1
|
Chriqui LE, Cavin S, Perentes JY. Dual implication of endothelial adhesion molecules in tumor progression and cancer immunity. Cell Adh Migr 2025; 19:2472308. [PMID: 40071851 PMCID: PMC11913389 DOI: 10.1080/19336918.2025.2472308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/16/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025] Open
Abstract
Adhesion molecules are proteins expressed at the surface of various cell types. Their main contribution to immunity is to allow the infiltration of immune cells in an inflamed site. In cancer, adhesion molecules have been shown to promote tumor dissemination favoring the development of metastasis. While adhesion molecule inhibition approaches were unsuccessful for cancer control, their importance for the generation of an immune response alone or in combination with immunotherapies has gained interest over the past years. Currently, the balance of adhesion molecules for tumor promotion/inhibition is unclear. Here we review the role of selectins, intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) from the perspective of the dual contribution of adhesion molecules in tumor progression and immunity.
Collapse
Affiliation(s)
- Louis-Emmanuel Chriqui
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Sabrina Cavin
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Jean Yannis Perentes
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Zhang W, Wang J, Ji J, Wang P, Yuan G, Fang S, Liu F, Jin G, Zhang J. Glioblastoma cells secrete ICAM1 via FASN signaling to promote glioma-associated macrophage infiltration. Cell Signal 2025; 132:111823. [PMID: 40252818 DOI: 10.1016/j.cellsig.2025.111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Glioma-associated macrophages (GAMs) constitute the most abundant subset of immune cells in the glioblastoma (GBM) microenvironment, but the underlying mechanism of intense infiltration needs to be elucidated. In this study, we found that GBM cells secrete ICAM1 via FASN signaling to promote GAM infiltration. FASN expression is correlated with GAM density in GBM patients. In vitro experiments revealed that FASN regulates the type-I interferon pathway, particularly STAT1 expression. Moreover, disrupting FASN-STAT1 signaling through the overexpression or inhibition of FASN or STAT1 in GBM cells strongly influences microglial recruitment. Additionally, ICAM1 acts as a direct transcriptional candidate of FASN-STAT1 and a paracrine soluble factor, recruiting microglia to GBM tumors. This study revealed crosstalk between GBM cells and GAMs through FASN-STAT1-ICAM1 signaling to promote microglial infiltration, suggesting potential strategies for treating GBM patients.
Collapse
Affiliation(s)
- Wenxin Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiayu Ji
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China
| | - Peiwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guiqiang Yuan
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Sheng Fang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan, Capital Medical University, Beijing, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Han IH, Choi I, Choi H, Kim S, Jeong C, Yang J, Cao Y, Choi J, Lee H, Shin JS, Yeom HD, Lee EJ, Cha N, Go H, Lim SE, Chae S, Lee WJ, Kwon M, Kim H, Choi H, Pak S, Park N, Ko E, Hwang DS, Lee JH, Chung HS, Kang SH, Bae H. Conformation-sensitive targeting of CD18 depletes M2-like tumor-associated macrophages resulting in inhibition of solid tumor progression. J Immunother Cancer 2025; 13:e011422. [PMID: 40187756 PMCID: PMC11973759 DOI: 10.1136/jitc-2024-011422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) primarily exist in the M2-like phenotype in the tumor microenvironment (TME). M2-TAMs contribute to tumor progression by establishing an immunosuppressive environment. However, TAM targeting is hindered, mainly owing to a lack of specific biomarkers for M2-TAMs. Previously, we demonstrated that a novel peptide drug conjugate (TB511) consisting of a TAM-binding peptide and the apoptosis-promoting peptide targets M2-TAMs. This was achieved through M2-TAM targeting, although the target mechanism of action remained elusive. Herein, we elucidate the anticancer efficacy of TB511 by identifying new target proteins that preferentially bind to M2-TAMs and clarifying the apoptosis-inducing mechanism in these cells. METHODS We investigated the target proteins and binding site of TB511 using LC-MS/MS analyses, surface plasmon resonance and peptide-protein interaction 3D modeling. Activated CD18 expression in M2 TAMs was assessed using Quantibrite PE beads in PBMCs. The anticancer efficacy of TB511 was tested using colorectal cancer (CRC) and non-small cell lung cancer (NSCLC) mouse model. The immunotherapeutic effect of TB511 was investigated through spatial transcriptomics in human pancreatic ductal adenocarcinoma (PDAC) model. RESULTS Activated CD18 was highly expressed in human tumor tissues and was significantly higher in M2 TAMs than in other immune cells. TB511 showed high binding affinity to CD18 among the cell membrane proteins of M2 macrophages and appeared to bind to the cysteine-rich domain in the activated form. Moreover, TB511 specifically induced apoptosis in M2 TAMs, but its targeting ability to M2 macrophages was inhibited in CD18 blockade or knockout model. In mouse or humanized mouse models of solid tumors such as CRC, NSCLC, and PDAC, TB511 suppressed tumor growth by targeting M2-TAMs via CD18 and enhancing the presence of CD8+ T cells in the TME. CONCLUSIONS Collectively, our findings suggest that activated CD18 holds promise as a novel target protein for cancer therapy, and TB511 shows potential as a therapeutic agent for tumor treatment.
Collapse
Affiliation(s)
- Ik-Hwan Han
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Ilseob Choi
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Hongseo Choi
- R&D Center, Twinpig Biolab Inc, Seoul, Korea (the Republic of)
| | - Soyoung Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Chanmi Jeong
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Juwon Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Yingying Cao
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea (the Republic of)
| | - Jeongyoon Choi
- R&D Center, Twinpig Biolab Inc, Seoul, Korea (the Republic of)
| | - Heekyung Lee
- R&D Center, Twinpig Biolab Inc, Seoul, Korea (the Republic of)
| | - Jin Sun Shin
- R&D Center, Twinpig Biolab Inc, Seoul, Korea (the Republic of)
| | | | - Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Korea (the Republic of)
| | - Nari Cha
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Hyemin Go
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Se Eun Lim
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Songah Chae
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Won-Jun Lee
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Minjin Kwon
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Hongsung Kim
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Hyojung Choi
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Sehyun Pak
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Namgyeong Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Eunbin Ko
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Deok-Sang Hwang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Junho H Lee
- Department of Biotechnology, Chonnam National University, Gwangju, Korea (the Republic of)
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Korea (the Republic of)
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea (the Republic of)
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| |
Collapse
|
4
|
Qian WJ, Yan JS, Gang XY, Xu L, Shi S, Li X, Na FJ, Cai LT, Li HM, Zhao MF. Intercellular adhesion molecule-1 (ICAM-1): From molecular functions to clinical applications in cancer investigation. Biochim Biophys Acta Rev Cancer 2024; 1879:189187. [PMID: 39317271 DOI: 10.1016/j.bbcan.2024.189187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a versatile molecule that plays a critical role in various physiological and pathological processes, particularly in tumor development where its impact is bidirectional. On the one hand, it augments the immune response by promoting immune cell migration, infiltration, and the formation of immunological synapses, thus facilitating potent antitumor effects. Simultaneously, it contributes to tumor immune evasion and influences metastasis by mediating transendothelial migration (TEM), epithelial-to-mesenchymal transition (EMT), and epigenetic modification of tumor cells. Despite its significant potential, the full clinical utility of ICAM-1 has yet to be fully realized. In this review, we thoroughly examine recent advancements in understanding the role of ICAM-1 in tumor development, its relevance in predicting therapeutic efficacy and prognosis, as well as the progress in clinical translational research on anti-ICAM-1-based therapies, encompassing including monoclonal antibodies, immunotherapy, antibody-drug conjugate (ADC), and conventional treatments. By shedding light on these innovative strategies, we aim to underscore ICAM-1's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.
Collapse
Affiliation(s)
- Wen-Jing Qian
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Shan Yan
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xiao-Yu Gang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xin Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Fang-Jian Na
- Network Information Center, China Medical University, Shenyang, China
| | - Lu-Tong Cai
- Psychological Medicine, Shenyang Medical College, Shenyang, China
| | - He-Ming Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China; Guangdong Association of Clinical Trials (GACT)/Chinese Thoracic Oncology Group (CTONG) and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, China.
| | - Ming-Fang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Le T. Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Dmitriy V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Elizaveta R. Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Denis O. Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| |
Collapse
|
6
|
Zarzycka M, Kotula-Balak M, Gil D. The mechanism of the contribution of ICAM-1 to epithelial-mesenchymal transition (EMT) in bladder cancer. Hum Cell 2024; 37:801-816. [PMID: 38519725 DOI: 10.1007/s13577-024-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
Bladder cancer is one of the most prevalent cancers worldwide. Moreover, if not optimally treated, bladder cancer is a significant burden on healthcare systems due to multiple recurrences which often require more aggressive therapies. Therefore, targeted anti-cancer therapies, developed based on an in-depth understanding of specific proteins and molecular mechanisms, are promising in cancer treatment. Here, for the first time, we presented the new approaches indicating that intracellular adhesion molecule-1 (ICAM-1) may play a potential role in enhancing therapeutic effectiveness for bladder cancer. In the present study, we presented that ICAM-1 expression as well as its regulation in bladder cancer is strongly correlated with the high expression of N-cadherin. Importantly, the presence of N-cadherin and its regulator-TWIST-1 was abolished when ICAM-1 was silenced. We identified also that ICAM-1 is capable of regulating cellular migration, proliferation, and EMT progression in bladder cancer cells via the N-cadherin/SRC/AKT/GSK-3β/β-catenin signaling axis. Therefore, we propose ICAM-1 as a novel metastatic marker for EMT progression, which may also be used as a therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Marta Zarzycka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland.
| | - Małgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
7
|
He S, Lu M, Zhang L, Wang Z. RSK4 promotes the macrophage recruitment and M2 polarization in esophageal squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166996. [PMID: 38142759 DOI: 10.1016/j.bbadis.2023.166996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
High infiltration of tumor-associated macrophages (TAMs) participates in host immunity and tumor progression in patients with esophageal squamous cell carcinoma (ESCC). Ribosomal s6 kinase 4 (RSK4) has been shown to be aberrantly overexpressed in ESCC. The role of RSK4 in cytokine secretion and its impact on macrophage recruitment and M2 polarization remains unclear. Therefore, a thorough understanding of RSK4 is needed to expand our knowledge of its therapeutic potential. Herein, RSK4 expression in human ESCC tissues and a xenograft mouse model was positively correlated with high infiltration of M0 and M2 macrophages which is positively associated with unfavorable overall survival outcomes and treatment resistance in patients with ESCC. In vitro experiments revealed that RSK4 derived from ESCC cells promoted macrophage recruitment and M2 polarization by enhancingsoluble intercellular adhesion molecule-1 (sICAM-1) secretion via direct and indirect STAT3 phosphorylation. Furthermore, RSK4-induced macrophages enhanced tumor proliferation, migration, and invasion by secreting C-C motif chemokine ligand 22 (CCL22). We further showed that patients with elevated CD68 and CD206 expression had unfavorable overall survival. Collectively, these results demonstrate that RSK4 promotes the macrophage recruitment and M2 polarization by regulating the STAT3/ICAM-1 axis in ESCC, influencing tumor progression primarily in a CCL22-dependent manner. These data also offer valuable insights for developing novel agents for the treatment of ESCC.
Collapse
Affiliation(s)
- Shuai He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China; Department of Pathology, Baotou Medical college, Baotou, Inner Mongolia Autonomous Region, China
| | - Ming Lu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Zhang
- Department of Pathology, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Chong Y, Xu S, Liu T, Guo P, Wang X, He D, Zhu G. Curcumin Inhibits Vasculogenic Mimicry via Regulating ETS-1 in Renal Cell Carcinoma. Curr Cancer Drug Targets 2024; 24:1031-1046. [PMID: 38299401 DOI: 10.2174/0115680096277126240102060617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Metastatic renal cell carcinoma (RCC) poses a huge challenge once it has become resistant to targeted therapy. Vasculogenic mimicry (VM) is a novel blood supply system formed by tumor cells that can circumvent molecular targeted therapies. As one of the herbal remedies, curcumin has been demonstrated to play antineoplastic effects in many different types of human cancers; however, its function and mechanism of targeting VM in RCC remains unknown. OBJECTIVE Here, in the work, we explored the role of curcumin and its molecular mechanism in the regulation of VM formation in RCC. METHODS RNA-sequencing analysis, immunoblotting, and immunohistochemistry were used to detect E Twenty Six-1(ETS-1), vascular endothelial Cadherin (VE-Cadherin), and matrix metallopeptidase 9 (MMP9) expressions in RCC cells and tissues. RNA sequencing was used to screen the differential expressed genes. Plasmid transfections were used to transiently knock down or overexpress ETS-1. VM formation was determined by tube formation assay and animal experiments. CD31-PAS double staining was used to label the VM channels in patients and xenograft samples. RESULTS Our results demonstrated that VM was positively correlated with RCC grades and stages using clinical patient samples. Curcumin inhibited VM formation in dose and time-dependent manner in vitro. Using RNA-sequencing analysis, we discovered ETS-1 as a potential transcriptional factor regulating VM formation. Knocking down or overexpression of ETS-1 decreased or increased the VM formation, respectively and regulated the expression of VE-Cadherin and MMP9. Curcumin could inhibit VM formation by suppressing ETS-1, VE-Cadherin, and MMP9 expression both in vitro and in vivo. CONCLUSION Our finding might indicate that curcumin could inhibit VM by regulating ETS-1, VE-Cadherin, and MMP9 expression in RCC cell lines. Curcumin could be considered as a potential anti-cancer compound by inhibiting VM in RCC progression.
Collapse
MESH Headings
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/metabolism
- Humans
- Curcumin/pharmacology
- Proto-Oncogene Protein c-ets-1/metabolism
- Proto-Oncogene Protein c-ets-1/genetics
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Animals
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Xenograft Model Antitumor Assays
- Mice, Nude
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Female
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase 9/genetics
- Cadherins/metabolism
- Cadherins/genetics
- Cell Line, Tumor
- Mice, Inbred BALB C
- Cell Proliferation/drug effects
- Antigens, CD
Collapse
Affiliation(s)
- Yue Chong
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
9
|
Huang YC, Chen WC, Yu CL, Chang TK, I-Chin Wei A, Chang TM, Liu JF, Wang SW. FGF2 drives osteosarcoma metastasis through activating FGFR1-4 receptor pathway-mediated ICAM-1 expression. Biochem Pharmacol 2023; 218:115853. [PMID: 37832794 DOI: 10.1016/j.bcp.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Osteosarcoma is a malignant tumor with high metastatic potential, such that the overall 5-year survival rate of patients with metastatic osteosarcoma is only 20%. Therefore, it is necessary to unravel the mechanisms of osteosarcoma metastasis to identify predictors of metastasis by which to develop new therapies. Fibroblast growth factor 2 (FGF2) is a growth factor involved in embryonic development, cell migration, and proliferation. The overexpression of FGF2 and FGF receptors (FGFRs) has been shown to enhance cancer cell proliferation in lung, breast, gastric, and prostate cancers as well as melanoma. Nonetheless, the roles of FGF2 and FGFRs in human osteosarcoma cells remain unknown. In the present study, we found that FGF2 was overexpressed in human osteosarcoma sections and correlated with lung metastasis. Treatment of FGF2 induced migration activity, invasion activity, and intercellular adhesion molecule (ICAM)-1 expression in osteosarcoma cells. In particular, the downregulation or antagonism of FGFR1-4 suppressed FGF2-induced ICAM-1 expression and cancer cell migration. Furthermore, FGFR1, FGFR2, FGFR3, and FGFR4 were involved in FGF2-induced the phospholipase Cβ/protein kinase Cα/proto-oncogene c-Src signaling pathway and triggered c-Jun nuclear translocation. Subsequent c-Jun upregulation of activator protein-1 transcription activity on the ICAM-1 promoter led to an increased migration of osteosarcoma cells. Moreover, the knockdown of endogenous FGF2 suppressed ICAM-1 expression and migration of osteosarcoma cells. These findings suggest that FGF2/FGFR1-4 signaling promotes metastasis via its direct downstream target gene ICAM-1, revealing a novel potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Lin Yu
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ting-Kuo Chang
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Tsung-Ming Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Zielińska-Górska M, Sosnowska-Ławnicka M, Jaworski S, Lange A, Daniluk K, Nasiłowska B, Bartosewicz B, Chwalibog A, Sawosz E. Silver Nanoparticles and Graphene Oxide Complex as an Anti-Inflammatory Biocompatible Liquid Nano-Dressing for Skin Infected with Staphylococcus aureus. J Inflamm Res 2023; 16:5477-5493. [PMID: 38026239 PMCID: PMC10676867 DOI: 10.2147/jir.s431565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Background Bacterial skin infections, including Staphylococcus aureus, are a powerful and still not fully resolved problem. The aim of this research was to determine the possibility of using a complex of graphene oxide (GO) encrusted with silver nanoparticles as an effective antibacterial agent against S. aureus and to assess its pro-inflammatory properties. Methods The tests were carried out in vitro on EpiDerm™ Skin, an artificial skin model (MatTek in vitro Life Science Laboratories, Slovak Republic), and the fibroblast cell line (HFF-2 from ATCC, USA). Both models were infected with S. aureus bacteria (ATCC 25923) and then treated with antibiotics or our experimental factors: silver nanoparticles (AgNPs, Nano-koloid, Poland), graphene oxide (GO, NanoPoz, Poland), and complex AgNP-GO (hydrocolloid created by self-assembly). Results The antibacterial effectiveness of the AgNP-GO complex was equivalent to that of the antibiotic. In addition, an increase in the level of pro-inflammatory cytokines was observed under the influence of antibiotic administration, in contrast to the effect of AgNP-GO, which showed very limited pro-inflammatory activity. Conclusion Hydrocolloid of the AgNP-GO complex, administered in the form of a liquid dressing, may act as an antibacterial agent and also reduce inflammation induced by S. aureus infection.
Collapse
Affiliation(s)
- Marlena Zielińska-Górska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Malwina Sosnowska-Ławnicka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, Warsaw, 00-908, Poland
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, Warsaw, 00-908, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| |
Collapse
|
11
|
Zhu B, Wang X, Shimura T, Huang AC, Kong N, Dai Y, Fang J, Guo P, Ying JE. Development of potent antibody drug conjugates against ICAM1 + cancer cells in preclinical models of cholangiocarcinoma. NPJ Precis Oncol 2023; 7:93. [PMID: 37717087 PMCID: PMC10505223 DOI: 10.1038/s41698-023-00447-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
As a highly lethal adenocarcinoma of the hepatobiliary system, outcomes for cholangiocarcinoma (CCA) patients remain prominently poor with a 5-year survival of <10% due to the lack of effective treatment modalities. Targeted therapeutics for CCA are limited and surgical resection of CCA frequently suffers from a high recurrence rate. Here we report two effective targeted therapeutics in this preclinical study for CCA. We first performed a quantitative and unbiased screening of cancer-related antigens using comparative flow cytometry in a panel of human CCA cell lines, and identified intercellular adhesion molecule-1 (ICAM1) as a therapeutic target for CCA. After determining that ICAM1 has the ability to efficiently mediate antibody internalization, we constructed two ICAM1 antibody-drug conjugates (ADCs) by conjugating ICAM1 antibodies to different cytotoxic payloads through cleavable chemical linkers. The efficacies of two ICAM1 ADCs have been evaluated in comparison with the first-line chemodrug Gemcitabine in vitro and in vivo, and ICAM1 antibodies coupled with warhead DX-8951 derivative (DXd) or monomethyl auristatin E (MMAE) elicit a potent and consistent tumor attenuation. In summary, this study paves the road for developing a promising targeted therapeutic candidate for clinical treatment of CCA.
Collapse
Affiliation(s)
- Bing Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Xinyan Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
- Institute of Molecular Medicine, Hangzhou Institute for Advanced Study (UCAS), Hangzhou, Zhejiang, 310000, China
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | | | - Nana Kong
- MabPlex International, Yantai, Shandong, 264006, China
| | - Yujie Dai
- MabPlex International, Yantai, Shandong, 264006, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Peng Guo
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China.
| | - Jie-Er Ying
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
12
|
Wang H, Xu X, Wang Y, Xue X, Guo W, Guo S, Qiu S, Cui J, Qiao Y. NMT1 sustains ICAM-1 to modulate adhesion and migration of tumor cells. Cell Signal 2023:110739. [PMID: 37269961 DOI: 10.1016/j.cellsig.2023.110739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Protein modifications have significant effects on tumorigenesis. N-Myristoylation is one of the most important lipidation modifications, and N-myristoyltransferase 1 (NMT1) is the main enzyme required for this process. However, the mechanism underlying how NMT1 modulates tumorigenesis remains largely unclear. Here, we found that NMT1 sustains cell adhesion and suppresses tumor cell migration. Intracellular adhesion molecule 1 (ICAM-1) was a potential functional downstream effector of NMT1, and its N-terminus could be N-myristoylated. NMT1 prevented ubiquitination and proteasome degradation of ICAM-1 by inhibiting Ub E3 ligase F-box protein 4, which prolonged the half-life of ICAM1 protein. Correlations between NMT1 and ICAM-1 were observed in liver and lung cancers, which were associated with metastasis and overall survival. Therefore, carefully designed strategies focusing on NMT1 and its downstream effectors might be helpful to treat tumors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Susu Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Jiangtao Cui
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
13
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
15
|
Wu CY, Peng PW, Renn TY, Lee CJ, Chang TM, Wei AIC, Liu JF. CX3CL1 induces cell migration and invasion through ICAM-1 expression in oral squamous cell carcinoma cells. J Cell Mol Med 2023. [PMID: 37082943 DOI: 10.1111/jcmm.17750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.
Collapse
Affiliation(s)
- Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Pei-Wen Peng
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ting-Yi Renn
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
16
|
Ying K, Zhu Y, Wan J, Zhan C, Wang Y, Xie B, Xu P, Pan H, Wang H. Macrophage membrane-biomimetic adhesive polycaprolactone nanocamptothecin for improving cancer-targeting efficiency and impairing metastasis. Bioact Mater 2023; 20:449-462. [PMID: 35765468 PMCID: PMC9222498 DOI: 10.1016/j.bioactmat.2022.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
The recent remarkable success and safety of mRNA lipid nanoparticle technology for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has stimulated intensive efforts to expand nanoparticle strategies to treat various diseases. Numerous synthetic nanoparticles have been developed for pharmaceutical delivery and cancer treatment. However, only a limited number of nanotherapies have enter clinical trials or are clinically approved. Systemically administered nanotherapies are likely to be sequestered by host mononuclear phagocyte system (MPS), resulting in suboptimal pharmacokinetics and insufficient drug concentrations in tumors. Bioinspired drug-delivery formulations have emerged as an alternative approach to evade the MPS and show potential to improve drug therapeutic efficacy. Here we developed a biodegradable polymer-conjugated camptothecin prodrug encapsulated in the plasma membrane of lipopolysaccharide-stimulated macrophages. Polymer conjugation revived the parent camptothecin agent (e.g., 7-ethyl-10-hydroxy-camptothecin), enabling lipid nanoparticle encapsulation. Furthermore, macrophage membrane cloaking transformed the nonadhesive lipid nanoparticles into bioadhesive nanocamptothecin, increasing the cellular uptake and tumor-tropic effects of this biomimetic therapy. When tested in a preclinical murine model of breast cancer, macrophage-camouflaged nanocamptothecin exhibited a higher level of tumor accumulation than uncoated nanoparticles. Furthermore, intravenous administration of the therapy effectively suppressed tumor growth and the metastatic burden without causing systematic toxicity. Our study describes a combinatorial strategy that uses polymeric prodrug design and cell membrane cloaking to achieve therapeutics with high efficacy and low toxicity. This approach might also be generally applicable to formulate other therapeutic candidates that are not compatible or miscible with biomimetic delivery carriers. Macrophage membrane-biomimetic platform was exploited for nanodelivery of polycaprolactone nanocamptothecin. Macrophage-camouflaged nanocamptothecin exhibited tumor-tropic effects and increased tumor cell adhesion. The nanotherapy effectively suppressed primary tumor growth and the metastatic burden in vivo.
Collapse
|
17
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
18
|
Cheng L, Weng B, Jia C, Zhang L, Hu B, Deng L, Mou N, Sun F, Hu J. The expression and significance of efferocytosis and immune checkpoint related molecules in pancancer samples and the correlation of their expression with anticancer drug sensitivity. Front Pharmacol 2022; 13:977025. [PMID: 36059952 PMCID: PMC9437300 DOI: 10.3389/fphar.2022.977025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The efferocytosis-related molecules have been considered to be correlated with the resistance to cancer chemotherapy. The aim of this study was to investigate the expression and significance of efferocytosis-related molecules in cancers and the correlation of their expression with anticancer drug sensitivity, and provide new potential targets and treatment options for cancers.Methods: We investigated the differential expression of 15 efferocytosis-related molecules (Axl, Tyro3, MerTK, CX3CL1, Tim-4, BAI1, Stab2, Gas6, IDO1, Rac1, MFGE8, ICAM-1, CD47, CD31, and PD-L1) and other 12 common immune checkpoint-related molecules in tumor and normal tissues, the correlation between their expression and various clinicopathological features in 16 types of cancers using publicly available pancancer datasets in The Cancer Genome Atlas. We also analyzed the correlation of the expression of efferocytosis and immune checkpoint related molecules with 126 types of anticancer drugs sensitivity using drug-RNA-seq data.Results: There is a panel of circulating molecules among the 27 molecules. Based on the results of differential expression and correlation with various clinicopathological features of efferocytosis-related molecules in cancers, we identified new potential therapeutic targets for anticancer therapy, such as Axl for kidney renal clear cell carcinoma, Tyro3 for liver hepatocellular carcinoma, and IDO1 for renal papillary cell carcinoma. Except for BAI1, CD31, and MerTK, the enhanced expressions of Axl, Tyro3, Gas6, MFGE8, Stab2, Tim-4, CX3CL1, IDO1, Rac1, and PD-L1 were associated with decreased sensitivity of the cancer cells to many anti-cancer drugs; however, for other common immune checkpoint-related molecules, only enhanced expressions of PD-1, CD28, CTLA4, and HVEM were associated with decreased sensitivity of the cancer cells to a few drugs.Conclusion: The efferocytosis-related molecules were significantly associated with clinical outcomes in many types of cancers and played important roles in resistance to chemotherapy. Combination therapy targeting efferocytosis-related molecules and other immune checkpoint-related molecules is necessary to reduce resistance to chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Hu
- *Correspondence: Fengjun Sun, ; Jing Hu,
| |
Collapse
|
19
|
Identification of a Prognostic Transcriptome Signature for Hepatocellular Carcinoma with Lymph Node Metastasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7291406. [PMID: 35847584 PMCID: PMC9279092 DOI: 10.1155/2022/7291406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignant tumors, and the prognosis of HCC patients with lymph node metastasis (LNM) is poor. However, robust biomarkers for predicting the prognosis of HCC LNM are still lacking. This study used weighted gene coexpression network analysis of GSE28248 (N = 80) microarray data to identify gene modules associated with HCC LNM and validated in GSE40367 dataset (N = 18). The prognosis-related genes in the HCC LNM module were further screened based on the prognostic curves of 371 HCC samples from TCGA. We finally developed a prognostic signature, PSG-30, as a prognostic-related biomarker in HCC LNM. The HCC subtypes identified by PSG-30-based consensus clustering analysis showed significant differences in prognosis, clinicopathological stage, m6A modification, ferroptosis activation, and immune characteristics. In addition, RAD54B was selected by regression model as an independent risk factor affecting the prognosis of HCC patients with LNM, and its expression was significantly positively correlated with tumor mutational burden and microsatellite instability in high-risk subtypes. Patients with high RAD54B expression had a better prognosis in the immune checkpoint inhibitor-treated cohorts but had a poor prognosis in the HCC sorafenib-treated group. The association of high RAD54B expression with LNM in breast cancer (BRCA) and cholangiocarcinoma and its prognostic effect in BRCA LNM cases suggest the value of RAD54B at the pancancer level. In conclusion, PSG-30 can effectively identify HCC LNM population with poor prognosis, and high-risk patients with high RAD54B expression may be more suitable for immunotherapy.
Collapse
|
20
|
Cai JX, Liu JH, Wu JY, Li YJ, Qiu XH, Xu WJ, Xu P, Xiang DX. Hybrid Cell Membrane-Functionalized Biomimetic Nanoparticles for Targeted Therapy of Osteosarcoma. Int J Nanomedicine 2022; 17:837-854. [PMID: 35228800 PMCID: PMC8881933 DOI: 10.2147/ijn.s346685] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jia-Xin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People’s Republic of China
| | - Ji-Hua Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People’s Republic of China
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People’s Republic of China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People’s Republic of China
| | - Xiao-Han Qiu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People’s Republic of China
| | - Wen-Jie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People’s Republic of China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Correspondence: Ping Xu; Da-Xiong Xiang, Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China, Email ;
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
21
|
Al-Shammari AM, Al-Mudhafr MA, Chalap Al- Grawi ED, Al-Hili ZA, Yaseen N. Newcastle disease virus suppresses angiogenesis in mammary adenocarcinoma models. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cancer cells heavily utilise angiogenesis process to increase vascularisation for tumour mass growth and spread, so targeting this process is important to create an effective therapy. The AMHA1 strain of Newcastle disease virus (NDV) is an RNA virus with natural oncotropism. NDV induces direct tumour cytolysis, apoptosis, and immune stimulation. This work aimed to test NDV anti-angiogenic activity in a breast cancer model. To evaluate NDV’s antitumour effect in vivo, NDV was tested against mammary adenocarcinoma AN3 transplanted in syngeneic immunocompetent mice. In vivo antiangiogenic activity was evaluated by quantifying the blood vessels in treated and control tumour sections. In vitro experiments that exposed AMN3 mammary adenocarcinoma cells and Hep-2 laryngeal carcinoma cells to NDV at different time intervals were performed to identify the exact mechanism of anti-angiogenesis by using angiogenesis microarray slides. In vivo results showed significant tumour regression and significant decrease in blood vessel formation in treated tumour sections. The in vitro microarray analysis of 14 different angiogenesis factors revealed that NDV downregulated angiopoietin-1, angiopoietin-2, and epidermal growth factor in mammary adenocarcinoma cells. However, NDV elicited a different effect on Hep-2 as represented by the downregulation of inducible protein 10, intracellular adhesion molecule-1, and basic fibroblast growth factor beta in NDV-infected tumour cells. It was found out that microarray analysis results helped interpret the in vivo data. The results suggested that the NDV oncolytic strain reduced angiogenesis by interfering with angiogenesis factors that might reduce tumour cell proliferation, infiltration, and invasion.
Collapse
Affiliation(s)
- A. M. Al-Shammari
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - M. A. Al-Mudhafr
- University of Kufa, Faculty of Veterinary Medicine, Department of Microbiology
| | | | - Z. A. Al-Hili
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - N. Yaseen
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| |
Collapse
|
22
|
Yoo K, Kang J, Choi M, Suh Y, Zhao Y, Kim M, Chang JH, Shim J, Yoon S, Kang S, Lee S. Soluble ICAM-1 a Pivotal Communicator between Tumors and Macrophages, Promotes Mesenchymal Shift of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102768. [PMID: 34813169 PMCID: PMC8805565 DOI: 10.1002/advs.202102768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Despite aggressive clinical treatment, recurrence of glioblastoma multiforme (GBM) is unavoidable, and the clinical outcome is still poor. A convincing explanation is the phenotypic transition of GBM cells upon aggressive treatment such as radiotherapy. However, the microenvironmental factors contributing to GBM recurrence after treatment remain unexplored. Here, it is shown that radiation-treated GBM cells produce soluble intercellular adhesion molecule-1 (sICAM-1) which stimulates the infiltration of macrophages, consequently enriching the tumor microenvironment with inflammatory macrophages. Acting as a paracrine factor, tumor-derived sICAM-1 induces macrophages to secrete wingless-type MMTV integration site family, member 3A (WNT3A), which promotes a mesenchymal shift of GBM cells. In addition, blockade of either sICAM-1 or WNT3A diminishes the harmful effect of radiation on tumor progression. Collectively, the findings indicate that cellular crosstalk between GBM and macrophage through sICAM-1-WNT3A oncogenic route is involved in the mesenchymal shift of GBM cells after radiation, and suggest that radiotherapy combined with sICAM-1 targeted inhibition would improve the clinical outcome of GBM patients.
Collapse
Affiliation(s)
- Ki‐Chun Yoo
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
- Department of Lymphoma and MyelomaDivision of Cancer MedicineCenter for Cancer Immunology ResearchThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Jae‐Hyeok Kang
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Mi‐Young Choi
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Yongjoon Suh
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Yi Zhao
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Min‐Jung Kim
- Laboratory of Radiation Exposure & TherapeuticsNational Radiation Emergency Medical CenterKorea Institute of Radiological and Medical SciencesSeoul01812Korea
| | - Jong Hee Chang
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Jin‐Kyoung Shim
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Seon‐Jin Yoon
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Seok‐Gu Kang
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Su‐Jae Lee
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| |
Collapse
|
23
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
24
|
Xu XL, Liu H, Zhang Y, Zhang SX, Chen Z, Bao Y, Li TK. SPP1 and FN1 are significant gene biomarkers of tongue squamous cell carcinoma. Oncol Lett 2021; 22:713. [PMID: 34457068 PMCID: PMC8358624 DOI: 10.3892/ol.2021.12974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumor types in the oral and maxillofacial region. The etiology and pathogenesis behind TSCC is complicated. In the present study, three gene expression profiles, namely GSE31056, GSE13601 and GSE78060, were downloaded from the Gene Expression Omnibus (GEO). The GEO2R online tool was utilized to identify differentially expressed genes (DEGs) between TSCC and normal tissue samples. Furthermore, a protein-protein interaction (PPI) network was constructed and hub genes were validated and analyzed. A total of 83 common DEGs were obtained in three datasets, including 48 upregulated and 35 downregulated genes. Pathway enrichment analysis indicated that DEGs were primarily enriched in cell adhesion, extracellular matrix (ECM) organization, and proteolysis. A total of 63 nodes and 218 edges were included in the PPI network. The top 11 candidate hub genes were acquired, namely plasminogen activator urokinase (PLAU), signal transducer and activator of transcription 1, C-X-C motif chemokine ligand 12, matrix metallopeptidase (MMP) 13, secreted phosphoprotein 1 (SPP1), periostin, MMP1, MMP3, fibronectin 1 (FN1), serpin family E member 1 and snail family transcriptional repressor 2. Overall, 83 DEGs and 11 hub genes were screened from TSCC and normal individuals using bioinformatics and microarray technology. These genes may be used as diagnostic and therapeutic biomarkers for TSCC. In addition, SPP1 and FNl were identified as potential biomarkers for the progression of TSCC.
Collapse
Affiliation(s)
- Xiao-Liang Xu
- Department of Stomatology, The Second Hospital of Tangshan City, Tangshan, Hebei 063000, P.R. China
| | - Hui Liu
- Department of Stomatology, North China University of Science And Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ying Zhang
- Department of Stomatology, The Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050011, P.R. China
| | - Su-Xin Zhang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhong Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yang Bao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tian-Ke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
25
|
Cheng G, Dong H, Yang C, Liu Y, Wu Y, Zhu L, Tong X, Wang S. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int 2021; 21:406. [PMID: 34332576 PMCID: PMC8325213 DOI: 10.1186/s12935-021-02024-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC), which includes lip and oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx malignancies, is one of the most common cancers worldwide. Due to the interaction of tumor cells with immune cells in the tumor microenvironment, immunotherapy of HNCs, along with traditional treatments such as chemotherapy, radiotherapy, and surgery, has attracted much attention. Four main immunotherapy strategies in HNCs have been developed, including oncolytic viruses, monoclonal antibodies, chimeric antigen receptor T cells (CAR-T cells), and therapeutic vaccines. Oncorine (H101), an approved oncolytic adenovirus in China, is the pioneer of immunotherapy for the treatment of HNCs. Pembrolizumab and nivolumab are mAbs against PD-L1 that have been approved for recurrent and metastatic HNC patients. To date, several clinical trials using immunotherapy agents and their combination are under investigation. In this review, we summarize current the interaction of tumor cells with immune cells in the tumor microenvironment of HNCs, the main strategies that have been applied for immunotherapy of HNCs, obstacles that hinder the success of immunotherapies in patients with HNCs, as well as solutions for overcoming the challenges to enhance the response of HNCs to immunotherapies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Dong
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Yang
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi Wu
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Lifen Zhu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China. .,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
26
|
Shigeoka M, Koma YI, Kodama T, Nishio M, Akashi M, Yokozaki H. Tongue Cancer Cell-Derived CCL20 Induced by Interaction With Macrophages Promotes CD163 Expression on Macrophages. Front Oncol 2021; 11:667174. [PMID: 34178651 PMCID: PMC8219974 DOI: 10.3389/fonc.2021.667174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Background CD163-positive macrophages contribute to the aggressiveness of oral squamous cell carcinoma. We showed in a previous report that CD163-positive macrophages infiltrated not only to the cancer nest but also to its surrounding epithelium, depending on the presence of stromal invasion in tongue carcinogenesis. However, the role of intraepithelial macrophages in tongue carcinogenesis remains unclear. In this study, we assessed the biological behavior of intraepithelial macrophages on their interaction with cancer cells. Materials and Methods We established the indirect coculture system (intraepithelial neoplasia model) and direct coculture system (invasive cancer model) of human monocytic leukemia cell line THP-1-derived CD163-positive macrophages with SCC25, a tongue squamous cell carcinoma (TSCC) cell line. Conditioned media (CM) harvested from these systems were analyzed using cytokine array and enzyme-linked immunosorbent assay and extracted a specific upregulated cytokine in CM from the direct coculture system (direct CM). The correlation of both this cytokine and its receptor with various clinicopathological factors were evaluated based on immunohistochemistry using clinical samples from 59 patients with TSCC. Moreover, the effect of this cytokine in direct CM on the phenotypic alterations of THP-1 was confirmed by real-time polymerase chain reaction, western blotting, immunofluorescence, and transwell migration assay. Results It was shown that CCL20 was induced in the direct CM specifically. Interestingly, CCL20 was produced primarily in SCC25. The expression level of CCR6, which is a sole receptor of CCL20, was higher than the expression level of SCC25. Our immunohistochemical investigation showed that CCL20 and CCR6 expression was associated with lymphatic vessel invasion and the number of CD163-positive macrophages. Recombinant human CCL20 induced the CD163 expression and promoted migration of THP-1. We also confirmed that a neutralizing anti-CCL20 antibody blocked the induction of CD163 expression by direct CM in THP-1. Moreover, ERK1/2 phosphorylation was associated with the CCL20-driven induction of CD163 expression in THP-1. Conclusions Tongue cancer cell-derived CCL20 that was induced by interaction with macrophages promotes CD163 expression on macrophages.
Collapse
Affiliation(s)
- Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Division of Oral and Maxillofacial Surgery, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
27
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
28
|
Shigeoka M, Koma YI, Nishio M, Akashi M, Yokozaki H. Alteration of Macrophage Infiltrating Compartment: A Novel View on Oral Carcinogenesis. Pathobiology 2021; 88:327-337. [PMID: 33965948 DOI: 10.1159/000515922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mortality of oral squamous cell carcinoma (OSCC) has remained high for decades; therefore, methods for early detection of OSCC are warranted. However, in the oral cavity, various mucosal diseases may be encountered, including reactive lesions and oral potentially malignant disorders, and it is difficult to differentiate OSCC from these lesions based on both clinical and histopathological findings. It is well known that chronic inflammation contributes to oral cancer development. Macrophages are among the most common inflammatory cells in cancer stromal tissue and have various roles in cancer aggressiveness. Although the roles of macrophages in cancer development have attracted attention, only a few studies have linked macrophages to carcinogenesis, particularly, oral precancerous lesions. SUMMARY This review article consists of 3 parts: first, we summarize current knowledge on macrophages in human various epithelial precancerous lesions, excluding the oral cavity, to show the importance and gaps in knowledge regarding macrophages in carcinogenesis; second, we review published data related to the role of macrophages in oral carcinogenesis; finally, we present a novel view on oral carcinogenesis, focusing on crosstalk between epithelial cells and macrophages. Key Messages: The biological features of macrophages in oral carcinogenesis differ drastically depending on the anatomical compartment that they infiltrate. Focusing on the alteration of macrophage infiltrating compartment may serve as a useful novel approach for studying the role of the macrophages in oral carcinogenesis and for gaining further insight into cancer prevention and early detection.
Collapse
Affiliation(s)
- Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Division of Oral and Maxillofacial Surgery, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
29
|
Odagiri T, Asano Y, Kagiya T, Matsusaki M, Akashi M, Shimoda H, Hakamada K. The Cell Line-Dependent Diversity in Initial Morphological Dynamics of Pancreatic Cancer Cell Peritoneal Metastasis Visualized by an Artificial Human Peritoneal Model. J Surg Res 2021; 261:351-360. [PMID: 33493887 DOI: 10.1016/j.jss.2020.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is considered as one of the most malignant types of cancer with rapid metastasis and invasion of the cancer cells, having peritoneal metastasis (PM) as a dominant factor of poor prognosis. Although the prevention of peritoneal dissemination would result in the inhibition of the initial metastatic process and contribute in improving the poor prognosis of the pancreatic cancer, the initial dynamics of PM are still unclear because of the lack of adequate models in studying the morphological and molecular details of pancreatic cancer cells. MATERIALS AND METHODS The artificial human peritoneal tissue (AHPT) that can be applied in studying for the spatial dynamics of cancer PM in vitro has been established previously. In this study, the initial dynamics of the three pancreatic cell lines, undifferentiated carcinoma MIA PaCa-2, poorly differentiated adenocarcinoma Panc-1, and moderately differentiated adenocarcinoma BxPC3 on AHPT are examined. RESULTS In a morphological analysis using light and electron microscopy, MIA PaCa-2 cells spread on the mesothelial layer with disruption of the sheet structure and infiltrated into the stroma-like tissue in AHPT. On the other hand, BxPC3 cells changed shapes from round into flat ones with rapid proliferation and formed sheet structure at the surface of the tissue replacing the mesothelial layer without vertical invasion into the tissue. Panc-1 cells demonstrated the intermediate characteristics of MIA PaCa-2 and BxPC3 on AHPT. These diverse morphological characteristics were verified by the correspondence with the results in a mouse model and were reflected by the profile of secreted oncogenic proteins of the three pancreatic cell lines. CONCLUSIONS The initial dynamics in the peritoneal dissemination of these pancreatic cancer cell lines were demonstrated by AHPT, showing the morphological and molecular diversity depending on the degree of differentiation or the properties of oncogenic protein secretion.
Collapse
Affiliation(s)
- Tadashi Odagiri
- Department of Gastroenterological Surgery, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Takuji Kagiya
- Department of Gastroenterological Surgery, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan; Department of Anatomical Science, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan.
| |
Collapse
|
30
|
Ding J, He X, Cheng X, Cao G, Chen B, Chen S, Xiong M. A 4-gene-based hypoxia signature is associated with tumor immune microenvironment and predicts the prognosis of pancreatic cancer patients. World J Surg Oncol 2021; 19:123. [PMID: 33865399 PMCID: PMC8053300 DOI: 10.1186/s12957-021-02204-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background Pancreatic cancer (PAC) is one of the most devastating cancer types with an extremely poor prognosis, characterized by a hypoxic microenvironment and resistance to most therapeutic drugs. Hypoxia has been found to be one of the factors contributing to chemoresistance in PAC, but also a major driver of the formation of the tumor immunosuppressive microenvironment. However, the method to identify the degree of hypoxia in the tumor microenvironment (TME) is incompletely understood. Methods The mRNA expression profiles and corresponding clinicopathological information of PAC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, respectively. To further explore the effect of hypoxia on the prognosis of patients with PAC as well as the tumor immune microenvironment, we established a hypoxia risk model and divided it into high- and low-risk groups in line with the hypoxia risk score. Results We established a hypoxia risk model according to four hypoxia-related genes, which could be used to demonstrate the immune microenvironment in PAC and predict prognosis. Moreover, the hypoxia risk score can act as an independent prognostic factor in PAC, and a higher hypoxia risk score was correlated with poorer prognosis in patients as well as the immunosuppressive microenvironment of the tumor. Conclusions In summary, we established and validated a hypoxia risk model that can be considered as an independent prognostic indicator and reflected the immune microenvironment of PAC, suggesting the feasibility of hypoxia-targeted therapy for PAC patients.
Collapse
Affiliation(s)
- Jianfeng Ding
- Department of General Surgery, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Xiaobo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiao Cheng
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Maoming Xiong
- Department of General Surgery, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China. .,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
31
|
Doll PW, Husari A, Ahrens R, Spindler B, Guber AE, Steinberg T. Enhancing the soft-tissue integration of dental implant abutments-in vitro study to reveal an optimized microgroove surface design to maximize spreading and alignment of human gingival fibroblasts. J Biomed Mater Res B Appl Biomater 2021; 109:1768-1776. [PMID: 33773082 DOI: 10.1002/jbm.b.34836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/01/2021] [Accepted: 03/14/2021] [Indexed: 11/07/2022]
Abstract
Within this work, we demonstrate the influences of different microgrooved surface topographies on the alignment and spreading of human gingival fibroblast (HGF) cells and present the optimal parameters for an improved soft-tissue integration design for dental implant abutments for the first time. Microgrooves with lateral widths from 2.5 to 75 μm were fabricated by UV-lithography and wet etching on bulk Ti6Al4V ELI material. The microstructured surfaces were compared to polished and ground surfaces as current state of the art. The resulting microtopographies were analyzed using vertical scanning interferometry and scanning electron microscopy. Samples loaded with HGF cells were incubated for 8 and 72 hr and cell orientation, spreading, resulting area, and relative gene expression were analyzed. The effect of contact guidance occurred on all microstructured surfaces yet there is a clear preferable range for the lateral widths of the microgrooves between approx. 11.5 and 13.9 μm and depths between 1.6 and 2.4 μm for an abutment surface design, where cell orientation and spreading maximizes. For structures larger than 30 μm, cell orientation, spreading and even gene expression of intercellular adhesion molecule-1 and yes-associated protein decrease.
Collapse
Affiliation(s)
- Patrick W Doll
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany.,Department of Orthodontics, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Ralf Ahrens
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | | | - Andreas E Guber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| |
Collapse
|
32
|
Zhao L, Zhang J, Liu Z, Wang Y, Xuan S, Zhao P. Comprehensive Characterization of Alternative mRNA Splicing Events in Glioblastoma: Implications for Prognosis, Molecular Subtypes, and Immune Microenvironment Remodeling. Front Oncol 2021; 10:555632. [PMID: 33575206 PMCID: PMC7870873 DOI: 10.3389/fonc.2020.555632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing (AS) of pre-mRNA has been widely reported to be associated with the progression of malignant tumors. However, a systematic investigation into the prognostic value of AS events in glioblastoma (GBM) is urgently required. The gene expression profile and matched AS events data of GBM patients were obtained from The Cancer Genome Atlas Project (TCGA) and TCGA SpliceSeq database, respectively. 775 AS events were identified as prognostic factors using univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) cox model was performed to narrow down candidate AS events, and a risk score model based on several AS events were developed subsequently. The risk score-based signature was proved as an efficient predictor of overall survival and was closely related to the tumor purity and immunosuppression in GBM. Combined similarity network fusion and consensus clustering (SNF-CC) analysis revealed two distinct GBM subtypes based on the prognostic AS events, and the associations between this novel molecular classification and clinicopathological factors, immune cell infiltration, as well as immunogenic features were further explored. We also constructed a regulatory network to depict the potential mechanisms that how prognostic splicing factors (SFs) regulate splicing patterns in GBM. Finally, a nomogram incorporating AS events signature and other clinical-relevant covariates was built for clinical application. This comprehensive analysis highlights the potential implications for predicting prognosis and clinical management in GBM.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayue Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyuan Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Nemec M, Bartholomaeus HM, H. Bertl M, Behm C, Ali Shokoohi-Tabrizi H, Jonke E, Andrukhov O, Rausch-Fan X. Behaviour of Human Oral Epithelial Cells Grown on Invisalign ® SmartTrack ® Material. MATERIALS (BASEL, SWITZERLAND) 2020; 13:5311. [PMID: 33255259 PMCID: PMC7727678 DOI: 10.3390/ma13235311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 11/18/2022]
Abstract
Invisalign aligners have been widely used to correct malocclusions, but their effect on oral cells is poorly known. Previous research evaluated the impact of aligners' eluates on various cells, but the cell behavior in direct contact with aligners is not yet studied. In the present study, we seeded oral epithelial cells (cell line Ca9-22) directly on Invisalign SmartTrack material. This material is composed of polyurethane and co-polyester and exhibit better mechanical characteristics compared to the predecessor. Cell morphology and behavior were investigated by scanning electron microscopy and an optical cell moves analyzer. The effect of aligners on cell proliferation/viability was assessed by cell-counting kit (CCK)-8 and 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay and live/dead staining. The expression of inflammatory markers and proteins involved in epithelial barrier function was measured by qPCR. Cells formed cluster-like structures on aligners. The proliferation/viability of cells growing on aligners was significantly lower (p < 0.05) compared to those growing on tissue culture plastic (TCP). Live/dead staining revealed a rare occurrence of dead cells on aligners. The gene expression level of all inflammatory markers in cells grown on aligners' surfaces was significantly increased (p < 0.05) compared to cells grown on TCP after two days. Gene expression levels of the proteins involved in barrier function significantly increased (p < 0.05) on aligners' surfaces after two and seven days of culture. Aligners' material exhibits no cytotoxic effect on oral epithelial cells, but alters their behavior and the expression of proteins involved in the inflammatory response, and barrier function. The clinical relevance of these effects has still to be established.
Collapse
Affiliation(s)
- Michael Nemec
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (M.N.); (M.H.B.); (C.B.); (E.J.)
| | - Hans Magnus Bartholomaeus
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (H.M.B.); (H.A.S.-T.); (X.R.-F.)
| | - Michael H. Bertl
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (M.N.); (M.H.B.); (C.B.); (E.J.)
| | - Christian Behm
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (M.N.); (M.H.B.); (C.B.); (E.J.)
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (H.M.B.); (H.A.S.-T.); (X.R.-F.)
| | - Hassan Ali Shokoohi-Tabrizi
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (H.M.B.); (H.A.S.-T.); (X.R.-F.)
| | - Erwin Jonke
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (M.N.); (M.H.B.); (C.B.); (E.J.)
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (H.M.B.); (H.A.S.-T.); (X.R.-F.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (H.M.B.); (H.A.S.-T.); (X.R.-F.)
| |
Collapse
|
34
|
Bull JA, Mech F, Quaiser T, Waters SL, Byrne HM. Mathematical modelling reveals cellular dynamics within tumour spheroids. PLoS Comput Biol 2020; 16:e1007961. [PMID: 32810174 PMCID: PMC7455028 DOI: 10.1371/journal.pcbi.1007961] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/28/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Tumour spheroids are widely used as an in vitro assay for characterising the dynamics and response to treatment of different cancer cell lines. Their popularity is largely due to the reproducible manner in which spheroids grow: the diffusion of nutrients and oxygen from the surrounding culture medium, and their consumption by tumour cells, causes proliferation to be localised at the spheroid boundary. As the spheroid grows, cells at the spheroid centre may become hypoxic and die, forming a necrotic core. The pressure created by the localisation of tumour cell proliferation and death generates an cellular flow of tumour cells from the spheroid rim towards its core. Experiments by Dorie et al. showed that this flow causes inert microspheres to infiltrate into tumour spheroids via advection from the spheroid surface, by adding microbeads to the surface of tumour spheroids and observing the distribution over time. We use an off-lattice hybrid agent-based model to re-assess these experiments and establish the extent to which the spatio-temporal data generated by microspheres can be used to infer kinetic parameters associated with the tumour spheroids that they infiltrate. Variation in these parameters, such as the rate of tumour cell proliferation or sensitivity to hypoxia, can produce spheroids with similar bulk growth dynamics but differing internal compositions (the proportion of the tumour which is proliferating, hypoxic/quiescent and necrotic/nutrient-deficient). We use this model to show that the types of experiment conducted by Dorie et al. could be used to infer spheroid composition and parameters associated with tumour cell lines such as their sensitivity to hypoxia or average rate of proliferation, and note that these observations cannot be conducted within previous continuum models of microbead infiltration into tumour spheroids as they rely on resolving the trajectories of individual microbeads. Tumour spheroids are an experimental assay used to characterise the dynamics and response to treatment of different cancer cell lines. Previous experiments have demonstrated that the localisation of tumour cell proliferation to the spheroid edge (due to the gradient formed by nutrient diffusing from the surrounding medium) causes cells to be pushed from the proliferative rim towards the nutrient-deficient necrotic core. This movement allows inert particles to infiltrate tumour spheroids. We use a hybrid agent-based model to reproduce this data. We show further how data from individual microbead trajectories can be used to infer the composition of simulated tumour spheroids, and to estimate model parameters pertaining to tumour cell proliferation rates and their responses to hypoxia. Since these measurements are possible using modern imaging techniques, this could motivate new experiments in which spheroid composition could be inferred by observing passive infiltration of inert particles.
Collapse
Affiliation(s)
- Joshua A. Bull
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Franziska Mech
- Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Centre Munich, Germany
| | - Tom Quaiser
- Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Centre Munich, Germany
| | - Sarah L. Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Lv G, Fan J. Silencing ICAM-1 reduces the adhesion of vascular endothelial cells in mice with immunologic contact urticaria. Gene 2020; 760:144965. [PMID: 32687948 DOI: 10.1016/j.gene.2020.144965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Immunologic contact urticaria (ICU) is an immediate response of wheal caused by various contactants in vulnerable individuals, with undefined pathogenesis. METHODS In the present study, we aim to explore the effects of intercellular cell adhesion molecule-1 (ICAM-1) gene silencing by RNA inference (RNAi) on vascular endothelial cells (VECs) adhesion molecule expression and cell-cell adhesion in ICU mice. Sixty BALB/c mice were selected, among which 48 mice were used for establishment of ICU models. VECs from normal and ICU mice were grouped into different groups. Expressions of ICAM-1, eosinophilic cationic protein (ECP), total immunologlobulin E (tIgE), L-selectin (CD62L), integrin, alpha L (CD11a) in tissues and cells were evaluate by RT-qPCR and western blotting. Cell proliferation was evaluated by MTT assay and EdU staining and cell adhesive function by cell-cell adhesion assay. RESULTS Compared with normal mice, ICU mice had increased expressions of ICAM-1, ECP, tIgE, CD62L, and CD11a.ICAM-1 gene silencing decreased expressions of ECP, tIgE, CD62L, and CD11a, enhanced cell proliferation, and more activity in cell adhesion. CONCLUSION These findings indicate that RNAi-mediated gene silencing of ICAM-1 may decrease VECs adhesion expression and reduce cell-cell adhesion in mice with ICU.
Collapse
Affiliation(s)
- Gaomei Lv
- Department of Pediatric Internal Medicine, Linyi People's Hospital, Linyi 276002, PR China
| | - Jingang Fan
- Department of Pediatric Internal Medicine, Linyi People's Hospital, Linyi 276002, PR China.
| |
Collapse
|
36
|
Flemming JP, Hill BL, Haque MW, Raad J, Bonder CS, Harshyne LA, Rodeck U, Luginbuhl A, Wahl JK, Tsai KY, Wermuth PJ, Overmiller AM, Mahoney MG. miRNA- and cytokine-associated extracellular vesicles mediate squamous cell carcinomas. J Extracell Vesicles 2020; 9:1790159. [PMID: 32944178 PMCID: PMC7480578 DOI: 10.1080/20013078.2020.1790159] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exosomes, or small extracellular vesicles (sEVs), serve as intercellular messengers with key roles in normal and pathological processes. Our previous work had demonstrated that Dsg2 expression in squamous cell carcinoma (SCC) cells enhanced both sEV secretion and loading of pro-mitogenic cargo. In this study, using wild-type Dsg2 and a mutant form that is unable to be palmitoylated (Dsg2cacs), we investigated the mechanism by which Dsg2 modulates SCC tumour development and progression through sEVs. We demonstrate that palmitoylation was required for Dsg2 to regulate sub-cellular localisation of lipid raft and endosomal proteins necessary for sEV biogenesis. Pharmacological inhibition of the endosomal pathway abrogated Dsg2-mediated sEV release. In murine xenograft models, Dsg2-expressing cells generated larger xenograft tumours as compared to cells expressing GFP or Dsg2cacs. Co-treatment with sEVs derived from Dsg2-over-expressing cells increased xenograft size. Cytokine profiling revealed, Dsg2 enhanced both soluble and sEV-associated IL-8 and miRNA profiling revealed, Dsg2 down-regulated both cellular and sEV-loaded miR-146a. miR-146a targets IRAK1, a serine-threonine kinase involved in IL-8 signalling. Treatment with a miR-146a inhibitor up-regulated both IRAK1 and IL-8 expression. RNAseq analysis of HNSCC tumours revealed a correlation between Dsg2 and IL-8. Finally, elevated IL-8 plasma levels were detected in a subset of HNSCC patients who did not respond to immune checkpoint therapy, suggesting that these patients may benefit from prior anti-IL-8 treatment. In summary, these results suggest that intercellular communication through cell-cell adhesion, cytokine release and secretion of EVs are coordinated, and critical for tumour growth and development, and may serve as potential prognostic markers to inform treatment options. Abbreviations Basal cell carcinomas, BCC; Betacellulin, BTC; 2-bromopalmitate, 2-Bromo; Cluster of differentiation, CD; Cytochrome c oxidase IV, COX IV; Desmoglein 2, Dsg2; Early endosome antigen 1, EEA1; Epidermal growth factor receptor substrate 15, EPS15; Extracellular vesicle, EV; Flotillin 1, Flot1; Glyceraldehyde-3-phosphate dehydrogenase, GAPH; Green fluorescent protein, GFP; Head and neck squamous cell carcinoma, HNSCC; Interleukin-1 receptor-associated kinase 1, IRAK1; Interleukin 8, IL-8; Large EV, lEV; MicroRNA, miR; Palmitoylacyltransferase, PAT; Ras-related protein 7 Rab7; Small EV, sEV; Squamous cell carcinoma, SCC; Tissue inhibitor of metalloproteinases, TIMP; Tumour microenvironment, TME
Collapse
Affiliation(s)
- Joseph P Flemming
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brianna L Hill
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohammed W Haque
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Raad
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Larry A Harshyne
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Kenneth Y Tsai
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA
| | - Peter J Wermuth
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Wu M, Tong X, Wang D, Wang L, Fan H. Soluble intercellular cell adhesion molecule-1 in lung cancer: A meta-analysis. Pathol Res Pract 2020; 216:153029. [PMID: 32853940 DOI: 10.1016/j.prp.2020.153029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Many recent studies have investigated the prognostic, diagnostic, and progressive features of soluble intercellular cell adhesion molecule-1 (sICAM-1) in lung cancer patients, but the results remained inconsistent. This study aimed to explore the value of serum sICAM-1 in patients with lung cancer. METHODS A comprehensive systematic literature search in the Wanfang databases, china national knowledge infrastructure, Pubmed, and Embase was carried out update to June 15, 2019. The standard mean difference (SMD), hazard ratio (HR), and 95% confidence interval (95% CI) were applied to investigate the effect sizes. RESULTS 23 observational studies were included. According to our results, the serum sICAM-1 concentrations in patients with lung cancer were significantly higher than that in controls (healthy controls: SMD: 4.08, 95% CI: 3.14-5.02, P < 0.001; benign lung diseases controls : SMD: 1.48, 95% CI: 0.23-2.73,P = 0.02). Fortunately, a subgroup analysis was performed by language, treatment status, and lung cancer types, and the statistical results were similar. Serum sICAM-1 levels were markedly higher in stage III/IV than stage I/II (SMD: 1.96, 95% CI: 1.08-2.84, P < 0.001), Additionally, lung cancer patients with lymph node metastasis had a higher concentrations of serum sICAM-1(SMD: 1.83, 95% CI: 0.95-2.72, P < 0.001), as well as with distant metastasis (SMD: 0.86, 95% CI: 0.47-1.25, P < 0.001). Additionally, patients with higher sICAM-1 levels were related to a significantly poorer prognosis (progression free survival: HR: 1.16, 95% CI: 1.07-1.26, P < 0.001; overall survival: HR: 1.45, 95% CI: 1.17-1.79, P = 0.001). CONCLUSIONS Our study suggested that serum sICAM-1 levels may act as a potential marker for diagnosing lung cancer and predicting its staging, and were negatively correlated with prognosis of lung cancer.
Collapse
Affiliation(s)
- Man Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Lei Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Abstract
The immune system has a vital role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). Immune evasion of cancer cells leads to progression of HNSCC. An understanding of this mechanism provides the basis for improved therapies and outcomes for patients. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides an overview of the interaction between immune infiltrating cells in the tumor microenvironment, and the immunologic principles related to HNSCC. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented.
Collapse
Affiliation(s)
- Felix Sim
- Department of Oral and Maxillofacial Surgery, The Royal Melbourne Hospital, 300 Grattan Street, Parkville, Victoria 3050, Australia; Department of Oral and Maxillofacial Surgery, Monash Health, 823 Centre Road, Bentleigh East, Victoria 3165, Australia; Oral and Maxillofacial Surgery Unit, Barwon Health, Ryrie Street & Bellerine Street, Geelong, Victoria 3220, Australia
| | - Rom Leidner
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Providence Cancer Institute, 4805 Northeast Glisan Street, Suite 2N35, Portland, OR 97213, USA
| | - Richard Bryan Bell
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Providence Cancer Institute, 4805 Northeast Glisan Street, Suite 2N35, Portland, OR 97213, USA; Head and Neck Institute, 1849 NW Kearney, Suite 300, Portland, Oregon 97209, USA.
| |
Collapse
|
39
|
Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol 2020; 108:787-799. [PMID: 32182390 DOI: 10.1002/jlb.2mr0220-549r] [Citation(s) in RCA: 530] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
ICAM-1 is a cell surface glycoprotein and an adhesion receptor that is best known for regulating leukocyte recruitment from circulation to sites of inflammation. However, in addition to vascular endothelial cells, ICAM-1 expression is also robustly induced on epithelial and immune cells in response to inflammatory stimulation. Importantly, ICAM-1 serves as a biosensor to transduce outside-in-signaling via association of its cytoplasmic domain with the actin cytoskeleton following ligand engagement of the extracellular domain. Thus, ICAM-1 has emerged as a master regulator of many essential cellular functions both at the onset and at the resolution of pathologic conditions. Because the role of ICAM-1 in driving inflammatory responses is well recognized, this review will mainly focus on newly emerging roles of ICAM-1 in epithelial injury-resolution responses, as well as immune cell effector function in inflammation and tumorigenesis. ICAM-1 has been of clinical and therapeutic interest for some time now; however, several attempts at inhibiting its function to improve injury resolution have failed. Perhaps, better understanding of its beneficial roles in resolution of inflammation or its emerging function in tumorigenesis will spark new interest in revisiting the clinical value of ICAM-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Nguyen CTK, Sawangarun W, Mandasari M, Morita KI, Harada H, Kayamori K, Yamaguchi A, Sakamoto K. AIRE is induced in oral squamous cell carcinoma and promotes cancer gene expression. PLoS One 2020; 15:e0222689. [PMID: 32012175 PMCID: PMC6996854 DOI: 10.1371/journal.pone.0222689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune regulator (AIRE) is a transcriptional regulator that is primarily expressed in medullary epithelial cells, where it induces tissue-specific antigen expression. Under pathological conditions, AIRE expression is induced in epidermal cells and promotes skin tumor development. This study aimed to clarify the role of AIRE in the pathogenesis of oral squamous cell carcinoma (OSCC). AIRE expression was evaluated in six OSCC cell lines and in OSCC tissue specimens. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was elevated in 293A cells stably expressing AIRE, and conversely, was decreased in AIRE-knockout HSC3 OSCC cells when compared to the respective controls. Upregulation of STAT1, and ICAM in OSCC cells was confirmed in tissue specimens by immunohistochemistry. We provide evidence that AIRE exerts transcriptional control in cooperation with ETS1. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was increased in 293A cells upon Ets1 transfection, and coexpression of AIRE further increased the expression of these proteins. AIRE coprecipitated with ETS1 in a modified immunoprecipitation assay using formaldehyde crosslinking. Chromatin immunoprecipitation and quantitative PCR analysis revealed that promoter fragments of STAT1, ICAM1, CXCL10, and MMP9 were enriched in the AIRE precipitates. These results indicate that AIRE is induced in OSCC and supports cancer-related gene expression in cooperation with ETS1. This is a novel function of AIRE in extrathymic tissues under the pathological condition.
Collapse
Affiliation(s)
- Chi Thi Kim Nguyen
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wanlada Sawangarun
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masita Mandasari
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
41
|
Shigeoka M, Koma YI, Kodama T, Nishio M, Akashi M, Yokozaki H. Intraepithelial CD163 + macrophages in tongue leukoplakia biopsy: A promising tool for cancer screening. Oral Dis 2020; 26:527-536. [PMID: 31886947 DOI: 10.1111/odi.13269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Oral leukoplakia has mixed and differing histopathological features, and it is thus difficult to reach an accurate histological diagnosis of oral leukoplakia based on a local biopsy alone. We recently demonstrated the significance of CD163+ macrophages in oral carcinogenesis. Herein we sought to determine whether CD163+ macrophages in biopsy specimens of oral leukoplakia help identify the overall histological nature of the lesion. PATIENTS AND METHODS Twenty-six patients with tongue leukoplakia who underwent a histological examination by both a preoperative local biopsy and consecutive total excision were enrolled. We evaluated clinicopathological factors and the expression of CD163+ macrophages based on a retrospective comparison of the histological diagnostic concordance between the biopsies and excisions. RESULTS Seventeen patients (diagnostic-agreement group) were diagnosed with squamous intraepithelial lesion based on both the biopsy and the excision. Nine patients (diagnostic-discrepancy group) were diagnosed with invasive cancer by excision, although invasive cancer was not observed in their biopsy specimens. Compared to the diagnostic-agreement group, the diagnostic-discrepancy group had more tongue leukoplakia with non-homogenous or high numbers of intraepithelial CD163+ macrophages. CONCLUSION The evaluation of intraepithelial CD163+ macrophages in local biopsy specimens from tongue leukoplakia patients is a promising tool for cancer screening.
Collapse
Affiliation(s)
- Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Division of Oral and Maxillofacial Surgery, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
42
|
Maia FR, Reis RL, Oliveira JM. Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102139. [PMID: 31843662 DOI: 10.1016/j.nano.2019.102139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/24/2023]
Abstract
The clinical translation of new cancer theranostic has been delayed by inherent cancer's heterogeneity. Additionally, this delay has been enhanced by the lack of an appropriate in vitro model, capable to produce accurate data. Nanoparticles and microfluidic devices have been used to obtain new and more efficient strategies to tackle cancer challenges. On one hand, nanoparticles-based therapeutics can be modified to target specific cells, and/or molecules, and/or modified with drugs, releasing them over time. On the other hand, microfluidic devices allow the exhibition of physiologically complex systems, incorporation of controlled flow, and control of the chemical environment. Herein, we review the use of nanoparticles and microfluidic devices to address different cancer challenges, such as detection of CTCs and biomarkers, point-of-care devices for early diagnosis and improvement of therapies. The future perspectives of cancer challenges are also addressed herein.
Collapse
Affiliation(s)
- F Raquel Maia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Lab, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Lab, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Lab, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
43
|
Shigeoka M, Koma Y, Nishio M, Komori T, Yokozaki H. CD163 + macrophages infiltration correlates with the immunosuppressive cytokine interleukin 10 expression in tongue leukoplakia. Clin Exp Dent Res 2019; 5:627-637. [PMID: 31890299 PMCID: PMC6934348 DOI: 10.1002/cre2.228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Objective Accumulating evidence suggests that macrophages are involved in the immunoediting of oral squamous cell carcinoma but the role of macrophages in oral carcinogenesis is unclear. We aimed to clarify the role of macrophages in oral leukoplakia, which is the most common oral potentially malignant disorder from immunotolerance viewpoint. Materials and methods The study included 24 patients who underwent surgical resection for tongue leukoplakia. The relationships between macrophage markers and clinicopathological factors were assessed. Conditioned medium was harvested from the CD163+ human monocytic leukaemia cell line, THP-1. The phenotypic alteration of human oral keratinocytes by the conditioned medium treatment was assessed using quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Moreover, the clinical samples were evaluated using immunohistochemistry. Results Tongue leukoplakia tissues with high CD163+ macrophage infiltration were associated with significantly higher degrees of epithelial dysplasia, abnormal Ki-67 expression and cytokeratin13 loss when compared with the tissues with low CD163+ macrophage infiltration. In vitro, CD163+ THP-1 conditioned medium induced immunosuppressive molecules, especially interleukin-10 (IL-10) in human oral keratinocytes. The IL-10 expression levels showed significant positive correlations with not only the numbers of FOXP3+ regulatory T cells but also that of CD163+ macrophages. Conclusions In tongue leukoplakia, CD163+ macrophages infiltration correlates with immunosuppressive cytokine IL-10 expression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Carcinogenesis/immunology
- Culture Media, Conditioned/metabolism
- Female
- Glossectomy
- Humans
- Interleukin-10/metabolism
- Keratinocytes
- Ki-67 Antigen/analysis
- Ki-67 Antigen/metabolism
- Leukoplakia, Oral/immunology
- Leukoplakia, Oral/pathology
- Leukoplakia, Oral/surgery
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Middle Aged
- Receptors, Cell Surface/metabolism
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/pathology
- T-Lymphocytes, Regulatory/immunology
- THP-1 Cells
- Tongue/cytology
- Tongue/immunology
- Tongue/pathology
- Tongue/surgery
- Tongue Neoplasms/immunology
- Tongue Neoplasms/pathology
- Tongue Neoplasms/surgery
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Manabu Shigeoka
- Division of Pathology, Department of PathologyKobe University Graduate School of MedicineKobeJapan
| | - Yu‐ichiro Koma
- Division of Pathology, Department of PathologyKobe University Graduate School of MedicineKobeJapan
| | - Mari Nishio
- Division of Pathology, Department of PathologyKobe University Graduate School of MedicineKobeJapan
| | - Takahide Komori
- Division of Oral and Maxillofacial Surgery, Department of Surgery RelatedKobe University Graduate School of MedicineKobeJapan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of PathologyKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
44
|
Wang S, Zhang X, Wang G, Cao B, Yang H, Jin L, Cui M, Mao Y. Syndecan-1 suppresses cell growth and migration via blocking JAK1/STAT3 and Ras/Raf/MEK/ERK pathways in human colorectal carcinoma cells. BMC Cancer 2019; 19:1160. [PMID: 31783811 PMCID: PMC6884902 DOI: 10.1186/s12885-019-6381-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Syndecan-1 (SDC-1) is a crucial membrane proteoglycan, which is confirmed to participate in several tumor cell biological processes. However, the biological significance of SDC-1 in colorectal carcinoma is not yet clear. An objective of this study was to investigate the role of SDC-1 in colorectal carcinoma cells. METHODS Expression of SDC-1 in colorectal carcinoma tissues was evaluated by Reverse transcription-quantitative real-time PCR (RT-qPCR) and western blot. After transfection with pcDNA3.1 or pc-SDC-1, the transfection efficiency was measured. Next, SW480, SW620 and LOVO cell viability, apoptosis, migration and adhesion were assessed to explore the effects of exogenous overexpressed SDC-1 on colorectal carcinoma. In addition, the influences of aberrant expressed SDC-1 in Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) and rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways were detected by western blot analysis. RESULTS SDC-1 mRNA and protein levels were down-regulated in human colorectal carcinoma tissues. SDC-1 overexpression inhibited cell proliferation via suppressing CyclinD1 and c-Myc expression, meanwhile stimulated cell apoptosis via increasing the expression levels of B-cell lymphoma-2-associated x (Bax) and Cleaved-Caspase-3. Additionally, SDC-1 overexpression restrained cell migration via inhibiting the protein expression of matrix metallopeptidase 9 (MMP-9), and elicited cell adhesion through increasing intercellular cell adhesion molecule-1 (ICAM-1). Furthermore, SDC-1 overexpression suppressed JAK1/STAT3 and Ras/Raf/MEK/ERK-related protein levels. CONCLUSIONS In general, the evidence from this study suggested that SDC-1 suppressed cell growth, migration through blocking JAK1/STAT3 and Ras/Raf/MEK/ERK pathways in human colorectal carcinoma cells.
Collapse
Affiliation(s)
- Shaojun Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaofei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Guimei Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Laoshan District, Qingdao, 266000, Shandong, China
| | - Bin Cao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hong Yang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lipeng Jin
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Mingjuan Cui
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yongjun Mao
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Laoshan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
45
|
Xu S, Song J, Zhang ZH, Fu L, Gao L, Xie DD, Yu DX, Xu DX, Sun GP. The Vitamin D status is associated with serum C-reactive protein and adhesion molecules in patients with renal cell carcinoma. Sci Rep 2019; 9:16719. [PMID: 31723229 PMCID: PMC6853912 DOI: 10.1038/s41598-019-53395-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Low vitamin D status is associated with an increased risk of renal cell carcinoma (RCC). This study investigated the association of vitamin D status with serum C-reactive protein (CRP) and adhesion molecules among RCC patients. Fifty newly diagnosed RCC patients and 100 age- and sex-matched controls were recruited. As expected, serum 25(OH)D level was lower in RCC patients than in controls. By contrast, serum levels of CRP, an inflammatory molecule, and ICAM, LAMA4 and EpCAM, three adhesion molecules, were higher in RCC patients than in controls. All RCC patients were divided into two groups: H-VitD (>20 ng/ml) or L-VitD (<20 ng/ml). Interestingly, the levels of serum CRP and all adhesion molecules were higher in RCC patients with L-VitD than those with H-VitD. Nuclear vitamin D receptor (VDR) was downregulated and nuclear factor kappa B (NF-κB) was activated in cancerous tissues. The in vitro experiments found that VitD3 suppressed NF-κB activation and adhesion molecules in RCC cells. Moreover, VitD3 suppressed NF-κB through reinforcing physical interaction between VDR and NF-κB p65 subunit in RCC cells. These results provide a mechanistic explanation for the association among low vitamin D status, local inflammation and increased expression of adhesion molecules among RCC patients.
Collapse
Affiliation(s)
- Shen Xu
- Department of Oncology, First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
| | - Jin Song
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, China
| | - Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, China
| | - Lin Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China.,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China.,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China. .,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - Guo-Ping Sun
- Department of Oncology, First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
46
|
Proteomics Identification and Validation of Desmocollin‐1 and Catechol‐O‐Methyltransferase as Proteins Associated with Breast Cancer Cell Migration and Metastasis. Proteomics 2019; 19:e1900073. [DOI: 10.1002/pmic.201900073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/26/2019] [Indexed: 12/16/2022]
|
47
|
Zhang Y, Huo W, Wen Y, Li H. Silencing Nogo-B receptor inhibits penile corpus cavernosum vascular smooth muscle cell apoptosis of rats with diabetic erectile dysfunction by down-regulating ICAM-1. PLoS One 2019; 14:e0220715. [PMID: 31442237 PMCID: PMC6707583 DOI: 10.1371/journal.pone.0220715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Erectile dysfunction (ED) is a major sexual problem for men. Nogo-B receptor (NgBR) has been found to be involved in the regulation of vascular remodeling and angiogenesis. The present study explores the effects of NgBR in penile corpus cavernosum in rats with diabetic ED. Firstly, the ED model of Sprague Dawley rats was established. Hematoxylin-eosin staining and Masson staining were conducted to observe pathological morphology. Immunochemical assay was adopted to detect α-smooth muscle actin (α-SMA), NgBR and intercellular cell adhesion molecule-1 (ICAM-1) expression. Reverse transcription quantitative polymerase chain reaction assay and Western blot analysis were carried out for the assessment of NgBR, factors correlated to ICAM-1, including steroid receptor coactivator (SRC) and proline-rich tyrosine kinase2 (PYK2), and factors associated with apoptosis, including B-cell lymphoma-2 (Bcl-2), Bcl-2 associated protein X (Bax), caspase 3 and cleaved-caspase 3. The results found that capillaries and vascular smooth muscle cell content reduced, and NgBR and ICAM-1 were elevated in rats with diabetic ED. si-NgBR relieved ED by decreasing penile corpus cavernosum smooth muscle systolic percentage and increasing erectile time and rate, intracavernous pressure (ICP)/mean arterial pressure (MAP) and diastolic percentage, improving the pathological changes and inhibiting cavernosum cell apoptosis. si-NgBR also resulted in the down-regulation of ICAM-1 and downstream SRC and PYK2 and promoted α-SMA expression. In conclusion, si-NgBR can provide a potential therapy for diabetic ED in rats by down-regulating ICAM-1, SRC and PYK2, making it a potential therapeutic option for diabetic ED.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R.China
| | - Wei Huo
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R.China
| | - Yan Wen
- Department of Endocrine, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R.China
| |
Collapse
|
48
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 474] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Curto P, Riley SP, Simões I, Martinez JJ. Macrophages Infected by a Pathogen and a Non-pathogen Spotted Fever Group Rickettsia Reveal Differential Reprogramming Signatures Early in Infection. Front Cell Infect Microbiol 2019; 9:97. [PMID: 31024862 PMCID: PMC6467950 DOI: 10.3389/fcimb.2019.00097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
Despite their high degree of genomic similarity, different spotted fever group (SFG) Rickettsia are often associated with very different clinical presentations. For example, Rickettsia conorii causes Mediterranean spotted fever, a life-threatening disease for humans, whereas Rickettsia montanensis is associated with limited or no pathogenicity to humans. However, the molecular basis responsible for the different pathogenicity attributes are still not understood. Although killing microbes is a critical function of macrophages, the ability to survive and/or proliferate within phagocytic cells seems to be a phenotypic feature of several intracellular pathogens. We have previously shown that R. conorii and R. montanensis exhibit different intracellular fates within macrophage-like cells. By evaluating early macrophage responses upon insult with each of these rickettsial species, herein we demonstrate that infection with R. conorii results in a profound reprogramming of host gene expression profiles. Transcriptional programs generated upon infection with this pathogenic bacteria point toward a sophisticated ability to evade innate immune signals, by modulating the expression of several anti-inflammatory molecules. Moreover, R. conorii induce the expression of several pro-survival genes, which may result in the ability to prolong host cell survival, thus protecting its replicative niche. Remarkably, R. conorii-infection promoted a robust modulation of different transcription factors, suggesting that an early manipulation of the host gene expression machinery may be key to R. conorii proliferation in THP-1 macrophages. This work provides new insights into the early molecular processes hijacked by a pathogenic SFG Rickettsia to establish a replicative niche in macrophages, opening several avenues of research in host-rickettsiae interactions.
Collapse
Affiliation(s)
- Pedro Curto
- Ph.D. Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Sean P. Riley
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Juan J. Martinez
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
50
|
Abstract
The immune system has a vital role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). Immune evasion of cancer cells leads to progression of HNSCC. An understanding of this mechanism provides the basis for improved therapies and outcomes for patients. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides an overview of the interaction between immune infiltrating cells in the tumor microenvironment, and the immunologic principles related to HNSCC. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented.
Collapse
Affiliation(s)
- Felix Sim
- Department of Oral and Maxillofacial Surgery, The Royal Melbourne Hospital, 300 Grattan Street, Parkville, Victoria 3050, Australia; Department of Oral and Maxillofacial Surgery, Monash Health, 823 Centre Road, Bentleigh East, Victoria 3165, Australia; Oral and Maxillofacial Surgery Unit, Barwon Health, Ryrie Street & Bellerine Street, Geelong, Victoria 3220, Australia
| | - Rom Leidner
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Providence Cancer Institute, 4805 Northeast Glisan Street, Suite 2N35, Portland, OR 97213, USA
| | - Richard Bryan Bell
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Providence Cancer Institute, 4805 Northeast Glisan Street, Suite 2N35, Portland, OR 97213, USA; Head and Neck Institute, 1849 NW Kearney, Suite 300, Portland, Oregon 97209, USA.
| |
Collapse
|