policy for permission of contacting relatives directly to improve the rate of cascade testing and proactive cancer screening.
Collapse
Affiliation(s)
| | - Y-Thanh Lu
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
- Gene Solutions, Ho Chi Minh City, Vietnam
| | - Duc-Huy Tran
- University Medical Center, Ho Chi Minh City, Vietnam
| | - Ba-Linh Tieu
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
- Gene Solutions, Ho Chi Minh City, Vietnam
| | - Kien-Trung Le
- University Medical Center, Ho Chi Minh City, Vietnam
| | | | | | | | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.
- Gene Solutions, Ho Chi Minh City, Vietnam.
| | - Hung-Sang Tang
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.
- Gene Solutions, Ho Chi Minh City, Vietnam.
| |
Collapse
|
14
|
Desai NV, Barrows ED, Nielsen SM, Hatchell KE, Anderson MJ, Haverfield EV, Herrera B, Esplin ED, Lucassen A, Tung NM, Isaacs C. Retrospective Cohort Study on the Limitations of Direct-to-Consumer Genetic Screening in Hereditary Breast and Ovarian Cancer. JCO Precis Oncol 2023; 7:e2200695. [PMID: 37535880 PMCID: PMC10581610 DOI: 10.1200/po.22.00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE Among cancer predisposition genes, most direct-to-consumer (DTC) genetic tests evaluate three Ashkenazi Jewish (AJ) founder mutations in BRCA1/2, which represent a small proportion of pathogenic or likely pathogenic variants (PLPV) in cancer predisposing genes. In this study, we investigate PLPV in BRCA1/2 and other cancer predisposition genes that are missed by testing only AJ founder BRCA1/2 mutations. METHODS Individuals were referred to genetic testing for personal diagnoses of breast and/or ovarian cancer (clinical cohort) or were self-referred (nonindication-based cohort). There were 348,692 participants in the clinical cohort and 7,636 participants in the nonindication-based cohort. Both cohorts were analyzed for BRCA1/2 AJ founder mutations. Full sequence analysis was done for PLPV in BRCA1/2, CDH1, PALB2, PTEN, STK11, TP53, ATM, BARD1, BRIP1, CHEK2 (truncating variants), EPCAM, MLH1, MSH2/6, NF1, PMS2, RAD51C/D, and 22 other genes. RESULTS BRCA1/2 AJ founder mutations accounted for 10.8% and 29.7% of BRCA1/2 PLPV in the clinical and nonindication-based cohorts, respectively. AJ founder mutations accounted for 89.9% of BRCA1/2 PLPV in those of full AJ descent, but only 69.6% of those of partial AJ descent. In total, 0.5% of all individuals had a BRCA1/2 AJ founder variant, while 7.7% had PLPV in a high-risk breast/ovarian cancer gene. For non-AJ individuals, limiting evaluation to the AJ founder BRCA1/2 mutations missed >90% of mutations in actionable cancer risk genes. Secondary analysis revealed a false-positive rate of 69% for PLPV outside of non-AJ BRCA 1/2 founder mutations. CONCLUSION DTC genetic testing misses >90% of BRCA1/2 PLPV in individuals of non-AJ ancestry and about 10% of BRCA1/2 PLPV among AJ individuals. There is a high false-positivity rate for non-AJ BRCA 1/2 PLPV with DTC genetic testing.
Collapse
Affiliation(s)
| | - Elizabeth D. Barrows
- Division of Hematology-Oncology, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC
| | | | | | | | | | | | | | - Anneke Lucassen
- Department of Clinical Ethics and Law at Southampton, University of Southampton, Southampton, United Kingdom
- Welcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nadine M. Tung
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Claudine Isaacs
- Division of Hematology-Oncology, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC
| |
Collapse
|
15
|
Chen Y, Gutierrez V, Morris L, Marti JL. Diagnostic Scrutiny and Patterns of Elevated Cancer Risk: Uncovering Overdiagnosis Through Standardized Incidence Ratios. Cureus 2023; 15:e42439. [PMID: 37637595 PMCID: PMC10447997 DOI: 10.7759/cureus.42439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Certain medical diagnoses and environmental or occupational exposures may be associated with elevated risk of cancer diagnosis, either through causal mechanisms or via increased detection of a subclinical reservoir through increased diagnostic scrutiny (overdiagnosis). The present study aimed to investigate the distribution of elevated cancer risks associated with different diagnoses and exposures. A systematic literature search was conducted to identify studies published in the last 30 years that examined the standardized incidence ratio (SIR) associated with exposures and risk factors. Meta-SIRs for each cancer type were calculated. The distribution of elevated cancer risks was then compared between cancer types previously reported to be susceptible to overdiagnosis and those that have not been associated with overdiagnosis. The review of 108 studies identified four patterns: SIR generally elevated for 1) only overdiagnosis-susceptible cancer types, 2) both overdiagnosed and non-overdiagnosed cancer types, 3) select cancers in accordance with risk factor or exposure, and 4) SIRs that did not exhibit a distinct increase in any cancer type. The distribution of elevated cancer risks may serve as a signature of whether the underlying risk factor or exposure is a carcinogenic process or a mechanism of increased diagnostic scrutiny uncovering clinically occult diseases. The identification of increased cancer risk should be viewed with caution, and analyzing the pattern of elevated cancer risk distribution can potentially reveal conditions that appear to be cancer risk factors but are in fact the result of exposure to medical surveillance or other healthcare activities that lead to the detection of indolent tumors.
Collapse
Affiliation(s)
- Yunchan Chen
- Department of Surgery, Weill Cornell Medicine, New York, USA
| | | | - Luc Morris
- Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jennifer L Marti
- Division of Breast Surgical Oncology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, USA
| |
Collapse
|
16
|
Özdemir Z, Çevik E, Öksüzoğlu ÖBÇ, Doğan M, Ateş Ö, Esin E, Bilgetekin İ, Demirci U, Köseoğlu Ç, Topal A, Karadurmuş N, Erdem HB, Bahsi T. Uncommon variants detected via hereditary cancer panel and suggestions for genetic counseling. Mutat Res 2023; 827:111831. [PMID: 37453313 DOI: 10.1016/j.mrfmmm.2023.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Hereditary cancer syndromes constitute 5-10% of all cancers. The development of next-generation sequencing technologies has made it possible to examine many hereditary cancer syndrome-causing genes in a single panel. This study's goal was to describe the prevalence and the variant spectrum using NGS in individuals who were thought to have a hereditary predisposition for cancer. MATERIAL AND METHOD Analysis was performed for 1254 who were thought to have a familial predisposition for cancer. We excluded 46 patients who were carrying BRCA1/2 variants in this study, for focusing on the rare gene mutations. Sequencing was performed using the Sophia Hereditary Cancer Solution v1.1 Panel and the Qiagen Large Hereditary Cancer Panel. The Illumina MiSeq system was used for the sequencing procedure. The software used for the data analyses was Sophia DDM and QIAGEN Clinical Insight (QCITM) Analyze. The resulting genomic changes were classified according to the current guidelines of ACMG/AMP. RESULTS Pathogenic/likely pathogenic variants were detected in 172 (13.7%) of 1254 patients. After excluding the 46 BRCA1/2-positive patients, among the remaining 126 patients; there were 60 (4.8%) breast cancer, 33 (2.6%) colorectal cancer, 9 (0.7%) ovarian cancer, 5 (0.4%) endometrium cancer, 5 (0.4%) stomach cancer, 3 (0.2%) prostate cancer patients. The most altered genes were MUTYH in 27 (2.1%) patients, MMR genes (MLH1, MSH6, MSH, MSH2, PMS2 and EPCAM) in 26 (2%) patients, and ATM in 25 (2%) patients. We also examined the genotype-phenotype correlation in rare variants. Additionally, we identified 11 novel variations. CONCLUSION This study provided significant information regarding rare variants observed in the Turkish population because it was carried out with a large patient group. Personalized treatment options and genetic counseling for the patients are therefore made facilitated.
Collapse
Affiliation(s)
- Zeynep Özdemir
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye.
| | - Ezgi Çevik
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| | | | - Mutlu Doğan
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Öztürk Ateş
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Ece Esin
- Bayındır Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - İrem Bilgetekin
- Lösante Hospital, Department of Medical Oncology, Ankara, Türkiye
| | - Umut Demirci
- Memorial Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Çağlar Köseoğlu
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Alper Topal
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Nuri Karadurmuş
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Haktan Bağış Erdem
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| | - Taha Bahsi
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| |
Collapse
|
17
|
Garutti M, Foffano L, Mazzeo R, Michelotti A, Da Ros L, Viel A, Miolo G, Zambelli A, Puglisi F. Hereditary Cancer Syndromes: A Comprehensive Review with a Visual Tool. Genes (Basel) 2023; 14:1025. [PMID: 37239385 PMCID: PMC10218093 DOI: 10.3390/genes14051025] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Hereditary cancer syndromes account for nearly 10% of cancers even though they are often underdiagnosed. Finding a pathogenic gene variant could have dramatic implications in terms of pharmacologic treatments, tailored preventive programs, and familiar cascade testing. However, diagnosing a hereditary cancer syndrome could be challenging because of a lack of validated testing criteria or because of their suboptimal performance. In addition, many clinicians are not sufficiently well trained to identify and select patients that could benefit from a genetic test. Herein, we searched the available literature to comprehensively review and categorize hereditary cancer syndromes affecting adults with the aim of helping clinicians in their daily clinical practice through a visual tool.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Lorenzo Foffano
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Roberta Mazzeo
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Anna Michelotti
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Lucia Da Ros
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Alessandra Viel
- Unit of Oncogenetics and Genomics CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Gianmaria Miolo
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS—Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
18
|
Hosseini S, Acar A, Sen M, Meeder K, Singh P, Yin K, Sutton JM, Hughes K. Penetrance of Gastric Adenocarcinoma Susceptibility Genes: A Systematic Review. Ann Surg Oncol 2023; 30:1795-1807. [PMID: 36528743 DOI: 10.1245/s10434-022-12829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gastric adenocarcinoma (GAC) is the fifth most common cancer in the world, and the presence of germline pathogenic variants has been linked with approximately 5% of gastric cancer diagnoses. Multiple GAC susceptibility genes have been identified, but information regarding the risk associated with pathogenic variants in these genes remains obscure. We conducted a systematic review of existing studies reporting the penetrance of GAC susceptibility genes. METHODS A structured search query was devised to identify GAC-related papers indexed in MEDLINE/PubMed. A semi-automated natural language processing algorithm was applied to identify penetrance papers for inclusion. Original studies reporting the penetrance of GAC were included and the full-text articles were independently reviewed. Summary statistics, effect estimates, and precision parameters from these studies were compiled into a table using a predetermined format to ensure consistency. RESULTS Forty-five studies were identified reporting the penetrance of GAC among patients harboring mutations in 13 different genes: APC, ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, PMS2, MUTYH-Monoallelic, NBN, and STK11. CONCLUSION Our systematic review highlights the importance of testing for germline pathogenic variants in patients before the development of GAC. Management of patients who harbor a pathogenic mutation is multifactorial, and clinicians should consider cancer risk for each applicable gene-cancer association throughout the screening and management process. The scarcity of studies we found investigating the risk of GAC among patients with pathogenic variants in GAC susceptibility genes highlights the need for more investigations that focus on producing robust risk estimates for gene-cancer associations.
Collapse
Affiliation(s)
- Sahar Hosseini
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmet Acar
- Department of Emergency, Avrupa Hospital, Istanbul, Turkey
| | - Meghdeep Sen
- College of Medicine, American University of Antigua, Coolidge, Antigua, Antigua and Barbuda
| | - Kiersten Meeder
- Division of Oncologic and Endocrine Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Preeti Singh
- Department of Surgery, Montefiore Medical Center, Bronx, NY, USA
| | - Kanhua Yin
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey M Sutton
- Division of Oncologic and Endocrine Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kevin Hughes
- Division of Oncologic and Endocrine Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
High prevalence of MUTYH associated polyposis among minority populations in Israel, due to rare founder pathogenic variants. Dig Liver Dis 2023:S1590-8658(23)00162-7. [PMID: 36740502 DOI: 10.1016/j.dld.2023.01.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal recessive conditions are common in consanguineous populations. Since consanguinity is common in the Israeli Arab population, we evaluated the rate of MUTYH polyposis (MAP) among polyposis patients in this population and studied Pathogenic Variants (PVs) spectrum. METHODS We reviewed health records of all Arab and Druze polyposis patients referred for counseling during 2013-2020 who fulfilled the Israeli Genetic Society criteria for MUTYH/APC testing, in a tertiary center in Northern Israel and four additional gastro-genetic clinics in Israel. RESULTS The Northern cohort included 37 patients from 30 unrelated families; 8(26.6%) carried bi-allelic MUTYH PVs. The major variant p.Glu452del was detected in 6/8 Druze and Muslim families who shared the same haplotype. Other PVs detected in both cohorts included p.Tyr56Ter, p.His57Arg, c.849+3A>C, p.Ala357fs, and p.Tyr151Cys. Among bi-allelic carriers, 88% reported consanguinity, and 100% had positive family history for polyposis or colorectal cancer (CRC). Generally, the age of CRC was 10 years younger than reported in the general MAP population. CONCLUSIONS MAP accounted for 27% of polyposis cases in the Arab population of Northern Israel. PVs spectrum is unique, with high frequency of the founder variant p.Glu452del. Our results may inform the genetic testing strategy in the Israeli Arab population.
Collapse
|
20
|
Carvalho CMD, Braga LDC, Silva LM, Chami AM, Silva Filho ALD. Germline Mutations Landscape in a Cohort of the State of Minas Gerais, Brazil, in Patients Who Underwent Genetic Counseling for Gynecological and Breast Cancer. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:74-81. [PMID: 36977404 PMCID: PMC10078886 DOI: 10.1055/s-0042-1757956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE The present study evaluated the profile of germline mutations present in patients who underwent genetic counseling for risk assessment for breast cancer (BC), ovarian cancer (OC), and endometrial cancer (EC) with a possible hereditary pattern. METHODS Medical records of 382 patients who underwent genetic counseling after signing an informed consent form were analyzed. A total of 55.76% of patients (213/382) were symptomatic (personal history of cancer), and 44.24% (169/382) were asymptomatic (absence of the disease). The variables analyzed were age, sex, place of birth, personal or family history of BC, OC, EC, as well as other types of cancer associated with hereditary syndromes. The Human Genome Variation Society (HGVS) nomenclature guidelines were used to name the variants, and their biological significance was determined by comparing 11 databases. RESULTS We identified 53 distinct mutations: 29 pathogenic variants, 13 variants of undetermined significance (VUS), and 11 benign. The most frequent mutations were BRCA1 c.470_471delCT, BRCA1 c.4675 + 1G > T, and BRCA2 c.2T> G. Furthermore, 21 variants appear to have been described for the first time in Brazil. In addition to BRCA1/2 mutations, variants in other genes related to hereditary syndromes that predispose to gynecological cancers were found. CONCLUSION This study allowed a deeper understanding of the main mutations identified in families in the state of Minas Gerais and demonstrates the need to assess the family history of non-gynecological cancer for risk assessment of BC, OC, and EC. Moreover, it is an effort that contributes to population studies to evaluate the cancer risk mutation profile in Brazil.
Collapse
Affiliation(s)
- Camila Martins de Carvalho
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Letícia da Conceição Braga
- OncoTag Desenvolvimento de Produtos e Serviços para Saúde Humana, Belo Horizonte, MG, Brazil
- Translational Research Laboratory in Oncology, Instituto Mário Penna-Ensino, Pesquisa e Inovação, Belo Horizonte, MG, Brazil
| | - Luciana Maria Silva
- OncoTag Desenvolvimento de Produtos e Serviços para Saúde Humana, Belo Horizonte, MG, Brazil
- Cell Biology Service, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Anisse Marques Chami
- School of Medicine, Campus Botucatu, Universidade Estadual Paulista, Belo Horizonte, MG, Brazil
| | - Agnaldo Lopes da Silva Filho
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- School of Medicine, Campus Botucatu, Universidade Estadual Paulista, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Rodriguez-Rojas LX, Candelo E, Pachajoa H, Garcia-Robledo JE, Nastasi-Catanese JA, Olave-Rodriguez JA, Zambrano AR. The Unique Spectrum of MUTYH Germline Mutations in Colombian Patients with Extracolonic Carcinomas. Appl Clin Genet 2023; 16:53-62. [PMID: 37096204 PMCID: PMC10122495 DOI: 10.2147/tacg.s370416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
Background Protein MUTYH, encoded by the gene MUTYH, is an important mismatch repair enzyme in the base-excision repair pathway of DNA repair. When genetically altered, different neoplastic conditions can arise. One of the widely known syndromes associated with MUTYH mutations is MUTYH-associated polyposis, a form of familial colorectal cancer syndrome. MUTYH may also be a driver in other familial cancer syndromes, as well as breast cancer and spontaneous cancer cases. However, some controversies about the role of these alterations in oncogenesis remain, especially when affected in a heterozygous way. Most available data on MUTYH mutations are on Caucasian patients. Material and Methods We analyzed a small cohort of non-Caucasian, Colombian cancer patients with MUTYH germline heterozygous mutations, clinical features suggestive of familial cancer, and extensive genetic studies with no other mutations and without MUTYH-associated polyposis. Conclusion With this case series, we intended to provide important data for the understanding of MUTYH as a possible driver of familial cancer, even when only heterozygous mutations are found.
Collapse
Affiliation(s)
- Lisa Ximena Rodriguez-Rojas
- Department of Human Genetics, Fundación Valle del Lili, Cali, Colombia
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
- Correspondence: Lisa Ximena Rodriguez-Rojas, Department of Human Genetics, Fundación Valle del Lili, Cali, 760032, Colombia, Email
| | - Estephania Candelo
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras, Universidad Icesi, Cali, Colombia
| | - Harry Pachajoa
- Department of Human Genetics, Fundación Valle del Lili, Cali, Colombia
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras, Universidad Icesi, Cali, Colombia
| | | | - Jose Antonio Nastasi-Catanese
- Department of Human Genetics, Fundación Valle del Lili, Cali, Colombia
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
| | | | - Angela R Zambrano
- Department of Hematology/Oncology, Fundación Valle del Lili, Cali, Colombia
| |
Collapse
|
22
|
Agaoglu NB, Ng OH, Unal B, Dogan OA, Amanvermez U, Yildiz J, Doganay L, Ghazani AA, Rana HQ. Concurrent Pathogenic Variants of BRCA1, MUTYH and CHEK2 in a Hereditary Cancer Family. Cancer Genet 2022; 268-269:128-136. [PMID: 36368126 DOI: 10.1016/j.cancergen.2022.10.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/04/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Concurrent pathogenic variants (PVs) in cancer predisposition genes have been reported in 0.1-2% of hereditary cancer (HC) patients. Determining concurrent PVs is crucial for the diagnosis, treatment, and risk assessment of unaffected family members. Next generation sequencing based diagnostic tests, which are widely used in HCs, enable the evaluation of multiple genes in parallel. We have screened the family members of a patient with bilateral breast cancer who was found to have concurrent PVs in BRCA1 (NM_007294.3;c.5102_5103del, p.Leu1701Glnfs*14) and MUTYH (NM_001128425.1;c.884C>T, p.Pro295Leu). Further analysis revealed concurrent PVs in CHEK2 (NM_007194.4;c.1427C>T, p.Thr476Met) and MUTYH (NM_001128425.1;c.884C>T, p.Pro295Leu) in the maternal uncle of the index case. Eight additional family members were found to have PVs in BRCA1 and MUTYH among 26 tested relatives. The sister and the brother of the index case who were diagnosed with breast and colon cancers, respectively, presented with the same genotype as the index case. Each family member was evaluated individually for clinical care and surveillance. This is the first report describing a family with BRCA1, MUTYH and CHEK2 concurrent PVs. Our findings provide valuable information for the assessment and management considerations for families with concurrent PVs.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey; Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Acibadem University Rare Diseases and Orphan Drugs Application and Research Center, Istanbul, Turkey
| | - Busra Unal
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Ozlem Akgun Dogan
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ufuk Amanvermez
- Department of Genome Studies, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Jale Yildiz
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Levent Doganay
- Department of Gastroenterology and Hepatology, Umraniye Training and Research Hospital, Umraniye, Istanbul, Turkey
| | - Arezou A Ghazani
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, United States; Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Huma Q Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| |
Collapse
|
23
|
Thompson AB, Sutcliffe EG, Arvai K, Roberts ME, Susswein LR, Marshall ML, Torene R, Postula KJV, Hruska KS, Bai S. Monoallelic MUTYH pathogenic variants ascertained via multi-gene hereditary cancer panels are not associated with colorectal, endometrial, or breast cancer. Fam Cancer 2022; 21:415-422. [PMID: 34981295 DOI: 10.1007/s10689-021-00285-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/21/2021] [Indexed: 01/27/2023]
Abstract
We aimed to determine whether monoallelic MUTYH pathogenic and likely pathogenic variants (PVs) are associated with colorectal, breast, and endometrial cancer. Cases were individuals with colorectal, female breast, or endometrial cancer who reported European ancestry alone and underwent a multi-gene hereditary cancer panel at a large reference laboratory. Controls were individuals of European (non-Finnish) descent from GnomAD with cancer cohorts removed. We performed a Fisher's exact test to generate odds ratios (ORs) with 95% confidence intervals (CI). Prevalence of single MUTYH PVs in cancer cohorts versus controls, respectively, was: colorectal cancer, 2.1% vs. 1.8% (OR 1.2, 95% CI 0.99-1.5, p = 0.064); breast cancer 1.9% vs. 1.7% (OR 1.1, 95% CI 0.96-1.3, p = 0.15); and endometrial cancer, 1.7% vs. 1.7% (OR 0.98; 95% CI 0.70-1.3, p = 0.94). Using the largest colorectal and endometrial cancer cohorts and one of the largest breast cancer cohorts from a single case-control study, we did not observe a significant difference in the prevalence of monoallelic MUTYH PVs in these cohorts compared to controls. Additionally, frequencies among cancer cohorts were consistent with the published MUTYH carrier frequency of 1-2%. These findings suggest there is no association between colorectal, endometrial, or breast cancer and MUTYH heterozygosity in individuals of European ancestry.
Collapse
Affiliation(s)
| | | | - Kevin Arvai
- GeneDx, 207 Perry Pkwy, Gaithersburg, MD, 20877, USA
- DataRobot, Boston, MA, USA
| | | | | | | | | | | | | | - Shaochun Bai
- GeneDx, 207 Perry Pkwy, Gaithersburg, MD, 20877, USA
| |
Collapse
|
24
|
Whole-Exome Sequencing Identifies Pathogenic Germline Variants in Patients with Lynch-Like Syndrome. Cancers (Basel) 2022; 14:cancers14174233. [PMID: 36077770 PMCID: PMC9454535 DOI: 10.3390/cancers14174233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary A significant proportion of families with a clinical suggestion of Lynch syndrome and screened for the known MMR genes remain without a molecular diagnosis. These patients, who generally show a suggestive family pedigree or early-onset tumors with MMR deficiency and no detectable germline variants, are referred to as having Lynch-like syndrome. To investigate underlying and potentially predisposing variants related to Lynch-like syndrome, we performed whole-exome sequencing in patients with clinical criteria for Lynch syndrome, MMR deficiency and without germline variants. This approach allowed for the identification of new variants potentially associated with Lynch-like syndrome, providing new clues to explain the familial predisposition to Lynch syndrome-related tumors in these patients, which could lead to new screening strategies for the identification of families at risk of developing cancer. Abstract Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, characterized by germline pathogenic variants in mismatch repair (MMR)-related genes that lead to microsatellite instability. Patients who meet the clinical criteria for LS and MMR deficiency and without any identified germline pathogenic variants are frequently considered to have Lynch-like syndrome (LLS). These patients have a higher risk of CRC and extracolonic tumors, and little is known about their underlying genetic causes. We investigated the germline spectrum of LLS patients through whole-exome sequencing (WES). A total of 20 unrelated patients with MMR deficiency who met the clinical criteria for LS and had no germline variant were subjected to germline WES. Variant classification was performed according to the American College of Medical Genetics and Genomics (ACMG) criteria. Pathogenic/likely pathogenic variants were identified in 35% of patients in known cancer genes such as MUTYH and ATM. Besides this, rare and potentially pathogenic variants were identified in the DNA repair gene POLN and other cancer-related genes such as PPARG, CTC1, DCC and ALPK1. Our study demonstrates the germline mutational status of LLS patients, a population at high risk of colorectal cancer.
Collapse
|
25
|
Djursby M, Hansen TVO, Wadt KAW, Madsen MB, Berchtold LA, Lautrup CK, Markholt S, Jensen UB, Krogh LN, Lundsgaard M, Gerdes AM, Nilbert M, Therkildsen C. Clinical implications of genetic testing in familial intermediate and late-onset colorectal cancer. Hum Genet 2022; 141:1925-1933. [PMID: 35904628 DOI: 10.1007/s00439-022-02470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
The genetic background of familial, late-onset colorectal cancer (CRC) (i.e., onset > age 50 years) has not been studied as thoroughly as other subgroups of familial CRC, and the proportion of families with a germline genetic predisposition to CRC remains to be defined. To define the contribution of known or suggested CRC predisposition genes to familial late-onset CRC, we analyzed 32 well-established or candidate CRC predisposition genes in 75 families with late-onset CRC. We identified pathogenic or likely pathogenic variants in five patients in MSH6 (n = 1), MUTYH (monoallelic; n = 2) and NTHL1 (monoallelic; n = 2). In addition, we identified a number of variants of unknown significance in particular in the lower penetrant Lynch syndrome-associated mismatch repair (MMR) gene MSH6 (n = 6). In conclusion, screening using a comprehensive cancer gene panel in families with accumulation of late-onset CRC appears not to have a significant clinical value due to the low level of high-risk pathogenic variants detected. Our data suggest that only patients with abnormal MMR immunohistochemistry (IHC) or microsatellite instability (MSI) analyses, suggestive of Lynch syndrome, or a family history indicating another cancer predisposition syndrome should be prioritized for such genetic evaluations. Variants in MSH6 and MUTYH have previously been proposed to be involved in digenic or oligogenic hereditary predisposition to CRC. Accumulation of variants in MSH6 and monoallelic, pathogenic variants in MUTYH in our study indicates that digenic or oligogenic inheritance might be involved in late-onset CRC and warrants further studies of complex types of inheritance.
Collapse
Affiliation(s)
- Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Majbritt Busk Madsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Kvist Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Sara Markholt
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Malene Lundsgaard
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mef Nilbert
- Clinical Research Centre, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark.,Institute of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Christina Therkildsen
- Clinical Research Centre, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark.,HNPCC Register, Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark
| |
Collapse
|
26
|
Murphy A, Solomons J, Risby P, Gabriel J, Bedenham T, Johnson M, Atkinson N, Bailey AA, Bird‐Lieberman E, Leedham SJ, East JE, Biswas S. Germline variant testing in serrated polyposis syndrome. J Gastroenterol Hepatol 2022; 37:861-869. [PMID: 35128723 PMCID: PMC9305167 DOI: 10.1111/jgh.15791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Serrated polyposis syndrome (SPS) is now known to be the commonest polyposis syndrome. Previous analyses for germline variants have shown no consistent positive findings. To exclude other polyposis syndromes, 2019 British Society of Gastroenterology (BSG) guidelines advise gene panel testing if the patient is under 50 years, there are multiple affected individuals within a family, or there is dysplasia within any of the polyps. METHODS A database of SPS patients was established at the Oxford University Hospitals NHS Foundation Trust. Patients were referred for genetic assessment based on personal and family history and patient preference. The majority were tested for a hereditary colorectal cancer panel including MUTYH, APC, PTEN, SMAD4, BMPR1A, STK11, NTLH1, POLD1, POLE, GREM1 (40-kb duplication), PMS2, and Lynch syndrome mismatch repair genes. RESULTS One hundred and seventy-three patients were diagnosed with SPS based on World Health Organization 2019 criteria between February 2010 and December 2020. The mean age of diagnosis was 54.2 ± 16.8 years. Seventy-three patients underwent genetic testing and 15/73 (20.5%) were found to have germline variants, of which 7/73 (9.6%) had a pathogenic variant (MUTYH n = 2, SMAD4 n = 1, CHEK2 n = 2, POLD1 n = 1, and RNF43 n = 1). Only 60% (9/15) of these patients would have been recommended for gene panel testing according to current BSG guidelines. CONCLUSIONS A total of 20.5% of SPS patients tested were affected by heterozygous germline variants, including previously unreported associations with CHEK2 and POLD1. This led to a change in management in seven patients (9.6%). Current recommendations may miss SPS associated with germline variants, which is more common than previously anticipated.
Collapse
Affiliation(s)
- Aisling Murphy
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Joyce Solomons
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Peter Risby
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Jessica Gabriel
- Oxford Regional Genetics Laboratories, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Tina Bedenham
- Oxford Regional Genetics Laboratories, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Michael Johnson
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Nathan Atkinson
- New Zealand Familial Gastrointestinal Cancer RegistryAuckland City HospitalAucklandNew Zealand
| | - Adam A Bailey
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Elizabeth Bird‐Lieberman
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Simon J Leedham
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK,Intestinal Stem Cell Biology Lab, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - James E East
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Sujata Biswas
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK,Gastroenterology DepartmentBuckinghamshire Healthcare NHS TrustUK
| |
Collapse
|
27
|
Karpel HC, Chern JY, Smith J M, Smith A J, Pothuri B. Utility of germline multi-gene panel testing in patients with endometrial cancer. Gynecol Oncol 2022; 165:546-551. [PMID: 35483985 DOI: 10.1016/j.ygyno.2022.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Patients with germline mutations in mismatch repair genes (MLH1, MSH2, MSH6, PMS2) associated with Lynch syndrome (LS) have an increased lifetime risk of endometrial cancer (EC). Multi-gene panel testing (MGPT) is a recent hereditary cancer risk tool enabling next-generation sequencing of numerous genes in parallel. We determined the prevalence of actionable cancer predisposition gene mutations identified through MGPT in an EC patient cohort. METHODS A single center retrospective cohort study was conducted of patients with EC who had a clinical indication for genetic testing and who underwent MGPT as part of standard of care treatment between 2012 and 2021. Pathogenic mutations were identified and actionable mutations were defined as those with clinical management implications. Additionally, the number of individuals identified with LS was compared between MGPT and tumor-based screening. RESULTS The study included a total of 224 patients. Thirty-three patients [14.7%, 95% confidence interval (CI) = 10.4-20.1] had actionable mutations. Twenty-one patients (9.4%, 95% CI = 5.9-14.0) had mutations in LS genes (4 MLH1, 5 MSH2, 7 MSH6, 4 PMS2, 1 Epcam-MSH2). MGPT revealed two patients with LS (9.5% of LS cases) not identified through routine tumor-based screening. Thirteen patients (5.8%, 95% CI = 3.1-9.7) had at least one actionable mutation in a non-Lynch syndrome gene (6 CHEK2, 2 BRCA2, 2 ATM, 2 APC, 1 RAD51C, 1 BRCA1). CONCLUSIONS Germline MGPT is both feasible and informative as it identifies LS cases not found on tumor testing as well as additional actionable mutations in patients with EC.
Collapse
Affiliation(s)
- Hannah C Karpel
- New York University Grossman School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
28
|
MUTYH-associated tumor syndrome: The other face of MAP. Oncogene 2022; 41:2531-2539. [DOI: 10.1038/s41388-022-02304-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
|
29
|
Aelvoet AS, Buttitta F, Ricciardiello L, Dekker E. Management of familial adenomatous polyposis and MUTYH-associated polyposis; new insights. Best Pract Res Clin Gastroenterol 2022; 58-59:101793. [PMID: 35988966 DOI: 10.1016/j.bpg.2022.101793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) are rare inherited polyposis syndromes with a high colorectal cancer (CRC) risk. Therefore, frequent endoscopic surveillance including polypectomy of relevant premalignant lesions from a young age is warranted in patients. In FAP and less often in MAP, prophylactic colectomy is indicated followed by lifelong endoscopic surveillance of the retained rectum after (sub)total colectomy and ileal pouch after proctocolectomy to prevent CRC. No consensus is reached on the right type and timing of colectomy. As patients with FAP and MAP nowadays have an almost normal life-expectancy due to adequate treatment of colorectal polyposis, challenges in the management of FAP and MAP have shifted towards the treatment of duodenal and gastric adenomas as well as desmoid treatment in FAP. Whereas up until recently upper gastrointestinal surveillance was mostly diagnostic and patients were referred for surgery once duodenal or gastric polyposis was advanced, nowadays endoscopic treatment of premalignant lesions is widely performed. Aiming to reduce polyp burden in the colorectum as well as in the upper gastrointestinal tract, several chemopreventive agents are currently being studied.
Collapse
Affiliation(s)
- Arthur S Aelvoet
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Francesco Buttitta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Kilbride MK, Bradbury AR. Evaluating Web-Based Direct-to-Consumer Genetic Tests for Cancer Susceptibility. JCO Precis Oncol 2022; 4:1900317. [PMID: 34970636 DOI: 10.1200/po.19.00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Recent years have seen direct-to-consumer (DTC) genetic testing for cancer susceptibility change dramatically. For one, a new model now dominates the market where tests are advertised to consumers but ordered by physicians. For another, many of today's tests are distinguished from earlier DTC offerings for cancer susceptibility by their scope and potential clinical significance. This review provides a comprehensive overview of available DTC genetic tests for cancer susceptibility and identifies aspects of the DTC testing process that could affect consumers' ability to make informed decisions about testing and understand their results. METHODS First, we provide an overview of each DTC genetic test for cancer susceptibility that includes information about cost; who orders it; whether variants of uncertain significance are returned; availability of genetic counseling; intended users; management of variant reclassifications; whether it is characterized as diagnostic, actionable, and clinically valid; molecular technique used; and Clinical Laboratory Improvement Amendments/College of American Pathologists status. Second, we identify six aspects of the testing process that could affect consumers' ability to make informed decisions about testing and interpret their results: How companies use certain terms (eg, medical grade or clinical grade); how companies use consumers' health information during the ordering process; the extent of genetic counseling provided by companies; companies' procedures for returning results; the role of company-provided ordering physicians; and companies' procedures for communicating variant reclassifications. RESULTS On the basis of our review of companies' Web sites, we believe that consumers would benefit from more information about these aspects of testing. CONCLUSION Providing this information would help consumers make informed decisions about whether to use a particular DTC genetic testing service and, should they choose to pursue testing, understand the implications and limitations of their results.
Collapse
Affiliation(s)
- Madison K Kilbride
- Department of Medical Ethics and Health Policy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Angela R Bradbury
- Department of Medical Ethics and Health Policy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
31
|
Georgeson P, Pope BJ, Rosty C, Clendenning M, Mahmood K, Joo JE, Walker R, Hutchinson R, Preston S, Como J, Joseland S, Win AK, Macrae FA, Hopper JL, Mouradov D, Gibbs P, Sieber OM, O’Sullivan DE, Brenner DR, Gallinger S, Jenkins MA, Winship IM, Buchanan DD. Evaluating the utility of tumour mutational signatures for identifying hereditary colorectal cancer and polyposis syndrome carriers. Gut 2021; 70:2138-2149. [PMID: 33414168 PMCID: PMC8260632 DOI: 10.1136/gutjnl-2019-320462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Germline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers. DESIGN Whole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers. RESULTS The combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC's signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls. CONCLUSION Assessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.
Collapse
Affiliation(s)
- Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Envoi Pathology, Brisbane, Queensland, Australia,University of Queensland, School of Medicine, Herston, Queensland, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Ryan Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Aung K. Win
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Finlay A. Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Dmitry Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Medical Oncology, Western Health, Victoria, Australia
| | - Oliver M. Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dylan E. O’Sullivan
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Darren R. Brenner
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada
| | - Steve Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Ingrid M. Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Dell'Elice A, Cini G, Fornasarig M, Armelao F, Barana D, Bianchi F, Casalis Cavalchini GC, Maffè A, Mammi I, Pedroni M, Percesepe A, Sorrentini I, Tibiletti M, Maestro R, Quaia M, Viel A. Filling the gap: A thorough investigation for the genetic diagnosis of unsolved polyposis patients with monoallelic MUTYH pathogenic variants. Mol Genet Genomic Med 2021; 9:e1831. [PMID: 34704405 PMCID: PMC8683633 DOI: 10.1002/mgg3.1831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Backgrounds MUTYH‐associated polyposis (MAP) is an autosomal recessive disease caused by biallelic pathogenic variants (PV) of the MUTYH gene. The aim of this study was to investigate the genetic causes of unexplained polyposis patients with monoallelic MUTYH PV. The analysis focused on 26 patients with suspected MAP, belonging to 23 families. Ten probands carried also one or more additional MUTYH variants of unknown significance. Methods Based on variant type and on the collected clinical and molecular data, these variants were reinterpreted by applying the ACMG/AMP rules. Moreover, supplementary analyses were carried out to investigate the presence of other variants and copy number variations in the coding and promoter regions of MUTYH, as well as other polyposis genes (APC, NTHL1, POLE, POLD1, MSH3, RNF43, and MCM9). Results We reclassified 4 out of 10 MUTYH variants as pathogenic or likely pathogenic, thus supporting the diagnosis of MAP in only four cases. Two other patients belonging to the same family showed a previously undetected deletion of the APC gene promoter. No PVs were found in the other investigated genes. However, 6 out of the 18 remaining families are still interesting MAP candidates, due to the co‐presence of a class 3 MUTYH variant that could be reinterpreted in the next future. Conclusion Several efforts are necessary to fully elucidate the genetic etiology of suspected MAP patients, especially those with the most severe polyposis/tumor phenotype. Clinical data, tumor molecular profile, family history, and polyposis inheritance mode may guide variant interpretation and address supplementary studies.
Collapse
Affiliation(s)
- Anastasia Dell'Elice
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giulia Cini
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Unit of Oncologic Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Franco Armelao
- U.O. Multizonale Gastroenterologia ed Endoscopia Digestiva, Ospedale Santa Chiara, Azienda Provinciale per i Servizi sanitari, Trento, Italy
| | - Daniela Barana
- Oncology Unit, Local Health and Social Care Unit, ULSS8 Berica, Montecchio Maggiore, Italy
| | - Francesca Bianchi
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | | | - Antonella Maffè
- S.S. Genetica e Biologia Molecolare, S.C. Interaziendale Laboratorio Analisi Chimico Cliniche e Microbiologia, ASO S Croce e Carle, Cuneo, Italy
| | - Isabella Mammi
- Medical Genetics Unit, Dolo General Hospital, Venezia, Italy
| | - Monica Pedroni
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | - Mariagrazia Tibiletti
- Department of Pathology, Circolo Hospital ASST Settelaghi, Varese, Italy.,Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Roberta Maestro
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Michele Quaia
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Viel
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
33
|
Sabol RA, Ledet EM, Jaeger E, Hatton W, Moses M, Lankford A, Zaheria A, Barata P, Layton JL, Lewis BE, Sartor O. Family history and pathogenic/likely pathogenic germline variants in prostate cancer patients. Prostate 2021; 81:427-432. [PMID: 33760238 DOI: 10.1002/pros.24120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent literature highlights the importance of germline genetic testing in prostate cancer (PCa) patients. Surprisingly, a literature review indicates that family history (FH) records are incomplete in the major published studies from prostate cancer patients. METHODS Prospective family history data were gathered from 496 men in a single institution with a personal history of PCa who underwent germline genetic testing using a panel of at least 79 genes. Comprehensive first degree FH were obtained in all PCa of patients and analysis of prevalent FH was assessed at the time of sample collection. RESULTS Pathogenic/likely pathogenic variants (PV/LPVs) were not associated with age at diagnosis, race, or presence of metastasis. One or more first degree relatives (FDR) with any cancer was not predictive for germline PV/LPVs for men with PCa (p = .96). Separate analysis of patients with one or more FDR with breast, prostate, ovarian, or pancreatic cancer revealed that only FDR with breast or ovarian cancer was predictive for PV/LPVs (p = .028, p = .015 respectively). Patients with a FDR with breast cancer had 1.8 increased risk of PV/LPVs, and patients with a FDR with ovarian cancer had 2.9 increased risk of PV/LPV. CONCLUSION In men with a personal history of PCa, germline PV/LPVs were associated with a FDR with breast or ovarian cancer. Notably having FDRs with PCa does not predict for PV/LPVs. These data emphasize the contribution of FH in a data set with complete ascertainment of FH.
Collapse
Affiliation(s)
- Rachel A Sabol
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elisa M Ledet
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ellen Jaeger
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Whitley Hatton
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Marcus Moses
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Anjali Lankford
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alexa Zaheria
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Pedro Barata
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jodi L Layton
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Brian E Lewis
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Oliver Sartor
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
34
|
Vidal AF, Ferraz RS, El-Husny A, Silva CS, Vinasco-Sandoval T, Magalhães L, Raiol-Moraes M, Barra WF, Pereira CLBL, de Assumpção PP, de Brito LM, Vialle RA, Santos S, Ribeiro-Dos-Santos Â, Ribeiro-Dos-Santos AM. Comprehensive analysis of germline mutations in northern Brazil: a panel of 16 genes for hereditary cancer-predisposing syndrome investigation. BMC Cancer 2021; 21:363. [PMID: 33827469 PMCID: PMC8028728 DOI: 10.1186/s12885-021-08089-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Next generation sequencing (NGS) has been a handy tool in clinical practice, mainly due to its efficiency and cost-effectiveness. It has been widely used in genetic diagnosis of several inherited diseases, and, in clinical oncology, it may enhance the discovery of new susceptibility genes and enable individualized care of cancer patients. In this context, we explored a pan-cancer panel in the investigation of germline variants in Brazilian patients presenting clinical criteria for hereditary cancer syndromes or familial history. METHODS Seventy-one individuals diagnosed or with familial history of hereditary cancer syndromes were submitted to custom pan-cancer panel including 16 high and moderate penetrance genes previously associated with hereditary cancer syndromes (APC, BRCA1, BRCA2, CDH1, CDKN2A, CHEK2, MSH2, MSH6, MUTYH, PTEN, RB1, RET, TP53, VHL, XPA and XPC). All pathogenic variants were validated by Sanger sequencing. RESULTS We identified a total of eight pathogenic variants among 12 of 71 individuals (16.9%). Among the mutation-positive subjects, 50% were diagnosed with breast cancer and had mutations in BRCA1, CDH1 and MUTYH. Notably, 33.3% were individuals diagnosed with polyposis or who had family cases and harbored pathogenic mutations in APC and MUTYH. The remaining individuals (16.7%) were gastric cancer patients with pathogenic variants in CDH1 and MSH2. Overall, 54 (76.05%) individuals presented at least one variant uncertain significance (VUS), totalizing 81 VUS. Of these, seven were predicted to have disease-causing potential. CONCLUSION Overall, analysis of all these genes in NGS-panel allowed the identification not only of pathogenic variants related to hereditary cancer syndromes but also of some VUS that need further clinical and molecular investigations. The results obtained in this study had a significant impact on patients and their relatives since it allowed genetic counselling and personalized management decisions.
Collapse
Affiliation(s)
- Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Rafaella Sousa Ferraz
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Antonette El-Husny
- Bettina Ferro de Souza University Hospital, Federal University of Pará, Belém, Pará, Brazil
| | - Caio Santos Silva
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Tatiana Vinasco-Sandoval
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Milene Raiol-Moraes
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Williams Fernandes Barra
- João de Barros Barreto University Hospital, Federal University of Pará, Belém, Pará, Brazil
- Center of Oncology Research, Federal University of Pará, Belém, Pará, Brazil
| | - Cynthia Lara Brito Lins Pereira
- João de Barros Barreto University Hospital, Federal University of Pará, Belém, Pará, Brazil
- Center of Oncology Research, Federal University of Pará, Belém, Pará, Brazil
| | | | - Leonardo Miranda de Brito
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Ricardo Assunção Vialle
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Sidney Santos
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
- Center of Oncology Research, Federal University of Pará, Belém, Pará, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
- Center of Oncology Research, Federal University of Pará, Belém, Pará, Brazil
| | - André M Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil.
| |
Collapse
|
35
|
Kondrashova O, Shamsani J, O’Mara TA, Newell F, Reed AEM, Lakhani SR, Kirk J, Pearson JV, Waddell N, Spurdle AB. Tumor Signature Analysis Implicates Hereditary Cancer Genes in Endometrial Cancer Development. Cancers (Basel) 2021; 13:cancers13081762. [PMID: 33917078 PMCID: PMC8067736 DOI: 10.3390/cancers13081762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Risk of endometrial cancer (EC) is increased ~2-fold for women with a family history of cancer, partly due to inherited pathogenic variants in mismatch repair (MMR) genes. We explored the role of additional genes as explanation for familial EC presentation by investigating germline and EC tumor sequence data from The Cancer Genome Atlas (n = 539; 308 European ancestry), and germline data from 33 suspected familial European ancestry EC patients demonstrating immunohistochemistry-detected tumor MMR proficiency. Germline variants in MMR and 26 other known/candidate EC risk genes were annotated for pathogenicity in the two EC datasets, and also for European ancestry individuals from gnomAD as a population reference set (n = 59,095). Ancestry-matched case-control comparisons of germline variant frequency and/or sequence data from suspected familial EC cases highlighted ATM, PALB2, RAD51C, MUTYH and NBN as candidates for large-scale risk association studies. Tumor mutational signature analysis identified a microsatellite-high signature for all cases with a germline pathogenic MMR gene variant. Signature analysis also indicated that germline loss-of-function variants in homologous recombination (BRCA1, PALB2, RAD51C) or base excision (NTHL1, MUTYH) repair genes can contribute to EC development in some individuals with germline variants in these genes. These findings have implications for expanded therapeutic options for EC cases.
Collapse
Affiliation(s)
- Olga Kondrashova
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Jannah Shamsani
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Tracy A. O’Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Felicity Newell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (A.E.M.R.); (S.R.L.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (A.E.M.R.); (S.R.L.)
- Anatomical Pathology, Pathology Queensland, Brisbane 4029, Australia
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney 2145, Australia;
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney 2145, Australia
| | - John V. Pearson
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Nicola Waddell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Amanda B. Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
- Correspondence: ; Tel.: +61-(73)-362-0371
| |
Collapse
|
36
|
MUTYH is associated with hepatocarcinogenesis in a non-alcoholic steatohepatitis mouse model. Sci Rep 2021; 11:3599. [PMID: 33574380 PMCID: PMC7878918 DOI: 10.1038/s41598-021-83138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH)-related HCC is associated with oxidative stress. However, the mechanisms underlying the development of NASH-related HCC is unclear. MUTYH is one of the enzymes that is involved in repair of oxidative DNA damage. The aim of this study was to investigate the association between MUTYH and NASH-related hepatocarcinogenesis. MUTYH wild-type (Mutyh+/+), heterozygous (Mutyh+/-), and MUTYH-null (Mutyh-/-) mice were fed a high-fat high-cholesterol (HFHC) diet or HFHC + high iron diet (20 mice per group) for 9 months. Five of 20 Mutyh-/- mice fed an HFHC + high iron diet developed liver tumors, and they developed more liver tumors than other groups (especially vs. Mutyh+/+ fed an HFHC diet, P = 0.0168). Immunohistochemical analysis revealed significantly higher accumulation of oxidative stress markers in mice fed an HFHC + high iron diet. The gene expression profiles in the non-tumorous hepatic tissues were compared between wild-type mice that developed no liver tumors and MUTYH-null mice that developed liver tumors. Gene Set Enrichment Analysis identified the involvement of the Wnt/β-catenin signaling pathway and increased expression of c-Myc in MUTYH-null liver. These findings suggest that MUTYH deficiency is associated with hepatocarcinogenesis in patients with NASH with hepatic iron accumulation.
Collapse
|
37
|
MUTYH-associated polyposis: Review and update of the French recommendations established in 2012 under the auspices of the National Cancer institute (INCa). Eur J Med Genet 2020; 63:104078. [DOI: 10.1016/j.ejmg.2020.104078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
|
38
|
Elsayed FA, Grolleman JE, Ragunathan A, NTHL1 study group, Buchanan DD, van Wezel T, de Voer RM. Monoallelic NTHL1 Loss-of-Function Variants and Risk of Polyposis and Colorectal Cancer. Gastroenterology 2020; 159:2241-2243.e6. [PMID: 32860789 PMCID: PMC7899696 DOI: 10.1053/j.gastro.2020.08.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Fadwa A. Elsayed
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith E. Grolleman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abiramy Ragunathan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Richarda M. de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
39
|
Purrington KS, Raychaudhuri S, Simon MS, Clark J, Ratliff V, Dyson G, Craig DB, Boerner JL, Beebe-Dimmer JL, Schwartz AG. Heritable Susceptibility to Breast Cancer among African-American Women in the Detroit Research on Cancer Survivors Study. Cancer Epidemiol Biomarkers Prev 2020; 29:2369-2375. [PMID: 32868316 PMCID: PMC7642006 DOI: 10.1158/1055-9965.epi-20-0564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/16/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND African-American women have high rates of breast cancer associated with hereditary features. However, no studies have reported the prevalence of inherited variation across all genes known to be breast cancer risk factors among African-American patients with breast cancer not selected for high-risk characteristics. METHODS We evaluated 182 African-American women diagnosed with invasive breast cancer in metropolitan Detroit via targeted capture and multiplex sequencing of 13 well-established breast cancer risk genes and five suggested breast cancer risk genes. RESULTS We identified 24 pathogenic variants in 23 women [12.6%; 95% confidence interval (CI), 8.2%-18.4%] and five genes (BRCA2, BRCA1, ATM, RAD50, CDH1). BRCA1 and BRCA2 accounted for 58.3% of all pathogenic variants. An additional six pathogenic variants were found in suggested breast cancer risk genes (MSH6, MUTYH, NF1, BRIP1). CONCLUSIONS The prevalence of germline pathogenic variants is relatively high among African-American patients with breast cancer unselected for high-risk characteristics across a broad spectrum of genes. IMPACT This study helps to define the genomic landscape of breast cancer susceptibility in African-American women who could benefit from enhanced surveillance and screening.
Collapse
Affiliation(s)
- Kristen S Purrington
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | | | - Michael S Simon
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Julie Clark
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Valerie Ratliff
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
- Bioinformatics & Biostatistics Core, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Douglas B Craig
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Bioinformatics & Biostatistics Core, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Julie L Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jennifer L Beebe-Dimmer
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Ann G Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
40
|
Dhooge M, Baert-Desurmont S, Corsini C, Caron O, Andrieu N, Berthet P, Bonadona V, Cohen-Haguenauer O, De Pauw A, Delnatte C, Dussart S, Lasset C, Leroux D, Maugard C, Moretta-Serra J, Popovici C, Buecher B, Colas C, Noguès C. National recommendations of the French Genetics and Cancer Group - Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. Eur J Med Genet 2020; 63:104080. [PMID: 33039684 DOI: 10.1016/j.ejmg.2020.104080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
In case of suspected hereditary predisposition to digestive cancers, next-generation sequencing can analyze simultaneously several genes associated with an increased risk of developing these tumors. Thus, "Gastro Intestinal" (GI) gene panels are commonly used in French molecular genetic laboratories. Lack of international recommendations led to disparities in the composition of these panels and in the management of patients. To harmonize practices, the Genetics and Cancer Group (GGC)-Unicancer set up a working group who carried out a review of the literature for 31 genes of interest in this context and established a list of genes for which the estimated risks associated with pathogenic variant seemed sufficiently reliable and high for clinical use. Pancreatic cancer susceptibility genes have been excluded. This expertise defined a panel of 14 genes of confirmed clinical interest and relevant for genetic counseling: APC, BMPR1A, CDH1, EPCAM, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4 and STK11. The reasons for the exclusion of the others 23 genes have been discussed. The paucity of estimates of the associated tumor risks led to the exclusion of genes, in particular CTNNA1, MSH3 and NTHL1, despite their implication in the molecular pathways involved in the pathophysiology of GI cancers. A regular update of the literature is planned to up-grade this panel of genes in case of new data on candidate genes. Genetic and epidemiological studies and international collaborations are needed to better estimate the risks associated with the pathogenic variants of these genes either selected or not in the current panel.
Collapse
Affiliation(s)
- Marion Dhooge
- APHP.Centre (Cochin Hospital), Paris University, Paris, France.
| | - Stéphanie Baert-Desurmont
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Carole Corsini
- Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Olivier Caron
- Gustave-Roussy University Hospital, Villejuif, France
| | - Nadine Andrieu
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France; Unité Inserm, Institut Curie, Paris, France
| | | | | | | | - Antoine De Pauw
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | | | | | | | - Dominique Leroux
- Grenoble University Hospital, Couple-Enfant Hospital, Grenoble, France
| | | | - Jessica Moretta-Serra
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Cornel Popovici
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Bruno Buecher
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Chrystelle Colas
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Catherine Noguès
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | | |
Collapse
|
41
|
Abstract
Radiotherapy-induced second malignant neoplasms (SMNs) are a severe late complication in pediatric cancer survivors. Germline mutations in tumor suppressor genes contribute to SMNs; however, the most relevant germline variants mediating susceptibility are not fully defined. The authors performed matched whole-exome sequencing analyses of germline and tumor DNA from 4 pediatric solid tumor survivors who subsequently developed radiation-associated SMNs. Pathogenic and predicted deleterious germline variants were identified for each patient and validated with Sanger sequencing. These germline variants were compared with germline variants in a cohort of 59 pediatric patients diagnosed with primary sarcomas. Pathway analysis was performed to test for similarities in the germline variant profiles between individuals diagnosed with SMNs or primary sarcomas. One index patient was found to have a pathogenic germline monoallelic mutation in the MUTYH gene, which encodes the base excision repair enzyme adenine DNA glycosylase. This specific germline mutation is associated with a form of familial adenomatous polyposis, a new diagnosis in the patient. Germline-level genetic similarity exists between SMN-developing patients and patients developing primary sarcomas, with relevant genes involved in signal transduction and DNA repair mechanisms. The authors identify a germline MUTYH mutation in a pediatric cancer survivor developing an SMN. Germline mutations involving specific pathways such as base excision repair may identify individuals at risk for developing SMNs. The composition of germline variants in individual patients may enable estimates of patient-specific risk for developing SMNs. The authors anticipate that further analyses of germline genomes and epigenomes will reveal diverse genes and mechanisms influencing cancer risk.
Collapse
|
42
|
Tian X, Wang Q, Cai W. <p>A Novel Mutation in <em>MYH</em> Gene Associated with Aggressive Colorectal Cancer in a Child: A Case Report and Review of Literature</p>. Onco Targets Ther 2020; 13:8557-8565. [PMID: 32904697 PMCID: PMC7457591 DOI: 10.2147/ott.s259587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/03/2020] [Indexed: 12/05/2022] Open
Abstract
Colorectal cancer is a rare pediatric tumor. Pediatric patients with colorectal cancer present with more aggressive tumor biology and at later stages of the disease, higher proportions of signet ring and mucinous histology, and less differentiation. The effective treatment is same as that received by adults. The overall prognosis of pediatric colorectal cancer is generally poor. Genetic mutations have been identified as the cause of inherited cancer risk in some colorectal cancers. Here, we presented a case of a pediatric patient carrying a maternally derived, heterozygous MYH germline mutation (c.934–2A>G,intron), the mutation was not reported in pediatric patients before. Also, the patient carried somatic mutations of proto-oncogene SMAD4 (R361C) and TP53 (Y234H). The patient underwent surgical resection, chemotherapy and targeted therapy, but the prognosis was not good. We also review the literature to summarize clinical features, gene mutations, management, and outcomes of pediatric colorectal cancer patient. Our results suggest that the genetic mutation of MYH together with somatic mutations of proto-oncogene SMAD4 and TP53 may lead to the early onset colorectal cancer of the patient. Although the overall prognosis of pediatric colorectal cancer is generally poor, the pathogenesis may be related to hereditary genetic mutations as was found with the MYH gene mutation in our case. Genetic screening can provide early diagnosis and improve prognosis.
Collapse
Affiliation(s)
- Xin Tian
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning110022, People’s Republic of China
| | - Qian Wang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning110022, People’s Republic of China
| | - Weisong Cai
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning110022, People’s Republic of China
- Correspondence: Weisong CaiDepartment of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang110022, People’s Republic of China Email
| |
Collapse
|
43
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
44
|
[MUTYH-associated polyposis: Review and update of the French recommendations established in 2012 under the auspices of the National Cancer Institute (INCa)]. Bull Cancer 2020; 107:586-600. [PMID: 32362383 DOI: 10.1016/j.bulcan.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
MUTYH-associated polyposis (MUTYH-associated polyposis, MAP) is an autosomal recessive inheritance disorder related to bi-allelic constitutional pathogenic variants of the MUTYH gene which was first described in 2002. In 2011, a group of French experts composed of clinicians and biologists, performed a summary of the available data on this condition and drew up recommendations concerning the indications and the modalities of molecular analysis of the MUTYH gene in index cases and their relatives, as well as the management of affected individuals. In view of recent developments, some recommendations have become obsolete, in particular with regard to the molecular analysis strategy since MUTYH gene has been recently included in a consensus panel of 14 genes predisposing to colorectal cancer. This led us to revise all the points of the previous expertise. We report here the revised version of this work which successively considers the phenotype and the tumor risks associated with this genotype, the differential diagnoses, the indication criteria and the strategy of the molecular analysis and the recommendations for the management of affected individuals. We also discuss the phenotype and the tumor risks associated with mono-allelic pathogenic variants of MUTYH gene.
Collapse
|
45
|
Dutil J, Teer JK, Golubeva V, Yoder S, Tong WL, Arroyo N, Karam R, Echenique M, Matta JL, Monteiro AN. Germline variants in cancer genes in high-risk non-BRCA patients from Puerto Rico. Sci Rep 2019; 9:17769. [PMID: 31780696 PMCID: PMC6882826 DOI: 10.1038/s41598-019-54170-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022] Open
Abstract
Inherited pathogenic variants in genes that confer moderate to high risk of breast cancer may explain up to 50% of familial breast cancer. This study aimed at identifying inherited pathogenic variants in breast cancer cases from Puerto Rico that were not linked to BRCA1 or BRCA2. Forty-eight breast cancer patients that met the clinical criteria for BRCA testing but had received a negative BRCA1/2 result were recruited. Fifty-three genes previously implicated in hereditary cancer predisposition were captured using the BROCA Agilent cancer risk panel followed by massively parallel sequencing. Missense variants of uncertain clinical significance in CHEK2 were evaluated using an in vitro kinase assays to determine their impact on function. Pathogenic variants were identified in CHEK2, MUTYH, and RAD51B in four breast cancer patients, which represented 8.3% of the cohort. We identified three rare missense variants of uncertain significance in CHEK2 and two variants (p.Pro484Leu and p.Glu239Lys) showed markedly decreased kinase activity in vitro comparable to a known pathogenic variant. Interestingly, the local ancestry at the RAD51B locus in the carrier of p.Arg47* was predicted to be of African origin. In this cohort, 12.5% of the BRCA-negative breast cancer patients were found to carry a known pathogenic variant or a variant affecting protein activity. This study reveals an unmet clinical need of genetic testing that could benefit a significant proportion of at-risk Latinas. It also highlights the complexity of Hispanic populations as pathogenic factors may originate from any of the ancestral populations that make up their genetic backgrounds.
Collapse
Affiliation(s)
- Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA.
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Volha Golubeva
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wei Lue Tong
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nelly Arroyo
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | | | - Miguel Echenique
- Auxilio Cancer Center, Auxilio Mutuo Hospital, San Juan, PR, USA
| | - Jaime L Matta
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
46
|
Altaraihi M, Gerdes AM, Wadt K. A new family with a homozygous nonsense variant in NTHL1 further delineated the clinical phenotype of NTHL1-associated polyposis. Hum Genome Var 2019; 6:46. [PMID: 31645984 PMCID: PMC6804823 DOI: 10.1038/s41439-019-0077-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 11/09/2022] Open
Abstract
A new family with NTHL1-associated polyposis (NAP) is described, involving a 58-year-old male affected with >100 colorectal polyps and a 55-year-old female sibling with nine colorectal polyps. The female was also diagnosed with a thyroid adenoma at age 40. Significantly, no malignant neoplasms have been detected in this family, which is important to further delineate the clinical phenotype related to NAP. A review of previously reported obligate heterozygous carriers of NTHL1 variants showed two patients affected with neoplasms at <55 years of age, generating a study to outline the phenotypic spectrum in patients with heterozygous pathogenic NTHL1 variants relevant.
Collapse
Affiliation(s)
- Mays Altaraihi
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
47
|
Walker EJ, Carnevale J, Pedley C, Blanco A, Chan S, Collisson EA, Tempero MA, Ko AH. Referral frequency, attrition rate, and outcomes of germline testing in patients with pancreatic adenocarcinoma. Fam Cancer 2019; 18:241-251. [PMID: 30267352 DOI: 10.1007/s10689-018-0106-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hereditary predisposition is estimated to account for 10% of all pancreatic cancer cases. However, referral patterns and clinical workflow for germline testing in this disease differ significantly by institution, and many at-risk patients may not undergo appropriate counseling and testing. We undertook an analysis of patients diagnosed with pancreatic cancer (PDAC) who were referred to the Clinical Genetics program of a high-volume academic center over a 3-year period to assess referral frequency, evaluate the yield of germline testing in this selected patient cohort, and elucidate the reasons individuals did not undergo recommended germline testing. Medical records of patients with PDAC referred for genetic counseling between January 2015 and October 2017 were reviewed for demographic, medical/family history, and disease-specific data. If testing did not occur, reasons were documented. Genetic test results were categorized as negative, variants of unknown significance, or established pathogenic mutations. Descriptive statistics included means with standard deviations; associations were analyzed with t test and Fisher's exact test. 32% (137 of 432) of PDAC patients were referred for genetic counseling, but only 64% attended their appointment and 60% ultimately underwent germline testing. Common reasons for attrition included worsening disease severity, lack of patient follow-up, insurance concerns, and logistic/travel challenges. Pathogenic germline mutations were detected in 20% (16 of 82) of patients tested, distributed across races/ethnicities, and significantly associated with younger age and positive family history of breast cancer. PDAC patients frequently do not undergo genetic counseling/germline testing despite appropriate referrals, highlighting a need to develop streamlined processes to engage more patients in testing, especially those with high-risk features.
Collapse
Affiliation(s)
- Evan J Walker
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Julia Carnevale
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA
| | - Christina Pedley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA.,Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Amie Blanco
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA.,Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Salina Chan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA.,Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Eric A Collisson
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA
| | - Margaret A Tempero
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA
| | - Andrew H Ko
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA.
| |
Collapse
|
48
|
Fulk K, LaDuca H, Black MH, Qian D, Tian Y, Yussuf A, Espenschied C, Jasperson K. Monoallelic MUTYH carrier status is not associated with increased breast cancer risk in a multigene panel cohort. Fam Cancer 2019; 18:197-201. [PMID: 30582135 DOI: 10.1007/s10689-018-00114-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whether monoallelic MUTYH mutations increase female breast cancer risk remains controversial. This study aimed to determine if monoallelic MUTYH mutations are associated with increased breast cancer risk in women undergoing multigene panel testing (MGPT). The prevalence of monoallelic MUTYH mutations was compared between Non-Hispanic white female breast cancer cases (n = 30,456) and cancer-free controls (n = 12,289), all of whom underwent MGPT that included MUTYH. We tested breast cancer associations with MUTYH alleles using Fisher's exact test, followed by multivariate logistic regression adjusted for age at testing and MGPT type ordered. Frequencies of the two most common MUTYH founder mutations, p.G396D and p.Y179C, were compared independently between the breast cancer cases and MGPT controls, as well as the healthy UK10K control population (n = 2640). Comparing cases to MGPT controls, no association was observed between female breast cancer and any monoallelic MUTYH carrier status (OR 0.86-1.36, p = 0.21-0.96). Similarly, comparisons to UK10K controls revealed no significant increase in breast cancer risk associated with p.G396D (OR 1.20, p = 0.44) or p.Y179C (OR 1.71, p = 0.24). This study did not find a significant increase in breast cancer risk associated with monoallelic MUTYH mutations.
Collapse
Affiliation(s)
- Kelly Fulk
- Ambry Genetics, 92656, Aliso Viejo, CA, USA.
| | | | | | - Dajun Qian
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
| | - Yuan Tian
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
| | | | - Carin Espenschied
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
- Guardant Health, 94063, Redwood City, CA, USA
| | | |
Collapse
|
49
|
Raetz AG, David SS. When you're strange: Unusual features of the MUTYH glycosylase and implications in cancer. DNA Repair (Amst) 2019; 80:16-25. [PMID: 31203172 DOI: 10.1016/j.dnarep.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
MUTYH is a base-excision repair glycosylase that removes adenine opposite 8-oxoguanine (OG). Variants of MUTYH defective in functional activity lead to MUTYH-associated polyposis (MAP), which progresses to cancer with very high penetrance. Whole genome and whole exome sequencing studies have found MUTYH deficiencies in an increasing number of cancer types. While the canonical OG:A repair activity of MUTYH is well characterized and similar to bacterial MutY, here we review more recent evidence that MUTYH has activities independent of OG:A repair and appear centered on the interdomain connector (IDC) region of MUTYH. We summarize evidence that MUTYH is involved in rapid DNA damage response (DDR) signaling, including PARP activation, 9-1-1 and ATR signaling, and SIRT6 activity. MUTYH alters survival and DDR to a wide variety of DNA damaging agents in a time course that is not consistent with the formation of OG:A mispairs. Studies that suggest MUTYH inhibits the repair of alkyl-DNA damage and cyclopyrimidine dimers (CPDs) is reviewed, and evidence of a synthetic lethal interaction with mismatch repair (MMR) is summarized. Based on these studies we suggest that MUTYH has evolved from an OG:A mispair glycosylase to a multifunctional scaffold for DNA damage response signaling.
Collapse
Affiliation(s)
- Alan G Raetz
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
50
|
Tsaousis GN, Papadopoulou E, Apessos A, Agiannitopoulos K, Pepe G, Kampouri S, Diamantopoulos N, Floros T, Iosifidou R, Katopodi O, Koumarianou A, Markopoulos C, Papazisis K, Venizelos V, Xanthakis I, Xepapadakis G, Banu E, Eniu DT, Negru S, Stanculeanu DL, Ungureanu A, Ozmen V, Tansan S, Tekinel M, Yalcin S, Nasioulas G. Analysis of hereditary cancer syndromes by using a panel of genes: novel and multiple pathogenic mutations. BMC Cancer 2019; 19:535. [PMID: 31159747 PMCID: PMC6547505 DOI: 10.1186/s12885-019-5756-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hereditary cancer predisposition syndromes are responsible for approximately 5-10% of all diagnosed cancer cases. In the past, single-gene analysis of specific high risk genes was used for the determination of the genetic cause of cancer heritability in certain families. The application of Next Generation Sequencing (NGS) technology has facilitated multigene panel analysis and is widely used in clinical practice, for the identification of individuals with cancer predisposing gene variants. The purpose of this study was to investigate the extent and nature of variants in genes implicated in hereditary cancer predisposition in individuals referred for testing in our laboratory. METHODS In total, 1197 individuals from Greece, Romania and Turkey were referred to our laboratory for genetic testing in the past 4 years. The majority of referrals included individuals with personal of family history of breast and/or ovarian cancer. The analysis of genes involved in hereditary cancer predisposition was performed using a NGS approach. Genomic DNA was enriched for targeted regions of 36 genes and sequencing was carried out using the Illumina NGS technology. The presence of large genomic rearrangements (LGRs) was investigated by computational analysis and Multiplex Ligation-dependent Probe Amplification (MLPA). RESULTS A pathogenic variant was identified in 264 of 1197 individuals (22.1%) analyzed while a variant of uncertain significance (VUS) was identified in 34.8% of cases. Clinically significant variants were identified in 29 of the 36 genes analyzed. Concerning the mutation distribution among individuals with positive findings, 43.6% were located in the BRCA1/2 genes whereas 21.6, 19.9, and 15.0% in other high, moderate and low risk genes respectively. Notably, 25 of the 264 positive individuals (9.5%) carried clinically significant variants in two different genes and 6.1% had a LGR. CONCLUSIONS In our cohort, analysis of all the genes in the panel allowed the identification of 4.3 and 8.1% additional pathogenic variants in other high or moderate/low risk genes, respectively, enabling personalized management decisions for these individuals and supporting the clinical significance of multigene panel analysis in hereditary cancer predisposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Theofanis Floros
- Oncology Department, Athens Naval and Veterans Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | - Eugeniu Banu
- Spitalul Sfantul Constantin Brasov, Brasov, Romania
| | - Dan Tudor Eniu
- Institutul Oncologic Prof. Dr. I. Chiricuta, Cluj, Romania
| | - Serban Negru
- University of Medicine and Pharmacy of Timisoara, Timisoara, Romania
| | | | | | - Vahit Ozmen
- Faculty of Medicine Istanbul University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|