1
|
Xie D, Huang L, Li C, Wu R, Zheng Z, Liu F, Cheng H. Identification of PANoptosis-related genes as prognostic indicators of thyroid cancer. Heliyon 2024; 10:e31707. [PMID: 38845990 PMCID: PMC11153176 DOI: 10.1016/j.heliyon.2024.e31707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Background Thyroid cancer (THCA) has become a common malignancy in recent years, with the mortality rate steadily increasing. PANoptosis is a unique kind of programmed cell death (PCD), including pyroptosis, necroptosis, and apoptosis, and is involved in the proliferation and prognosis of numerous cancers. This paper demonstrated the connection between PANoptosis-related genes and THCA based on the analyses of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, which have not been evaluated yet. Methods We identified PANoptosis-related differentially expressed genes (PRDEGs) by multi-analyzing the TCGA-THCA and GEO datasets. To identify the significant PRDEGs, a prognostic model was constructed using least absolute shrinkage and selection operator regression (LASSO). The predictive values of the significant PRDEGs for THCA outcomes were determined using Cox regression analysis and nomograms. Gene enrichment analyses were performed. Finally, immunohistochemistry was carried out using the human protein atlas. Results A LASSO regression model based on nine PRDEGs was constructed, and the prognostic value of key PRDEGs was explored via risk score. Univariate and multivariate Cox regression were implemented to identify further three significant PRDEGs closely related to distant metastasis, lymph node metastasis, and tumor stage. Then, a nomogram was constructed, which presented high predictive accuracy for 5 years survival of THCA patients. Gene enrichment analyses in THCA were strongly associated with PCD pathways. CASP6 presented significantly differential expression during clinical T stage, N stage, and PFI events (P < 0.05 for all) and demonstrated the highest degree of diagnostic efficacy in PRDEGs (HR: 2.060, 95 % CI: 1.170-3.628, P < 0.05). Immunohistochemistry showed CASP6 was more abundant in THCA tumor tissue. Conclusion A potential prognostic role for PRDEGs in THCA was identified, providing a new direction for treatment. CASP6 may be a potential therapeutic target and a novel prognostic biomarker for THCA.
Collapse
Affiliation(s)
- Diya Xie
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Liyong Huang
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Cheng Li
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ruozhen Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhigang Zheng
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Fengmin Liu
- Department of Endocrinology, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Huayong Cheng
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Mohammed I, Alhammer AH, Arif IS. The p53 reactivator PRIMA-1 MET synergises with 5-fluorouracil to induce apoptosis in pancreatic cancer cells. Invest New Drugs 2023; 41:587-595. [PMID: 37402008 DOI: 10.1007/s10637-023-01380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies; p53 is mutated in approximately 75% of PC patients. Hence, the protein derived from mutant/wild-type TP53 may represent a therapeutic target. Interestingly, a p53 reactivator (PRIMA-1MET) showed promise in clinical trials of haematological malignancies; therefore, it warrants an in vitro evaluation in PC cell lines. To evaluate the antiproliferative effects of PRIMA-1MET, either alone or combined with the common chemotherapy 5-fluorouracil (5-FU), against mutated and wild-type p53 PC cell lines. This study involved p53-mutant (AsPC-1) and p53-wild type (Capan-2) PC cell lines. The cytotoxicity of PRIMA-1MET alone or in combination with 5-FU was evaluated by MTT assay. Synergism was assessed by calculating the combination index (CI) via CalcuSyn software. Fluorescence microscopy was used to analyse apoptosis following acridine orange/ethidium bromide (AO/EB) staining. Morphological changes were investigated with an inverted microscope. Quantitative reverse transcription PCR (RT‒qPCR) was used to measure gene expression. Both PC cell lines were sensitive to PRIMA-1MET monotherapy. Furthermore, PRIMA-1MET and 5-FU had a synergistic effect (CI < 1), reflected by significant enhancement of apoptosis and morphological changes in the combination vs. monotherapy treatments. Moreover, the RT‒qPCR results indicated increased expression of the NOXA and TP73 genes in combination-treated cells. Our data suggested that PRIMA-1MET, whether alone or combined with 5-FU, has an antiproliferative effect on PC cell lines regardless of p53 mutational status. The synergism of the combination was associated with significant apoptosis induction through p53-dependent and p53-independent pathways. Preclinical confirmation of these data in in vivo models is highly recommended.
Collapse
Affiliation(s)
- Ibtehal Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ali Haider Alhammer
- Medical and Molecular Biotechnology Department, Biotechnology Research Center, Al-Nahrain University, Jadriya, Baghdad, Iraq.
| | - Inam Sameh Arif
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
3
|
Adib M, Taghadosi M, Tahmasebi MN, Sharafat Vaziri A, Jamshidi A, Mahmoudi M, Farhadi E. Anti-inflammatory effects of PRIMA-1 MET (mutant p53 reactivator) induced by inhibition of nuclear factor-κB on rheumatoid arthritis fibroblast-like synoviocytes. Inflammopharmacology 2023; 31:385-394. [PMID: 36350424 DOI: 10.1007/s10787-022-01094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Fibroblast-like synoviocytes (FLSs), the main pathological cells in rheumatoid arthritis (RA), display tumor-like phenotype, including hyper-proliferation, apoptosis resistance, and aggressive phenotype. Excessive proliferation and insufficient apoptosis of RA-FLSs can lead to hyperplastic synovial pannus tissue, excess production of inflammatory mediators, and destruction of joints. In this article, we investigate the effect of PRIMA-1MET on the apoptosis induction and inhibition of pro-inflammatory cytokines in RA-FLSs. Synovial tissue samples were obtained from 10 patients with RA. The FLSs were treated with different concentrations of PRIMA-1MET. The rate of apoptosis and cell survival was assessed by flow cytometry and MTT assay and Real-time quantitative PCR was performed to evaluate the transcription of p53, IL-6, IL-1β, TNF-α, Noxa, p21, PUMA, Bax, Survivin, and XIAP in treated RA-FLSs. The protein level of p53, IκBα, and phospho-IκBα were measured using Western blotting. The results showed that PRIMA-1MET induced apoptosis in RA-FLSs and increased significantly the expression of Noxa, and decreased significantly IL-6, IL-1β, p53, and phospho-IκBα expression. PRIMA-1MET can induce apoptosis in RA-FLSs through induction of Noxa expression while p53 was downregulated. Furthermore, PRIMA-1MET treatment results in the suppression of pro-inflammatory cytokine production and NF-κB inhibition. Given the role of p53 and NF-κB in RA-FLSs, PRIMA-1MET can be considered as a new therapeutic strategy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Mehrnoosh Adib
- Immunology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Taghadosi
- Immunology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Naghi Tahmasebi
- Center of Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Center of Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Paz MM, Ferretti GDS, Martins-Dinis MMC, Ferreira BIS, Faier-Pereira A, Barnoud T, Moreira OC, Silva JL, Cordeiro Y, Rangel LP. PRIMA-1 inhibits Y220C p53 amyloid aggregation and synergizes with cisplatin in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1165132. [PMID: 37101558 PMCID: PMC10123287 DOI: 10.3389/fmolb.2023.1165132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Although many therapeutic options are available, several factors, including the presence of p53 mutations, impact tumor development and therapeutic resistance. TP53 is the second most frequently mutated gene in HCC, comprising more than 30% of cases. Mutations in p53 result in the formation of amyloid aggregates that promote tumor progression. The use of PRIMA-1, a small molecule capable of restoring p53, is a therapeutic strategy to pharmacologically target the amyloid state mutant p53. In this study, we characterize an HCC mutant p53 model for the study of p53 amyloid aggregation in HCC cell lines, from in silico analysis of p53 mutants to a 3D-cell culture model and demonstrate the unprecedented inhibition of Y220C mutant p53 aggregation by PRIMA-1. In addition, our data show beneficial effects of PRIMA-1 in several "gain of function" properties of mutant-p53 cancer cells, including migration, adhesion, proliferation, and drug resistance. We also demonstrate that the combination of PRIMA-1 and cisplatin is a promising approach for HCC therapy. Taken together, our data support the premise that targeting the amyloid-state of mutant p53 may be an attractive therapeutic approach for HCC, and highlight PRIMA-1 as a new candidate for combination therapy with cisplatin.
Collapse
Affiliation(s)
- Mariana M. Paz
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giulia D. S. Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Mafalda M. C. Martins-Dinis
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz I. S. Ferreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Amanda Faier-Pereira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Otacilio C. Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luciana P. Rangel,
| |
Collapse
|
5
|
p90RSK Regulates p53 Pathway by MDM2 Phosphorylation in Thyroid Tumors. Cancers (Basel) 2022; 15:cancers15010121. [PMID: 36612117 PMCID: PMC9817759 DOI: 10.3390/cancers15010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The expression level of the tumor suppressor p53 is controlled by the E3 ubiquitin ligase MDM2 with a regulatory feedback loop, which allows p53 to upregulate its inhibitor MDM2. In this manuscript we demonstrated that p90RSK binds and phosphorylates MDM2 on serine 166 both in vitro and in vivo by kinase assay, immunoblot, and co-immunoprecipitation assay; this phosphorylation increases the stability of MDM2 which in turn binds p53, ubiquitinating it and promoting its degradation by proteasome. A pharmacological inhibitor of p90RSK, BI-D1870, decreases MDM2 phosphorylation, and restores p53 function, which in turn transcriptionally increases the expression of cell cycle inhibitor p21 and of pro-apoptotic protein Bax and downregulates the anti-apoptotic protein Bcl-2, causing a block of cell proliferation, measured by a BrdU assay and growth curve, and promoting apoptosis, measured by a TUNEL assay. Finally, an immunohistochemistry evaluation of primary thyroid tumors, in which p90RSK is very active, confirms MDM2 stabilization mediated by p90RSK phosphorylation.
Collapse
|
6
|
Rajabi S, Alix-Panabières C, Alaei AS, Abooshahab R, Shakib H, Ashrafi MR. Looking at Thyroid Cancer from the Tumor-Suppressor Genes Point of View. Cancers (Basel) 2022; 14:2461. [PMID: 35626065 PMCID: PMC9139614 DOI: 10.3390/cancers14102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer is the most frequent endocrine malignancy and accounts for approximately 1% of all diagnosed cancers. A variety of mechanisms are involved in the transformation of a normal tissue into a malignant one. Loss of tumor-suppressor gene (TSG) function is one of these mechanisms. The normal functions of TSGs include cell proliferation and differentiation control, genomic integrity maintenance, DNA damage repair, and signaling pathway regulation. TSGs are generally classified into three subclasses: (i) gatekeepers that encode proteins involved in cell cycle and apoptosis control; (ii) caretakers that produce proteins implicated in the genomic stability maintenance; and (iii) landscapers that, when mutated, create a suitable environment for malignant cell growth. Several possible mechanisms have been implicated in TSG inactivation. Reviewing the various TSG alteration types detected in thyroid cancers may help researchers to better understand the TSG defects implicated in the development/progression of this cancer type and to find potential targets for prognostic, predictive, diagnostic, and therapeutic purposes. Hence, the main purposes of this review article are to describe the various TSG inactivation mechanisms and alterations in human thyroid cancer, and the current therapeutic options for targeting TSGs in thyroid cancer.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, CEDEX 5, 34093 Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research (CREEC), Unité Mixte de Recherches, Institut de Recherche pour le Développement (IRD) 224–Centre National de Recherche Scientifique (CNRS) 5290–University of Montpellier, 34000 Montpellier, France
| | - Arshia Sharbatdar Alaei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | | | - Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
| | - Mohammad Reza Ashrafi
- Department of Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| |
Collapse
|
7
|
Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022; 12:biom12040548. [PMID: 35454137 PMCID: PMC9029346 DOI: 10.3390/biom12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli; it upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. TP53 is the most frequently mutated gene in tumors, with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) that promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for (1) boosting p53 activity in cancer, (2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, (3) targeting p53 in immunotherapy, and (4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.
Collapse
|
8
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
9
|
Qin Y. Identification of Prognosis-Associated Biomarkers in Thyroid Carcinoma by a Bioinformatics Analysis. Int J Gen Med 2021; 14:5737-5747. [PMID: 34557027 PMCID: PMC8454525 DOI: 10.2147/ijgm.s327497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background This study aimed to identify the key genes associated with prognosis in thyroid cancer (TC), and to explore potential pathways. Methods GSE66783, GSE58545, and GSE129562 datasets were used to identify differentially expressed genes (DEGs) between tumor and normal tissues, followed by KEGG analyses on DEGs. The protein-protein interaction (PPI) network of DEGs was subsequently constructed to find the top 10 hub genes and seed genes in the whole network. Furthermore, the mRNA expressions of hub genes and prognostic values were explored. Regarding the seed gene, pathway activity score and GSEA analyses were conducted as well. Results 1) A total of 183 DEGs were consistently expressed in three datasets comprising 76 up-regulated and 107 down-regulated genes. DEGs were mainly enriched in the p53 signaling pathway, complement and coagulation cascades, and hedgehog signaling pathway. 2) The top 10 hub genes, including CCND1, TIMP1, ICAM1, MET, PLAU, LDLR, PLAUR, ITGA2, ITGA3, and LGALS3, were identified. All hub genes were highly expressed in TC compared with normal samples. 3) High expression of CCND1, TIMP1, MET, and LGALS3 statistically correlated with a favorable prognosis of patients. Poor survival was observed in patients with ITGA2 and ITGA3 high expression. There was no association between ICAM1, PLAU, and PLAUR expression and survival of patients. LGALS3 and TIMP1 were further identified as independent prognostic factors in TC. 4) Among 10 hub genes, TIMP1 was determined as the seed gene, indicating its significance in the whole network. We further found that in most of the famous cancer-related pathways, TIMP1 higher expression caused a lower pathway activity, suggesting its inhibitory effect to these pathways in TC. In addition, TIMP1 positively correlated with the p53 signaling pathway, complement, and coagulation cascades involved in TC. Conclusion The present study provided seven prognosis-associated genes in TC and revealed several significant pathways, which contributed to elucidate the pathogenesis of TC.
Collapse
Affiliation(s)
- Yong Qin
- Department of Thyroid Surgery, Bishan Hospital of Chongqing, Chongqing, 402760, People's Republic of China
| |
Collapse
|
10
|
Romano C, Martorana F, Pennisi MS, Stella S, Massimino M, Tirrò E, Vitale SR, Di Gregorio S, Puma A, Tomarchio C, Manzella L. Opportunities and Challenges of Liquid Biopsy in Thyroid Cancer. Int J Mol Sci 2021; 22:7707. [PMID: 34299334 PMCID: PMC8303548 DOI: 10.3390/ijms22147707] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, encompassing different entities with distinct histological features and clinical behavior. The diagnostic definition, therapeutic approach, and follow-up of thyroid cancers display some controversial aspects that represent unmet medical needs. Liquid biopsy is a non-invasive approach that detects and analyzes biological samples released from the tumor into the bloodstream. With the use of different technologies, tumor cells, free nucleic acids, and extracellular vesicles can be retrieved in the serum of cancer patients and valuable molecular information can be obtained. Recently, a growing body of evidence is accumulating concerning the use of liquid biopsy in thyroid cancer, as it can be exploited to define a patient's diagnosis, estimate their prognosis, and monitor tumor recurrence or treatment response. Indeed, liquid biopsy can be a valuable tool to overcome the limits of conventional management of thyroid malignancies. In this review, we summarize currently available data about liquid biopsy in differentiated, poorly differentiated/anaplastic, and medullary thyroid cancer, focusing on circulating tumor cells, circulating free nucleic acids, and extracellular vesicles.
Collapse
Affiliation(s)
- Chiara Romano
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Federica Martorana
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Stefania Stella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Michele Massimino
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Rita Vitale
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Sandra Di Gregorio
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Adriana Puma
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Cristina Tomarchio
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
12
|
Huang S, Zhang L, Xu M, Li C, Fu H, Huang J, Jin X, Liang S, Wang H. Co-Delivery of 131 I and Prima-1 by Self-Assembled CD44-Targeted Nanoparticles for Anaplastic Thyroid Carcinoma Theranostics. Adv Healthc Mater 2021; 10:e2001029. [PMID: 33326188 DOI: 10.1002/adhm.202001029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/22/2020] [Indexed: 12/20/2022]
Abstract
New radionuclide-labeled targeting nanocarrier systems have generated new opportunities for tumor treatment and imaging. Nevertheless, such therapeutic strategy is clinically unfeasible on anaplastic thyroid carcinoma (ATC) patients, because of lacking suitable targets and resistance to radiation. In order to figure out a potential treatment, immuno-histochemical staining is performed in human ATC tissue species and high expression of cluster determinant 44 (CD44) is found. Therefore, a CD44-targeted delivery system is designed and constructed by self-assembly of tyrosine (Tyr)-hyaluronic acid (HA)-polyethyleneimine (PEI), which can radiolabel 131/125 I and load a p53 mutant restoring regent, Prima-1. The 125 I-labeled nanocomposites display an impressive tumor imaging as well as a long radiation treatment cycle. The 131 I-labeled nanoparticles show remarkable anti ATC-tumor effects in vitro and in vivo, due to radiosensitization of Prima-1 by reactivation of the p53 mutants.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Nuclear Medicine Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School 1665 Kongjiang Road Shanghai 200092 China
| | - Linlin Zhang
- Department of Nuclear Medicine Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School 1665 Kongjiang Road Shanghai 200092 China
| | - Miaomiao Xu
- Department of Nuclear Medicine Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School 1665 Kongjiang Road Shanghai 200092 China
| | - Chao Li
- Department of Nuclear Medicine Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School 1665 Kongjiang Road Shanghai 200092 China
| | - Hongliang Fu
- Department of Nuclear Medicine Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School 1665 Kongjiang Road Shanghai 200092 China
| | - Jie Huang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xin Jin
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sheng Liang
- Department of Nuclear Medicine Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School 1665 Kongjiang Road Shanghai 200092 China
| | - Hui Wang
- Department of Nuclear Medicine Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School 1665 Kongjiang Road Shanghai 200092 China
| |
Collapse
|
13
|
Antitumor Effects of PRIMA-1 and PRIMA-1 Met (APR246) in Hematological Malignancies: Still a Mutant P53-Dependent Affair? Cells 2021; 10:cells10010098. [PMID: 33430525 PMCID: PMC7827888 DOI: 10.3390/cells10010098] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Because of its role in the regulation of the cell cycle, DNA damage response, apoptosis, DNA repair, cell migration, autophagy, and cell metabolism, the TP53 tumor suppressor gene is a key player for cellular homeostasis. TP53 gene is mutated in more than 50% of human cancers, although its overall dysfunction may be even more frequent. TP53 mutations are detected in a lower percentage of hematological malignancies compared to solid tumors, but their frequency generally increases with disease progression, generating adverse effects such as resistance to chemotherapy. Due to the crucial role of P53 in therapy response, several molecules have been developed to re-establish the wild-type P53 function to mutant P53. PRIMA-1 and its methylated form PRIMA-1Met (also named APR246) are capable of restoring the wild-type conformation to mutant P53 and inducing apoptosis in cancer cells; however, they also possess mutant P53-independent properties. This review presents the activities of PRIMA-1 and PRIMA-1Met/APR246 and describes their potential use in hematological malignancies.
Collapse
|
14
|
Mussazhanova Z, Shimamura M, Kurashige T, Ito M, Nakashima M, Nagayama Y. Causative role for defective expression of mitochondria-eating protein in accumulation of mitochondria in thyroid oncocytic cell tumors. Cancer Sci 2020; 111:2814-2823. [PMID: 32458504 PMCID: PMC7419045 DOI: 10.1111/cas.14501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Oncocytic cell tumor of the thyroid is composed of large polygonal cells with eosinophilic cytoplasm that is rich in mitochondria. These tumors frequently have the mutations in mitochondrial DNA encoding the mitochondrial electron transport system complex I. However, the mechanism for accumulation of abnormal mitochondria is unknown. A noncanonical mitophagy system has recently been identified, and mitochondria-eating protein (MIEAP) plays a key role in this system. We therefore hypothesized that accumulation of abnormal mitochondria could be attributed to defective MIEAP expression in these tumors. We first show that MIEAP was expressed in all the conventional thyroid follicular adenomas (FAs)/adenomatous goiters (AGs) but not in oncocytic FAs/AGs; its expression was defective not only in oncocytic thyroid cancers but also in the majority of conventional thyroid cancers. Expression of MIEAP was not correlated with methylation status of the 5'-UTR of the gene. Our functional analysis showed that exogenously induced MIEAP, but not PARK2, reduced the amounts of abnormal mitochondria, as indicated by decreased reactive oxygen species levels, mitochondrial DNA / nuclear DNA ratios, and cytoplasmic acidification. Therefore, together with previous studies showing that impaired mitochondrial function triggers compensatory mitochondrial biogenesis that causes an increase in the amounts of mitochondria, we conclude that, in oncocytic cell tumors of the thyroid, increased abnormal mitochondria cannot be efficiently eliminated because of a loss of MIEAP expression, ie impaired MIEAP-mediated noncanonical mitophagy.
Collapse
Affiliation(s)
- Zhanna Mussazhanova
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,High Medical School, Faculty of Medicine and Health Care, Al Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Masahiro Ito
- Department of Pathology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
15
|
Ramraj SK, Elayapillai SP, Pelikan RC, Zhao YD, Isingizwe ZR, Kennedy AL, Lightfoot SA, Benbrook DM. Novel ovarian cancer maintenance therapy targeted at mortalin and mutant p53. Int J Cancer 2020; 147:1086-1097. [PMID: 31845320 DOI: 10.1002/ijc.32830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
Current ovarian cancer maintenance therapy is limited by toxicity and no proven impact on overall survival. To study a maintenance strategy targeted at missense mutant p53, we hypothesized that the release of mutant p53 from mortalin inhibition by the SHetA2 drug combined with reactivation of mutant p53 with the PRIMA-1MET drug inhibits growth and tumor establishment synergistically in a mutant-p53 dependent manner. The Cancer Genome Atlas (TCGA) data and serous ovarian tumors were evaluated for TP53 and HSPA9/mortalin status. SHetA2 and PRIMA-1MET were tested in ovarian cancer cell lines and fallopian tube secretory epithelial cells using isobolograms, fluorescent cytometry, Western blots and ELISAs. Drugs were administered to mice after peritoneal injection of MESOV mutant p53 ovarian cancer cells and prior to tumor establishment, which was evaluated by logistic regression. Fifty-eight percent of TP53 mutations were missense and there were no mortalin mutations in TCGA high-grade serous ovarian cancers. Mortalin levels were sequentially increased in serous benign, borderline and carcinoma tumors. SHetA2 caused p53 nuclear and mitochondrial accumulation in cancer, but not in healthy, cells. Endogenous or exogenous mutant p53 increased SHetA2 resistance. PRIMA-1MET decreased this resistance and interacted synergistically with SHetA2 in mutant and wild type p53-expressing cell lines in association with elevated reactive oxygen species/ATP ratios. Tumor-free rates in animals were 0% (controls), 25% (PRIMA1MET ), 42% (SHetA2) and 67% (combination). SHetA2 (p = 0.004) and PRIMA1MET (p = 0.048) functioned additively in preventing tumor development with no observed toxicity. These results justify the development of SHetA2 and PRIMA-1MET alone and in combination for ovarian cancer maintenance therapy.
Collapse
Affiliation(s)
- Satish K Ramraj
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sugantha P Elayapillai
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Richard C Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Yan D Zhao
- Biostatistics & Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zitha R Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Amy L Kennedy
- Department of Pathology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Stanley A Lightfoot
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Doris M Benbrook
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Obstetrics and Gynecologic, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
16
|
Li Z, Zhang Y, Wang R, Zou K, Zou L. Genetic alterations in anaplastic thyroid carcinoma and targeted therapies. Exp Ther Med 2019; 18:2369-2377. [PMID: 31555347 DOI: 10.3892/etm.2019.7869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Thyroid cancer is the most common type of endocrine malignancy, and its incidence is increasing. Anaplastic thyroid cancer (ATC), referring to undifferentiated subtypes, is considered to be aggressive and associated with poor prognosis. Conventional therapies, including surgery, chemotherapy and radioiodine therapy, have been used for ATC, but these do not provide any significant reduction of the overall mortality rate. The tumorigenesis, development, dedifferentiation and metastasis of ATC are closely associated with the activation of various tyrosine cascades and inactivation of tumor suppressor genes, including B-Raf proto-oncogene, serine/threonine kinaseV600E, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α,tumor protein 53 mutations and telomerase reverse transcriptase mutation. These pathways exert their functions individually or through a complex network. Identification of these mutations may provide a deeper understanding of ATC. A variety of tyrosine kinase inhibitors have been successfully employed for controlling ATC growth in vitro and in xenografts. Certain novel compounds are still in clinical trials. Multi-kinase inhibitors provide a novel approach with great potential. This systematic review determined the prevalence of the major genetic alterations and their inhibitors in ATC.
Collapse
Affiliation(s)
- Zongjuan Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yang Zhang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| | - Ruonan Wang
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Kun Zou
- Department of Radiation Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
17
|
Vassilakopoulos TP, Chatzidimitriou C, Asimakopoulos JV, Arapaki M, Tzoras E, Angelopoulou MK, Konstantopoulos K. Immunotherapy in Hodgkin Lymphoma: Present Status and Future Strategies. Cancers (Basel) 2019. [PMID: 31362369 DOI: 10.3390/cancers] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although classical Hodgkin lymphoma (cHL) is usually curable, 20-30% of the patients experience treatment failure and most of them are typically treated with salvage chemotherapy and autologous stem cell transplantation (autoSCT). However, 45-55% of that subset further relapse or progress despite intensive treatment. At the advanced stage of the disease course, recently developed immunotherapeutic approaches have provided very promising results with prolonged remissions or disease stabilization in many patients. Brentuximab vedotin (BV) has been approved for patients with relapsed/refractory cHL (rr-cHL) who have failed autoSCT, as a consolidation after autoSCT in high-risk patients, as well as for patients who are ineligible for autoSCT or multiagent chemotherapy who have failed ≥ two treatment lines. However, except of the consolidation setting, 90-95% of the patients will progress and require further treatment. In this clinical setting, immune checkpoint inhibitors (CPIs) have produced impressive results. Both nivolumab and pembrolizumab have been approved for rr-cHL after autoSCT and BV failure, while pembrolizumab has also been licensed for transplant ineligible patients after BV failure. Other CPIs, sintilimab and tislelizumab, have been successfully tested in China, albeit in less heavily pretreated populations. Recent data suggest that the efficacy of CPIs may be augmented by hypomethylating agents, such as decitabine. As a result of their success in heavily pretreated disease, BV and CPIs are moving to earlier lines of treatment. BV was recently licensed by the FDA for the first-line treatment of stage III/IV Hodgkin lymphoma (HL) in combination with AVD (only stage IV according to the European Medicines Agency (EMA)). CPIs are currently being evaluated in combination with AVD in phase II trials of first-line treatment. The impact of BV and CPIs was also investigated in the setting of second-line salvage therapy. Finally, combinations of targeted therapies are under evaluation. Based on these exciting results, it appears reasonable to predict that an improvement in survival and a potential increase in the cure rates of cHL will soon become evident.
Collapse
Affiliation(s)
- Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece.
| | - Chrysovalantou Chatzidimitriou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece
| | - John V Asimakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece
| | - Maria Arapaki
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece
| | - Evangelos Tzoras
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece
| | - Maria K Angelopoulou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece
| | - Kostas Konstantopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece
| |
Collapse
|
18
|
Ruan X, Shi X, Dong Q, Yu Y, Hou X, Song X, Wei X, Chen L, Gao M. Antitumor effects of anlotinib in thyroid cancer. Endocr Relat Cancer 2019; 26:153-164. [PMID: 30139768 PMCID: PMC6215907 DOI: 10.1530/erc-17-0558] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
There is no effective treatment for patients with poorly differentiated papillary thyroid cancer or anaplastic thyroid cancer (ATC). Anlotinib, a multi-kinase inhibitor, has already shown antitumor effects in various types of carcinoma in a phase I clinical trial. In this study, we aimed to better understand the effect and efficacy of anlotinib against thyroid carcinoma cells in vitro and in vivo. We found that anlotinib inhibits the cell viability of papillary thyroid cancer and ATC cell lines, likely due to abnormal spindle assembly, G2/M arrest, and activation of TP53 upon anlotinib treatment. Moreover, anlotinib suppresses the migration of thyroid cancer cells in vitro and the growth of xenograft thyroid tumors in mice. Our data demonstrate that anlotinib has significant anticancer activity in thyroid cancer, and potentially offers an effective therapeutic strategy for patients of advanced thyroid cancer type.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Thyroid and Neck TumorTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xianle Shi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Protein Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
| | - Qiman Dong
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Protein Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
| | - Yang Yu
- Department of Thyroid and Neck TumorTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiukun Hou
- Department of Thyroid and Neck TumorTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xinhao Song
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Protein Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Protein Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
- Correspondence should be addressed to L Chen or M Gao: or
| | - Ming Gao
- Department of Thyroid and Neck TumorTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Correspondence should be addressed to L Chen or M Gao: or
| |
Collapse
|
19
|
Teoh PJ, Bi C, Sintosebastian C, Tay LS, Fonseca R, Chng WJ. PRIMA-1 targets the vulnerability of multiple myeloma of deregulated protein homeostasis through the perturbation of ER stress via p73 demethylation. Oncotarget 2018; 7:61806-61819. [PMID: 27533450 PMCID: PMC5308692 DOI: 10.18632/oncotarget.11241] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022] Open
Abstract
Despite therapeutic advancement, multiple myeloma (MM) remains incurable with drug resistance being one of the main challenges in the clinic. Myeloma cells possess high protein secretory load, leading to increased intracellular endoplasmic reticulum (ER) stress. Hence, they are vulnerable to further perturbation to its protein homeostasis. In studying the therapeutic mechanism of PRIMA-1 (mutant-p53-reactivating-agent), we uncovered its novel p53-independent-mechanism that can be exploited for myeloma. Despite its inability in restoring the wild type-p53 protein conformation and transcriptional function in the mutant-p53-human-myeloma-cells, PRIMA-1 was efficacious against myeloma cells with differential p53 genotypes. Strikingly, cells without p53 expression demonstrated highest drug sensitivity. Genome-wide gene-expression analysis revealed the involvement of ER stress/UPR-pathway in inducing PRIMA-1-toxicity. UPR markers, HSP70, CHOP and GADD34, were significantly up-regulated, concomitantly with the induction of apoptosis. Furthermore, there was a global attenuation of protein synthesis, correlated with phospho-eIF2a up-regulation. Mechanistically, we identified that PRIMA-1 could cause the demethylation of TP73, through DNMT1 depletion, to subsequently enhance UPR. Of clinical significance, we observed that PRIMA-1 had additive therapeutic effects with another UPR-inducing-agent, bortezomib. Importantly, it can partially re-sensitize bortezomib-resistant cells to bortezomib. Given that MM is already stressed at the baseline in the ER, our results implicated that PRIMA-1 is a potential therapeutic option in MM by targeting its Achilles heel.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Cancer Science Institute Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Chonglei Bi
- Cancer Science Institute Singapore, National University of Singapore, Singapore
| | | | - Liang Seah Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rafael Fonseca
- Department of Hematology-Oncology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Wee Joo Chng
- Cancer Science Institute Singapore, National University of Singapore, Singapore.,Department of Hematology-Oncology, Mayo Clinic, Scottsdale, Arizona, USA.,Department of Haematology-Oncology, National University Cancer Institute, Singapore
| |
Collapse
|
20
|
Furukawa H, Makino T, Yamasaki M, Tanaka K, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mori M, Doki Y. PRIMA-1 induces p53-mediated apoptosis by upregulating Noxa in esophageal squamous cell carcinoma with TP53 missense mutation. Cancer Sci 2017; 109:412-421. [PMID: 29168598 PMCID: PMC5797815 DOI: 10.1111/cas.13454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
TP53 is associated with the resistance of cytotoxic treatment and patient prognosis, and the mutation rate of TP53 in esophageal squamous cell carcinoma (ESCC) is extraordinarily high, at over 90%. PRIMA‐1 (p53 re‐activation and induction of massive apoptosis) has recently been reported to restore the function of mutant TP53; however, its antitumor effect and mechanism in ESCC remain unclear. After evaluating the TP53 mutation status of a panel of 11 ESCC cell lines by Sanger sequencing, we assessed the in vitro effect of PRIMA‐1 administration on cells with different TP53 status by conducting cell viability and apoptosis assays. The expression levels of proteins in p53‐related pathways were examined by Western blotting, while knockdown studies were conducted to investigate the mechanism underlying PRIMA‐1's function. An ESCC xenograft model was further used to evaluate the therapeutic effect of PRIMA‐1 in vivo. PRIMA‐1 markedly inhibited cell growth and induced apoptosis by upregulating Noxa expression in ESCC cell lines with TP53 missense mutations, whereas no apoptosis was induced in ESCC with wild‐type TP53 and TP53 with frameshift and nonsense mutations. Importantly, the knockdown of Noxa canceled the apoptosis induced by PRIMA treatment in ESCC cell lines with TP53 missense mutations. PRIMA‐1 administration, compared with placebo, showed a significant antitumor effect by inducing Noxa in the xenograft model of an ESCC cell line with a TP53 missense mutation. PRIMA‐1 exhibits a significant antitumor effect, inducing massive apoptosis through the upregulation of Noxa in ESCC with TP53 missense mutations.
Collapse
Affiliation(s)
- Haruna Furukawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| |
Collapse
|
21
|
Perdrix A, Najem A, Saussez S, Awada A, Journe F, Ghanem G, Krayem M. PRIMA-1 and PRIMA-1 Met (APR-246): From Mutant/Wild Type p53 Reactivation to Unexpected Mechanisms Underlying Their Potent Anti-Tumor Effect in Combinatorial Therapies. Cancers (Basel) 2017; 9:cancers9120172. [PMID: 29258181 PMCID: PMC5742820 DOI: 10.3390/cancers9120172] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
p53 protects cells from genetic assaults by triggering cell-cycle arrest and apoptosis. Inactivation of p53 pathway is found in the vast majority of human cancers often due to somatic missense mutations in TP53 or to an excessive degradation of the protein. Accordingly, reactivation of p53 appears as a quite promising pharmacological approach and, effectively, several attempts have been made in that sense. The most widely investigated compounds for this purpose are PRIMA-1 (p53 reactivation and induction of massive apoptosis )and PRIMA-1Met (APR-246), that are at an advanced stage of development, with several clinical trials in progress. Based on publications referenced in PubMed since 2002, here we review the reported effects of these compounds on cancer cells, with a specific focus on their ability of p53 reactivation, an overview of their unexpected anti-cancer effects, and a presentation of the investigated drug combinations.
Collapse
Affiliation(s)
- Anne Perdrix
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1 rue Heger-Bordet, 1000 Brussels, Belgium.
- Clinical Laboratory, Department of Biopathology, Henri Becquerel Centre, 76038 Rouen, France.
- Equipe de Recherche en Oncologie (IRON), Inserm U1245, Rouen University Hospital, 76000 Rouen, France.
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1 rue Heger-Bordet, 1000 Brussels, Belgium.
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ahmad Awada
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1 rue Heger-Bordet, 1000 Brussels, Belgium.
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium.
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1 rue Heger-Bordet, 1000 Brussels, Belgium.
- Laboratory of Human Anatomy and Experimental Oncology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ghanem Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1 rue Heger-Bordet, 1000 Brussels, Belgium.
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1 rue Heger-Bordet, 1000 Brussels, Belgium.
| |
Collapse
|
22
|
PRIMA-1 induces caspase-mediated apoptosis in acute promyelocytic leukemia NB4 cells by inhibition of nuclear factor-κB and downregulation of Bcl-2, XIAP, and c-Myc. Anticancer Drugs 2017; 28:51-58. [PMID: 27548348 DOI: 10.1097/cad.0000000000000426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Restoration of p53 function triggers cell death and eliminates tumors in vivo. Identification of p53-reactivating small molecules such as PRIMA-1 holds promise for effective new anticancer therapies. Here, we investigated the effects of small molecule PRIMA-1 on cell viability and expression of p53-regulated genes and proteins in the acute promyelocytic leukemia-derived NB4 cell line. Our results showed that PRIMA-1 had antileukemic properties in acute promyelocytic leukemia-derived NB4 cells. PRIMA-1-triggered apoptosis in a dose-dependent and time-dependent manner as indicated by the MTT assay and annexin-V staining. Apoptosis induction by PRIMA-1 was associated with caspase-9, caspase-7 activation and PARP cleavage. p21 protein expression was increased after PRIMA-1 treatment and real-time PCR analysis of proapoptotic p53 target genes indicated upregulation of Bax and Noxa. Western blot analysis showed that IκBα phosphorylation and its degradation were inhibited by PRIMA-1. Moreover, protein expression of nuclear factor-κB-regulated antiapoptotic (Bcl-2 and XIAP) and proliferative (c-Myc) gene products was decreased. Importantly, PRIMA-1 did not show any significant apoptotic effect in normal human peripheral blood mononuclear cells. These in-vitro studies imply that p53 reactivation by small compounds may become a novel anticancer therapy in acute promyelocytic leukemia.
Collapse
|
23
|
Xu H, Zou S, Xu X. The β-glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers. Oncotarget 2017; 8:86693-86709. [PMID: 29156828 PMCID: PMC5689718 DOI: 10.18632/oncotarget.21411] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is now the most common cancer in worldwide women, and novel interventions are needed to overcome the resistance occurring in the estrogen-targeted endocrine therapy. Herein, we demonstrate that the β-glucan from Lentinus edodes (LNT) exhibited a profound inhibition ratio of ∼53% against estrogen receptor positive (ER+) MCF-7 tumor growth in nude mice similar to the positive control of cisplatin. Immunohistochemistry images showed that LNT evidently suppressed cell proliferation and promoted apoptosis in MCF-7 tumor tissues. The Western blotting analysis indicated that LNT up-regulated the tumor suppressor p53, phosphorylated extracellular signal-regulated kinase1/2 (p-ERK1/2), cleaved-Caspase 3 and poly [ADP (ribose)] polymerase 1 (PARP 1) protein levels, and reduced the expression of mouse double minute 2 (MDM2), telomerase reverse transcriptase (TERT), nuclear factor-kappa B (NF-κB) p65, B-cell lymphoma-2 (Bcl-2), estrogen receptor α (ERα), etc. in tumor tissues. Moreover, LNT significantly suppressed phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) protein levels. It was thus proposed that LNT inhibited MCF-7 tumor growth through suppressing cell proliferation and enhancing apoptosis possibly via multiple pathways such as PI3K/Akt/mTOR, NF-κB-, ERK-, ERα-, caspase- and p53-dependent pathways. Interestingly, the cell viability assay, siRNA transfection, Western blotting and flow cytometric analysis suggested that LNT targeted p53/ERα to only suppress cell proliferation via cell cycle arrest at G2/M phase without apoptosis in vitro. The big difference between in vivo and in vitro data suggested that the immune responses triggered by the polysaccharide should mainly contribute to the apoptotic effect in vivo. Overall, this work provides a novel strategy to treat ER+ breast cancers by using a naturally occurring β-glucan from mushrooms.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell 2017; 170:1062-1078. [PMID: 28886379 DOI: 10.1016/j.cell.2017.08.028] [Citation(s) in RCA: 1364] [Impact Index Per Article: 170.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type, mutation profile, and epigenetic cell state dictate outcomes, and how might we restore its tumor-suppressive activities in cancer?
Collapse
Affiliation(s)
- Edward R Kastenhuber
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
25
|
Manzella L, Stella S, Pennisi MS, Tirrò E, Massimino M, Romano C, Puma A, Tavarelli M, Vigneri P. New Insights in Thyroid Cancer and p53 Family Proteins. Int J Mol Sci 2017. [PMID: 28635633 PMCID: PMC5486146 DOI: 10.3390/ijms18061325] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancers are common endocrine malignancies that comprise tumors with different clinical and histological features. Indeed, papillary and follicular thyroid cancers are slow-growing, well-differentiated tumors, whereas anaplastic thyroid cancers are undifferentiated neoplasias that behave much more aggressively. Well-differentiated thyroid carcinomas are efficiently cured by surgery and radioiodine, unlike undifferentiated tumors that fail to uptake radioactive iodine and are usually resistant to chemotherapy. Therefore, novel and more effective therapies for these aggressive neoplasias are urgently needed. Whereas most genetic events underlying the pathogenesis of well-differentiated thyroid cancers have been identified, the molecular mechanisms that generate undifferentiated thyroid carcinomas are still unclear. To date, one of the best-characterized genetic alterations leading to the development of poorly differentiated thyroid tumors is the loss of the p53 tumor suppressor gene. In addition, the existence of a complex network among p53 family members (p63 and p73) and their interactions with other factors that promote thyroid cancer progression has been well documented. In this review, we provide an update on the current knowledge of the role of p53 family proteins in thyroid cancer and their possible use as a therapeutic target for the treatment of the most aggressive variants of this disease.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Martina Tavarelli
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi Nesima Medical Center, University of Catania, 95122 Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
26
|
Tavarelli M, Malandrino P, Vigneri P, Richiusa P, Maniglia A, Violi MA, Sapuppo G, Vella V, Dardanoni G, Vigneri R, Pellegriti G. Anaplastic Thyroid Cancer in Sicily: The Role of Environmental Characteristics. Front Endocrinol (Lausanne) 2017; 8:277. [PMID: 29123502 PMCID: PMC5662896 DOI: 10.3389/fendo.2017.00277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/03/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is a rare but extremely aggressive cancer of the thyroid, contributing up to 30-40% of thyroid cancer-specific mortality. We analyzed ATC characteristics and survival rates in Sicily to evaluate the possible influence of environmental factors. With this aim, data regarding ATC incidences in urban/rural and industrial, iodine-deficient, and volcanic vs control areas were compared in Sicily as well as ATC data from Sicily and USA. METHODS Using the Sicilian Register of Thyroid Cancer (SRTC) database incidence, age, gender, tumor size and histotype, extrathyroidal extension, stage, and coexistence with pre-existing differentiated thyroid cancer (DTC) were evaluated in different areas of Sicily and also compared with Surveillance Epidemiology and End Results data in USA. RESULTS Forty-three ATCs were identified in Sicily in the period 2002-2009. In our series only age <70 years at diagnosis (p = 0.01), coexistence with DTC (p = 0.027) and tumor size ≤6 cm (p = 0.012) were significant factors for increased survival at univariate analysis (only age at multivariate analysis). No difference in ATC incidence was found in urban vs rural areas and in iodine-deficient and industrial vs control areas. By contrast, in the volcanic area of Sicily, where DTC incidence is doubled relative to the rest of the island, also ATC incidence was increased. ATC data in Sicily were similar to those reported in the same period in the USA where overall survival rate at 6 and 12 months, however, was smaller. CONCLUSION The similar ATC data observed in Sicily and USA (having different genetic background and lifestyle) and the increased ATC incidence in the volcanic area of Sicily paralleling the increased incidence of papillary thyroid cancer are compatible with the possibility that casual additional mutations, more frequent in a background of increased cell replication like DCT, are the major causes of ATC rather than genetic background and/or direct environmental influences.
Collapse
Affiliation(s)
- Martina Tavarelli
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
| | - Pasqualino Malandrino
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
| | - Paolo Vigneri
- Medical Oncology, Department of Clinical Experimental Medicine, University of Catania, Policlinic Hospital, Catania, Italy
| | - Pierina Richiusa
- Endocrinology, Di.Bi.M.I.S., University of Palermo, Palermo, Italy
| | - Adele Maniglia
- Endocrinology, Di.Bi.M.I.S., University of Palermo, Palermo, Italy
| | - Maria A. Violi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giulia Sapuppo
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
| | - Veronica Vella
- Motor Sciences, School of Human and Social Sciences, “Kore” University, Enna, Italy
| | - Gabriella Dardanoni
- Osservatorio Epidemiologico Regionale, Assessorato Salute Regione Siciliana, Palermo, Italy
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
- Institute of Biostructure and Bioimaging, CNR, Catania, Italy
| | - Gabriella Pellegriti
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
- *Correspondence: Gabriella Pellegriti,
| |
Collapse
|
27
|
Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. Int J Mol Sci 2016; 17:ijms17122003. [PMID: 27916892 PMCID: PMC5187803 DOI: 10.3390/ijms17122003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
The p53 pathway is inactivated in the majority of human cancers. Although this perturbation frequently occurs through the mutation or deletion of p53 itself, there are other mechanisms that can attenuate the pathway and contribute to tumorigenesis. For example, overexpression of important p53 negative regulators, such as murine double minute 2 (MDM2) or murine double minute 4 (MDM4), epigenetic deregulation, or even alterations in TP53 mRNA splicing. In this work, we will review the different mechanisms of p53 pathway inhibition in cancer with special focus on multiple myeloma (MM), the second most common hematological malignancy, with low incidence of p53 mutations/deletions but growing evidence of indirect p53 pathway deregulation. Translational implications for MM and cancer prognosis and treatment are also reviewed.
Collapse
|
28
|
Involvement of p53 in insulin-like growth factor binding protein-3 regulation in the breast cancer cell response to DNA damage. Oncotarget 2016; 6:26583-98. [PMID: 26378048 PMCID: PMC4694938 DOI: 10.18632/oncotarget.5612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
Chemotherapy drugs that induce apoptosis by causing DNA double-strand breaks, upregulate the tumor suppressor p53. This study investigated the regulation of the growth-regulatory protein insulin-like growth factor binding protein-3 (IGFBP-3), a p53 target, by DNA-damaging agents in breast cancer cells. IGFBP-3 was upregulated 1.4- to 13-fold in response to doxorubicin and etoposide in MCF-10A, Hs578T, MCF-7 and T47D cells, which express low to moderate basal levels of IGFBP-3. In contrast, IGFBP-3 was strongly downregulated by these agents in cells with high basal levels of IGFBP-3 (MDA-MB-231, MDA-MB-436 and MDA-MB-468). In MDA-MB-468 cells containing the R273H p53 mutation, reported to display gain-of-function properties, chemotherapy-induced suppression of IGFBP-3 was not reversed by the p53 reactivating drug, PRIMA-1, or by p53 silencing, suggesting that the decrease in IGFBP-3 following DNA damage is not a mutant p53 gain-of-function response. SiRNA-mediated downregulation of endogenous IGFBP-3 modestly attenuated doxorubicin-induced apoptosis in MDA-MB-468 and Hs578T cells. IGFBP-3 downregulation in some breast cancer cell lines in response to DNA-damaging chemotherapy may have clinical implications because suppression of IGFBP-3 may modulate the apoptotic response. These observations provide further evidence that endogenous IGFBP-3 plays a role in breast cancer cell responsiveness to DNA damaging therapy.
Collapse
|
29
|
Sobhani M, Abdi J, Manujendra SN, Chen C, Chang H. PRIMA-1Met induces apoptosis in Waldenström's Macroglobulinemia cells independent of p53. Cancer Biol Ther 2016; 16:799-806. [PMID: 25803193 DOI: 10.1080/15384047.2015.1026482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PRIMA-1Met has shown promising preclinical activity in various cancer types. However, its effect on Waldenström's Macroglobulinemia (WM) cells as well as its exact mechanism of action is still elusive. In this study, we evaluated the anti- tumor activity of PRIMA-1Met alone and in combination with dexamethasone or bortezomib in WM cell lines and primary samples. Treatment of WM cells with PRIMA-1Met resulted in induction of apoptosis, inhibition of migration and suppression of colony formation. Upon PRIMA-1Met treatment, p73 was upregulated and Bcl-xL was down-regulated while no significant change in expression of p53 was observed. Furthermore, siRNA knockdown of p53 in WM cell line did not influence the PRIMA-1Met-induced apoptotic response whereas silencing of p73 inhibited latter response in WM cells. Importantly, combined treatment of BCWM-1 cells with PRIMA-1Met and dexamethasone or bortezomib induced synergistic reduction in cell survival. Our study provides insights into the mechanisms of anti-WM activity of PRIMA-1Met and supports further clinical evaluation of PRIMA-1Met as a potential novel therapeutic intervention in WM.
Collapse
Affiliation(s)
- Mona Sobhani
- a Division of Molecular and Cellular Biology; Toronto General Hospital Research Institute ; Toronto , Ontario , Canada
| | | | | | | | | |
Collapse
|
30
|
Walerych D, Lisek K, Del Sal G. Mutant p53: One, No One, and One Hundred Thousand. Front Oncol 2015; 5:289. [PMID: 26734571 PMCID: PMC4685664 DOI: 10.3389/fonc.2015.00289] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
Encoded by the mutated variants of the TP53 tumor suppressor gene, mutant p53 proteins are getting an increased experimental support as active oncoproteins promoting tumor growth and metastasis. p53 missense mutant proteins are losing their wild-type tumor suppressor activity and acquire oncogenic potential, possessing diverse transforming abilities in cell and mouse models. Whether various mutant p53s differ in their oncogenic potential has been a matter of debate. Recent discoveries are starting to uncover the existence of mutant p53 downstream programs that are common to different mutant p53 variants. In this review, we discuss a number of studies on mutant p53, underlining the advantages and disadvantages of alternative experimental approaches that have been used to describe the numerous mutant p53 gain-of-function activities. Therapeutic possibilities are also discussed, taking into account targeting either individual or multiple mutant p53 proteins in human cancer.
Collapse
Affiliation(s)
- Dawid Walerych
- Laboratorio Nazionale CIB, Area Science Park Padriciano , Trieste , Italy
| | - Kamil Lisek
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
31
|
GARUFI ALESSIA, D'ORAZI VALERIO, CRISPINI ALESSANDRA, D'ORAZI GABRIELLA. Zn(II)-curc targets p53 in thyroid cancer cells. Int J Oncol 2015; 47:1241-1248. [PMID: 26314369 PMCID: PMC4583539 DOI: 10.3892/ijo.2015.3125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023] Open
Abstract
TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.
Collapse
Affiliation(s)
- ALESSIA GARUFI
- Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’, Chieti, Italy
| | - VALERIO D'ORAZI
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | - ALESSANDRA CRISPINI
- Department of Chemistry and Technologic Chemistry, University of Calabria, Cosenza, Italy
| | - GABRIELLA D'ORAZI
- Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’, Chieti, Italy
| |
Collapse
|
32
|
Hasbek Z, Turgut B, Erselcan T. p53 antibody: is it an indicator of dedifferentiated thyroid cancer? Ann Nucl Med 2014; 28:42-6. [PMID: 24234516 DOI: 10.1007/s12149-013-0783-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
AIM Radioiodine is the most effective treatment modality in differentiated thyroid carcinoma, either in metastatic or residual thyroid tissue. However, sometimes dedifferentiation can develop and the effectiveness of radioactive I-131 decreases. The p53 is a tumor suppressor gene which plays an important role in controlling normal cell proliferation regulation. In the serum of healthy individuals, the presence of p53 autoantibodies is extremely rare. Mutations in this gene cause an accumulation of non-functional proteins and may lead to development of anti-p53 antibodies. The aim of the present study was to devise a simple blood test that could lead to early identification of patients with dedifferentiation. In this respect, we investigate whether the serum level of anti-p53 antibody is of diagnostic value in the follow-up of patients with high levels of thyroglobulin (Tg) and negative I-131 scan. MATERIALS AND METHODS Patients who were diagnosed with thyroid cancer, treated with total or near total thyroidectomy and referred for I-131 therapy or low dose I-131 whole body scan were included in our study. Blood samples were taken before the administration of I-131 orally in the group of patients. Besides, 28 healthy subjects were included. We quantified the presence of p53 autoantibodies from serums. RESULTS In the present study were enrolled 171 patients with a mean age of 47.7±13.5 years (range 16–80 years) and 28 healthy subjects with an age range of 18–52 years (mean 36.0±9.8 years). One hundred and forty-eight patients had papillary (86.5%), 7 (4.1%) follicular, 10 (5.8%) thyroid tumors of uncertain malignant potential, 2 (1.2%) Hürthle cell carcinoma, 3 (1.8%) poor differentiated, and 1 (0.6%) undifferentiated thyroid carcinoma. The p53 antibodies were positive in 16 (9.4%) patients and negative in 155 (90.6%). The p53 antibodies were positive in 3 (10.7%) healthy subjects, and negative in 25 (89.3%) healthy subjects. In five patients with high Tg level and negative radioiodine scan, who were accepted as dedifferentiated, p53 antibodies were also negative. CONCLUSION The results of the present study suggested that the level of serum p53 antibody seems to be of limited value in the demonstration of dedifferentiation in thyroid cancer patients.
Collapse
|
33
|
p53 abnormalities and potential therapeutic targeting in multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:717919. [PMID: 25028664 PMCID: PMC4083709 DOI: 10.1155/2014/717919] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/20/2014] [Indexed: 01/02/2023]
Abstract
p53 abnormalities are regarded as an independent prognostic marker in multiple myeloma. Patients harbouring this genetic anomaly are commonly resistant to standard therapy. Thus, various p53 reactivating agents have been developed in order to restore its tumour suppressive abilities. Small molecular compounds, especially, have gained popularity in its efficacy against myeloma cells. For instance, promising preclinical results have steered both nutlin-3 and PRIMA-1 into phase I/II clinical trials. This review summarizes different modes of p53 inactivation in myeloma and highlights the current p53-based therapies that are being utilized in the clinic. Finally, we discuss the potential and promise that the novel small molecules possess for clinical application in improving the treatment outcome of myeloma.
Collapse
|
34
|
Izetti P, Hautefeuille A, Abujamra AL, de Farias CB, Giacomazzi J, Alemar B, Lenz G, Roesler R, Schwartsmann G, Osvaldt AB, Hainaut P, Ashton-Prolla P. PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines. Invest New Drugs 2014; 32:783-94. [PMID: 24838627 DOI: 10.1007/s10637-014-0090-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/13/2014] [Indexed: 01/05/2023]
Abstract
TP53 mutation is a common event in many cancers, including pancreatic adenocarcinoma, where it occurs in 50-70 % of cases. In an effort to reactivate mutant p53 protein, several new drugs are being developed, including PRIMA-1 and PRIMA-1(Met)/APR-246 (p53 reactivation and induction of massive apoptosis). PRIMA-1 has been shown to induce apoptosis in tumor cells by reactivating p53 mutants, but its effect in pancreatic cancer remains unclear. Here we investigated the effects of PRIMA-1 on cell viability, cell cycle and expression of p53-regulated proteins in PANC-1 and BxPC-3 (mutant TP53), and CAPAN-2 (wild-type TP53) pancreatic cell lines. Treatment with PRIMA-1 selectively induced apoptosis and cell cycle arrest in p53 mutant cells compared to CAPAN-2 cells. The growth suppressive effect of PRIMA-1 was markedly reduced in p53 mutant cell lines transfected with p53 siRNA, supporting the role of mutant p53 in PRIMA-1 induced cell death. Moreover, treatment with the thiol group donor N-acetylcysteine completely blocked PRIMA-1-induced apoptosis and reinforced the hypothesis that thiol modifications are important for PRIMA-1 biological activity. In combination treatments, PRIMA-1 enhanced the anti-tumor activity of several chemotherapic drugs against pancreatic cancer cells and also exhibited a pronounced synergistic effect in association with the Mdm2 inhibitor Nutlin-3. Taken together, our data indicate that PRIMA-1 induces apoptosis in p53 mutant pancreatic cancer cells by promoting the re-activation of p53 and inducing proapoptotic signaling pathways, providing in vitro evidence for a potential therapeutic approach in pancreatic cancer.
Collapse
Affiliation(s)
- Patricia Izetti
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil, 90035-003,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Read ML, Seed RI, Fong JCW, Modasia B, Ryan GA, Watkins RJ, Gagliano T, Smith VE, Stratford AL, Kwan PK, Sharma N, Dixon OM, Watkinson JC, Boelaert K, Franklyn JA, Turnell AS, McCabe CJ. The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells. Endocrinology 2014; 155:1222-34. [PMID: 24506068 PMCID: PMC4759943 DOI: 10.1210/en.2013-1646] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The PTTG1-binding factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a protooncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity-ligation assays, we show that PBF binds specifically to p53 in thyroid cells and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF overexpression (transgenic PBF mice), which had significantly increased genetic instability as indicated by fluorescent inter simple sequence repeat-PCR analysis. Consistent with this, approximately 40% of all DNA repair genes examined were repressed in transgenic PBF primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51, and Xrcc3. Our data also revealed that PBF induction resulted in up-regulation of the E2 enzyme Rad6 in murine thyrocytes and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the protooncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, in which PBF is generally overexpressed and p53 mutations are rare compared with other tumor types.
Collapse
Affiliation(s)
- Martin L Read
- School of Clinical and Experimental Medicine (M.L.R., R.I.S., J.C.W.F., B.M., G.A.R., R.J.W., V.E.S., P.K.K., N.S., O.M.D., K.B., J.A.F., C.J.M.) and School of Cancer Sciences (A.S.T.), University of Birmingham, Birmingham, United Kingdom; Department of Medical Sciences (T.G.), University of Ferrara, Ferrara, Italy; Department of Pediatrics (A.L.S.), University of British Columbia, Vancouver, British Columbia, Canada; and University Hospitals Birmingham National Health Service Foundation Trust (J.C.W.), Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ciavardelli D, Bellomo M, Crescimanno C, Vella V. Type 3 deiodinase: role in cancer growth, stemness, and metabolism. Front Endocrinol (Lausanne) 2014; 5:215. [PMID: 25566187 PMCID: PMC4269192 DOI: 10.3389/fendo.2014.00215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022] Open
Abstract
Deiodinases are selenoenzymes that catalyze thyroid hormones (THs) activation (type 1 and type 2, D1 and D2, respectively) or inactivation (type 3, D3). THs are essential for proper body development and cellular differentiation. Their intra- and extra-cellular concentrations are tightly regulated by deiodinases with a pre-receptorial control thus generating active or inactive form of THs. Changes in deiodinases expression are anatomically and temporally regulated and influence the downstream TH signaling. D3 overexpression is a feature of proliferative tissues such as embryo or cancer tissues. The enhanced TH degradation by D3 induces a local hypothyroidism, thus inhibiting THs transcriptional activity. Of note, overexpression of D3 is a feature of several highly proliferative cancers. In this paper, we review recent advances in the role of D3 in cancer growth, stemness, and metabolic phenotype. In particular, we focus on the main signaling pathways that result in the overexpression of D3 in cancer cells and are known to be relevant to cancer development, progression, and recurrence. We also discuss the potential role of D3 in cancer stem cells metabolic phenotype, an emerging topic in cancer research.
Collapse
Affiliation(s)
- Domenico Ciavardelli
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Center of Excellence on Aging (CeS.I.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Maria Bellomo
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
| | | | - Veronica Vella
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Department of Clinical and Molecular Bio-Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
- *Correspondence: Veronica Vella, School of Human and Social Sciences, University “Kore” of Enna, via delle Olimpiadi, Enna 94100, Italy e-mail:
| |
Collapse
|
37
|
Soldevilla B, Millán CS, Bonilla F, Domínguez G. The TP73 complex network: ready for clinical translation in cancer? Genes Chromosomes Cancer 2013; 52:989-1006. [PMID: 23913810 DOI: 10.1002/gcc.22095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/28/2013] [Indexed: 01/05/2023] Open
Abstract
TP73 is a member of the TP53 family, whose deregulated expression has been reported in a wide variety of cancers and linked to patients' outcome. The fact that TP73 encodes a complex number of isoforms (TAp73 and ΔTAp73) with opposing functions and the cross-talk with other members of the family (TP53 and TP63) make it difficult to determine its clinical relevance. Here, we review the molecular mechanisms driving TAp73 and ΔTAp73 expression and how these variants inhibit or promote carcinogenesis. We also highlight the intricate interplay between TP53 family members. In addition, we comment on current pharmacological approaches targeting the TP73 pathway and those affecting the TAp73/ΔTAp73 ratio. Finally, we discuss the current data available in the literature that provide evidence on the role of TP73 variants in predicting prognosis. To date, most of the studies that evaluate the status levels of TP73 isoforms have been based on limited-size series. Despite this limitation, these publications highlight the correlation between high levels of the oncogenic forms and failure to respond to chemotherapy and/or shorter survival. Finally, we emphasize the need for studies to evaluate the significance of combining the deregulation of various members of the TP53 family in order to define patient outcome or their responsiveness to specific therapies.
Collapse
Affiliation(s)
- Beatriz Soldevilla
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Piantino CB, Reis ST, Viana NI, Silva IA, Morais DR, Antunes AA, Dip N, Srougi M, Leite KR. Prima-1 induces apoptosis in bladder cancer cell lines by activating p53. Clinics (Sao Paulo) 2013; 68:297-303. [PMID: 23644847 PMCID: PMC3611750 DOI: 10.6061/clinics/2013(03)oa03] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/04/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Bladder cancer represents 3% of all carcinomas in the Brazilian population and ranks second in incidence among urological tumors, after prostate cancer. The loss of p53 function is the main genetic alteration related to the development of high-grade muscle-invasive disease. Prima-1 is a small molecule that restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Our aim was to investigate the ability of Prima-1 to induce apoptosis after DNA damage in bladder cancer cell lines. METHOD The therapeutic effect of Prima-1 was studied in two bladder cancer cell lines: T24, which is characterized by a p53 mutation, and RT4, which is the wild-type for the p53 gene. Morphological features of apoptosis induced by p53, including mitochondrial membrane potential changes and the expression of thirteen genes involved in apoptosis, were assessed by microscopic observation and quantitative real-time PCR (qRT-PCR). RESULTS Prima-1 was able to reactivate p53 function in the T24 (p53 mt) bladder cancer cell line and promote apoptosis via the induction of Bax and Puma expression, activation of the caspase cascade and disruption of the mitochondrial membrane in a BAK-independent manner. CONCLUSION Prima-1 is able to restore the transcriptional activity of p53. Experimental studies in vivo may be conducted to test this molecule as a new therapeutic agent for urothelial carcinomas of the bladder, which characteristically harbor p53 mutations.
Collapse
Affiliation(s)
- Camila B Piantino
- Laboratory of Medical Investigation, Urology Department - LIM55, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jones RJ, Bjorklund CC, Baladandayuthapani V, Kuhn DJ, Orlowski RZ. Drug resistance to inhibitors of the human double minute-2 E3 ligase is mediated by point mutations of p53, but can be overcome with the p53 targeting agent RITA. Mol Cancer Ther 2012; 11:2243-53. [PMID: 22933706 DOI: 10.1158/1535-7163.mct-12-0135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover and has been validated preclinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, whereas Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA (reactivation of p53 and induction of tumor cell apoptosis). HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor nongenotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G(2)-M arrest, upregulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared with RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation.
Collapse
Affiliation(s)
- Richard J Jones
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, 7455 Fannin St, Unit 403, Houston, TX 77054, USA.
| | | | | | | | | |
Collapse
|