1
|
Chen B, Huang L, Gui M, Torres-de la Roche LA, De Wilde RL, Shi W, Liu H, Gong Z. High Expression of Complement 3 Enhances the Efficacy of Neoadjuvant Chemotherapy Prior to Oncoplastic Surgery for HER2-Positive Breast Cancer. Cancer Biother Radiopharm 2025. [PMID: 40242863 DOI: 10.1089/cbr.2025.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Background: Neoadjuvant chemotherapy for breast cancer (BC) improves patient prognosis, but its efficacy is hindered by the disease's high heterogeneity. This study enhances effectiveness of targeted therapy to improve clinical outcomes. Methods: This study enrolled 335 patients from three centers. Differentially expressed genes were identified using DESeq2, and Venn analysis was applied to identify hub Complement genes. Hub gene expression was validated through public databases and IHC in real-world samples. In addition, associations between these genes and clinical factors were evaluated. Survival analysis, using the log-rank test, assessed overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) as end points. The authors also locate hub Complement 3 gene position by immunofluorescence. Results: The study identified C3 as a hub Complement gene associated with trastuzumab sensitivity. C3 shows higher expression in normal than tumor tissues. C3 was highly expressed in HER2-negative and early-stage BC, but showed no differences in lymph node or metastasis subgroups. High C3 expression correlated with better OS, DSS, and PFI, particularly in HER2+ patients. IHC analysis confirmed higher C3 expression in normal tissues with the lowest in triple-negative BC. Immunofluorescence findings suggest that C3 recruits complement receptor 2 to enhance trastuzumab efficacy in HER2+ patients. Conclusions: This finding highlights the potential of complement 3 to improve therapeutic outcomes and pave the way for more personalized treatment strategies in BC.
Collapse
Affiliation(s)
- Bo Chen
- Department of Medical Aesthetic Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lifen Huang
- Clinicopathological Diagnosis & Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Morui Gui
- Department of Medical Aesthetic Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | | | - Rudy Leon De Wilde
- Pius-Hospital, University Hospital for Gynecology, University Medicine Oldenburg, Oldenburg, Germany
| | - Wenjie Shi
- Medical Faculty and University Hospital Magdeburg, Molecular and Experimental Surgery, Clinic for General, Visceral, Vascular and Transplantation Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Hui Liu
- School of Public Health, Guilin Medical University, Guilin, China
| | - Zhenyu Gong
- Department of Medical Aesthetic Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
2
|
Liu L, Hao S, Gou S, Tang X, Zhang Y, Cai D, Xiao M, Zhang X, Zhang D, Shen J, Li Y, Chen Y, Zhao Y, Deng S, Wu X, Li M, Zhang Z, Xiao Z, Du F. Potential applications of dual haptoglobin expression in the reclassification and treatment of hepatocellular carcinoma. Transl Res 2024; 272:19-40. [PMID: 38815898 DOI: 10.1016/j.trsl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
HCC is a malignancy characterized by high incidence and mortality rates. Traditional classifications of HCC primarily rely on tumor morphology, phenotype, and multicellular molecular levels, which may not accurately capture the cellular heterogeneity within the tumor. This study integrates scRNA-seq and bulk RNA-seq to spotlight HP as a critical gene within a subgroup of HCC malignant cells. HP is highly expressed in HCC malignant cells and lowly expressed in T cells. Within malignant cells, elevated HP expression interacts with C3, promoting Th1-type responses via the C3/C3AR1 axis. In T cells, down-regulating HP expression favors the expression of Th1 cell-associated marker genes, potentially enhancing Th1-type responses. Consequently, we developed a "HP-promoted Th1 response reclassification" gene set, correlating higher activity scores with improved survival rates in HCC patients. Additionally, four predictive models for neoadjuvant treatment based on HP and C3 expression were established: 1) Low HP and C3 expression with high Th2 cell infiltration; 2) High HP and low C3 expression with high Th2 cell infiltration; 3) High HP and C3 expression with high Th1 cell infiltration; 4) Low HP and high C3 expression with high Th1 cell infiltration. In conclusion, the HP gene selected from the HCC malignant cell subgroup (Malignant_Sub 6) might serve as a potential ally against the tumor by promoting Th1-type immune responses. The establishment of the "HP-promoted Th1 response reclassification" gene set offers predictive insights for HCC patient survival prognosis and neoadjuvant treatment efficacy, providing directions for clinical treatments.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xinyi Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yan Li
- Public Center of Experimental Technology, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China.
| |
Collapse
|
3
|
Zhu XL, Zhang L, Qi SX. Association of complement components with risk of colorectal cancer: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:2168-2180. [PMID: 38764810 PMCID: PMC11099464 DOI: 10.4251/wjgo.v16.i5.2168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response. Nevertheless, their role in colorectal cancer (CRC) remains a contentious subject. AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics. METHODS Searches were conducted in PubMed, the Cochrane Library, and the China National Knowledge Infrastructure database until June 1, 2023. We included cohort studies encompassing participants aged ≥ 18 years, investigating the association between complement components and CRC. The studies were of moderate quality or above, as determined by the Agency for Healthcare Research and Quality. The meta-analysis employed fixed-effects or random-effects models based on the I² test, utilizing risk ratio (RR) and their corresponding 95% confidence interval (CI) for outcomes. Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity. RESULTS Data from 15 studies, comprising 1631 participants that met the inclusion criteria, were included in the meta-analysis. Our findings indicated that protein levels of cluster of differentiation 46 (CD46) (RR = 3.66, 95%CI: 1.75-7.64, P < 0.001), CD59 (RR = 2.86, 95%CI: 1.36-6.01, P = 0.005), and component 1 (C1) (RR = 5.88, 95%CI: 1.75-19.73, P = 0.004) and serum levels of C3 (standardized mean difference = 1.82, 95%CI: 0.06-3.58, P = 0.040) were significantly elevated in patients with CRC compared to healthy controls. Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis, whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression (P < 0.05 for all). Although specific pooled results demonstrated notable heterogeneity, subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies. CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC, emphasizing the potential significance of monitoring elevated complement component levels.
Collapse
Affiliation(s)
- Xiao-Lin Zhu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| | - Lu Zhang
- Department of Medical Administration, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| | - Su-Xia Qi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| |
Collapse
|
4
|
Liu J, Jin X, Qiu C, Han P, Wang Y, Zhao J, Wu J, Yan N, Song X. Integrated Transcriptomics-Proteomics Analysis Identifies Molecular Phenotypic Alterations Associated with Colorectal Cancer. J Proteome Res 2024; 23:175-184. [PMID: 37909265 DOI: 10.1021/acs.jproteome.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Understanding the pathogenesis and finding diagnostic markers for colorectal cancer (CRC) are the key to its diagnosis and treatment. Integrated transcriptomics and proteomics analysis can be used to characterize alterations of molecular phenotypes and reveal the hidden pathogenesis of CRC. This study employed a novel strategy integrating transcriptomics and proteomics to identify pathological molecular pathways and diagnostic biomarkers of CRC. First, differentially expressed proteins and coexpressed genes generated from weighted gene coexpression network analysis (WGCNA) were intersected to obtain key genes of the CRC phenotype. In total, 63 key genes were identified, and pathway enrichment analysis showed that the process of coagulation and peptidase regulator activity could both play important roles in the development of CRC. Second, protein-protein interaction analysis was then conducted on these key genes to find the central genes involved in the metabolic pathways underpinning CRC. Finally, Itih3 and Lrg1 were further screened out as diagnostic biomarkers of CRC by applying statistical analysis on central genes combining transcriptomics and proteomics data. The deep involvement of central genes in tumorigenesis demonstrates the accuracy and reliability of this novel transcriptomics-proteomics integration strategy in biomarker discovery. The identified candidate biomarkers and enriched metabolic pathways provide insights for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xinghua Jin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chengchao Qiu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ping Han
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yixuan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Neng Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
5
|
Jordaens S, Oeyen E, Willems H, Ameye F, De Wachter S, Pauwels P, Mertens I. Protein Biomarker Discovery Studies on Urinary sEV Fractions Separated with UF-SEC for the First Diagnosis and Detection of Recurrence in Bladder Cancer Patients. Biomolecules 2023; 13:932. [PMID: 37371512 DOI: 10.3390/biom13060932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Urinary extracellular vesicles (EVs) are an attractive source of bladder cancer biomarkers. Here, a protein biomarker discovery study was performed on the protein content of small urinary EVs (sEVs) to identify possible biomarkers for the primary diagnosis and recurrence of non-muscle-invasive bladder cancer (NMIBC). The sEVs were isolated by ultrafiltration (UF) in combination with size-exclusion chromatography (SEC). The first part of the study compared healthy individuals with NMIBC patients with a primary diagnosis. The second part compared tumor-free patients with patients with a recurrent NMIBC diagnosis. The separated sEVs were in the size range of 40 to 200 nm. Based on manually curated high quality mass spectrometry (MS) data, the statistical analysis revealed 69 proteins that were differentially expressed in these sEV fractions of patients with a first bladder cancer tumor vs. an age- and gender-matched healthy control group. When the discriminating power between healthy individuals and first diagnosis patients is taken into account, the biomarkers with the most potential are MASP2, C3, A2M, CHMP2A and NHE-RF1. Additionally, two proteins (HBB and HBA1) were differentially expressed between bladder cancer patients with a recurrent diagnosis vs. tumor-free samples of bladder cancer patients, but their biological relevance is very limited.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Eline Oeyen
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, 2020 Antwerp, Belgium
| | - Hanny Willems
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Filip Ameye
- Department of Urology, AZ Maria Middelares, 9000 Ghent, Belgium
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Inge Mertens
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
6
|
Chen YN, Shih CY, Guo SL, Liu CY, Shen MH, Chang SC, Ku WC, Huang CC, Huang CJ. Potential prognostic and predictive value of UBE2N, IMPDH1, DYNC1LI1 and HRASLS2 in colorectal cancer stool specimens. Biomed Rep 2023; 18:22. [PMID: 36846616 PMCID: PMC9945078 DOI: 10.3892/br.2023.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide. The poor specificity and sensitivity of the fecal occult blood test has prompted the development of CRC-related genetic markers for CRC screening and treatment. Gene expression profiles in stool specimens are effective, sensitive and clinically applicable. Herein, a novel advantage of using cells shed from the colon is presented for cost-effective CRC screening. Molecular panels were generated through a series of leave-one-out cross-validation and discriminant analyses. A logistic regression model following reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry was used to validate a specific panel for CRC prediction. The panel, consisting of ubiquitin-conjugating enzyme E2 N (UBE2N), inosine monophosphate dehydrogenase 1 (IMPDH1), dynein cytoplasmic 1 light intermediate chain 1 (DYNC1LI1) and phospholipase A and acyltransferase 2 (HRASLS2), accurately recognized patients with CRC and could thus be further investigated as a potential prognostic and predictive biomarker for CRC. UBE2N, IMPDH1 and DYNC1LI1 expression levels were upregulated and HRASLS2 expression was downregulated in CRC tissues. The predictive power of the panel was 96.6% [95% confidence interval (CI), 88.1-99.6%] sensitivity and 89.7% (95% CI, 72.6-97.8%) specificity at a predicted cut-off value at 0.540, suggesting that this four-gene panel testing of stool specimens can faithfully mirror the state of the colon. On the whole, the present study demonstrates that screening for CRC or cancer detection in stool specimens collected non-invasively does not require the inclusion of an excessive number of genes, and colonic defects can be identified via the detection of an aberrant protein in the mucosa or submucosa.
Collapse
Affiliation(s)
- Yu-Nung Chen
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Cheng-Yen Shih
- Division of Gastroenterology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Shu-Lin Guo
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C,Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Ming-Hung Shen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Surgery, Fu Jen Catholic University Hospital, New Taipei 24352, Taiwan, R.O.C.,PhD Program in Nutrition and Food Science, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10090, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| |
Collapse
|
7
|
Ose J, Gigic B, Hardikar S, Lin T, Himbert C, Warby CA, Peoples AR, Lindley CL, Boehm J, Schrotz-King P, Figueiredo JC, Toriola AT, Siegel EM, Li CI, Ulrich A, Schneider M, Shibata D, Ulrich CM. Presurgery Adhesion Molecules and Angiogenesis Biomarkers Are Differently Associated with Outcomes in Colon and Rectal Cancer: Results from the ColoCare Study. Cancer Epidemiol Biomarkers Prev 2022; 31:1650-1660. [PMID: 35667092 PMCID: PMC9509698 DOI: 10.1158/1055-9965.epi-22-0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cell-to-cell adhesion and angiogenesis are hallmarks of cancer. No studies have examined associations of adhesion molecules and angiogenesis biomarkers with clinical outcomes in colorectal cancer. METHODS In presurgery serum from n = 426 patients with colorectal cancer (stage I-III), we investigated associations of CRP, SAA, adhesion molecules (sICAM-1, sVCAM-1), and angiogenesis markers (VEGF-A and VEGF-D) with overall survival (OS), disease-free survival (DFS), and risk of recurrence. We computed HRs and 95% confidence intervals; adjusted for age, sex, BMI, stage, site, and study site, stratified by tumor site in exploratory analyses. RESULTS N = 65 (15%) were deceased, and 39 patients (14%) had a recurrence after a median follow-up of 31 months. We observed significant associations of biomarkers with OS, DFS, and risk of recurrence on a continuous scale and comparing top to bottom tertile, with HRs ranging between 1.19 and 13.92. CRP was associated with risk of death and recurrence in patients in the top tertile compared with patients in the bottom tertile, for example, risk of recurrence HRQ3-Q1: 13.92 (1.72-112.56). Significant heterogeneity between biomarkers and clinical outcomes was observed in stratified analysis by tumor site for CRP, SAA, sICAM-1, sVCAM-1, and VEGF-D. VEGF-D was associated with a 3-fold increase in risk of death for rectal cancer (HRlog2: 3.26; 95% CI, 1.58-6.70) compared with no association for colon cancer (HRlog2: 0.78; 95% CI, 0.35-1.73; Pheterogenity = 0.01). CONCLUSIONS Adhesion molecules and angiogenesis biomarkers are independent prognostic markers for colorectal cancer, with differences by tumor site. IMPACT There is need for tailored treatment for colon and rectal cancer.
Collapse
Affiliation(s)
- Jennifer Ose
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Sheetal Hardikar
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Tengda Lin
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Caroline Himbert
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Anita R Peoples
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | | | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | | | | - Erin M Siegel
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | | | | | - David Shibata
- University of Tennessee Health Science Center, Memphis, TN
| | - Cornelia M Ulrich
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| |
Collapse
|
8
|
Hozhabri H, Ghasemi Dehkohneh RS, Razavi SM, Razavi SM, Salarian F, Rasouli A, Azami J, Ghasemi Shiran M, Kardan Z, Farrokhzad N, Mikaeili Namini A, Salari A. Comparative analysis of protein-protein interaction networks in metastatic breast cancer. PLoS One 2022; 17:e0260584. [PMID: 35045088 PMCID: PMC8769308 DOI: 10.1371/journal.pone.0260584] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
Metastatic lesions leading causes of the majority of deaths in patients with the breast cancer. The present study aimed to provide a comprehensive analysis of the differentially expressed genes (DEGs) in the brain (MDA-MB-231 BrM2) and lung (MDA-MB-231 LM2) metastatic cell lines obtained from breast cancer patients compared with those who have primary breast cancer. We identified 981 and 662 DEGs for brain and lung metastasis, respectively. Protein-protein interaction (PPI) analysis revealed seven shared (PLCB1, FPR1, FPR2, CX3CL1, GABBR2, GPR37, and CXCR4) hub genes between brain and lung metastasis in breast cancer. Moreover, GNG2 and CXCL8, C3, and PTPN6 in the brain and SAA1 and CCR5 in lung metastasis were found as unique hub genes. Besides, five co-regulation of clusters via seven important co-expression genes (COL1A2, LUM, SPARC, THBS2, IL1B, CXCL8, THY1) were identified in the brain PPI network. Clusters screening followed by biological process (BP) function and pathway enrichment analysis for both metastatic cell lines showed that complement receptor signalling, acetylcholine receptor signalling, and gastric acid secretion pathways were common between these metastases, whereas other pathways were site-specific. According to our findings, there are a set of genes and functional pathways that mark and mediate breast cancer metastasis to the brain and lungs, which may enable us understand the molecular basis of breast cancer development in a deeper levele to the brain and lungs, which may help us gain a more complete understanding of the molecular underpinnings of breast cancer development.
Collapse
Affiliation(s)
- Hossein Hozhabri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
| | - Roxana Sadat Ghasemi Dehkohneh
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Morteza Razavi
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - S. Mostafa Razavi
- Department of Chemical, Biomolecular and Corrosion Engineering, The University of Akron, Akron, Ohio, United States of America
| | - Fatemeh Salarian
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Azade Rasouli
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Azami
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Melika Ghasemi Shiran
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Kardan
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Negar Farrokhzad
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Arsham Mikaeili Namini
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Beheshti Namdar A, Kabiri M, Mosanan Mozaffari H, Aminifar E, Mehrad-Majd H. Circulating Clusterin Levels and Cancer Risk: A Systematic Review and Meta-Analysis. Cancer Control 2022; 29:10732748211038437. [PMID: 35465749 PMCID: PMC9047800 DOI: 10.1177/10732748211038437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction The previous reports on clusterin (CLU) levels in various types of cancer
have been controversial and heterogeneous. The present meta-analysis has
aimed to evaluate the association between soluble CLU levels and the risk of
different human cancers based on observational studies. Methods A systematic literature review was conducted to determine the relevant
eligible studies in English language from health-related electronic
databases up to January 2021. Random effects models were used to calculate
the summary standard mean difference (SMD) with 95% confidence intervals
(CIs) to identify the correlation between CLU levels and cancer risk. The
meta-regression, sensitivity, Galbraith, and subgroup analyses were
performed to explore the source of between-study heterogeneity. Furthermore,
the funnel plot and Egger’s linear regression tests were carried out to
evaluate the risk of publication bias. Results According to 16 eligible articles, 3331 patients and 839 healthy controls
were included in our meta-analysis. Overall, the CLU levels were
significantly higher in various cancer cases compared to the healthy groups
(SMD = 1.50, 95% CI = 0.47–2.53). Moreover, subgroup analysis based on types
of cancer showed a significant correlation between CLU levels and the risk
of digestive system cancers (SMD = 1.54, 95% CI = 0.91–2.18,
P <0.001), especially in HCC (SMD = 1.89, 95% CI =
0.76–3.03, P = 0.001), and CRC (SMD = 1.63, 95% CI =
0.0–3.23, P = 0.048). Conclusion The present meta-analysis indicates a significant association of CLU levels
with the risk of digestive system cancers such as hepatocellular carcinoma
and colorectal cancer. Therefore, CLU can be monitored as a novel molecular
biomarker for the prognosis and diagnosis of various types of cancers
particularly in the digestive system.
Collapse
Affiliation(s)
- Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Kabiri
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Development Unit, Ghaem Hospital, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homan Mosanan Mozaffari
- Department of Gastroenterology and Hepatology, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Aminifar
- Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Hassan Mehrad-Majd
- Cancer Molecular Pathology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Dong Y, Ma WM, Yang W, Hao L, Zhang SQ, Fang K, Hu CH, Zhang QJ, Shi ZD, Zhang WD, Fan T, Xia T, Han CH. Identification of C3 and FN1 as potential biomarkers associated with progression and prognosis for clear cell renal cell carcinoma. BMC Cancer 2021; 21:1135. [PMID: 34688260 PMCID: PMC8539775 DOI: 10.1186/s12885-021-08818-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urological malignancies, but the pathogenesis and prognosis of ccRCC remain obscure, which need to be better understand. Methods Differentially expressed genes were identified and function enrichment analyses were performed using three publicly available ccRCC gene expression profiles downloaded from the Gene Expression Omnibus database. The protein-protein interaction and the competing endogenous RNA (ceRNA) networks were visualized by Cytoscape. Multivariate Cox analysis was used to predict an optimal risk mode, and the survival analysis was performed with the Kaplan-Meier curve and log-rank test. Protein expression data were downloaded from Clinical Proteomic Tumor Analysis Consortium database and Human Protein Atlas database, and the clinical information as well as the corresponding lncRNA and miRNA expression data were obtained via The Cancer Genome Atlas database. The co-expressed genes and potential function of candidate genes were explored using data exacted from the Cancer Cell Line Encyclopedia database. Results Of the 1044 differentially expressed genes shared across the three datasets, 461 were upregulated, and 583 were downregulated, which significantly enriched in multiple immunoregulatory-related biological process and tumor-associated pathways, such as HIF-1, PI3K-AKT, P53 and Rap1 signaling pathways. In the most significant module, 36 hub genes were identified and were predominantly enriched in inflammatory response and immune and biotic stimulus pathways. Survival analysis and validation of the hub genes at the mRNA and protein expression levels suggested that these genes, particularly complement component 3 (C3) and fibronectin 1 (FN1), were primarily responsible for ccRCC tumorigenesis and progression. Increased expression of C3 or FN1 was also associated with advanced clinical stage, high pathological grade, and poor survival in patients with ccRCC. Univariate and multivariate Cox regression analysis qualified the expression levels of the two genes as candidate biomarkers for predicting poor survival. FN1 was potentially regulated by miR-429, miR-216b and miR-217, and constructed a bridge to C3 and C3AR1 in the ceRNA network, indicating a critical position of FN1. Conclusions The biomarkers C3 and FN1 could provide theoretical support for the development of a novel prognostic tool to advance ccRCC diagnosis and targeted therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08818-0.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Wei-Ming Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Wen Yang
- Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Shao-Qi Zhang
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Kun Fang
- Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China.,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Chun-Hui Hu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qian-Jin Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Wen-da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tao Fan
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tian Xia
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China. .,Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China. .,Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
11
|
He XS, Zou SY, Yao JL, Yu W, Deng ZY, Wang JR, Gan WJ, Wan S, Yang XQ, Wu H. Transcriptomic Analysis Identifies Complement Component 3 as a Potential Predictive Biomarker for Chemotherapy Resistance in Colorectal Cancer. Front Mol Biosci 2021; 8:763652. [PMID: 34722636 PMCID: PMC8554154 DOI: 10.3389/fmolb.2021.763652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: 5-fluorouracil- and oxaliplatin-based FOLFOX regimens are mainstay chemotherapeutics for colorectal cancer (CRC) but drug resistance represents a major therapeutic challenge. To improve patient survival, there is a need to identify resistance genes to better understand the mechanisms underlying chemotherapy resistance. Methods: Transcriptomic datasets were retrieved from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and combined with our own microarray data. Weighted gene co-expression network analysis (WGCNA) was used to dissect the functional networks and hub genes associated with FOLFOX resistance and cancer recurrence. We then conducted analysis of prognosis, profiling of tumor infiltrating immune cells, and pathway overrepresentation analysis to comprehensively elucidate the biological impact of the identified hub gene in CRC. Results: WGCNA analysis identified the complement component 3 (C3) gene as the only hub gene associated with both FOLFOX chemotherapy resistance and CRC recurrence after FOLFOX chemotherapy. Subsequent survival analysis confirmed that high C3 expression confers poor progression-free survival, disease-free survival, and recurrence-free survival. Further correlational analysis revealed significant negative association of C3 expression with sensitivity to oxaliplatin, but not 5-fluorouracil. Moreover, in silico analysis of tumor immune cell infiltration suggested the change of C3 expression could affect tumor microenvironment. Finally, gene set enrichment analysis (GSEA) revealed a hyperactivation of pathways contributing to invasion, metastasis, lymph node spread, and oxaliplatin resistance in CRC samples with C3 overexpression. Conclusion: Our results suggest that high C3 expression is a debilitating factor for FOLFOX chemotherapy, especially for oxaliplatin sensitivity, and C3 may represent a novel biomarker for treatment decision of CRC.
Collapse
Affiliation(s)
- Xiao-Shun He
- Department of Pathology, Medical College of Soochow University and The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Sheng-Yi Zou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Jia-Lu Yao
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wangjianfei Yu
- Department of Bioinformatics, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Zhi-Yong Deng
- Department of Pathology, The First People’s Hospital of Kunshan, Kunshan, China
| | - Jing-Ru Wang
- Department of Pathology, Medical College of Soochow University and The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou, China
| | - Shan Wan
- Department of Pathology, Medical College of Soochow University and The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xiao-Qin Yang
- Department of Bioinformatics, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Hua Wu
- Department of Pathology, Medical College of Soochow University and The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Voronina L, Leonardo C, Mueller‐Reif JB, Geyer PE, Huber M, Trubetskov M, Kepesidis KV, Behr J, Mann M, Krausz F, Žigman M. Molecular Origin of Blood‐Based Infrared Spectroscopic Fingerprints**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liudmila Voronina
- Department of Physics Ludwig Maximilian University of Munich 85748 Garching Germany
- Max Planck Institute of Quantum Optics 85748 Garching Germany
| | - Cristina Leonardo
- Department of Physics Ludwig Maximilian University of Munich 85748 Garching Germany
- Max Planck Institute of Quantum Optics 85748 Garching Germany
| | - Johannes B. Mueller‐Reif
- Department of Proteomics and Signal Transduction Max Planck Institute of Biochemistry 82152 Martinsried Germany
- OmicEra Diagnostics GmbH 82152 Planegg Germany
| | - Philipp E. Geyer
- Department of Proteomics and Signal Transduction Max Planck Institute of Biochemistry 82152 Martinsried Germany
- Novo Nordisk Foundation Center for Protein Research Faculty of Health Sciences University of Copenhagen 2200 Copenhagen Denmark
- OmicEra Diagnostics GmbH 82152 Planegg Germany
| | - Marinus Huber
- Department of Physics Ludwig Maximilian University of Munich 85748 Garching Germany
- Max Planck Institute of Quantum Optics 85748 Garching Germany
| | | | - Kosmas V. Kepesidis
- Department of Physics Ludwig Maximilian University of Munich 85748 Garching Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center Department of Internal Medicine V Clinic of the Ludwig Maximilians University Munich (LMU), Member of the German Center for Lung Research Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction Max Planck Institute of Biochemistry 82152 Martinsried Germany
- Novo Nordisk Foundation Center for Protein Research Faculty of Health Sciences University of Copenhagen 2200 Copenhagen Denmark
| | - Ferenc Krausz
- Department of Physics Ludwig Maximilian University of Munich 85748 Garching Germany
- Max Planck Institute of Quantum Optics 85748 Garching Germany
| | - Mihaela Žigman
- Department of Physics Ludwig Maximilian University of Munich 85748 Garching Germany
- Max Planck Institute of Quantum Optics 85748 Garching Germany
| |
Collapse
|
13
|
Voronina L, Leonardo C, Mueller‐Reif JB, Geyer PE, Huber M, Trubetskov M, Kepesidis KV, Behr J, Mann M, Krausz F, Žigman M. Molecular Origin of Blood-Based Infrared Spectroscopic Fingerprints*. Angew Chem Int Ed Engl 2021; 60:17060-17069. [PMID: 33881784 PMCID: PMC8361728 DOI: 10.1002/anie.202103272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Infrared spectroscopy of liquid biopsies is a time- and cost-effective approach that may advance biomedical diagnostics. However, the molecular nature of disease-related changes of infrared molecular fingerprints (IMFs) remains poorly understood, impeding the method's applicability. Here we probe 148 human blood sera and reveal the origin of the variations in their IMFs. To that end, we supplemented infrared spectroscopy with biochemical fractionation and proteomic profiling, providing molecular information about serum composition. Using lung cancer as an example of a medical condition, we demonstrate that the disease-related differences in IMFs are dominated by contributions from twelve highly abundant proteins-that, if used as a pattern, may be instrumental for detecting malignancy. Tying proteomic to spectral information and machine learning advances our understanding of the infrared spectra of liquid biopsies, a framework that could be applied to probing of any disease.
Collapse
Affiliation(s)
- Liudmila Voronina
- Department of PhysicsLudwig Maximilian University of Munich85748GarchingGermany
- Max Planck Institute of Quantum Optics85748GarchingGermany
| | - Cristina Leonardo
- Department of PhysicsLudwig Maximilian University of Munich85748GarchingGermany
- Max Planck Institute of Quantum Optics85748GarchingGermany
| | - Johannes B. Mueller‐Reif
- Department of Proteomics and Signal TransductionMax Planck Institute of Biochemistry82152MartinsriedGermany
- OmicEra Diagnostics GmbH82152PlaneggGermany
| | - Philipp E. Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of Biochemistry82152MartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark
- OmicEra Diagnostics GmbH82152PlaneggGermany
| | - Marinus Huber
- Department of PhysicsLudwig Maximilian University of Munich85748GarchingGermany
- Max Planck Institute of Quantum Optics85748GarchingGermany
| | | | - Kosmas V. Kepesidis
- Department of PhysicsLudwig Maximilian University of Munich85748GarchingGermany
| | - Jürgen Behr
- Comprehensive Pneumology CenterDepartment of Internal Medicine VClinic of the Ludwig Maximilians University Munich (LMU), Member of the German Center for Lung ResearchGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of Biochemistry82152MartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark
| | - Ferenc Krausz
- Department of PhysicsLudwig Maximilian University of Munich85748GarchingGermany
- Max Planck Institute of Quantum Optics85748GarchingGermany
| | - Mihaela Žigman
- Department of PhysicsLudwig Maximilian University of Munich85748GarchingGermany
- Max Planck Institute of Quantum Optics85748GarchingGermany
| |
Collapse
|
14
|
Tierney C, Bazou D, Majumder MM, Anttila P, Silvennoinen R, Heckman CA, Dowling P, O'Gorman P. Next generation proteomics with drug sensitivity screening identifies sub-clones informing therapeutic and drug development strategies for multiple myeloma patients. Sci Rep 2021; 11:12866. [PMID: 34145309 PMCID: PMC8213739 DOI: 10.1038/s41598-021-90149-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
With the introduction of novel therapeutic agents, survival in Multiple Myeloma (MM) has increased in recent years. However, drug-resistant clones inevitably arise and lead to disease progression and death. The current International Myeloma Working Group response criteria are broad and make it difficult to clearly designate resistant and responsive patients thereby hampering proteo-genomic analysis for informative biomarkers for sensitivity. In this proof-of-concept study we addressed these challenges by combining an ex-vivo drug sensitivity testing platform with state-of-the-art proteomics analysis. 35 CD138-purified MM samples were taken from patients with newly diagnosed or relapsed MM and exposed to therapeutic agents from five therapeutic drug classes including Bortezomib, Quizinostat, Lenalidomide, Navitoclax and PF-04691502. Comparative proteomic analysis using liquid chromatography-mass spectrometry objectively determined the most and least sensitive patient groups. Using this approach several proteins of biological significance were identified in each drug class. In three of the five classes focal adhesion-related proteins predicted low sensitivity, suggesting that targeting this pathway could modulate cell adhesion mediated drug resistance. Using Receiver Operating Characteristic curve analysis, strong predictive power for the specificity and sensitivity of these potential biomarkers was identified. This approach has the potential to yield predictive theranostic protein panels that can inform therapeutic decision making.
Collapse
Affiliation(s)
- Ciara Tierney
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Despina Bazou
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Muntasir M Majumder
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pekka Anttila
- Department of Hematology, Helsinki University Hospital and Comprehensive Cancer Center, Helsinki, Finland
| | - Raija Silvennoinen
- Department of Hematology, Helsinki University Hospital and Comprehensive Cancer Center, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Peter O'Gorman
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
15
|
Zhu Y, Lesch A, Li X, Lin TE, Gasilova N, Jović M, Pick HM, Ho PC, Girault HH. Rapid Noninvasive Skin Monitoring by Surface Mass Recording and Data Learning. JACS AU 2021; 1:598-611. [PMID: 34056635 PMCID: PMC8154208 DOI: 10.1021/jacsau.0c00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 05/08/2023]
Abstract
Skin problems are often overlooked due to a lack of robust and patient-friendly monitoring tools. Herein, we report a rapid, noninvasive, and high-throughput analytical chemical methodology, aiming at real-time monitoring of skin conditions and early detection of skin disorders. Within this methodology, adhesive sampling and laser desorption ionization mass spectrometry are coordinated to record skin surface molecular mass in minutes. Automated result interpretation is achieved by data learning, using similarity scoring and machine learning algorithms. Feasibility of the methodology has been demonstrated after testing a total of 117 healthy, benign-disordered, or malignant-disordered skins. Remarkably, skin malignancy, using melanoma as a proof of concept, was detected with 100% accuracy already at early stages when the lesions were submillimeter-sized, far beyond the detection limit of most existing noninvasive diagnosis tools. Moreover, the malignancy development over time has also been monitored successfully, showing the potential to predict skin disorder progression. Capable of detecting skin alterations at the molecular level in a nonsurgical and time-saving manner, this analytical chemistry platform is promising to build personalized skin care.
Collapse
Affiliation(s)
- Yingdi Zhu
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", Universita degli Studi di Bologna, 40136 Bologna, Italy
| | - Xiaoyun Li
- Department of Fundamental Oncology, Université de Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Natalia Gasilova
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Milica Jović
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Horst Matthias Pick
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Université de Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Hubert H Girault
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Yamamoto H, Yokota A, Suzuki N, Tachibana M, Tsutsumi Y. Gastric perforation caused by secondary systemic amyloidosis. Clin Case Rep 2021; 9:e04254. [PMID: 34084518 PMCID: PMC8142406 DOI: 10.1002/ccr3.4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
Amyloid A amyloidosis secondary to chronic inflammation involves systemic organs and tissues, including the gastrointestinal tract. In the present case, massive amyloid deposit caused gastric perforation. IgM co-deposition in the glomeruli was another finding of note.
Collapse
Affiliation(s)
- Hiroto Yamamoto
- Department of General MedicineShimada Municipal HospitalShimadaJapan
- Department of Diagnostic PathologyShimada Municipal HospitalShimadaJapan
| | - Akihiko Yokota
- Department of GastroenterologyShimada Municipal HospitalShimadaJapan
| | - Noriyuki Suzuki
- Department of NephrologyShimada Municipal HospitalShimadaJapan
| | | | - Yutaka Tsutsumi
- Department of Diagnostic PathologyShimada Municipal HospitalShimadaJapan
- Diagnostic Pathology ClinicPathos TsutsumiInazawaJapan
| |
Collapse
|
17
|
Jain A, Kotimoole CN, Ghoshal S, Bakshi J, Chatterjee A, Prasad TSK, Pal A. Identification of potential salivary biomarker panels for oral squamous cell carcinoma. Sci Rep 2021; 11:3365. [PMID: 33564003 PMCID: PMC7873065 DOI: 10.1038/s41598-021-82635-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide with the maximum number of incidences and deaths reported from India. One of the major causes of poor survival rate associated with OSCC has been attributed to late presentation due to non-availability of a biomarker. Identification of early diagnostic biomarker will help in reducing the disease morbidity and mortality. We validated 12 salivary proteins using targeted proteomics, identified initially by relative quantification of salivary proteins on LC-MS, in OSCC patients and controls. Salivary AHSG (p = 0.0041**) and KRT6C (p = 0.002**) were upregulated in OSCC cases and AZGP1 (p ≤ 0.0001***), KLK1 (p = 0.006**) and BPIFB2 (p = 0.0061**) were downregulated. Regression modelling resulted in a significant risk prediction model (p < 0.0001***) consisting of AZGP1, AHSG and KRT6C for which ROC curve had AUC, sensitivity and specificity of 82.4%, 78% and 73.5% respectively for all OSCC cases and 87.9%, 87.5% and 73.5% respectively for late stage (T3/T4) OSCC. AZGP1, AHSG, KRT6C and BPIFB2 together resulted in ROC curve (p < 0.0001***) with AUC, sensitivity and specificity of 94%, 100% and 77.6% respectively for N0 cases while KRT6C and AZGP1 for N+ cases with ROC curve (p < 0.0001***) having AUC sensitivity and specificity of 76.8%, 73% and 69.4%. Our data aids in the identification of biomarker panels for the diagnosis of OSCC cases with a differential diagnosis between early and late-stage cases.
Collapse
Affiliation(s)
- Anu Jain
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Chinmaya Narayana Kotimoole
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jaimanti Bakshi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | | | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
18
|
Salivary Proteomic Analysis of Betel Nut (Areca catechu) Consumers by Mass Spectrometry Revealed Primary Indication of Oral Malignancies. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Holm M, Joenväärä S, Saraswat M, Mustonen H, Tohmola T, Ristimäki A, Renkonen R, Haglund C. Identification of several plasma proteins whose levels in colorectal cancer patients differ depending on outcome. FASEB Bioadv 2019; 1:723-730. [PMID: 32123817 PMCID: PMC6996405 DOI: 10.1096/fba.2019-00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 07/27/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) stands for 10% of the worldwide cancer burden and has recently become the second most common cause of cancer death. The 5-year survival rate depends mainly on stage at diagnosis. Mass spectrometric proteomic analysis is widely used to study the plasma proteome, which is complex and contains multitudes of proteins. In this study, we have used Ultra Performance Liquid Chromatography-Ultra Definition Mass Spectrometry (UPLC-UDMSE)-based proteomics to analyze plasma samples from 76 CRC patients. We identified several plasma proteins, such as CP, TVP23C, FETUB, and IGFBP3, of which altered levels led to significant differences in survival, as seen by Cox regression and Kaplan-Meier analysis. Additionally, during Cox regression analysis, samples were adjusted for age and/or tumor stage, enabling stringent analysis. These proteins, although in need of further validation, could be of use during patient follow-up, as their levels can non-invasively be measured from blood samples, and could be of use in predicting patient outcome. Several of these proteins additionally have roles in metabolism and inflammation, two processes central to the development and progression of cancer, further indicating their importance in cancer.
Collapse
Affiliation(s)
- Matilda Holm
- Department of SurgeryFaculty of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of PathologyFaculty of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Applied Tumor Genomics Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Sakari Joenväärä
- Transplantation LaboratoryHaartman InstituteUniversity of HelsinkiHelsinkiFinland
- HUSLABHelsinki University HospitalHelsinkiFinland
| | - Mayank Saraswat
- Transplantation LaboratoryHaartman InstituteUniversity of HelsinkiHelsinkiFinland
- HUSLABHelsinki University HospitalHelsinkiFinland
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Harri Mustonen
- Department of SurgeryFaculty of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Tiialotta Tohmola
- Transplantation LaboratoryHaartman InstituteUniversity of HelsinkiHelsinkiFinland
- HUSLABHelsinki University HospitalHelsinkiFinland
- Department of BiosciencesFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Ari Ristimäki
- Department of PathologyFaculty of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Applied Tumor Genomics Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUSLABHelsinki University HospitalHelsinkiFinland
| | - Risto Renkonen
- Transplantation LaboratoryHaartman InstituteUniversity of HelsinkiHelsinkiFinland
- HUSLABHelsinki University HospitalHelsinkiFinland
| | - Caj Haglund
- Department of SurgeryFaculty of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUSLABHelsinki University HospitalHelsinkiFinland
| |
Collapse
|
20
|
Ciereszko A, Dietrich MA, Słowińska M, Nynca J, Ciborowski M, Kisluk J, Michalska-Falkowska A, Reszec J, Sierko E, Nikliński J. Identification of protein changes in the blood plasma of lung cancer patients subjected to chemotherapy using a 2D-DIGE approach. PLoS One 2019; 14:e0223840. [PMID: 31622403 PMCID: PMC6797170 DOI: 10.1371/journal.pone.0223840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
A comparative analysis of blood samples (depleted of albumin and IgG) obtained from lung cancer patients before chemotherapy versus after a second cycle of chemotherapy was performed using two-dimensional difference gel electrophoresis (2D-DIGE). The control group consisted of eight patients with non-cancerous lung diseases, and the experimental group consisted of four adenocarcinoma (ADC) and four squamous cell carcinoma (SCC) patients. Analyses of gels revealed significant changes in proteins and/or their proteoforms between control patients and lung cancer patients, both before and after a second cycle of chemotherapy. Most of these proteins were related to inflammation, including acute phase proteins (APPs) such as forms of haptoglobin and transferrin, complement component C3, and clusterin. The variable expression of APPs can potentially be used for profiling lung cancer. The greatest changes observed after chemotherapy were in transferrin and serotransferrin, which likely reflect disturbances in iron turnover after chemotherapy-induced anaemia. Significant changes in plasma proteins between ADC and SCC patients were also revealed, suggesting use of plasma vitronectin as a potential marker of SCC.
Collapse
Affiliation(s)
- Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Mariola A. Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Nynca
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | | | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
A comparative proteomic study of plasma in Colombian childhood acute lymphoblastic leukemia. PLoS One 2019; 14:e0221509. [PMID: 31437251 PMCID: PMC6705836 DOI: 10.1371/journal.pone.0221509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/08/2019] [Indexed: 01/24/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Owing to the incorporation of risk-adapted therapy and the arrival of new directed agents, the cure rate and survival of patients with ALL have improved dramatically, get near to 90%. In Latin American countries, the mortality rates of ALL are high, for example in Colombia, during the last decade, ALL has been the most prevalent cancer among children between 0–14 years of age. In the face of this public health problem and coupled with the fact that the knowledge of the proteome of the child population is little, our investigation proposes the study of the plasma proteome of Colombian children diagnosed with B-cell ALL (B-ALL) to determine potential disease markers that could reflect processes altered by the presence of the disease or in response to it. A proteomic study by LC-MS/MS and quantification by label-free methods were performed in search of proteins differentially expressed between healthy children and those diagnosed with B-ALL. We quantified a total of 472 proteins in depleted blood plasma, and 25 of these proteins were differentially expressed (fold change >2, Bonferroni-adjusted P-values <0.05). Plasma Aggrecan core protein, alpha-2-HS-glycoprotein, coagulation factor XIII A chain and gelsolin protein were examined by ELISA assay and compared to shotgun proteomics results. Our data provide new information on the plasma proteome of Colombian children. Additionally, these proteins may also have certain potential as illness markers or as therapeutic targets in subsequent investigations.
Collapse
|
22
|
Vilhena H, Tvarijonaviciute A, Cerón JJ, Figueira AC, Miranda S, Ribeiro A, Canadas A, Dias-Pereira P, Rubio CP, Franco L, Tecles F, Cabeças R, Pastor J, Silvestre-Ferreira AC. Acute phase proteins and biomarkers of oxidative status in feline spontaneous malignant mammary tumours. Vet Comp Oncol 2019; 17:394-406. [PMID: 31025532 DOI: 10.1111/vco.12486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/27/2022]
Abstract
Acute phase proteins (APP) and biomarkers of oxidative status change in human and canine mammary tumours, however, they have not been studied in feline mammary tumours. The aims of this study were to investigate the APP and antioxidant responses in feline malignant mammary tumours, to evaluate their relation with tumour features, and to assess their prognostic value. Serum amyloid A (SAA), haptoglobin (Hp), albumin, butyrylcholinesterase (BChE), insulin-like growth factor1 (IGF1), paraoxonase1 (PON1), total serum thiols (Thiol), glutathione peroxidase (GPox) and total antioxidant capacity determined by different assays, including trolox equivalent antioxidant capacity assessed by two different methodologies (TEAC1/2), ferric reducing ability of plasma (FRAP), and cupric reducing antioxidant capacity (CUPRAC), were determined in serum of 50 queens with spontaneous mammary carcinomas and of 12 healthy female cats. At diagnosis, diseased queens presented significantly higher SAA and Hp, and lower albumin, BChE, GPox, TEAC1, TEAC2 and CUPRAC than controls. Different tumour features influenced concentrations of APP and antioxidants. Increases in serum Hp, and decreases in albumin, Thiol and FRAP were significantly associated with neoplastic vascular emboli, metastasis in regional lymph nodes and/or in distant organs. Distant metastasis development during the course of the disease was associated with increases in SAA and TEAC1. At diagnosis, decreased albumin was associated with a longer survival, and BChE <1.15 μmoL/mL.minute was associated with a shorter survival time on multivariate analysis. Feline malignant mammary tumours are associated with an APP response and oxidative stress, and different tumour features influence the inflammatory response and the oxidative damage. Furthermore, some of these analytes proved to have prognostic value.
Collapse
Affiliation(s)
- Hugo Vilhena
- Department of Veterinary Medicine, Center for Investigation Vasco da Gama (CIVG), Vasco da Gama Universitary School, Coimbra, Portugal.,Baixo Vouga Veterinary Hospital, Águeda, Portugal.,Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis of University of Murcia (Interlab-UMU), University of Murcia, Murcia, Spain
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis of University of Murcia (Interlab-UMU), University of Murcia, Murcia, Spain
| | - Ana C Figueira
- Department of Veterinary Medicine, Center for Investigation Vasco da Gama (CIVG), Vasco da Gama Universitary School, Coimbra, Portugal.,University Veterinary Hospital of Coimbra, Coimbra, Portugal
| | - Sónia Miranda
- Baixo Vouga Veterinary Hospital, Águeda, Portugal.,Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ana Ribeiro
- Veterinary Policlinic of Aveiro, Aveiro, Portugal
| | - Ana Canadas
- Department of Pathology and Molecular Immunology, Institute for the Biomedical Sciences Abel Salazar, Porto University (ICBAS-UP), Porto, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, Institute for the Biomedical Sciences Abel Salazar, Porto University (ICBAS-UP), Porto, Portugal
| | - Camila P Rubio
- Interdisciplinary Laboratory of Clinical Analysis of University of Murcia (Interlab-UMU), University of Murcia, Murcia, Spain
| | - Lorena Franco
- Interdisciplinary Laboratory of Clinical Analysis of University of Murcia (Interlab-UMU), University of Murcia, Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis of University of Murcia (Interlab-UMU), University of Murcia, Murcia, Spain
| | - Ricardo Cabeças
- Department of Veterinary Medicine, Center for Investigation Vasco da Gama (CIVG), Vasco da Gama Universitary School, Coimbra, Portugal
| | - Josep Pastor
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Barcelona, Spain
| | - Ana C Silvestre-Ferreira
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
23
|
Yang M, Liu F, Higuchi K, Sawashita J, Fu X, Zhang L, Zhang L, Fu L, Tong Z, Higuchi K. Serum amyloid A expression in the breast cancer tissue is associated with poor prognosis. Oncotarget 2017; 7:35843-35852. [PMID: 27058895 PMCID: PMC5094967 DOI: 10.18632/oncotarget.8561] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
Background Serum amyloid A (SAA), an acute-phase protein, is expressed primarily in the liver, and recently found also expressed in cancer tissues. However, its expression and prognostic value in breast cancer have not been described. Results SAA protein was found expressed in tumor cells in 44.2% cases and in TAM in 62.5% cases. FISH showed more frequent SAA mRNA expression in TAM than in tumor cells (76% versus 12%, p < 0.001), and a significant association between the frequencies of SAA mRNA expression in TAM and tumor cells (rs = 0.603, p < 0.001). The immunoreactivities of SAA protein in TAM and tumor cells were both associated with lymphovascular invasion and lymph node metastasis. Moreover, SAA-positivity in TAMs was associated with larger tumor-size, higher histological-grade, negative estrogen-receptor and progesterone-receptor statuses, and HER-2 overexpression. It was also linked to worse recurrence-free survival in a multivariable regression model. Methods Immunohistochemistry was applied on the tumor tissues from 208 breast cancer patients to evaluate the local SAA-protein expression with additional CD68 stain to identify the tumor-associated macrophage (TAM) on the serial tissue sections. Fluorescent in situ hybridization (FISH) was conducted on serial tissue sections from 25 of the 208 tumors to examine the expression and location of SAA mRNA. Conclusions Our results suggested that the TAMs may be a pivotal and main source of SAA production in tumor microenvironment of breast cancer. SAA immunoreactivity in TAM is associated with worse recurrence-free survival, and is therefore a biomarker candidate for postoperative surveillance and perhaps a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Fangfang Liu
- Department of Breast Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kayoko Higuchi
- Department of Pathology, Aizawa Hospital, Matsumoto, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Xiaoying Fu
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Zhang
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ, USA.,Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Li Fu
- Department of Breast Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
24
|
Waki K, Yamada T, Yoshiyama K, Terazaki Y, Sakamoto S, Sugawara S, Takamori S, Itoh K, Yamada A. Single nucleotide polymorphisms of the haptoglobin gene in non-small cell lung cancer treated with personalized peptide vaccination. Oncol Lett 2017; 13:993-999. [PMID: 28356990 DOI: 10.3892/ol.2016.5467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2016] [Indexed: 11/06/2022] Open
Abstract
The present study analyzed polymorphisms of the 5' flanking region (from nt -840 to +151) of the haptoglobin gene in 120 patients with advanced non-small cell lung cancer (NSCLC) receiving personalized peptide vaccinations. In the region, six single nucleotide polymorphisms (SNPs) were confirmed, of which two, rs5472 and rs9927981, were completely linked to each other. The minor allele frequencies of rs5472/rs9927981 and rs4788458 were higher than those of the other three SNPs. The genotype frequencies of rs5472 or rs9927981 were A/A or C/C (42.5%, n=51), A/G or C/T (40.8%, n=49), and G/G or T/T (16.7%, n=20), respectively; and those of rs4788458 were T/T (34.2%, n=41), T/C (40.0%, n=48), and C/C (25.8%, n=31). The association between polymorphism rs5472/rs9927981 and prognosis, or between rs4788458 and prognosis, was analyzed further. However, no correlation was found between these SNPs and overall survival, regardless of subgroup analysis of gender, histology or concurrent therapy. These results suggest that the polymorphisms rs5472/rs9927981 and rs4788458 are not useful prognostic tools for patients with NSCLC treated with personalized peptide vaccination.
Collapse
Affiliation(s)
- Kayoko Waki
- Cancer Vaccine Development Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Fukuoka 830-0011, Japan
| | - Teppei Yamada
- Kurume University Cancer Vaccine Center, Kurume, Fukuoka 830-0011, Japan
| | - Koichi Yoshiyama
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yasuhiro Terazaki
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shinjiro Sakamoto
- Kurume University Cancer Vaccine Center, Kurume, Fukuoka 830-0011, Japan
| | - Shunichi Sugawara
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Miyagi 980-0873, Japan
| | - Shinzo Takamori
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kyogo Itoh
- Kurume University Cancer Vaccine Center, Kurume, Fukuoka 830-0011, Japan
| | - Akira Yamada
- Cancer Vaccine Development Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
25
|
Hamilton SL, Ferando B, Eapen AS, Yu JC, Joy AR. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells. J Histochem Cytochem 2016; 65:139-151. [PMID: 27881474 DOI: 10.1369/0022155416676064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.
Collapse
Affiliation(s)
- Samantha Lynn Hamilton
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Blake Ferando
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Asha Sarah Eapen
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Jennifer Chian Yu
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Anita Rose Joy
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| |
Collapse
|
26
|
Biaoxue R, Hua L, Wenlong G, Shuanying Y. Increased serum amyloid A as potential diagnostic marker for lung cancer: a meta-analysis based on nine studies. BMC Cancer 2016; 16:836. [PMID: 27809798 PMCID: PMC5093952 DOI: 10.1186/s12885-016-2882-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have disclosed that serum amyloid A (SAA) is likely involved in the lung cancer pathogenesis and progression. We performed a systematic evaluation and meta-analysis to disclose the correlation between the expression of SAA and lung cancer and to evaluate its value for lung cancer diagnosis. METHODS We searched the relevant articles from the databases of Medline, Embase, Cochrance Library and Web of Science and calculated the standardized mean difference (SMD) with 95 % confidence interval (CI) to assess the expression difference of SAA between lung cancer and normal patients. Moreover, we counted the positive rate, sensitivity and specificity and drew a summary receiver operating characteristic curve (SROC) to evaluate the diagnostic value of SAA for lung cancer. RESULTS A total of nine studies with 1392 individuals were included in this analysis. The results showed an increased SAA was correlated with the incidence of lung cancer (P < 0.001), especially with the lung squamous cell carcinoma (LSCC) (p = 0.012). The overall sensitivity and specificity of SAA for discerning lung cancer was 0.59 (95 % CI: 0.54-0.63) and 0.92 (95 % CI: 0.88-0.95), respectively. The area under the SROC curve was 0.9066 (SE = 0.0437). CONCLUSIONS Increased SAA in lung cancer was intimately correlated with the development and progression of lung cancer. A higher specificity of SAA suggested that it should be a significant biomarker for discerning lung cancer from normal individuals, especially for LSCC (p = 0.012).
Collapse
Affiliation(s)
- Rong Biaoxue
- Department of Respiratory Medicine, First Affiliated Hospital, Xi’an Medical University, 48 Fenghao West Road, Xi’an, 710077 China
- Research Center of Prevention and Treatment of Respiratory Disease, Xi’an, Shaanxi Province 710077 China
| | - Liu Hua
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Gao Wenlong
- Department of Statistics and Epidemiology, Medical College, Lanzhou University, Lanzhou, China
| | - Yang Shuanying
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
27
|
Uttley L, Whiteman BL, Woods HB, Harnan S, Philips ST, Cree IA. Building the Evidence Base of Blood-Based Biomarkers for Early Detection of Cancer: A Rapid Systematic Mapping Review. EBioMedicine 2016; 10:164-73. [PMID: 27426280 PMCID: PMC5006664 DOI: 10.1016/j.ebiom.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The Early Cancer Detection Consortium is developing a blood-test to screen the general population for early identification of cancer, and has therefore conducted a systematic mapping review to identify blood-based biomarkers that could be used for early identification of cancer. METHODS A mapping review with a systematic approach was performed to identify biomarkers and establish their state of development. Comprehensive searches of electronic databases Medline, Embase, CINAHL, the Cochrane library and Biosis were conducted in May 2014 to obtain relevant literature on blood-based biomarkers for cancer detection in humans. Screening of retrieved titles and abstracts was performed using an iterative sifting process known as "data mining". All blood based biomarkers, their relevant properties and characteristics, and their corresponding references were entered into an inclusive database for further scrutiny by the Consortium, and subsequent selection of biomarkers for rapid review. This systematic review is registered with PROSPERO (no. CRD42014010827). FINDINGS The searches retrieved 19,724 records after duplicate removal. The data mining approach retrieved 3990 records (i.e. 20% of the original 19,724), which were considered for inclusion. A list of 814 potential blood-based biomarkers was generated from included studies. Clinical experts scrutinised the list to identify miss-classified and duplicate markers, also volunteering the names of biomarkers that may have been missed: no new markers were identified as a result. This resulted in a final list of 788 biomarkers. INTERPRETATION This study is the first to systematically and comprehensively map blood biomarkers for early detection of cancer. Use of this rapid systematic mapping approach found a broad range of relevant biomarkers allowing an evidence-based approach to identification of promising biomarkers for development of a blood-based cancer screening test in the general population.
Collapse
Affiliation(s)
- Lesley Uttley
- The University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK
| | - Becky L Whiteman
- Centre for Technology Enabled Health Research, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Helen Buckley Woods
- The University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK
| | - Susan Harnan
- The University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK
| | | | - Ian A Cree
- Centre for Technology Enabled Health Research, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK; Department of Pathology, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK.
| |
Collapse
|
28
|
Bozinovski S, Vlahos R, Anthony D, McQualter J, Anderson G, Irving L, Steinfort D. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link. Br J Pharmacol 2016; 173:635-48. [PMID: 26013585 PMCID: PMC4742298 DOI: 10.1111/bph.13198] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/25/2022] Open
Abstract
Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.
Collapse
Affiliation(s)
- Steven Bozinovski
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Ross Vlahos
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Desiree Anthony
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Jonathan McQualter
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Gary Anderson
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Louis Irving
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Vic., Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Vic., Australia
| |
Collapse
|
29
|
Beretov J, Wasinger VC, Millar EKA, Schwartz P, Graham PH, Li Y. Proteomic Analysis of Urine to Identify Breast Cancer Biomarker Candidates Using a Label-Free LC-MS/MS Approach. PLoS One 2015; 10:e0141876. [PMID: 26544852 PMCID: PMC4636393 DOI: 10.1371/journal.pone.0141876] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/14/2015] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Breast cancer is a complex heterogeneous disease and is a leading cause of death in women. Early diagnosis and monitoring progression of breast cancer are important for improving prognosis. The aim of this study was to identify protein biomarkers in urine for early screening detection and monitoring invasive breast cancer progression. METHOD We performed a comparative proteomic analysis using ion count relative quantification label free LC-MS/MS analysis of urine from breast cancer patients (n = 20) and healthy control women (n = 20). RESULTS Unbiased label free LC-MS/MS-based proteomics was used to provide a profile of abundant proteins in the biological system of breast cancer patients. Data analysis revealed 59 urinary proteins that were significantly different in breast cancer patients compared to the normal control subjects (p<0.05, fold change >3). Thirty-six urinary proteins were exclusively found in specific breast cancer stages, with 24 increasing and 12 decreasing in their abundance. Amongst the 59 significant urinary proteins identified, a list of 13 novel up-regulated proteins were revealed that may be used to detect breast cancer. These include stage specific markers associated with pre-invasive breast cancer in the ductal carcinoma in-situ (DCIS) samples (Leucine LRC36, MAST4 and Uncharacterized protein CI131), early invasive breast cancer (DYH8, HBA, PEPA, uncharacterized protein C4orf14 (CD014), filaggrin and MMRN2) and metastatic breast cancer (AGRIN, NEGR1, FIBA and Keratin KIC10). Preliminary validation of 3 potential markers (ECM1, MAST4 and filaggrin) identified was performed in breast cancer cell lines by Western blotting. One potential marker MAST4 was further validated in human breast cancer tissues as well as individual human breast cancer urine samples with immunohistochemistry and Western blotting, respectively. CONCLUSIONS Our results indicate that urine is a useful non-invasive source of biomarkers and the profile patterns (biomarkers) identified, have potential for clinical use in the detection of BC. Validation with a larger independent cohort of patients is required in the following study.
Collapse
Affiliation(s)
- Julia Beretov
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, Australia
- SEALS, Anatomical Pathology, St George Hospital, Kogarah, Australia
| | - Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW, Kensington, Australia
- School of Medical Sciences, UNSW, Kensington, Australia
| | - Ewan K. A. Millar
- SEALS, Anatomical Pathology, St George Hospital, Kogarah, Australia
- School of Medical Sciences, UNSW, Kensington, Australia
- Cancer Research Program, Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Medicine and Health Sciences, University of Western Sydney, Campbelltown, Australia
| | - Peter Schwartz
- Breast Surgery, St George Private Hospital, Kogarah, Australia
| | - Peter H. Graham
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, Australia
- * E-mail:
| |
Collapse
|
30
|
Winck FV, Prado Ribeiro AC, Ramos Domingues R, Ling LY, Riaño-Pachón DM, Rivera C, Brandão TB, Gouvea AF, Santos-Silva AR, Coletta RD, Paes Leme AF. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci Rep 2015; 5:16305. [PMID: 26538482 PMCID: PMC4633731 DOI: 10.1038/srep16305] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023] Open
Abstract
The development and progression of oral cavity squamous cell carcinoma (OSCC) involves complex cellular mechanisms that contribute to the low five-year survival rate of approximately 20% among diagnosed patients. However, the biological processes essential to tumor progression are not completely understood. Therefore, detecting alterations in the salivary proteome may assist in elucidating the cellular mechanisms modulated in OSCC and improve the clinical prognosis of the disease. The proteome of whole saliva and salivary extracellular vesicles (EVs) from patients with OSCC and healthy individuals were analyzed by LC-MS/MS and label-free protein quantification. Proteome data analysis was performed using statistical, machine learning and feature selection methods with additional functional annotation. Biological processes related to immune responses, peptidase inhibitor activity, iron coordination and protease binding were overrepresented in the group of differentially expressed proteins. Proteins related to the inflammatory system, transport of metals and cellular growth and proliferation were identified in the proteome of salivary EVs. The proteomics data were robust and could classify OSCC with 90% accuracy. The saliva proteome analysis revealed that immune processes are related to the presence of OSCC and indicate that proteomics data can contribute to determining OSCC prognosis.
Collapse
Affiliation(s)
- Flavia V. Winck
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | | | - Romênia Ramos Domingues
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Liu Yi Ling
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, CNPEM, Campinas, SP, Brazil
| | | | - César Rivera
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
- Departamento de Ciencias Básicas Biomédicas, Universidad de Talca (UTALCA), Talca, Chile
| | - Thaís Bianca Brandão
- Instituto do Câncer do Estado de São Paulo, Octavio Frias de Oliveira, ICESP, São Paulo, SP, Brazil
| | - Adriele Ferreira Gouvea
- Instituto do Câncer do Estado de São Paulo, Octavio Frias de Oliveira, ICESP, São Paulo, SP, Brazil
| | - Alan Roger Santos-Silva
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Ricardo D. Coletta
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Adriana F. Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| |
Collapse
|
31
|
Ni XC, Yi Y, Fu YP, He HW, Cai XY, Wang JX, Zhou J, Fan J, Qiu SJ. Serum amyloid A is a novel prognostic biomarker in hepatocellular carcinoma. Asian Pac J Cancer Prev 2015; 15:10713-8. [PMID: 25605163 DOI: 10.7314/apjcp.2014.15.24.10713] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the prognostic value of serum amyloid A (SAA) in patients with hepatocellular carcinoma (HCC) undergoing surgery. MATERIALS AND METHODS Preoperative serum samples of 328 patients with HCC who underwent curative resection and of 47 patients with benign liver lesion were assayed. Serum levels of SAA were measured by enzyme-linked immunosorbent assay and its correlations with clinicopathological characteristics and survival were explored. RESULTS Levels of SAA were significantly higher in patients with HCC than those with benign liver lesion. There were strong correlations between preoperative serum SAA level and tumor size and more advanced BCLC stage. On univariate analysis, elevated SAA was associated with reduced disease-free survival and overall survival (p=0.001 and 0.03, respectively). Multivariate analyses showed that serum SAA level was an independent prognostic factor for overall survival (hazard ratio 2.80, p=0.01). CONCLUSIONS High SAA serum level is a novel biomarker for the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xiao-Chun Ni
- Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dalamaga M, Polyzos SA, Karmaniolas K, Chamberland J, Lekka A, Triantafilli M, Migdalis I, Papadavid E, Mantzoros CS. Fetuin-A levels and free leptin index are reduced in patients with chronic lymphocytic leukemia: a hospital-based case-control study. Leuk Lymphoma 2015; 57:577-84. [DOI: 10.3109/10428194.2015.1075523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Maria Dalamaga
- Department of Clinical Biochemistry, Medical School, University of Athens, “Attikon” General University Hospital, Athens, Greece,
| | - Stergios A. Polyzos
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,
| | | | - John Chamberland
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,
| | - Antigoni Lekka
- Hematology Laboratory, 417 Army Share Fund General Hospital, Athens, Greece,
| | - Maria Triantafilli
- Hematology Laboratory, 417 Army Share Fund General Hospital, Athens, Greece,
| | - Ilias Migdalis
- Department of Internal Medicine, 417 Army Share Fund General Hospital, Athens, Greece,
| | - Evangelia Papadavid
- Dermatology Clinic, Department of Internal Medicine, Medical School, University of Athens, “Attikon”, General University Hospital, Athens, Greece, and
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
O'Neill L, Rooney P, Molloy D, Connolly M, McCormick J, McCarthy G, Veale DJ, Murphy CC, Fearon U, Molloy E. Regulation of Inflammation and Angiogenesis in Giant Cell Arteritis by Acute-Phase Serum Amyloid A. Arthritis Rheumatol 2015; 67:2447-56. [DOI: 10.1002/art.39217] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/21/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Lorraine O'Neill
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Peadar Rooney
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Danielle Molloy
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Mary Connolly
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Jennifer McCormick
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Geraldine McCarthy
- Mater Misericordiae University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Douglas J. Veale
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Conor C. Murphy
- Royal College of Surgeons of Ireland and Royal Victoria Eye and Ear Hospital; Dublin Ireland
| | - Ursula Fearon
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Eamonn Molloy
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| |
Collapse
|
34
|
Nimptsch K, Aleksandrova K, Boeing H, Janke J, Lee YA, Jenab M, Kong SY, Tsilidis KK, Weiderpass E, Bueno-De-Mesquita HBA, Siersema PD, Jansen EHJM, Trichopoulou A, Tjønneland A, Olsen A, Wu C, Overvad K, Boutron-Ruault MC, Racine A, Freisling H, Katzke V, Kaaks R, Lagiou P, Trichopoulos D, Severi G, Naccarati A, Mattiello A, Palli D, Grioni S, Tumino R, Peeters PH, Ljuslinder I, Nyström H, Brändstedt J, Sánchez MJ, Gurrea AB, Bonet CB, Chirlaque MD, Dorronsoro M, Quirós JR, Travis RC, Khaw KT, Wareham N, Riboli E, Gunter MJ, Pischon T. Plasma fetuin-A concentration, genetic variation in the AHSG gene and risk of colorectal cancer. Int J Cancer 2015; 137:911-20. [PMID: 25611809 DOI: 10.1002/ijc.29448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/27/2014] [Indexed: 12/30/2022]
Abstract
Fetuin-A, also referred to as α2-Heremans-Schmid glycoprotein (AHSG), is a liver protein known to inhibit insulin actions. Hyperinsulinemia is a possible risk factor for colorectal cancer; however, the role of fetuin-A in the development of colorectal cancer is unclear. We investigated the association between circulating fetuin-A and colorectal cancer risk in a nested case-control study within the European Prospective Investigation into Cancer and Nutrition. Fetuin-A concentrations were measured in prediagnostic plasma samples from 1,367 colorectal cancer cases and 1,367 matched controls. In conditional logistic regression models adjusted for potential confounders, the estimated relative risk (95% confidence interval) of colorectal cancer per 40 µg/mL higher fetuin-A concentrations (approximately one standard deviation) was 1.13 (1.02-1.24) overall, 1.21 (1.05-1.39) in men, 1.06 (0.93-1.22) in women, 1.13 (1.00-1.27) for colon cancer and 1.12 (0.94-1.32) for rectal cancer. To improve causal inference in a Mendelian Randomization approach, five tagging single nucleotide polymorphisms of the AHSG gene were genotyped in a subset of 456 case-control pairs. The AHSG allele-score explained 21% of the interindividual variation in plasma fetuin-A concentrations. In instrumental variable analysis, genetically raised fetuin-A was not associated with colorectal cancer risk (relative risk per 40 µg/mL genetically determined higher fetuin-A was 0.98, 95% confidence interval: 0.73-1.33). The findings of our study indicate a modest linear association between fetuin-A concentrations and risk of colorectal cancer but suggest that fetuin-A may not be causally related to colorectal cancer development.
Collapse
Affiliation(s)
- Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Young-Ae Lee
- Genetics of Allergic Disease Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - So Yeon Kong
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Konstantinos K Tsilidis
- Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Samfundet Folkhälsan, Helsinki, Finland
| | - H B As Bueno-De-Mesquita
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Peter D Siersema
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
| | - Eugène H J M Jansen
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
| | | | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Chunsen Wu
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Marie-Christine Boutron-Ruault
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health team, Villejuif, France
- Université Paris Sud, UMRS, 1018, Villejuif, France
- Institut Gustave Roussy (IGR), Villejuif, France
| | - Antoine Racine
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health team, Villejuif, France
- Université Paris Sud, UMRS, 1018, Villejuif, France
- Institut Gustave Roussy (IGR), Villejuif, France
| | - Heinz Freisling
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Pagona Lagiou
- Hellenic Health Foundation, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Dimitrios Trichopoulos
- Hellenic Health Foundation, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | | | | | - Amalia Mattiello
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Ingrid Ljuslinder
- Department of Radio Sciences, Oncology, Umeå University, Umea, Sweden
| | - Hanna Nyström
- Department of Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Sweden
| | - Jenny Brändstedt
- Department of Clinical Sciences, Lund Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - María-José Sánchez
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria de Granada (Granada.ibs), Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER de Epidemiologia y Salud Publica-CIBERESP), Spain
| | - Aurelio Barricarte Gurrea
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER de Epidemiologia y Salud Publica-CIBERESP), Spain
- Navarre Public Health Institute, Pamplona, Spain
| | - Catalina Bonet Bonet
- Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - María-Dolores Chirlaque
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER de Epidemiologia y Salud Publica-CIBERESP), Spain
- Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain
| | - Miren Dorronsoro
- Public Health Direction and Biodonostia-Ciberesp, Basque Regional Health Department, San Sebastian, Spain
| | | | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Kay-Tee Khaw
- Clinical Gerontology, Department of Public Health and Primary care, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nick Wareham
- Medical Research Council, Epidemiology Unit, University of Cambridge, United Kingdom
| | - Elio Riboli
- Division of Epidemiology, Public Health and Primary Care, Imperial College, London, United Kingdom
| | - Marc J Gunter
- Division of Epidemiology, Public Health and Primary Care, Imperial College, London, United Kingdom
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| |
Collapse
|
35
|
Bosco C, Wulaningsih W, Melvin J, Santaolalla A, De Piano M, Arthur R, Van Hemelrijck M. Metabolic serum biomarkers for the prediction of cancer: a follow-up of the studies conducted in the Swedish AMORIS study. Ecancermedicalscience 2015; 9:555. [PMID: 26284119 PMCID: PMC4531132 DOI: 10.3332/ecancer.2015.555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
The Swedish Apolipoprotein MOrtality RISk study (AMORIS) contains information on more than 500 biomarkers collected from 397,443 men and 414,630 women from the greater Stockholm area during the period 1985–1996. Using a ten-digit personal identification code, this database has been linked to Swedish national registries, which provide data on socioeconomic status, vital status, cancer diagnosis, comorbidity, and emigration. Within AMORIS, 18 studies assessing risk of overall and site-specific cancers have been published, utilising a range of serum markers representing glucose and lipid metabolism, immune system, iron metabolism, liver metabolism, and bone metabolism. This review briefly summarises these findings in relation to more recently published studies and provides an overview of where we are today and the challenges of observational studies when studying cancer risk prediction. Overall, more recent observational studies supported previous findings obtained in AMORIS, although no new results have been reported for serum fructosamine and inorganic phosphate with respect to cancer risk. A drawback of using serum markers in predicting cancer risk is the potential fluctuations following other pathological conditions, resulting in non-specificity and imprecision of associations observed. Utilisation of multiple combination markers may provide more specificity, as well as give us repeated instead of single measurements. Associations with other diseases may also necessitate further analytical strategies addressing effects of serum markers on competing events in addition to cancer. Finally, delineating the role of serum metabolic markers may generate valuable information to complement emerging clinical studies on preventive effects of drugs and supplements targeting metabolic disorders against cancer.
Collapse
Affiliation(s)
- Cecilia Bosco
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK ; Both authors contributed equally
| | - Wahyu Wulaningsih
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK ; Both authors contributed equally
| | - Jennifer Melvin
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Aida Santaolalla
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Mario De Piano
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Rhonda Arthur
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Mieke Van Hemelrijck
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
36
|
Apostolou P, Toloudi M, Papasotiriou I. Identification of genes involved in breast cancer and breast cancer stem cells. BREAST CANCER-TARGETS AND THERAPY 2015. [PMID: 26203276 PMCID: PMC4507490 DOI: 10.2147/bctt.s85202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs), which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed to determine genes that are expressed in breast cancer and breast CSCs and to investigate their correlation with stemness. RNA was extracted from established breast cancer cell lines and from CSCs derived from five different breast cancer patients. DNA microarray analysis was performed and any upregulated genes were also studied in other cancer types, including colorectal and lung cancer. For genes that were expressed only in breast cancer, knockdown-based experiments were performed. Finally, the gene expression levels of stemness transcription factors were measured. The outcome of the analysis indicated a group of genes that were aberrantly expressed mainly in breast cancer cells with stemness properties. Knockdown experiments confirmed the impact of several of these on NANOG, OCT3/4, and SOX2 transcription factors. It seems that several genes that are not directly related with hormone metabolism and basic signal transduction pathways might have an important role in relapse and disease progression and, thus, can be targeted for new treatment approaches for breast cancer.
Collapse
Affiliation(s)
- Panagiotis Apostolou
- Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece
| | - Maria Toloudi
- Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece
| | - Ioannis Papasotiriou
- Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece
| |
Collapse
|
37
|
Crotti S, Enzo MV, Bedin C, Pucciarelli S, Maretto I, Del Bianco P, Traldi P, Tasciotti E, Ferrari M, Rizzolio F, Toffoli G, Giordano A, Nitti D, Agostini M. Clinical predictive circulating peptides in rectal cancer patients treated with neoadjuvant chemoradiotherapy. J Cell Physiol 2015; 230:1822-8. [PMID: 25522009 DOI: 10.1002/jcp.24894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023]
Abstract
Preoperative chemoradiotherapy is worldwide accepted as a standard treatment for locally advanced rectal cancer. Current standard of treatment includes administration of ionizing radiation for 45-50.4 Gy in 25-28 fractions associated with 5-fluorouracil administration during radiation therapy. Unfortunately, 40% of patients have a poor or absent response and novel predictive biomarkers are demanding. For the first time, we apply a novel peptidomic methodology and analysis in rectal cancer patients treated with preoperative chemoradiotherapy. Circulating peptides (Molecular Weight <3 kDa) have been harvested from patients' plasma (n = 33) using nanoporous silica chip and analyzed by Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometer. Peptides fingerprint has been compared between responders and non-responders. Random Forest classification selected three peptides at m/z 1082.552, 1098.537, and 1104.538 that were able to correctly discriminate between responders (n = 16) and non-responders (n = 17) before therapy (T0) providing an overall accuracy of 86% and an area under the receiver operating characteristic (ROC) curve of 0.92. In conclusion, the nanoporous silica chip coupled to mass spectrometry method was found to be a realistic method for plasma-based peptide analysis and we provide the first list of predictive circulating biomarker peptides in rectal cancer patients underwent preoperative chemoradiotherapy.
Collapse
Affiliation(s)
- Sara Crotti
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, IRCCS National Cancer Institute, Aviano (PN), Italy; Istituto di Ricerca Pediatrica- Citt, à,, della Speranza, Corso Stati Uniti 4, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wulaningsih W, Holmberg L, Garmo H, Malmstrom H, Lambe M, Hammar N, Walldius G, Jungner I, Van Hemelrijck M. Prediagnostic serum inflammatory markers in relation to breast cancer risk, severity at diagnosis and survival in breast cancer patients. Carcinogenesis 2015; 36:1121-8. [PMID: 26130675 DOI: 10.1093/carcin/bgv096] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/25/2015] [Indexed: 12/17/2022] Open
Abstract
Inflammation has been linked to cancer but its role in breast cancer is unclear. We investigated common serum markers of inflammation: C-reactive protein (CRP), albumin, haptoglobin and white blood cells (WBC) in relation to breast cancer incidence, severity and survival. A total of 155179 women aged 20 and older without any history of cancer were selected from a large Swedish cohort. Hazard ratios (HRs) for breast cancer were estimated with Cox regression, adjusting for potential confounders. Ordered and binomial logistic regression models were used to assess the associations of serum inflammatory markers with breast cancer severity and oestrogen receptor (ER) positivity at diagnosis, on the other. Cumulative incidence functions by levels of inflammatory markers were assessed for early death from breast cancer and all causes. During a mean follow-up of 18.3 years, 6606 women were diagnosed with breast cancer, of whom 1474 died. A positive association with incident breast cancer was seen for haptoglobin ≥ 1.4g/l [HR 1.09; 95% confidence interval (CI): 1.00-1.18] compared to lower levels. No association was observed between inflammatory markers and breast cancer severity or ER positivity. Higher haptoglobin was linked to risk of early death from breast cancer (HR: 1.27, 95% CI: 1.02-1.59), whereas higher risk of early death from all causes was additionally found with CRP ≥ 10mg/l (HR: 1.19, 95% CI: 1.04-1.36) and WBC ≥ 10×10(9)/l (HR: 1.57, 1.14-2.16). Our findings indicate that prediagnostic serum inflammatory markers were weakly linked to incident breast cancer but corresponded to worse survival after diagnosis.
Collapse
Affiliation(s)
- Wahyu Wulaningsih
- Division of Cancer Studies, King's College London, Cancer Epidemiology Group, 3rd Floor, Bermondsey Wing, Guy's Hospital, London SE1 9RT, UK,
| | - Lars Holmberg
- Division of Cancer Studies, King's College London, Cancer Epidemiology Group, 3rd Floor, Bermondsey Wing, Guy's Hospital, London SE1 9RT, UK, Department of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden, Regional Cancer Centre, Uppsala, Sweden
| | - Hans Garmo
- Division of Cancer Studies, King's College London, Cancer Epidemiology Group, 3rd Floor, Bermondsey Wing, Guy's Hospital, London SE1 9RT, UK, Regional Cancer Centre, Uppsala, Sweden
| | - Håkan Malmstrom
- Department of Epidemiology, Institute of Environmental Medicine and
| | - Mats Lambe
- Regional Cancer Centre, Uppsala, Sweden, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Hammar
- Department of Epidemiology, Institute of Environmental Medicine and AstraZeneca R&D, Mölndal, Sweden
| | - Göran Walldius
- Department of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden and
| | - Ingmar Jungner
- Department of Medicine, Clinical Epidemiological Unit, Karolinska Institutet and CALAB Research, Stockholm, Sweden
| | - Mieke Van Hemelrijck
- Division of Cancer Studies, King's College London, Cancer Epidemiology Group, 3rd Floor, Bermondsey Wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
39
|
Discovery and horizontal follow-up of an autoantibody signature in human prostate cancer. Proc Natl Acad Sci U S A 2015; 112:2515-20. [PMID: 25675522 DOI: 10.1073/pnas.1500097112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In response to an urgent need for improved diagnostic and predictive serum biomarkers for management of metastatic prostate cancer, we used phage display fingerprinting to analyze sequentially acquired serum samples from a patient with advancing prostate cancer. We identified a peptide ligand, CTFAGSSC, demonstrating an increased recovery frequency over time. Serum antibody reactivity to this peptide epitope increased in the index patient, in parallel with development of deteriorating symptoms. The antigen mimicking the peptide epitope was identified as alpha-2-Heremans-Schmid glycoprotein, also known as fetuin-A. Metastatic prostate cancer cell lines and bone metastasis samples displayed robust fetuin-A expression, and we demonstrated serum immune reactivity to fetuin-A with concomitant development of metastatic castrate-resistant disease in a large cohort of prostate cancer patients. Whereas fetuin-A is an established tumor antigen in several types of cancer, including breast cancer, glioblastoma, and pancreas cancer, this report is to our knowledge the first study implicating fetuin-A in prostate cancer and indicating that autoantibodies specific for fetuin-A show utility as a prognostic indicator for prostate cancer patients prone to progress to metastatic disease.
Collapse
|
40
|
Upur H, Chen Y, Kamilijiang M, Deng W, Sulaiman X, Aizezi R, Wu X, Tulake W, Abudula A. Identification of plasma protein markers common to patients with malignant tumour and Abnormal Savda in Uighur medicine: a prospective clinical study. Altern Ther Health Med 2015; 15:9. [PMID: 25652121 PMCID: PMC4321703 DOI: 10.1186/s12906-015-0526-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/15/2015] [Indexed: 12/14/2022]
Abstract
Background Traditional Uighur medicine shares an origin with Greco-Arab medicine. It describes the health of a human body as the dynamic homeostasis of four normal Hilits (humours), known as Kan, Phlegm, Safra, and Savda. An abnormal change in one Hilit may cause imbalance among the Hilits, leading to the development of a syndrome. Abnormal Savda is a major syndrome of complex diseases that are associated with common biological changes during disease development. Here, we studied the protein expression profile common to tumour patients with Abnormal Savda to elucidate the biological basis of this syndrome and identify potential biomarkers associated with Abnormal Savda. Methods Patients with malignant tumours were classified by the diagnosis of Uighur medicine into two groups: Abnormal Savda type tumour (ASt) and non-Abnormal Savda type tumour (nASt), which includes other syndromes. The profile of proteins that were differentially expressed in ASt compared with nASt and normal controls (NC) was analysed by iTRAQ proteomics and evaluated by bioinformatics using MetaCore™ software and an online database. The expression of candidate proteins was verified in all plasma samples by enzyme-linked immunosorbent assay (ELISA). Results We identified 31 plasma proteins that were differentially expressed in ASt compared with nASt, of which only 10 showed quantitatively different expression between ASt and NC. Bioinformatics analysis indicated that most of these proteins are known biomarkers for neoplasms of the stomach, breast, and lung. ELISA detection showed significant upregulation of plasma SAA1 and SPP24 and downregulation of PIGR and FASN in ASt compared with nASt and NC (p < 0.05). Conclusions Abnormal Savda may be causally associated with changes in the whole regulation network of protein expression during carcinogenesis. The expression of potential biomarkers might be used to distinguish Abnormal Savda from other syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0526-6) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Abstract
Lung cancer is the most frequently occurring cancer in the world and continually leads in mortality among cancers. The overall 5-year survival rate for lung cancer has risen only 4% (from 12% to 16%) over the past 4 decades, and late diagnosis is a major obstacle in improving lung cancer prognosis. Survival of patients undergoing lung resection is greater than 80%, suggesting that early detection and diagnosis of cancers before they become inoperable and lethal will greatly improve mortality. Lung cancer biomarkers can be used for screening, detection, diagnosis, prognosis, prediction, stratification, therapy response monitoring, and so on. This review focuses on noninvasive diagnostic and prognostic biomarkers. For that purpose, our discussion in this review will focus on biological fluid-based biomarkers. The body fluids include blood (serum or plasma), sputum, saliva, BAL, pleural effusion, and VOC. Since it is rich in different cellular and molecular elements and is one of the most convenient and routine clinical procedures, serum or plasma is the main source for the development and validation of many noninvasive biomarkers. In terms of molecular aspects, the most widely validated ones are proteins, some of which are used in the clinical sector, though in limited accessory purposes. We will also discuss the lung cancer (protein) biomarkers in clinical trials and currently in the validation phase with hundreds of samples. After proteins, we will discuss microRNAs, methylated DNA, and circulating tumor cells, which are being vigorously developed and validated as potential lung cancer biomarkers. The main aim of this review is to provide researchers and clinicians with an understanding of the potential noninvasive lung cancer biomarkers in biological fluids that have recently been discovered.
Collapse
|
42
|
Dalamaga M, Polyzos SA, Karmaniolas K, Chamberland J, Lekka A, Migdalis I, Papadavid E, Dionyssiou-Asteriou A, Mantzoros CS. Circulating fetuin-A in patients with pancreatic cancer: a hospital-based case-control study. Biomarkers 2014; 19:660-6. [DOI: 10.3109/1354750x.2014.974071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Coppola D, Balducci L, Chen DT, Loboda A, Nebozhyn M, Staller A, Fulp WJ, Dalton W, Yeatman T, Brem S. Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas. J Geriatr Oncol 2014; 5:389-99. [PMID: 25220188 DOI: 10.1016/j.jgo.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Senescence-associated genes (SAGs) are responsible for the senescence-associated secretory phenotype, linked in turn to cellular aging, the aging brain, and the pathogenesis of cancer. OBJECTIVE We hypothesized that senescence-associated genes are overexpressed in older patients, in higher grades of glioma, and portend a poor prognosis. METHODS Forty-seven gliomas were arrayed on a custom version of the Affymetrix HG-U133+2.0 GeneChip, for expression of fourteen senescence-associated genes: CCL2, CCL7, CDKN1A, COPG, CSF2RB, CXCL1, ICAM-1, IGFBP-3, IL-6, IL-8, SAA4, TNFRSF-11B, TNFSF-11 and TP53. A combined "senescence score" was generated using principal component analysis to measure the combined effect of the senescence-associated gene signature. RESULTS An elevated senescence score correlated with older age (r=0.37; P=.01) as well as a higher degree of malignancy, as determined by WHO, histological grade (r=0.49; P<.001). There was a mild association with poor prognosis (P=.06). Gliosarcomas showed the highest scores. Six genes independently correlated with either age (IL-6, TNFRSF-11B, IGFBP-3, SAA4, and COPG), prognosis (IL-6, SAA4), or the grade of the glioma (IL-6, IL-8, ICAM-1, IGFBP-3, and COPG). CONCLUSION We report: 1) a novel molecular signature in human gliomas, based on cellular senescence, translating the concept of SAG to human cancer; 2) the senescence signature is composed of genes central to the pathogenesis of gliomas, defining a novel, aggressive subtype of glioma; and 3) these genes provide prognostic biomarkers, as well as targets, for drug discovery and immunotherapy.
Collapse
Affiliation(s)
- Domenico Coppola
- Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gastrointestinal, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; M2Gen, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Lodovico Balducci
- Senior Oncology Programs, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Dung-Tsa Chen
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | | | - Michael Nebozhyn
- Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Merck Laboratory
| | - Aileen Staller
- Population Sciences Division, Department of Oncological Sciences, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - William J Fulp
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - William Dalton
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; M2Gen, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Timothy Yeatman
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gastrointestinal, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gibbs Cancer Center & Research Institute, Spartanburg, SC 29303 USA
| | - Steven Brem
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Population Sciences Division, Department of Oncological Sciences, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
LaBute MX, Zhang X, Lenderman J, Bennion BJ, Wong SE, Lightstone FC. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. PLoS One 2014; 9:e106298. [PMID: 25191698 PMCID: PMC4156361 DOI: 10.1371/journal.pone.0106298] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/05/2014] [Indexed: 01/12/2023] Open
Abstract
Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number of CPUs to tens of thousands of protein targets and millions of potential drug candidates.
Collapse
Affiliation(s)
- Montiago X LaBute
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Xiaohua Zhang
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Jason Lenderman
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Brian J Bennion
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Sergio E Wong
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
45
|
Martelli C, Iavarone F, Vincenzoni F, Rossetti DV, D'Angelo L, Tamburrini G, Caldarelli M, Di Rocco C, Messana I, Castagnola M, Desiderio C. Proteomic characterization of pediatric craniopharyngioma intracystic fluid by LC-MS top-down/bottom-up integrated approaches. Electrophoresis 2014; 35:2172-83. [PMID: 24729313 DOI: 10.1002/elps.201300578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/21/2014] [Accepted: 04/04/2014] [Indexed: 02/02/2023]
Abstract
The combination of top-down and bottom-up platforms was utilized for the LC-MS proteomic characterization of the intracystic fluid of adamantinomatous craniopharyngioma pediatric brain tumor disease. Proteins and peptides characterization was achieved by high-resolution LC-ESI-LTQ-Orbitrap-MS analysis while low-resolution LC-ESI-IT-MS was applied for the complete screening of the samples and the evaluation of the protein distribution within patients. Top-down analyses were applied to liquid/liquid extracted samples while bottom-up analyses were performed after trypsin digestion of both untreated and pretreated samples. The two proteomic approaches were complementary for the characterization of the proteome of craniopharyngioma intracystic fluid. Proteins and peptides involved in inflammation, mineralization processes and lipid transport were identified, in agreement with the calcium flecks, cholesterol granules and bone residues characteristic of this fluid. Apolipoprotein A-I, A-II, C-I and J, hemoglobin fragments, ubiquitin, α-2-HS-glycoprotein or fetuin A, α-1-antichymotrypsin, vitamin D binding protein, and α-1-acid glycoprotein were characterized. These data could be relevant for the comprehension of the processes involved in the pathogenesis of the disease and the development of the cyst and could contribute to the individuation of therapeutic targets for the reduction of the cyst volume delaying and/or avoiding invasive surgical treatments.
Collapse
Affiliation(s)
- Claudia Martelli
- Facoltà di Medicina, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Canales NAG, Marina VM, Castro JS, Jiménez AA, Mendoza-Hernández G, McCARRON EL, Roman MB, Castro-Romero JI. A1BG and C3 are overexpressed in patients with cervical intraepithelial neoplasia III. Oncol Lett 2014; 8:939-947. [PMID: 25009667 PMCID: PMC4081425 DOI: 10.3892/ol.2014.2195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/20/2014] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to analyze sera proteins in females with cervical intraepithelial neoplasia, grade III (CIN III) and in healthy control females, in order to identify a potential biomarker which detects lesions that have a greater probability of cervical transformation. The present study investigated five sera samples from females who were Human Papilloma Virus (HPV) 16+ and who had been histopathologically diagnosed with CIN III, as well as five sera samples from healthy control females who were HPV-negative. Protein separation was performed using two-dimensional (2D) gel electrophoresis and the proteins were stained with Colloidal Coommassie Blue. Quantitative analysis was performed using ImageMaster 2D Platinum 6.0 software. Peptide sequence identification was performed using a nano-LC ESIMS/MS system. The proteins with the highest Mascot score were validated using western blot analysis in an additional 55 sera samples from the control and CIN III groups. The eight highest score spots that were found to be overexpressed in the CIN III sera group were identified as α-1-B glycoprotein (A1BG), complement component 3 (C3), a pro-apolipoprotein, two apolipoproteins and three haptoglobins. Only A1BG and C3 were validated using western blot analysis, and the bands were compared between the two groups using densitometry analysis. The relative density of the bands of A1BG and C3 was found to be greater in all of the serum samples from the females with CIN III, compared with those of the individuals in the control group. In summary, the present study identified two proteins whose expression was elevated in females with CIN III, suggesting that they could be used as biomarkers for CIN III. However, further investigations are required in order to assess the expression of A1BG and C3 in different pre-malignant lesions.
Collapse
Affiliation(s)
| | - Vicente Madrid Marina
- Research Center on Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | - Jorge Salmerón Castro
- Epidemiology and Health Services Research Unit, National Institute of Social Security, Cuernavaca, Morelos 62450, Mexico
| | - Alfredo Antúnez Jiménez
- Epidemiology and Health Services Research Unit, National Institute of Social Security, Cuernavaca, Morelos 62450, Mexico
| | - Guillermo Mendoza-Hernández
- Laboratory of Peptides and Proteins, Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Elizabeth Langley McCARRON
- Biomedical Cancer Research Unit, Basic Research Subdirection, National Institute of Cancer, Mexico City 14080, Mexico
| | - Margarita Bahena Roman
- Research Center on Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | - Julieta Ivone Castro-Romero
- Research Center on Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| |
Collapse
|
47
|
SWATH™- and iTRAQ-based quantitative proteomic analyses reveal an overexpression and biological relevance of CD109 in advanced NSCLC. J Proteomics 2014; 102:125-36. [PMID: 24667143 DOI: 10.1016/j.jprot.2014.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
UNLABELLED To identify cancer-related proteins, we used isobaric tags in a relative and absolute quantitation (iTRAQ) proteomic approach and SWATH™ quantification approach to analyze the secretome of an isogenic pair of highly metastatic and low metastatic non-small-cell lung cancer (NSCLC) cell lines. In addition, we compared two groups of pooled serum samples (12 early-stage and 12 late-stage patients) to mine data for candidates screened by iTRAQ-labeled proteomic analysis. A total of 110 proteins and 71 proteins were observed to be significantly differentially expressed in the cell line secretome and NSCLC sera, respectively. Among these proteins, CD109 was found to be highly expressed in both the highly metastatic cell line secretome and the group of late-stage patients. A sandwich ELISA assay also demonstrated an elevation of serum CD109 levels in individual NSCLC patients (n=30) compared with healthy subjects (n=19). Furthermore, CD109 displayed higher expression in lung cancer tissues compared with their matched noncancerous lung tissues (n=72). In addition, the knockdown of CD109 influenced several NSCLC cell bio-functions, for instance, depressing cell growth, affecting cell cycle phases. These phenomena suggest that CD109 plays a critical role in NSCLC progression. BIOLOGICAL SIGNIFICANCE We simultaneously applied two quantitative proteomic approaches-iTRAQ-labeling and SWATH™-to analyze the secretome of metastatic cell lines, in order to explore the cancer-associated proteins in conditioned media. In this study, our results indicate that CD109 plays a critical role in non-small-cell lung cancer (NSCLC) progression, and is overexpressed in advanced NSCLC.
Collapse
|
48
|
Fan NJ, Kang R, Ge XY, Li M, Liu Y, Chen HM, Gao CF. Identification alpha-2-HS-glycoprotein precursor and tubulin beta chain as serology diagnosis biomarker of colorectal cancer. Diagn Pathol 2014; 9:53. [PMID: 24618180 PMCID: PMC3975189 DOI: 10.1186/1746-1596-9-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains a major worldwide cause of cancer-related morbidity and mortality largely due to the insidious onset of the disease. The current clinical procedures utilized for disease diagnosis are invasive, unpleasant, and inconvenient. Hence, the need for simple blood tests that could be used for the early detection is crucial for its ultimate control and prevention. METHODS The present work is a case-control study focused on proteomic analysis of serum of healthy volunteers and CRC patients by the ClinProt profiling technology based on mass spectrometry. This approach allowed to identifying a pattern of proteins/peptides able to differentiate the studied populations. Moreover, some of peptides differentially expressed in the serum of patients as compared to healthy volunteers were identified by LTQ Orbitrap XL. RESULTS A Quick Classifier Algorithm was used to construct the peptidome patterns (m/z 1208, 1467, 1505, 1618, 1656 and 4215) for the identification of CRC from healthy volunteers with accuracy close to 100% (>CEA, P < 0.05). Peaks at m/z 1505 and 1618 were identified as alpha-2-HS-glycoprotein precursor and tubulin beta chain, respectively. CONCLUSIONS Alpha-2-HS-glycoprotein precursor and tubulin beta chain could be involved in the pathogenesis of CRC and perform as potential serology diagnosis biomarker. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4796578761089186.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun-fang Gao
- Institute of Anal-colorectal Surgery, No,150 Central Hospital of PLA, Luoyang, RP China.
| |
Collapse
|
49
|
Shi X, Liu J, Huang J, Zhou Y, Xie Y, Ma S. A penalized robust method for identifying gene-environment interactions. Genet Epidemiol 2014; 38:220-30. [PMID: 24616063 DOI: 10.1002/gepi.21795] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/21/2013] [Accepted: 01/02/2014] [Indexed: 12/15/2022]
Abstract
In high-throughput studies, an important objective is to identify gene-environment interactions associated with disease outcomes and phenotypes. Many commonly adopted methods assume specific parametric or semiparametric models, which may be subject to model misspecification. In addition, they usually use significance level as the criterion for selecting important interactions. In this study, we adopt the rank-based estimation, which is much less sensitive to model specification than some of the existing methods and includes several commonly encountered data and models as special cases. Penalization is adopted for the identification of gene-environment interactions. It achieves simultaneous estimation and identification and does not rely on significance level. For computation feasibility, a smoothed rank estimation is further proposed. Simulation shows that under certain scenarios, for example, with contaminated or heavy-tailed data, the proposed method can significantly outperform the existing alternatives with more accurate identification. We analyze a lung cancer prognosis study with gene expression measurements under the AFT (accelerated failure time) model. The proposed method identifies interactions different from those using the alternatives. Some of the identified genes have important implications.
Collapse
Affiliation(s)
- Xingjie Shi
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China; Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | | | | | | | | | | |
Collapse
|
50
|
Ren Y, Wang H, Lu D, Xie X, Chen X, Peng J, Hu Q, Shi G, Liu S. Expression of serum amyloid A in uterine cervical cancer. Diagn Pathol 2014; 9:16. [PMID: 24447576 PMCID: PMC3907664 DOI: 10.1186/1746-1596-9-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023] Open
Abstract
Background As an acute-phase protein, serum amyloid A (SAA) is expressed primarily in the liver. However, its expression in extrahepatic tissues, especially in tumor tissues, was also demonstrated recently. In our study, we investigated the expression of SAA in uterine cervical carcinomas, and our results suggested its potential as a serum biomarker. Methods Quantitative real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the SAA gene and protein expression levels in the tissues and sera of patients with non-neoplastic lesions (NNLs), cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CC). Results Compared with NNLs, the SAA gene (SAA1 and SAA4) expression levels were significantly higher in uterine CC (mean copy numbers: 138.7 vs. 5.01, P < 0.000; and 1.8 vs. 0.079, P = 0.001, respectively) by real-time PCR. IHC revealed cytoplasmic SAA protein staining in tissues from adenocarcinoma and squamous cell carcinoma of the cervix. The median serum concentrations (μg/ml) of SAA were 6.02 in patients with NNLs and 10.98 in patients with CIN (P = 0.31). In contrast, the median serum SAA concentration was 23.7 μg/ml in uterine CC patients, which was significantly higher than the SAA concentrations of the NNL group (P = 0.002) and the CIN group (P = 0.024). Conclusions Our data suggested that SAA might be a uterine CC cell product. High SAA concentrations in the serum of CC patients may have a role in monitoring disease occurrence and could have therapeutic applications. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1433263219102962.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gang Shi
- Department of Obstetrics&Gynecology, West China Second University Hospital, Sichuan University, No, 20, 3rd Section of Ren Min Nan Road, Chengdu 610041, China.
| | | |
Collapse
|