1
|
Bodai L, Borosta R, Ferencz Á, Kovács M, Zsindely N. The Role of miR-137 in Neurodegenerative Disorders. Int J Mol Sci 2024; 25:7229. [PMID: 39000336 PMCID: PMC11241563 DOI: 10.3390/ijms25137229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases affect an increasing part of the population of modern societies, burdening healthcare systems and causing immense suffering at the personal level. The pathogenesis of several of these disorders involves dysregulation of gene expression, which depends on several molecular processes ranging from transcription to protein stability. microRNAs (miRNAs) are short non-coding RNA molecules that modulate gene expression by suppressing the translation of partially complementary mRNAs. miR-137 is a conserved, neuronally enriched miRNA that is implicated in neurodegeneration. Here, we review the current body of knowledge about the role that miR-137 plays in five prominent neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The presented data indicate that, rather than having a general neuroprotective role, miR-137 modulates the pathology of distinct disorders differently.
Collapse
Affiliation(s)
- László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Roberta Borosta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Ferencz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Mercédesz Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
2
|
Hussein R, Abou-Shanab AM, Badr E. A multi-omics approach for biomarker discovery in neuroblastoma: a network-based framework. NPJ Syst Biol Appl 2024; 10:52. [PMID: 38760476 PMCID: PMC11101461 DOI: 10.1038/s41540-024-00371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.
Collapse
Affiliation(s)
- Rahma Hussein
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ahmed M Abou-Shanab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
3
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
5
|
Metzler VM, de Brot S, Haigh DB, Woodcock CL, Lothion-Roy J, Harris AE, Nilsson EM, Ntekim A, Persson JL, Robinson BD, Khani F, Laursen KB, Gudas LJ, Toss MS, Madhusudan S, Rakha E, Heery DM, Rutland CS, Mongan NP, Jeyapalan JN. The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer. Front Cell Dev Biol 2023; 11:1116424. [PMID: 37152294 PMCID: PMC10154691 DOI: 10.3389/fcell.2023.1116424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is key epigenetic mark associated with active transcription and is a substrate for the KDM1A/LSD1 and KDM5B/JARID1B lysine demethylases. Increased expression of KDM1A and KDM5B is implicated in many cancer types, including prostate cancer (PCa). Both KDM1A and KDM5B interact with AR and promote androgen regulated gene expression. For this reason, there is great interested in the development of new therapies targeting KDM1A and KDM5B, particularly in the context of castrate resistant PCa (CRPC), where conventional androgen deprivation therapies and androgen receptor signalling inhibitors are no longer effective. As there is no curative therapy for CRPC, new approaches are urgently required to suppress androgen signalling that prevent, delay or reverse progression to the castrate resistant state. While the contribution of KDM1A to PCa is well established, the exact contribution of KDM5B to PCa is less well understood. However, there is evidence that KDM5B is implicated in numerous pro-oncogenic mechanisms in many different types of cancer, including the hypoxic response, immune evasion and PI3/AKT signalling. Here we elucidate the individual and cooperative functions of KDM1A and KDM5B in PCa. We show that KDM5B mRNA and protein expression is elevated in localised and advanced PCa. We show that the KDM5 inhibitor, CPI-455, impairs androgen regulated transcription and alternative splicing. Consistent with the established role of KDM1A and KDM5B as AR coregulators, we found that individual pharmacologic inhibition of KDM1A and KDM5 by namoline and CPI-455 respectively, impairs androgen regulated transcription. Notably, combined inhibition of KDM1A and KDM5 downregulates AR expression in CRPC cells. Furthermore, combined KDM1A and KDM5 inhibition impairs PCa cell proliferation and invasion more than individual inhibition of KDM1A and KDM5B. Collectively our study has identified individual and cooperative mechanisms involving KDM1A and KDM5 in androgen signalling in PCa. Our findings support the further development of KDM1A and KDM5B inhibitors to treat advanced PCa. Further work is now required to confirm the therapeutic feasibility of combined inhibition of KDM1A and KDM5B as a novel therapeutic strategy for targeting AR positive CRPC.
Collapse
Affiliation(s)
- Veronika M. Metzler
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Daisy B. Haigh
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Anna E. Harris
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Emeli M. Nilsson
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Kristian B. Laursen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Michael S. Toss
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Emad Rakha
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - David M. Heery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Catrin S. Rutland
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| | - Jennie N. Jeyapalan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| |
Collapse
|
6
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
7
|
Wang J, Xiao D, Wang J. A 16-miRNA Prognostic Model to Predict Overall Survival in Neuroblastoma. Front Genet 2022; 13:827842. [PMID: 35846139 PMCID: PMC9278893 DOI: 10.3389/fgene.2022.827842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma is the most malignant childhood tumor. The outcome of neuroblastoma is hard to predict due to the limitation of prognostic markers. In our study, we constructed a 16-miRNA prognostic model to predict the overall survival of neuroblastoma patients for early diagnosis. A total of 205 DE miRNAs were screened using RNA sequencing data from GSE121513. Lasso Cox regression analysis generated a 16-miRNA signature consisting of hsa-let-7c, hsa-miR-135a, hsa-miR-137, hsa-miR-146a, hsa-miR-149, hsa-miR-15a, hsa-miR-195, hsa-miR-197, hsa-miR-200c, hsa-miR-204, hsa-miR-302a, hsa-miR-331, hsa-miR-345, hsa-miR-383, hsa-miR-93, and hsa-miR-9star. The concordance index of multivariate Cox regression analysis was 0.9, and the area under the curve (AUC) values of 3-year and 5-year survival were 0.92 and 0.943, respectively. The mechanism was further investigated using the TCGA and GSE90689 datasets. Two miRNA-gene interaction networks were constructed among DEGs from two datasets. Functional analysis revealed that immune-related processes were involved in the initiation and metastasis of neuroblastoma. CIBERSORT and survival analysis suggested that lower CD8 T-cell proportion and higher SPTA1 expressions were related to a better prognosis. Our study demonstrated that the miRNA signature may be useful in prognosis prediction and management improvement.
Collapse
Affiliation(s)
- Jiepin Wang
- Shenzhen Children’s Hospital, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Dong Xiao
- Shenzhen Children’s Hospital, Shenzhen, China
| | | |
Collapse
|
8
|
Lv C, Wang J, Dai S, Chen Y, Jiang X, Li X. Long non-coding RNA NORAD induces phenotypic regulation of vascular smooth muscle cells through regulating microRNA-136-5p-targeted KDM1A. Cell Cycle 2021; 20:2137-2148. [PMID: 34583619 DOI: 10.1080/15384101.2021.1971351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Effect of long non-coding RNAs (lncRNAs) on intracranial aneurysm (IA) development has been identified, while the role of noncoding RNA activated by DNA damage (NORAD) in IA remains unexplored. We aimed to verify the impact of NORAD on IA through sponging microRNA-136-5p (miR-136-5p). METHODS Ruptured and unruptured IAs were harvested from IA patients, and expression of NORAD, miR-136-5p, and KDM1A was determined. The vascular smooth muscle cells (VSMCs) were cultured and, respectively, transfected with altered NORAD, miR-136-5p, or lysine-specific demethylase 1 (KDM1A) to observe their effect on biological functions, as well as on contraction and synthesis-specific indices of VSMCs. Interactions between NORAD and miR-136-5p, and between miR-136-5p and KDM1A were confirmed. RESULTS NORAD and KDM1A were upregulated while miR-136-5p was downregulated in IA, especially in ruptured IA. NORAD overexpression or miR-136-5p inhibition accelerated proliferation and migration, and decelerated phenotypic switching and apoptosis of VSMCs. The effects of overexpressed NORAD on VSMCs were reserved by miR-136-5p upregulation or KDM1A knockdown. NORAD functioned as a competing endogenous RNA of miR-136-5p and miR-136-5p targeted KDM1A. CONCLUSION NORAD suppressed miR-136-5p, thus upregulating KDM1A to participate in IA formation and rupture by inducing phenotypic regulation of VSMCs.
Collapse
Affiliation(s)
- Chao Lv
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Jun Wang
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Shuhui Dai
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Yanwei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Xiaofan Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Xia Li
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| |
Collapse
|
9
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021; 55:645-669. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 03/07/2025]
|
10
|
Wang T, Zhang F, Sun F. ORY-1001, a KDM1A inhibitor, inhibits proliferation, and promotes apoptosis of triple negative breast cancer cells by inactivating androgen receptor. Drug Dev Res 2021; 83:208-216. [PMID: 34347904 DOI: 10.1002/ddr.21860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer (BC), which is widely considered as the most common cancer in women around the world, evokes ~1.7 million new BC cases and 522,000 BC-related deaths each year. Triple negative breast cancer (TNBC) is clinically confirmed as one of the most aggressive subtypes of BC. ORY-1001, a clinically used lysine specific demethylase 1 (LSD1/KDM1A) inhibitor, was investigated herein to confirm its role in the progression of TNBC and reveal the potential mechanism. After treatment with ORY-1001 in MDA-MB-231 and BT549 cells, the cell proliferation and apoptosis were respectively measured by CCK-8 and TUNEL assays. The expression of proliferation- and apoptosis-associated proteins was tested by means of western blot analysis. Then, R1881, an androgen receptor (AR) agonist, was used to evaluate whether the effects of ORY-1001 on proliferation and apoptosis of TNBC cells was mediated by regulating AR. Results indicated that ORY-1001 treatment restrained the proliferation while enhanced the apoptosis of BC cells, accompanied by the change of proliferation- and apoptosis-related proteins expression. Furthermore, ORY-1001 reduced the level of AR in BC cells. After the activation of AR by R1881, the decreased proliferation and enhanced apoptosis of BC cells triggered by ORY-1001 intervention were partially abolished. In conclusion, this paper has presented the first evidence to suggest that ORY-1001 inhibits proliferation and promotes apoptosis of TNBC cells by suppressing AR expression, which may constitute the theoretical basis for the clinical use of ORY-1001 in the treatment of this disease.
Collapse
Affiliation(s)
- Tian Wang
- Department of Oncology and Hematology, Yan'an People's Hospital, Yan'an City, Shaanxi Province, China
| | - Fulin Zhang
- Department of Oncology and Hematology, Yan'an People's Hospital, Yan'an City, Shaanxi Province, China
| | - Fulan Sun
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Nantong, Nantong City, Jiangsu Province, China
| |
Collapse
|
11
|
Hanousková B, Vávrová G, Ambrož M, Boušová I, Karlsen TA, Skálová L, Matoušková P. MicroRNAs mediated regulation of glutathione peroxidase 7 expression and its changes during adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194734. [PMID: 34339889 DOI: 10.1016/j.bbagrm.2021.194734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Glutathione peroxidase 7 (GPx7) acts as an intracellular stress sensor/transmitter and plays an important role in adipocyte differentiation and the prevention of obesity related pathologies. For this reason, finding the regulatory mechanisms that control GPx7 expression is of great importance. As microRNAs (miRNAs) could participate in the regulation of GPx7 expression, we studied the inhibition of GPx7 expression by four selected miRNAs with relation to obesity and adipogenesis. The effect of the transfection of selected miRNAs mimics on GPx7 expression was tested in three cell models (HEK293, SW480, AT-MSC). The interaction of selected miRNAs with the 3'UTR of GPx7 was followed up on using a luciferase gene reporter assay. In addition, the levels of GPx7 and selected miRNAs in adipose tissue mesenchymal stem cells (AT-MSC) and mature adipocytes from four human donors were compared, with the changes in these levels during adipogenesis analyzed. Our results show for the first time that miR-137 and miR-29b bind to the 3'UTR region of GPx7 and inhibit the expression of this enzyme at the mRNA and protein level in all the human cells tested. However, no negative correlation between miR-137 nor miR-29b level and GPx7 was observed during adipogenesis. Despite the confirmed inhibition of GPx7 expression by miR-137 and miR-29b, the action of these two molecules in adipogenesis and mature adipocytes must be accompanied by other regulators.
Collapse
Affiliation(s)
- Barbora Hanousková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic; Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Gabriela Vávrová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Martin Ambrož
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Iva Boušová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Tommy A Karlsen
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lenka Skálová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
12
|
Fan C, Ma X, Wang Y, Lv L, Zhu Y, Liu H, Liu Y. A NOTCH1/LSD1/BMP2 co-regulatory network mediated by miR-137 negatively regulates osteogenesis of human adipose-derived stem cells. Stem Cell Res Ther 2021; 12:417. [PMID: 34294143 PMCID: PMC8296522 DOI: 10.1186/s13287-021-02495-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/05/2021] [Indexed: 01/26/2023] Open
Abstract
Background MicroRNAs have been recognized as critical regulators for the osteoblastic lineage differentiation of human adipose-derived stem cells (hASCs). Previously, we have displayed that silencing of miR-137 enhances the osteoblastic differentiation potential of hASCs partly through the coordination of lysine-specific histone demethylase 1 (LSD1), bone morphogenetic protein 2 (BMP2), and mothers against decapentaplegic homolog 4 (SMAD4). However, still numerous molecules involved in the osteogenic regulation of miR-137 remain unknown. This study aimed to further elucidate the epigenetic mechanisms of miR-137 on the osteogenic differentiation of hASCs. Methods Dual-luciferase reporter assay was performed to validate the binding to the 3′ untranslated region (3′ UTR) of NOTCH1 by miR-137. To further identify the role of NOTCH1 in miR-137-modulated osteogenesis, tangeretin (an inhibitor of NOTCH1) was applied to treat hASCs which were transfected with miR-137 knockdown lentiviruses, then together with negative control (NC), miR-137 overexpression and miR-137 knockdown groups, the osteogenic capacity and possible downstream signals were examined. Interrelationships between signaling pathways of NOTCH1-hairy and enhancer of split 1 (HES1), LSD1 and BMP2-SMADs were thoroughly investigated with separate knockdown of NOTCH1, LSD1, BMP2, and HES1. Results We confirmed that miR-137 directly targeted the 3′ UTR of NOTCH1 while positively regulated HES1. Tangeretin reversed the effects of miR-137 knockdown on osteogenic promotion and downstream genes expression. After knocking down NOTCH1 or BMP2 individually, we found that these two signals formed a positive feedback loop as well as activated LSD1 and HES1. In addition, LSD1 knockdown induced NOTCH1 expression while suppressed HES1. Conclusions Collectively, we proposed a NOTCH1/LSD1/BMP2 co-regulatory signaling network to elucidate the modulation of miR-137 on the osteoblastic differentiation of hASCs, thus providing mechanism-based rationale for miRNA-targeted therapy of bone defect. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02495-3.
Collapse
Affiliation(s)
- Cong Fan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China. .,National Center of Stomatology, Beijing, China. .,National Clinical Research Center for Oral Diseases, Beijing, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China. .,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China. .,NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xiaohan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Prosthodontics, Beijing Stomatological Hospital Capital Medical University, Beijing, China
| | - Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China.,NMPA Key Laboratory for Dental Materials, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China.,NMPA Key Laboratory for Dental Materials, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
13
|
MiR-137-3p Inhibits Colorectal Cancer Cell Migration by Regulating a KDM1A-Dependent Epithelial-Mesenchymal Transition. Dig Dis Sci 2021; 66:2272-2282. [PMID: 32749639 DOI: 10.1007/s10620-020-06518-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND In colorectal cancer (CRC), miR-137-3p downregulation is associated with disease progression, but the mechanism is not fully understood. KDM1A, also known as LSD1, is upregulated in various cancer and promotes tumor metastasis. Interestingly, miR-137-3p is downregulated by hypoxia, which plays critical roles in tumor metastasis, and KDM1A is a miR-137-3p target gene in brain tumors. AIMS To study if CRC metastasis is regulated by a hypoxia/miR-137-3p/KDM1A axis and if the epithelial-mesenchymal transition (EMT) process is involved. METHODS We measured the levels of miR-137-3p, KDM1A, and some EMT markers in CRC biopsy tissues and cell lines. We also investigated the regulation of KDM1A by miR-137-3p and the effects of KDM1A inhibition on the EMT process and cell migration. RESULTS We verified the low miR-137-3p and high KDM1A levels in CRC tumors. Inhibiting miR-137-3p upregulated KDM1A expression and promoted the invasiveness of CRC cells. KDM1A knockdown, or treatment with tranylcypromine, a specific KDM1A inhibitor, reduced the migration and invasion of CRC cells by inhibiting the EMT process. CRC cells cultured under hypoxic conditions expressed less miR-137-3p but more KDM1A than cells cultured under normal conditions, implying the involvement of miR-137-3p and KDM1A in hypoxia-induced tumor metastasis. CONCLUSIONS We conclude that MiR-137-3p inhibits CRC cell migration by regulating a KDM1A-dependent EMT process. Our study suggests that restoring the expression of miR-137-3p or targeting KDM1A might be potential therapeutic strategies for CRC.
Collapse
|
14
|
Lu Y, Guo G, Hong R, Chen X, Sun Y, Liu F, Zhang Z, Jin X, Dong J, Yu K, Yang X, Nan Y, Huang Q. LncRNA HAS2-AS1 Promotes Glioblastoma Proliferation by Sponging miR-137. Front Oncol 2021; 11:634893. [PMID: 34094916 PMCID: PMC8173206 DOI: 10.3389/fonc.2021.634893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
GBM (Glioblastoma multiform) is the most malignant tumor type of the central nervous system and has poor diagnostic and clinical outcomes. LncRNAs (Long non-coding RNAs) have been reported to participate in multiple biological and pathological processes, but their underlying mechanism remains poorly understood. Here, we aimed to explore the role of the lncRNA HAS2-AS1 (HAS2 antisense RNA 1) in GBM. GSE103227 was analyzed, and qRT-PCR was performed to measure the expression of HAS2-AS1 in GBM. FISH (Fluorescence in situ hybridization) was performed to verify the localization of HAS2-AS1. The interaction between HAS2-AS1 and miR-137 (microRNA-137) was predicted by LncBook and miRcode followed by dual-luciferase reporter assays, and the relationships among HAS2-AS1, miR-137 and LSD1 (lysine-specific demethylase 1) were assessed by WB (western blot) and qRT-PCR. Colony formation and CCK-8 (cell counting kit-8) assays were performed as functional tests. In vivo, nude mice were used to confirm the function of HAS2-AS1. HAS2-AS1 expression was upregulated in GBM cell lines, and HAS2-AS1 was localized mainly in the cytoplasm. In vitro, high HAS2-AS1 expression promoted proliferation, and knockdown of HAS2-AS1 significantly inhibited proliferation. Furthermore, HAS2-AS1 functioned as a ceRNA (competing endogenous RNA) of miR-137, leading to the disinhibition of its downstream target LSD1. The miR-137 level was downregulated by HAS2-AS1 overexpression and upregulated by HAS2-AS1 knockdown. In a subsequent study, LSD1 expression was negatively regulated by miR-137, while miR-137 reversed the LSD1 expression levels caused by HAS2-AS1. These results were further supported by the nude mouse tumorigenesis experiment; compared with xenografts with high HAS2-AS1 expression, the group with low levels of HAS2-AS1 exhibited suppressed proliferation and better survival. We conclude that lncRNA HAS2-AS1 promotes proliferation by functioning as a miR-137 decoy to increase LSD1 levels and thus might be a possible biomarker for GBM.
Collapse
Affiliation(s)
- Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang Liu
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Kai Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| |
Collapse
|
15
|
Favier A, Rocher G, Larsen AK, Delangle R, Uzan C, Sabbah M, Castela M, Duval A, Mehats C, Canlorbe G. MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051137. [PMID: 33800944 PMCID: PMC7961497 DOI: 10.3390/cancers13051137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endometrial cancer (EC) is the 2nd most common gynecologic cancer worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that contribute to epigenetic regulation. The objective of this systematic review is to summarize our current knowledge on the role of miRNAs in the epigenetic deregulation of tumor-related genes in EC. It includes all miRNAs reported to be involved in EC including their roles in DNA methylation and RNA-associated silencing. This systematic review should be useful for development of novel strategies to improve diagnosis and risk assessment as well as for new treatments aimed at miRNAs, their target genes or DNA methylation. Abstract The objective of this systematic review is to summarize our current knowledge on the influence of miRNAs in the epigenetic deregulation of tumor-related genes in endometrial cancer (EC). We conducted a literature search on the role of miRNAs in the epigenetic regulation of EC applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following terms were used: microRNA, miRNA, miR, endometrial cancer, endometrium, epigenetic, epimutation, hypermethylation, lynch, deacetylase, DICER, novel biomarker, histone, chromatin. The miRNAs were classified and are presented according to their function (tumor suppressor or onco-miRNA), their targets (when known), their expression levels in EC tissue vs the normal surrounding tissue, and the degree of DNA methylation in miRNA loci and CpG sites. Data were collected from 201 articles, including 190 original articles, published between November 1, 2008 and September 30, 2020 identifying 313 different miRNAs implicated in epigenetic regulation of EC. Overall, we identified a total of 148 miRNAs with decreased expression in EC, 140 miRNAs with increased expression in EC, and 22 miRNAs with discordant expression levels. The literature implicated different epigenetic phenomena including altered miRNA expression levels (miR-182, -230), changes in the methylation of miRNA loci (miR-34b, -129-2, -130a/b, -152, -200b, -625) and increased/decreased methylation of target genes (miR-30d,-191). This work provides an overview of all miRNAs reported to be involved in epigenetic regulation in EC including DNA methylation and RNA-associated silencing. These findings may contribute to novel strategies in diagnosis, risk assessment, and treatments aimed at miRNAs, their target genes or DNA methylation.
Collapse
Affiliation(s)
- Amélia Favier
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
- Correspondence: (A.F.); (G.C.)
| | - Grégoire Rocher
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Annette K. Larsen
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Romain Delangle
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Catherine Uzan
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Michèle Sabbah
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Mathieu Castela
- Scarcell Therapeutics, 101 rue de Sèvres, 75006 Paris, France;
| | - Alex Duval
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Céline Mehats
- U1016, CNRS, UMR8104, Institut Cochin, INSERM, Université de Paris, 75014 Paris, France;
| | - Geoffroy Canlorbe
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Correspondence: (A.F.); (G.C.)
| |
Collapse
|
16
|
Abstract
Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system and one of the most common solid tumors in infancy. Amplification of MYCN, copy number alterations, numerical and segmental chromosomal aberrations, mutations, and rearrangements on a handful of genes, such as ALK, ATRX, TP53, RAS/MAPK pathway genes, and TERT, are attributed as underlying causes that give rise to NB. However, the heterogeneous nature of the disease-along with the relative paucity of recurrent somatic mutations-reinforces the need to understand the interplay of genetic factors and epigenetic alterations in the context of NB. Epigenetic mechanisms tightly control gene expression, embryogenesis, imprinting, chromosomal stability, and tumorigenesis, thereby playing a pivotal role in physio- and pathological settings. The main epigenetic alterations include aberrant DNA methylation, disrupted patterns of posttranslational histone modifications, alterations in chromatin composition and/or architecture, and aberrant expression of non-coding RNAs. DNA methylation and demethylation are mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, respectively, while histone modifications are coordinated by histone acetyltransferases and deacetylases (HATs, HDACs), and histone methyltransferases and demethylases (HMTs, HDMs). This article focuses predominately on the crosstalk between the epigenome and NB, and the implications it has on disease diagnosis and treatment.
Collapse
Affiliation(s)
- Irfete S Fetahu
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Chen W, Du J, Li X, Zhi Z, Jiang S. microRNA-137 downregulates MCL1 in ovarian cancer cells and mediates cisplatin-induced apoptosis. Pharmacogenomics 2021; 21:195-207. [PMID: 31967512 DOI: 10.2217/pgs-2019-0122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: miR-137 is downregulated in various cancers; however, its function in ovarian cancer remains unclear. Methods: The roles of miR-137 in apoptosis were accessed through IC50 values and DAPI assay. The regulation of MCL1 by miR-137 was investigated through luciferase reporter assay and immunoblot. Results: miR-137 mimic could decrease the IC50 value of cisplatin and promote apoptosis in OVCAR3 ovarian cancer cells. Using luciferase assay, results on a panel of anti-apoptotic proteins, we identified MCL1 as a target for miR-137 and the results were confirmed using immunoblot. Finally, the underlying pathway in which miR-137 may be involved was investigated by transcriptome sequencing. Conclusion: These results suggest that miR-137 downregulates MCL1 in ovarian cancer cells and mediates cisplatin-induced apoptosis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingjie Du
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaodi Li
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Ziming Zhi
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Songshan Jiang
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
18
|
Mi J, Han Y, Zhang J, Hao X, Xing M, Shang C. Long noncoding RNA LINC01410 promotes the tumorigenesis of neuroblastoma cells by sponging microRNA-506-3p and modulating WEE1. Cancer Med 2020; 9:8133-8143. [PMID: 32886453 PMCID: PMC7643657 DOI: 10.1002/cam4.3398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Neuroblastoma (NBL) is an extra-cranial solid tumor in children. This study was attempted to investigate the regulatory mechanism of long noncoding RNA LINC01410 (LINC01410) on NBL. METHODS The expression of LINC01410, miR-506-3p, and WEE1 in NBL was evaluated by quantitative real time polymerase chain reaction. The proliferation and colony formation ability of NBL cells were analyzed by MTT and colony formation assay. Flow cytometry assay was executed to measure the apoptosis and cell cycle. Dual-luciferase reporter assay was used to detect the targeted relationships among LINC01410, miR-506-3p, and WEE1. Additionally, the role of LINC01410 on NBL in vivo was evaluated according to a tumor xenograft model. RESULTS The expression of LINC01410 and WEE1 was enhanced and miR-506-3p was inhibited in NBL. LINC01410 knockdown attenuated the cell proliferation, colony formation ability, and inhibited tumor growth. Moreover, LINC01410 silencing facilitated the apoptosis and arrested the cell cycle. LINC01410 interacted with miR-506-3p to elevate the WEE1 expression in NBL. Additionally, miR-506-3p inhibition or WEE1 overexpression weakened the reduction effects of sh-LINC01410 on cell proliferation, colony formation ability, apoptosis, and cell cycle. CONCLUSIONS Knockdown of LINC01410 inhibited the development of NBL by miR-506-3p/WEE1 axis in vitro, which could serve as a potential therapeutic target for NBL therapy.
Collapse
Affiliation(s)
- Jie Mi
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao CityShandong ProvinceChina
| | - Yang Han
- Department of Pediatric StomatologicalStomatological Hospital of Qingdao CityQingdao CityShandong ProvinceChina
| | - Jin Zhang
- Department of RespiratoryQingdao Women and Children's HospitalQingdao CityShandong ProvinceChina
| | - Xiwei Hao
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao CityShandong ProvinceChina
| | - Maoqing Xing
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao CityShandong ProvinceChina
| | - Cong Shang
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao CityShandong ProvinceChina
| |
Collapse
|
19
|
MicroRNAs: Diverse Mechanisms of Action and Their Potential Applications as Cancer Epi-Therapeutics. Biomolecules 2020; 10:biom10091285. [PMID: 32906681 PMCID: PMC7565521 DOI: 10.3390/biom10091285] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Usually, miRNAs function post-transcriptionally, by base-pairing with the 3′UTR of target mRNAs, repressing protein synthesis in the cytoplasm. Furthermore, other regions including gene promoters, as well as coding and 5′UTR regions of mRNAs are able to interact with miRNAs. In recent years, miRNAs have emerged as important regulators of both translational and transcriptional programs. The expression of miRNA genes, similar to protein-coding genes, can be epigenetically regulated, in turn miRNA molecules (named epi-miRs) are able to regulate epigenetic enzymatic machinery. The most recent line of evidence indicates that miRNAs can influence physiological processes, such as embryonic development, cell proliferation, differentiation, and apoptosis as well as pathological processes (e.g., tumorigenesis) through epigenetic mechanisms. Some tumor types show repression of tumor-suppressor epi-miRs resulting in cancer progression and metastasis, hence these molecules have become novel therapeutic targets in the last few years. This review provides information about miRNAs involvement in the various levels of transcription and translation regulation, as well as discusses therapeutic potential of tumor-suppressor epi-miRs used in in vitro and in vivo anti-cancer therapy.
Collapse
|
20
|
Hord TK, Aubone AMP, Ali A, Templeton HN, Evans R, Bruemmer JE, Winger QA, Bouma GJ. Placenta specific gene targeting to study histone lysine demethylase and androgen signaling in ruminant placenta. Anim Reprod 2020; 17:e20200069. [PMID: 33029224 PMCID: PMC7534563 DOI: 10.1590/1984-3143-ar2020-0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reproductive efficiency is critically dependent on embryo survival, establishment of a successful pregnancy and placental development. Recent advances in gene editing technology have enabled investigators to use gene knockdown and knockout approaches to better understand the role of hormone signaling in placental function and fetal growth and development. In this review, an overview of ruminant placentation will be provided, including recent data highlighting the role of histone lysine demethylase 1A and androgen signaling in ruminant placenta and pregnancy. Studies in ruminant placenta establish a role for histone lysine demethylase 1A in controlling genetic networks necessary for important cellular events such as cell proliferation and angiogenesis, as well as androgen receptor signaling during early placentation.
Collapse
Affiliation(s)
- Taylor Kimberly Hord
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Agata Maria Parsons Aubone
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Asghar Ali
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Hayley Nicole Templeton
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - River Evans
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jason Edward Bruemmer
- Animal Reproduction and Biotechnology Laboratory, Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Quinton Alexander Winger
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gerrit Jerry Bouma
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Senousy MA, Shaker OG, Sayed NH, Fathy N, Kortam MA. LncRNA GAS5 and miR-137 Polymorphisms and Expression are Associated with Multiple Sclerosis Risk: Mechanistic Insights and Potential Clinical Impact. ACS Chem Neurosci 2020; 11:1651-1660. [PMID: 32348112 DOI: 10.1021/acschemneuro.0c00150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is influenced by the interaction of genetic and epigenetic mechanisms. The long noncoding RNA GAS5 acts as a competing endogenous RNA for microRNA-137 and is involved in demyelination. We investigated the association of GAS5 and miR-137 expression and their polymorphisms with MS susceptibility. One hundred and eight MS patients and 104 healthy controls were included. Expression analysis and genotyping of GAS5-rs2067079 and miR-137-rs1625579 single nucleotide polymorphisms were performed by qPCR. Serum GAS5 was upregulated, while serum miR-137 was downregulated in MS compared with the controls. Serum miR-137 was an excellent discriminator of MS patients from the controls (AUC = 0.97) and a negative independent predictor of MS in multivariate logistic analysis. Serum GAS5 expression was positively correlated with the expanded disability status scale scores in the relapsing-remitting MS patients. The rs2067079TT minor homozygote genotype was associated with an increased MS risk, while the rs1625579G minor allele was protective. rs1625579 showed an age-specific effect, while the rs2067079 affected the MS risk in gender- and age-specific manners. In MS patients, rs2067079TT was associated with a higher serum GAS5 than other genotypes, while serum miR-137 did not differ between rs1625579 genotypes. Our results suggest serum GAS5 and miR-137 as MS biomarkers, with miR-137 as a negative predictor of MS risk and GAS5 as a marker of MS severity. We propose rs2067079 and rs1625579 as novel genetic markers of MS susceptibility, and at least, rs2067079 possibly impacts the crosstalk between GAS5 and miR-137.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nevine Fathy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona A. Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
22
|
Channakkar AS, Singh T, Pattnaik B, Gupta K, Seth P, Adlakha YK. MiRNA-137-mediated modulation of mitochondrial dynamics regulates human neural stem cell fate. Stem Cells 2020; 38:683-697. [PMID: 32012382 PMCID: PMC7217206 DOI: 10.1002/stem.3155] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR‐137, a brain‐enriched miRNA, in determining the fate of human induced pluripotent stem cells‐derived NSCs (hiNSCs). We show that ectopic expression of miR‐137 in hiNSCs reduces proliferation and accelerates neuronal differentiation and migration. TargetScan and MicroT‐CDS predict myocyte enhancer factor‐2A (MEF2A), a transcription factor that regulates peroxisome proliferator‐activated receptor‐gamma coactivator (PGC1α) transcription, as a target of miR‐137. Using a reporter assay, we validate MEF2A as a downstream target of miR‐137. Our results indicate that reduced levels of MEF2A reduce the transcription of PGC1α, which in turn impacts mitochondrial dynamics. Notably, miR‐137 accelerates mitochondrial biogenesis in a PGC1α independent manner by upregulating nuclear factor erythroid 2 (NFE2)‐related factor 2 (NRF2) and transcription factor A of mitochondria (TFAM). In addition, miR‐137 modulates mitochondrial dynamics by inducing mitochondrial fusion and fission events, resulting in increased mitochondrial content and activation of oxidative phosphorylation (OXPHOS) and oxygen consumption rate. Pluripotency transcription factors OCT4 and SOX2 are known to have binding sites in the promoter region of miR‐137 gene. Ectopic expression of miR‐137 elevates the expression levels of OCT4 and SOX2 in hiNSCs which establishes a feed‐forward self‐regulatory loop between miR‐137 and OCT4/SOX2. Our study provides novel molecular insights into NSC fate determination by miR‐137.
Collapse
Affiliation(s)
- Asha S Channakkar
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Tanya Singh
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Karnika Gupta
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Yogita K Adlakha
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| |
Collapse
|
23
|
Kim S, Bolatkan A, Kaneko S, Ikawa N, Asada K, Komatsu M, Hayami S, Ojima H, Abe N, Yamaue H, Hamamoto R. Deregulation of the Histone Lysine-Specific Demethylase 1 Is Involved in Human Hepatocellular Carcinoma. Biomolecules 2019; 9:810. [PMID: 31805626 PMCID: PMC6995592 DOI: 10.3390/biom9120810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Given that the standard-of-care for advanced liver cancer is limited, there is an urgent need to develop a novel molecular targeted therapy to improve therapeutic outcomes for HCC. In order to tackle this issue, we conducted functional analysis of the histone lysine-specific demethylase (LSD1) to explore the possibility that this enzyme acts as a therapeutic target in HCC. According to immunohistochemical analysis, 232 of 303 (77%) HCC cases showed positive staining of LSD1 protein, and its expression was correlated with several clinicopathological characteristics, such as female gender, AFP (alpha-fetoprotein) levels, and HCV (hepatitis C virus) infectious. The survival curves for HCC using the Kaplan-Meier method and the log-rank test indicate that positive LSD1 protein expression was significantly associated with decreased rates of overall survival (OS) and disease-free survival (DFS); the multivariate analysis indicates that LSD1 expression was an independent prognostic factor for both OS and DFS in patients with HCC. In addition, knockout of LSD1 using the CRISPR/Cas9 system showed a significantly lower number of colony formation units (CFUs) and growth rate in both SNU-423 and SNU-475 HCC cell lines compared to the corresponding control cells. Moreover, LSD1 knockout decreased cells in S phase of SNU-423 and SNU-475 cells with increased levels of H3K4me1/2 and H3K9me1/2. Finally, we identified the signaling pathways regulated by LSD1 in HCC, including the retinoic acid (RA) pathway. Our findings imply that deregulation of LSD1 can be involved in HCC; further studies may explore the usefulness of LSD1 as a therapeutic target of HCC.
Collapse
Affiliation(s)
- Sangchul Kim
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Amina Bolatkan
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Noriko Ikawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Nobutsugu Abe
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
24
|
Yan HL, Sun XW, Wang ZM, Liu PP, Mi TW, Liu C, Wang YY, He XC, Du HZ, Liu CM, Teng ZQ. MiR-137 Deficiency Causes Anxiety-Like Behaviors in Mice. Front Mol Neurosci 2019; 12:260. [PMID: 31736707 PMCID: PMC6831983 DOI: 10.3389/fnmol.2019.00260] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Anxiety and depression are major public health concerns worldwide. Although genome-wide association studies have identified several genes robustly associated with susceptibility for these disorders, the molecular and cellular mechanisms associated with anxiety and depression is largely unknown. Reduction of microRNA-137 (miR-137) level has been implicated in the etiology of major depressive disorder. However, little is known about the in vivo impact of the loss of miR-137 on the biology of anxiety and depression. Here, we generated a forebrain-specific miR-137 knockout mouse line, and showed that miR-137 is critical for dendritic and synaptic growth in the forebrain. Mice with miR-137 loss-of-function exhibit anxiety-like behavior, and impaired spatial learning and memory. We then observe an elevated expression of EZH2 in the forebrain of miR-137 knockout mice, and provide direct evidence that knockdown of EZH2 can rescue anxious phenotypes associated with the loss of miR-137. Together our results suggest that loss of miR-137 contributes to the etiology of anxiety, and EZH2 might be a potential therapeutic target for anxiety and depressive phenotypes associated with the dysfunction of miR-137.
Collapse
Affiliation(s)
- Hai-Liang Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Meng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ting-Wei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Ma X, Fan C, Wang Y, Du Y, Zhu Y, Liu H, Lv L, Liu Y, Zhou Y. MiR-137 knockdown promotes the osteogenic differentiation of human adipose-derived stem cells via the LSD1/BMP2/SMAD4 signaling network. J Cell Physiol 2019; 235:909-919. [PMID: 31241766 DOI: 10.1002/jcp.29006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs are a group of endogenous regulators that participate in several cellular physiological processes. However, the role of miR-137 in the osteogenic differentiation of human adipose-derived stem cells (hASCs) has not been reported. This study verified a general downward trend in miR-137 expression during the osteogenic differentiation of hASCs. MiR-137 knockdown promoted the osteogenesis of hASCs in vitro and in vivo. Mechanistically, inhibition of miR-137 activated the bone morphogenetic protein 2 (BMP2)-mothers against the decapentaplegic homolog 4 (SMAD4) pathway, whereas repressed lysine-specific histone demethylase 1 (LSD1), which was confirmed as a negative regulator of osteogenesis in our previous studies. Furthermore, LSD1 knockdown enhanced the expression of BMP2 and SMAD4, suggesting the coordination of LSD1 in the osteogenic regulation of miR-137. This study indicated that miR-137 negatively regulated the osteogenic differentiation of hASCs via the LSD1/BMP2/SMAD4 signaling network, revealing a new potential therapeutic target of hASC-based bone tissue engineering.
Collapse
Affiliation(s)
- Xiaohan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Cong Fan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yangge Du
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
26
|
Huang Y, Zou Y, Zheng R, Ma X. MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B. Eur J Haematol 2019; 103:215-224. [PMID: 31206203 DOI: 10.1111/ejh.13276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
AIM This study aimed to investigate the possible functions of interaction between JARID1B and miR-137 in ALL. METHODS The levels of H3K4me3 and H3K4me2 and the expression of JARID1B and miR-137 were analyzed in six ALL cell lines and 30 ALL patients. The effects of miR-137 and JARID1B on cell proliferation and apoptosis were investigated by silencing or promoting the respective genes. The interaction between miR-137 and JARID1B was confirmed by double-luciferase report assay. RESULTS The histone H3K4 expressions and miR-137 expression were lower in 30 ALL patients and in six ALL cell lines, while the expression of JARID1B was elevated. A negative correlation was observed between JARID1B and miR-137. Over-expression of miR-137 led to decreasing cell proliferation and increasing apoptosis in MOLT-4 and BALL-1 cells. MiR-137 inhibitor up-regulated JARID1B in these two cell lines, while promoted proliferation in BALL-1 cells only. Dual-luciferase report assay suggested that JARID1B was a direct target of miR-137 in ALL cell lines. CONCLUSIONS The expression of miR-137 was declined in ALL, and JARID1B was directly repressed by miR-137. Aberrant JARID1B expression could result in abnormal histone methylation, which might be one cause of ALL.
Collapse
Affiliation(s)
- Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Ruiji Zheng
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| |
Collapse
|
27
|
The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nat Commun 2019; 10:442. [PMID: 30683859 PMCID: PMC6347618 DOI: 10.1038/s41467-019-08390-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNA deregulation is a consistent feature of glioblastoma, yet the biological effect of each single gene is generally modest, and therapeutically negligible. Here we describe a module of microRNAs, constituted by miR-124, miR-128 and miR-137, which are co-expressed during neuronal differentiation and simultaneously lost in gliomagenesis. Each one of these miRs targets several transcriptional regulators, including the oncogenic chromatin repressors EZH2, BMI1 and LSD1, which are functionally interdependent and involved in glioblastoma recurrence after therapeutic chemoradiation. Synchronizing the expression of these three microRNAs in a gene therapy approach displays significant anticancer synergism, abrogates this epigenetic-mediated, multi-protein tumor survival mechanism and results in a 5-fold increase in survival when combined with chemotherapy in murine glioblastoma models. These transgenic microRNA clusters display intercellular propagation in vivo, via extracellular vesicles, extending their biological effect throughout the whole tumor. Our results support the rationale and feasibility of combinatorial microRNA strategies for anticancer therapies. The delivery of single therapeutic microRNAs in brain cancers is challenging. Here, the authors engineer three neuronal microRNAs (miR-124, 128 and 137) into a cluster that, targeting oncogenic chromatin repressors, increases survival of GBM-bearing mice when combined with chemotherapy.
Collapse
|
28
|
Wu QQ, Zheng B, Weng GB, Yang HM, Ren Y, Weng XJ, Zhang SW, Zhu WZ. Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer. J Cell Biochem 2019; 120:10215-10227. [PMID: 30637800 DOI: 10.1002/jcb.28306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Prostate cancer is the second highest caused by cancer-related death among males. microRNAs (miRs) have been reported to participate in carcinogenesis, yet their roles in prostate cancer are rarely studied or investigated. Therefore, the present study attempted to explore the effect of miR-137 in prostate cancer via regulating NADPH oxidase 4 (NOX4). Initially, microarray analysis was performed to obtain prostate cancer-related differentially expressed genes and miRs that regulated NOX4, followed by detecting the expression of miR-137 and NOX4 and its target relationship. Moreover, PC-3 cells were transfected with small interfering RNA (siNOX4) and miR-137 mimic for exploring the effect of miR-137 on glycolysis, cell proliferation, and apoptosis in prostate cancer by evaluating lactate production, glucose uptake, adenosine triphosphate (ATP) production, viability rate, and expression of cleaved caspases 3, 8, and 9, cytochrome c, cleaved poly ADP ribose polymerase (PARP), Bax, and Bcl-2. miR-137 was vital to prostate cancer progression via regulating NOX4. Besides, miR-137 expressed poorly while NOX4 expressed highly in prostate cancer. NOX4 was the target gene of miR-137. Additionally, overexpression of miR-137 and silencing of NOX4 were observed to decrease NOX4 and Bcl-2 protein expression, but increase cleaved caspases 3, 8, and 9, cytochrome c, cleaved-PARP, and Bax protein expression. Furthermore, miR-137 overexpression and NOX4 silencing contributed to decreased lactate production, glucose uptake, ATP production, and cell proliferation, but increased apoptosis rate. Collectively, the present study showed that miR-137 repressed glycolysis in prostate cancer through knockdown of NOX4, which might be a potential theoretical target for prostate cancer treatment.
Collapse
Affiliation(s)
- Qi-Quan Wu
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Bin Zheng
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Guo-Bin Weng
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Hou-Meng Yang
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Yu Ren
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Xi-Jun Weng
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Shu-Wei Zhang
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Wei-Zhi Zhu
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| |
Collapse
|
29
|
Zhang W, Chen JH, Shan T, Aguilera-Barrantes I, Wang LS, Huang THM, Rader JS, Sheng X, Huang YW. miR-137 is a tumor suppressor in endometrial cancer and is repressed by DNA hypermethylation. J Transl Med 2018; 98:1397-1407. [PMID: 29955087 PMCID: PMC6214735 DOI: 10.1038/s41374-018-0092-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancer in the United States. We wanted to identify epigenetic aberrations involving microRNAs (miRNAs), whose genes become hypermethylated in endometrial primary tumors. By integrating known miRNA sequences from the miRNA database (miRBase) with DNA methylation data from methyl-CpG-capture sequencing, we identified 111 differentially methylated regions (DMRs) associated with CpG islands (CGIs) and miRNAs. Among them, 22 DMRs related to 29 miRNAs and within 8 kb of CGIs were hypermethylated in endometrial tumors but not in normal endometrium. miR-137 was further validated in additional endometrial primary tumors. Hypermethylation of miR-137 was found in both endometrioid and serous endometrial cancer (P < 0.01), and it led to the loss of miR-137 expression. Treating hypermethylated endometrial cancer cells with epigenetic inhibitors reactivated miR-137. Moreover, genetic overexpression of miR-137 suppressed cancer cell proliferation and colony formation in vitro. When transfected cancer cells were implanted into nude mice, the cells that overexpressed miR-137 grew more slowly and formed smaller tumors (P < 0.05) than vector transfectants. Histologically, xenograft tumors from cancer cells expressing miR-137 were less proliferative (P < 0.05), partly due to inhibition of EZH2 and LSD1 expression (P < 0.01) in both the transfected cancer cells and tumors. Reporter assays indicated that miR-137 targets EZH2 and LSD1. These results suggest that miR-137 is a tumor suppressor that is repressed in endometrial cancer because the promoter of its gene becomes hypermethylated.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gynecology Oncology, Shandong Provincial Cancer Hospital, Jinan, Shandong, China,Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jo-Hsin Chen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tianjiao Shan
- Department of Gynecology Oncology, Shandong Provincial Cancer Hospital, Jinan, Shandong, China,Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, and Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiugui Sheng
- Department of Gynecology Oncology, Shandong Provincial Cancer Hospital, Jinan, Shandong, China. .,Cancer Hospital of Chinese Academy of Medical Sciences, Shenzhen Center, Chaoyang Qu, Beijing Shi, China.
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
30
|
Guo X, Huang H, Jin H, Xu J, Risal S, Li J, Li X, Yan H, Zeng X, Xue L, Chen C, Huang C. ISO, via Upregulating MiR-137 Transcription, Inhibits GSK3β-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:337-349. [PMID: 30195772 PMCID: PMC6037888 DOI: 10.1016/j.omtn.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/02/2018] [Accepted: 05/20/2018] [Indexed: 01/23/2023]
Abstract
Our most recent studies demonstrate that miR-137 is downregulated in human bladder cancer (BC) tissues, while treatment of human BC cells with isorhapontigenin (ISO) elevates miR-137 abundance. Since ISO showed a strong inhibition of invasive BC formation in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced invasive BC mouse model, the elucidation of a potential biological effect of miR-137 on antagonizing BC invasion and molecular mechanisms underlying ISO upregulation of miR-137 are very important. Here we discovered that ectopic expression of miR-137 led to specific inhibition of BC invasion in human high-grade BC T24T and UMUC3 cells, while miR-137 deletion promoted the invasion of both cells, indicating the inhibitory effect of miR-137 on human BC invasion. Mechanistic studies revealed that ISO treatment induced miR-137 transcription by promoting c-Jun phosphorylation and, in turn, abolishing matrix metalloproteinase-2 (MMP-2) abundance and invasion in BC cells. Moreover, miR-137 was able to directly bind to the 3' UTR of Glycogen synthase kinase-3β (GSK3β) mRNA and inhibit GSK3β protein translation, consequently leading to a reduction of heat shock protein-70 (HSP70) translation via targeting the mTOR/S6 axis. Collectively, our studies discover an unknown function of miR-137, directly targeting the 3' UTR of GSK3β mRNA and, thereby, inhibiting GSK3β protein translation, mTOR/S6 activation, and HSP70 protein translation and, consequently, attenuating HSP70-mediated MMP-2 expression and invasion in human BC cells. These novel discoveries provide a deep insight into understanding the biomedical significance of miR-137 downregulation in invasive human BCs and the anti-cancer effect of ISO treatment on mouse invasive BC formation.
Collapse
Affiliation(s)
- Xirui Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sanjiv Risal
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Xin Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiying Yan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Lei Xue
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
31
|
Liu B, Shyr Y, Cai J, Liu Q. Interplay between miRNAs and host genes and their role in cancer. Brief Funct Genomics 2018; 18:255-266. [PMID: 30785618 PMCID: PMC6609535 DOI: 10.1093/bfgp/elz002] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/21/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding functional RNAs that post-transcriptionally regulate gene expression. They play essential roles in nearly all biological processes including cell development and differentiation, DNA damage repair, cell death as well as intercellular communication. They are highly involved in cancer, acting as tumor suppressors and/or promoters to modulate cell proliferation, epithelial-mesenchymal transition and tumor invasion and metastasis. Recent studies have shown that more than half of miRNAs are located within protein-coding or non-coding genes. Intragenic miRNAs and their host genes either share the promoter or have independent transcription. Meanwhile, miRNAs work as partners or antagonists of their host genes by fine-tuning their target genes functionally associated with host genes. This review outlined the complicated relationship between intragenic miRNAs and host genes. Focusing on miRNAs known as oncogenes or tumor suppressors in specific cancer types, it studied co-expression relationships between these miRNAs and host genes in the cancer types using TCGA data sets, which validated previous findings and revealed common, tumor-specific and even subtype-specific patterns. These observations will help understand the function of intragenic miRNAs and further develop miRNA therapeutics in cancer.
Collapse
Affiliation(s)
- Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
32
|
Zhang J, He J, Zhang L. The down-regulation of microRNA-137 contributes to the up-regulation of retinoblastoma cell proliferation and invasion by regulating COX-2/PGE2 signaling. Biomed Pharmacother 2018; 106:35-42. [PMID: 29945115 DOI: 10.1016/j.biopha.2018.06.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-137 (miR-137) plays an important role in the development and progression of many types of human cancers; however, the role of miR-137 in retinoblastoma (RB) remains unclear. In this study, we aimed to investigate the functional significance and molecular mechanisms of miR-137 in RB. We reported that miR-137 was frequently down-regulated in RB tissues and cell lines. The overexpression of miR-137 inhibited RB cell proliferation and invasion, while the suppression of miR-137 promoted RB cell proliferation and invasion. Bioinformatic analysis predicted that cyclooxygenase-2 (COX-2) was a potential target gene of miR-137, which was validated by a dual-luciferase reporter assay. Moreover, our results showed that miR-137 negatively regulated the expression of COX-2 and the production of prostaglandin E2 (PGE2) in RB cells. The knockdown of COX-2 suppressed the proliferation and invasion of RB cells as well as the production of PGE2. The overexpression of COX-2 significantly reversed the inhibitory effect of miR-137 overexpression on RB cell proliferation and invasion. Taken together, these results suggest that miR-137 suppresses the proliferation and invasion of RB cells by targeting COX-2/PGE2. Our study reveals a tumor suppressive role of miR-137 in the progression of RB and suggests miR-137 as a potentially effective therapeutic target for the treatment of RB.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jing He
- Department of Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China.
| | - Le Zhang
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| |
Collapse
|
33
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
34
|
Wang X, Zhang G, Cheng Z, Dai L, Jia L, Jing X, Wang H, Zhang R, Liu M, Jiang T, Yang Y, Yang M. Knockdown of LncRNA-XIST Suppresses Proliferation and TGF-β1-Induced EMT in NSCLC Through the Notch-1 Pathway by Regulation of miR-137. Genet Test Mol Biomarkers 2018; 22:333-342. [PMID: 29812958 DOI: 10.1089/gtmb.2018.0026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Xi Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Guojun Zhang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Zhe Cheng
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Lingling Dai
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Liuqun Jia
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Xiaogang Jing
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Huan Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Rui Zhang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Meng Liu
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Tianci Jiang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Yuanjian Yang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| | - Meng Yang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R. China
| |
Collapse
|
35
|
Bi WP, Xia M, Wang XJ. miR-137 suppresses proliferation, migration and invasion of colon cancer cell lines by targeting TCF4. Oncol Lett 2018; 15:8744-8748. [PMID: 29805612 PMCID: PMC5950516 DOI: 10.3892/ol.2018.8364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/23/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is cancer of the colon or rectum and is the third most prevalent form of cancer. Currently, there are several shortcomings in the prognosis and early detection of colon cancer. The present study aims to address questions pertaining to the role of microRNA (miR)-137 in colon cancer progression and the mode of regulation. The endogenous and over-expressed levels of miR-137 in three colon cancer cell lines were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The MTT assay was used to assess cell proliferation. Cell migration and invasion assays were assessed using Transwell apparatus and Matrigel invasion chambers. The potential targets of miR-150 were predicted using TargetScan software, and one of the best scoring targets, transcription factor 4 (TCF4), was experimentally validated using western blot analysis and RT-qPCR. It was found that that miR-137 is expressed at extremely low levels in COLO205, HCT116 and SW480 cell lines. Cell proliferation, migration and invasion were inhibited subsequent to transfection of the colon cancer cell lines with miR-137. Using bioinformatics analysis, the best scoring putative targets were identified. One such target, TCF4, was experimentally validated, and it was shown that overexpression of miR-137 suppresses TCF4 in all three colon cancer cell lines. In conclusion, it was shown that miR-137 inhibits cell proliferation, migration and invasion in colon cancer cell lines by negatively regulating the expression of TCF4.
Collapse
Affiliation(s)
- Wei-Ping Bi
- Department of Gastroenterology, Wendeng Central Hospital of Weihai City, Weihai, Shandong 264400, P.R. China
| | - Min Xia
- Department of Endoscopy, Wendeng Central Hospital of Weihai City, Weihai, Shandong 264400, P.R. China
| | - Xin-Jian Wang
- Department of General Surgery, Wendeng Central Hospital of Weihai City, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
36
|
Wu T, Lin Y, Xie Z. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma. Biol Res 2018; 51:13. [PMID: 29793538 PMCID: PMC5966945 DOI: 10.1186/s40659-018-0162-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most common extracranial solid tumor in children. Accumulating evidence shows that microRNAs (miRs) play an important role in the carcinogenesis of NB. Here, we investigated the biological function of miR-1247 in NB in vitro. METHODS/RESULTS We found miR-1247 was downregulated in NB tissues and cells using quantitative PCR analysis. Gain- and loss-of-function studies demonstrated that miR-1247 significantly suppressed cell proliferation and induced cell cycle G0/G1 phase arrest and cell apoptosis of NB cells in vitro by using MTT, colony formation assay and Flow cytometry analysis. Luciferase assay suggested ZNF346 was the target of miR-1247 and its expression could be downregulated by miR-1247 overexpression using Western blotting. Furthermore, downregulation of ZNF346 by siRNA performed similar effects with overexpression of miR-1247 in NB cells. CONCLUSIONS Our findings suggested miR-1247 directly targeted to repress ZNF346 expression, thus suppressing the progression of NB, which might be a novel therapeutic target against NB.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Neonatology, The First People's Hospital of Jingzhou, No. 8 Hangkong Road, Shashi District, Jingzhou, 434000, Hubei, China
| | - Yun Lin
- Department of Editor, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Zhongguo Xie
- Department of Neonatology, The First People's Hospital of Jingzhou, No. 8 Hangkong Road, Shashi District, Jingzhou, 434000, Hubei, China.
| |
Collapse
|
37
|
Jubierre L, Jiménez C, Rovira E, Soriano A, Sábado C, Gros L, Llort A, Hladun R, Roma J, Toledo JSD, Gallego S, Segura MF. Targeting of epigenetic regulators in neuroblastoma. Exp Mol Med 2018; 50:1-12. [PMID: 29700278 PMCID: PMC5938021 DOI: 10.1038/s12276-018-0077-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/13/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Approximately 15,000 new cases of pediatric cancer are diagnosed yearly in Europe, with 8–10% corresponding to neuroblastoma, a rare disease with an incidence of 8–9 cases per million children <15 years of age. Although the survival rate for low-risk and intermediate-risk patients is excellent, half of children with high-risk, refractory, or relapsed tumors will be cured, and two-thirds of the other half will suffer major side effects and life-long disabilities. Epigenetic therapies aimed at reversing the oncogenic alterations in chromatin structure and function are an emerging alternative against aggressive tumors that are or will become resistant to conventional treatments. This approach proposes targeting epigenetic regulators, which are proteins that are involved in the creation, detection, and interpretation of epigenetic signals, such as methylation or histone post-translational modifications. In this review, we focused on the most promising epigenetic regulators for targeting and current drugs that have already reached clinical trials. Treatments that target chromatin, the combination of DNA and proteins, are emerging as alternative ways to treat aggressive neuroblastomas, cancers of neural tissue. Altering the structure and function of chromatin is a form of “epigenetic therapy”, treatment that affects inheritable molecular signals controlling the activity of genes, rather than targeting the genes directly. Researchers in Spain led by Miguel Segura at the Vall d’Hebron Research Institute in Barcelona review progress in developing epigenetic therapies for neuroblastomas. A growing body of fundamental research and evidence from clinical trials suggest this approach could open promising new avenues to treating aggressive and drug-resistant cancers. The authors recommend an increased effort to identify and explore the activities of small molecules that could form the basis of effective epigenetic therapies for various cancers.
Collapse
Affiliation(s)
- Luz Jubierre
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Carlos Jiménez
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Eric Rovira
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Constantino Sábado
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Luis Gros
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Anna Llort
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Raquel Hladun
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.
| |
Collapse
|
38
|
Durinck K, Speleman F. Epigenetic regulation of neuroblastoma development. Cell Tissue Res 2018; 372:309-324. [PMID: 29350283 DOI: 10.1007/s00441-017-2773-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
Abstract
In recent years, technological advances have enabled a detailed landscaping of the epigenome and the mechanisms of epigenetic regulation that drive normal cell function, development and cancer. Rather than merely a structural entity to support genome compaction, we now look at chromatin as a very dynamic and essential constellation that is actively participating in the tight orchestration of transcriptional regulation as well as DNA replication and repair. The unique feature of chromatin flexibility enabling fast switches towards more or less restricted epigenetic cellular states is, not surprisingly, intimately connected to cancer development and treatment resistance, and the central role of epigenetic alterations in cancer is illustrated by the finding that up to 50% of all mutations across cancer entities affect proteins controlling the chromatin status. We summarize recent insights into epigenetic rewiring underlying neuroblastoma (NB) tumor formation ranging from changes in DNA methylation patterns and mutations in epigenetic regulators to global effects on transcriptional regulatory circuits that involve key players in NB oncogenesis. Insights into the disruption of the homeostatic epigenetic balance contributing to developmental arrest of sympathetic progenitor cells and subsequent NB oncogenesis are rapidly growing and will be exploited towards the development of novel therapeutic strategies to increase current survival rates of patients with high-risk NB.
Collapse
Affiliation(s)
- Kaat Durinck
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Reversible LSD1 inhibition with HCI-2509 induces the p53 gene expression signature and disrupts the MYCN signature in high-risk neuroblastoma cells. Oncotarget 2018. [PMID: 29515779 PMCID: PMC5839410 DOI: 10.18632/oncotarget.24035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lysine-Specific Demethylase 1 (LSD1) over-expression correlates with poorly differentiated neuroblastoma and predicts poor outcome despite multimodal therapy. We have studied the efficacy of reversible and specific LSD1 inhibition with HCI-2509 in neuroblastoma cell lines and particularly the effect of HCI-2509 on the transcriptomic profile in MYCN amplified NGP cells. Cell survival assays show that HCI-2509 is cytotoxic to poorly differentiated neuroblastoma cell lines in low micromole or lower doses. Transcriptional profiling of NGP cells treated with HCI-2509 shows a significant effect on p53, cell cycle, MYCN and hypoxia pathway gene sets. HCI-2509 results in increased histone methyl marks and p53 levels along with cell cycle arrest in the G2/M phase and inhibition of colony formation of NGP cells. Our findings indicate that LSD1 inhibition with HCI-2509 has a multi-target effect in neuroblastoma cell lines, mediated in part via p53. MYCN-amplified neuroblastoma cells have a targeted benefit as HCI-2509 downregulates the MYCN upregulated gene set.
Collapse
|
40
|
miR-137 inhibits melanoma cell proliferation through downregulation of GLO1. SCIENCE CHINA-LIFE SCIENCES 2018; 61:541-549. [DOI: 10.1007/s11427-017-9138-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
|
41
|
Kleemann M, Bereuther J, Fischer S, Marquart K, Hänle S, Unger K, Jendrossek V, Riedel CU, Handrick R, Otte K. Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis. Oncotarget 2017; 8:18773-18791. [PMID: 27821806 PMCID: PMC5386646 DOI: 10.18632/oncotarget.13095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
The development and progression of cancer can be ascribed to imbalances in gene regulation leading to aberrant cellular behavior. The loss of micro RNAs (miRNAs) exhibiting tumor-suppressive function has been demonstrated to be often causative for uncontrolled cell proliferation, migration or tissue infiltration. The installation of de novo tumor suppressive function by using pro-apoptotic miRNAs might be a promising therapeutic approach. In addition, there is a great demand for novel biomarkers for the prognosis of cancer, which prompted us to transfer a high content miRNA screening initially performed to identify bioprocess relevant miRNAs in Chinese hamster ovary (CHO) cells to human cancer cell lines . Analysis of screened miRNAs exhibiting strongest pro-apoptotic effects discovered globally and cross-species active candidates. The recovery rate of apoptosis inducing miRNAs was highest in the human ovarian carcinoma cell line SKOV3. Focusing on ovarian cell lines miR-1912, miR-147b and miR-3073a showed significant apoptosis induction in cell lines with different genetic background (SKOV3p53null, OVCAR3p53R248Q, TOV21G, TOV112Dp53R175H, A2780, A2780-cisp53K351N) alone and additive effects in combination with carboplatin. While expression analysis revealed a low endogenous expression of miR-1912 and miR-147b in SKOV3, miRNA expression was highly upregulated upon apoptosis induction using chemotherapeutics. Ectopic introduction of these miRNAs lead to enhanced activation of caspase-dependent death signaling and an induction of the pro-apoptotic proteins Bak1 and Bax and a reduced expression of Bcl2 and Bcl-xL. Finally, analysis of The Cancer Genome Atlas data revealed the expression of hsa-miR-147b-5p to show a positive influence on the median survival of ovarian cancer patients.
Collapse
Affiliation(s)
- Michael Kleemann
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany.,University of Ulm, Faculty of Medicine, 89079 Ulm, Germany
| | - Jeremias Bereuther
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| | - Simon Fischer
- Boehringer Ingelheim Pharma GmbH and Co.KG, BP Process Development Germany, 88400 Biberach, Germany
| | - Kim Marquart
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| | - Simon Hänle
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, 45122 Essen, Germany
| | | | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| |
Collapse
|
42
|
Han F, Wang S, Chang Y, Li C, Yang J, Han Z, Chang B, Sun B, Chen L. Triptolide prevents extracellular matrix accumulation in experimental diabetic kidney disease by targeting microRNA-137/Notch1 pathway. J Cell Physiol 2017; 233:2225-2237. [PMID: 28695984 DOI: 10.1002/jcp.26092] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in multiple biological functions via suppressing target genes. Triptolide is a monomeric compound isolated from a traditional Chinese herb, which exerts protective roles in many kinds of glomerular diseases. However, our understanding of the triptolide effect on miRNAome is still limited. In this study, we found that triptolide significantly decreased albuminuria and improved glomerulosclerosis in rats with diabetic kidney disease (DKD). And triptolide also inhibited extracellular matrix (ECM) protein accumulation and the notch1 pathway activation under diabetic conditions. MiR-137 was significantly decreased in the HG (high glucose)-treated HRMCs and in the kidney tissues of the diabetic rats, but was upregulated by triptolide. In addition, overexpression of miR-137 exerted similar effects to those of triptolide, while miR-137 inhibition aggravated ECM protein accumulation. Luciferase reporter assay results demonstrated that miR-137 directly targets Notch1. Furthermore, the miR-137-dependent effects were due to Notch1 suppression that in turn inhibited ECM protein expression, key mediators of glomerulosclerosis. Finally, downregulation of miR-137 reversed the ECM inhibition role of triptolide in HG cultured HRMCs. Taken together, these findings indicate that triptolide is a potential therapeutic option for DKD and that miR-137/Notch1 pathway play roles in the anti-glomerulosclerosis mechanism of triptolide.
Collapse
Affiliation(s)
- Fei Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shanshan Wang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yunpeng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunjun Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhe Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
43
|
Chen L, Wang X, Huang W, Ying T, Chen M, Cao J, Wang M. MicroRNA-137 and its downstream target LSD1 inversely regulate anesthetics-induced neurotoxicity in dorsal root ganglion neurons. Brain Res Bull 2017; 135:1-7. [PMID: 28899795 DOI: 10.1016/j.brainresbull.2017.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Anesthetic reagents, such as bupivacaine (Bv), induce significant neurotoxicity in dorsal root ganglion neurons (DRGNs). In this study, we investigated the expression, function and cross-association of microRNA-137-3p (miR-137-3p) and lysine (K)-specific demethylase 1A (LSD1) in a murine model of Bv-induced neural injury in DRGNs. METHODS Murine DRGNs were culture in vitro and treated with Bv. QPCR was used to evaluate miR-137-3p expression in Bv-injured DRGNs. MiR-137-3p was genetically downregulated to evaluate its rescuing effect on Bv-induced DRGN apoptosis and neurite retraction. The association of miR-137-3p on its downstream target, LSD1 coding gene KDM1A, was evaluated by dual-luciferase activity assay and qPCR. In miR-137-3p-downregulated DRGNs, KDM1A was inhibited to evaluate its involvement in miR-137-3p-mediated modulation on Bv-induced DRGN neurotoxicity. Furthermore, KDM1A expression in Bv-injured DRGN was evaluated by qPCR, and LSD1 was overexpressed in DRGN to evaluate its direct effect on Bv-induced neurotoxicity. RESULTS MiR-137-3p was upregulated in Bv-injured DRGNs. MiR-137-3p downregulation rescued Bv-induced DRGN apoptosis and neurite retraction. LSD1 was demonstrated to be downstream to, and inversely modulated by miR-137-3p in DRGN. In Bv-injured DRGNs, LSD1 downregulation reversed miR-137-3p-downregualtion-induced neural protection. Furthermore, LSD1 upregulation directly rescued Bv-induced apoptosis and neurite retraction in DRGNs. CONCLUSIONS MiR-137-3p and its downstream target LSD1 are inversely associated to regulate anesthetics-induced neurotoxicity in DRGN. This signaling pathway may be a therapeutic candidate to reduce anesthetics-induced neurological damage in human patients.
Collapse
Affiliation(s)
- Lingyang Chen
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Xiaodan Wang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Wenguang Huang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Tingting Ying
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Minjuan Chen
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Jianbin Cao
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Mingcang Wang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China.
| |
Collapse
|
44
|
Ames H, Halushka MK, Rodriguez FJ. miRNA Regulation in Gliomas: Usual Suspects in Glial Tumorigenesis and Evolving Clinical Applications. J Neuropathol Exp Neurol 2017; 76:246-254. [PMID: 28431179 DOI: 10.1093/jnen/nlx005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, an increasing role for noncoding small RNAs (miRNA) has been uncovered in carcinogenesis. These oligonucleotides can promote degradation and/or inhibit translation of key mRNAs. Recent studies have also highlighted a possible role for miRNAs in adult and pediatric brain tumors, including high- and low-grade gliomas, medulloblastoma, ependymoma, and neoplasms associated with neurofibromatosis type 1. Gliomas represent the most common category of primary intraparenchymal brain tumors, and, for example, manipulation of signaling pathways, through inhibition of PTEN transcription appears to be an important function of miRNA dysregulation through miR-21, miR-106b, and miR-26a. Moreover, altered miRNA expression in gliomas play roles in the regulation of common tumorigenic processes, including receptor tyrosine kinase signaling, angiogenesis, invasion, suppression of differentiation, cell cycle enhancement, and inhibition of apoptosis. Suppression of differentiation requires the downregulation of a number of miRNAs that are both enriched in the brain and required for terminal glial differentiation, including miR-219 and miR-338. Our evolving understanding about the biology of gliomas make them attractive for miRNA study, given that recent evidence suggests that epigenetic and subtle genetic changes may contribute to their pathogenesis. Identification of key miRNAs also provides a rationale for developing robust biomarkers and inhibitory RNA strategies for therapeutic purposes in glioma patients.
Collapse
Affiliation(s)
- Heather Ames
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marc K Halushka
- Division of Cardiovascular Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Dong J, Xiao D, Zhao Z, Ren P, Li C, Hu Y, Shi J, Su H, Wang L, Liu H, Li B, Gao P, Qing G. Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism. Oncogenesis 2017; 6:e356. [PMID: 28692032 PMCID: PMC5541711 DOI: 10.1038/oncsis.2017.59] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023] Open
Abstract
Tumor cells must activate specific transporters to meet their increased glutamine metabolic demands. Relative to other glutamine transporters, the ASC family transporter 2 (ASCT2, also called SLC1A5) is profoundly elevated in a wide spectrum of human cancers to coordinate metabolic reprogramming and malignant transformation. Understanding the molecular mechanisms whereby tumor cells frequently upregulate this transporter is therefore vital to develop potential strategies for transporter-targeted therapies. Combining in-silico algorithms with systemic experimental screening, we herein identify the tumor suppressor microRNA, miR-137, as an essential regulator that targets ASCT2 and cancer cell glutamine metabolism. Metabolic analysis shows that miR-137 derepression, similar to ASCT2 inactivation, significantly inhibits glutamine consumption and TCA cycle anaplerosis. Mechanistically, methyl-CpG-binding protein 2 (MeCP2) and DNA methyltransferases (DNMTs) cooperate to promote active methylation of the miR-137 promoter and inhibit its transcription, conversely reactivating ASCT2 expression and glutamine metabolism. Moreover, expression between miR-137 and ASCT2 is inversely correlated in tumor specimens from multiple cancer types, and ectopic ASCT2 expression markedly rescued miR-137 suppression of tumorigenesis. These findings thus elucidate a previously unreported mechanism responsible for ASCT2 deregulation in human cancers and identify ASCT2 as a critical downstream effector of miR-137, revealing a molecular link between DNA methylation, microRNA and tumor metabolism.
Collapse
Affiliation(s)
- J Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cancer Biology, Medical Research Institute, Wuhan University, Wuhan, China
| | - D Xiao
- Department of Cancer Biology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Z Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, China
| | - P Ren
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - C Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Y Hu
- Department of Cancer Biology, Medical Research Institute, Wuhan University, Wuhan, China
| | - J Shi
- Union Hospital, Tongji Medical College, Huazhong University of Sicence and Technology, Wuhan, China
| | - H Su
- Department of Cancer Biology, Medical Research Institute, Wuhan University, Wuhan, China
- Union Hospital, Tongji Medical College, Huazhong University of Sicence and Technology, Wuhan, China
| | - L Wang
- Department of Cancer Biology, Medical Research Institute, Wuhan University, Wuhan, China
| | - H Liu
- Department of Cancer Biology, Medical Research Institute, Wuhan University, Wuhan, China
| | - B Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - P Gao
- Affiliated Dalian Sixth People’s Hospital, Dalian Medical University, Dalian, China
- Department of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
| | - G Qing
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cancer Biology, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Lysine-Specific Histone Demethylases Contribute to Cellular Differentiation and Carcinogenesis. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
47
|
Yang H, Zhang L, An J, Zhang Q, Liu C, He B, Hao DJ. MicroRNA-Mediated Reprogramming of Somatic Cells into Neural Stem Cells or Neurons. Mol Neurobiol 2017; 54:1587-1600. [DOI: 10.1007/s12035-016-0115-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022]
|
48
|
Zhang X, Zhang X, Yu B, Hu R, Hao L. Oncogene LSD1 is epigenetically suppressed by miR-137 overexpression in human non-small cell lung cancer. Biochimie 2017; 137:12-19. [PMID: 28223039 DOI: 10.1016/j.biochi.2017.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE We examined the epigenetic regulation of microRNA-137 (miR-137) on lysine-specific demethylase 1 (KDM1A, or LSD1) induced oncogenic effects in NSCLC. METHODS NSCLC cell lines, A549 and H460 cells were transfected with a mammalian LSD1 overexpression plasmid. It's effects on endogenous KDM1A gene and LSD1 protein expressions were examined by qRT-PCR and western blot assays. NSCLC proliferation and migration were also examined by MTT proliferation and wound-scratch assays, respectively. In LSD1-overexpeseed NSCLC cells, lentiviral transfection was conducted to upregulated miR-137 expression. The subsequent effects of miR-137 upregulation on LSD1-mediated cancer regulations were also examined. In addition, key components of histone deacetylases-associated signaling pathways, including EZH2, HDAC1 and HDAC2 were also examined by western blot in LSD1-and miR-137-mediated NSCLC cells. RESULTS Mammalian LSD1 overexpression plasmid was efficient in upregulating KDM1A gene and LSD1 protein in A549 and H460 cells. It also exerted oncogenic effects in NSCLC by promoting cancer proliferation and migration. MiR-137 was inversely correlated with LSD1 in NSCLC, as lentivirus-mediated miR-137 upregulation suppressed KDM1A/LSD1 productions and inhibited proliferation or migration in LSD1-overexpressed A549 and H460 cells. Further western blot analysis demonstrated EZH2, HDAC1 and HDAC2 were activated by LSD1, but inhibited by miR-137 in NSCLC. CONCLUSION Oncogenic effects of LSD1 were reversely regulated by its upstream epigenetic modulator miR-137 in NSCLC. The interaction between LSD1 and miR-137 may very well involve the regulation on histone deacetylases-associated signaling pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Xiujuan Zhang
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Bo Yu
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, 252000, China.
| | - Rongpeng Hu
- Department of Internal Medicine, Liaocheng Infection Hospital, Liaocheng, 252000, China
| | - Lanxiang Hao
- Department of Endocrinology, Yancheng City No.1 People's Hospital, Yancheng, 224001, China
| |
Collapse
|
49
|
Theisen ER, Pishas KI, Saund RS, Lessnick SL. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting. Oncotarget 2017; 7:17616-30. [PMID: 26848860 PMCID: PMC4951237 DOI: 10.18632/oncotarget.7124] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/23/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma is an aggressive primary pediatric bone tumor, often diagnosed in adolescents and young adults. A pathognomonic reciprocal chromosomal translocation results in a fusion gene coding for a protein which derives its N-terminus from a FUS/EWS/TAF15 (FET) protein family member, commonly EWS, and C-terminus containing the DNA-binding domain of an ETS transcription factor, commonly FLI1. Nearly 85% of cases express the EWS-FLI protein which functions as a transcription factor and drives oncogenesis. As the primary genomic lesion and a protein which is not expressed in normal cells, disrupting EWS-FLI function is an attractive therapeutic strategy for Ewing sarcoma. However, transcription factors are notoriously difficult targets for the development of small molecules. Improved understanding of the oncogenic mechanisms employed by EWS-FLI to hijack normal cellular programming has uncovered potential novel approaches to pharmacologically block EWS-FLI function. In this review we examine targeting the chromatin regulatory enzymes recruited to conspire in oncogenesis with a focus on the histone lysine specific demethylase 1 (LSD1). LSD1 inhibitors are being aggressively investigated in acute myeloid leukemia and the results of early clinical trials will help inform the future use of LSD1 inhibitors in sarcoma. High LSD1 expression is observed in Ewing sarcoma patient samples and mechanistic and preclinical data suggest LSD1 inhibition globally disrupts the function of EWS-ETS proteins.
Collapse
Affiliation(s)
- Emily R Theisen
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen I Pishas
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Cancer Therapeutics Laboratory, Centre for Personalized Cancer Medicine, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ranajeet S Saund
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Pediatric Hematology/Oncology/Bone Marrow Transplant at The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
50
|
Soriano A, París-Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, Bray I, Vidal I, Almazán-Moga A, Molist C, Roma J, Bayascas JR, Casanovas O, Stallings RL, Sánchez de Toledo J, Gallego S, Segura MF. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget 2017; 7:9271-87. [PMID: 26824183 PMCID: PMC4891039 DOI: 10.18632/oncotarget.7005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/01/2016] [Indexed: 01/24/2023] Open
Abstract
Despite multimodal therapies, a high percentage of high-risk neuroblastoma (NB) become refractory to current treatments, most of which interfere with cell cycle and DNA synthesis or function, activating the DNA damage response (DDR). In cancer, this process is frequently altered by deregulated expression or function of several genes which contribute to multidrug resistance (MDR). MicroRNAs are outstanding candidates for therapy since a single microRNA can modulate the expression of multiple genes of the same or different pathways, thus hindering the development of resistance mechanisms by the tumor. We found several genes implicated in the MDR to be overexpressed in high-risk NB which could be targeted by microRNAs simultaneously. Our functional screening identified several of those microRNAs that reduced proliferation of chemoresistant NB cell lines, the best of which was miR-497. Low expression of miR-497 correlated with poor patient outcome. The overexpression of miR-497 reduced the proliferation of multiple chemoresistant NB cell lines and induced apoptosis in MYCN-amplified cell lines. Moreover, the conditional expression of miR-497 in NB xenografts reduced tumor growth and inhibited vascular permeabilization. MiR-497 targets multiple genes related to the DDR, cell cycle, survival and angiogenesis, which renders this molecule a promising candidate for NB therapy.
Collapse
Affiliation(s)
- Aroa Soriano
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Laia París-Coderch
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Luz Jubierre
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Alba Martínez
- Tumor Angiogenesis Group, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xiangyu Zhou
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Piskareva
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland and National Children's Research Centre Our Lady's Children's Hospital, Dublin, Ireland
| | - Isabella Bray
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland and National Children's Research Centre Our Lady's Children's Hospital, Dublin, Ireland
| | - Isaac Vidal
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Ana Almazán-Moga
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Carla Molist
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Josep Roma
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - José R Bayascas
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Raymond L Stallings
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland and National Children's Research Centre Our Lady's Children's Hospital, Dublin, Ireland
| | - José Sánchez de Toledo
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Soledad Gallego
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| |
Collapse
|