1
|
Sato Y, Elbadawy M, Suzuki K, Tsunedomi R, Nagano H, Ishihara Y, Yamamoto H, Azakami D, Uchide T, Nabeta R, Fukushima R, Abugomaa A, Kaneda M, Yamawaki H, Shinohara Y, Usui T, Sasaki K. Establishment of an experimental model of canine malignant mesothelioma organoid culture using a three-dimensional culture method. Biomed Pharmacother 2023; 162:114651. [PMID: 37030135 DOI: 10.1016/j.biopha.2023.114651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Canine malignant mesothelioma (cMM) is a rare and drug-resistant malignant tumor. Due to few patients and experimental models, there have not been enough studies to demonstrate the pathogenesis of the disease and novel effective treatment for cMM. Since cMM resembles human MM (hMM) in histopathological characteristics, it is also considered a promising research model of hMM. Compared with conventional 2-dimensional (2D) culture methods, 3-dimensional (3D) organoid culture can recapitulate the properties of original tumor tissues. However, cMM organoids have never been developed. In the present study, we for the first time generated cMM organoids using the pleural effusion samples. Organoids from individual MM dogs were successfully generated. They exhibited the characteristics of MM and expressed mesothelial cell markers, such as WT-1 and mesothelin. The sensitivity to anti-cancer drugs was different in each strain of cMM organoids. RNA sequencing analysis showed cell adhesion molecule pathways were specifically upregulated in cMM organoids compared with their corresponding 2D cultured cells. Among these genes, the expression level of E-cadherin was drastically higher in the organoids than that in the 2D cells. In conclusion, our established cMM organoids might become a new experimental tool to provide new insights into canine and human MM therapy.
Collapse
Affiliation(s)
- Yomogi Sato
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt.
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Rina Nabeta
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Fukushima
- Animal Medical Emergency Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, Aomori 034-8628, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Lee YCG, Zemek RM, Bosco A, Lake RA, Lesterhuis WJ. Geldanamycin treatment does not result in anti-cancer activity in a preclinical model of orthotopic mesothelioma. PLoS One 2023; 18:e0274364. [PMID: 37146029 PMCID: PMC10162533 DOI: 10.1371/journal.pone.0274364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/26/2023] [Indexed: 05/07/2023] Open
Abstract
Mesothelioma is characterised by its aggressive invasive behaviour, affecting the surrounding tissues of the pleura or peritoneum. We compared an invasive pleural model with a non-invasive subcutaneous model of mesothelioma and performed transcriptomic analyses on the tumour samples. Invasive pleural tumours were characterised by a transcriptomic signature enriched for genes associated with MEF2C and MYOCD signaling, muscle differentiation and myogenesis. Further analysis using the CMap and LINCS databases identified geldanamycin as a potential antagonist of this signature, so we evaluated its potential in vitro and in vivo. Nanomolar concentrations of geldanamycin significantly reduced cell growth, invasion, and migration in vitro. However, administration of geldanamycin in vivo did not result in significant anti-cancer activity. Our findings show that myogenesis and muscle differentiation pathways are upregulated in pleural mesothelioma which may be related to the invasive behaviour. However, geldanamycin as a single agent does not appear to be a viable treatment for mesothelioma.
Collapse
Affiliation(s)
- M Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Catherine A Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, Western Australia, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sally M Lansley
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Y C Gary Lee
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Rachael M Zemek
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Richard A Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - W Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Chang F, Keam S, Hoang TS, Creaney J, Gill S, Nowak AK, Ebert M, Cook AM. Immune marker expression of irradiated mesothelioma cell lines. Front Oncol 2022; 12:1020493. [PMID: 36387076 PMCID: PMC9659742 DOI: 10.3389/fonc.2022.1020493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Though immune checkpoint inhibition has recently shown encouraging clinical efficacy in mesothelioma, most patients do not respond. Combining immune checkpoint inhibition with radiotherapy presents an attractive option for improving treatment responses owing to the various immunomodulatory effects of radiation on tumors. However, the ideal dosing and scheduling of combined treatment remains elusive, as it is poorly studied in mesothelioma. The present study characterizes the dose- and time-dependent changes to expression of various immune markers and cytokines important to antitumor responses following irradiation of mesothelioma cell lines. Methods Two murine (AB1, AE17) and two human (BYE, JU77) mesothelioma cell lines were treated with titrated gamma-radiation doses (1-8 Gy) and the expression of MHC class-I, MHC class-II and PD-L1 was measured over a series of post-irradiation timepoints (1-72 hours) by flow cytometry. Levels of cytokines IL-1α, IL-1β, IL-6, IL-10, IL-12p70, IL-17A, IL-23, IL-27, MCP-1, IFN-β, IFN-γ, TNF-α, and GM-CSF were measured by multiplex immunoassay in murine cell lines following 8 Gy radiation. Results Following irradiation, a dose-dependent upregulation of MHC-I and PD-L1 was observed on three of the four cell lines studied to varying extents. For all cell lines, the increase in marker expression was most pronounced 72 hours after radiation. At this timepoint, increases in levels of cytokines IFN-β, MCP-1 and IL-6 were observed following irradiation with 8 Gy in AB1 but not AE17, reflecting patterns in marker expression. Conclusions Overall, this study establishes the dose- and time-dependent changes in immune marker expression of commonly studied mesothelioma cell lines following radiation and will inform future study into optimal dosing and scheduling of combined radiotherapy and immune checkpoint inhibition for mesothelioma.
Collapse
Affiliation(s)
- Faith Chang
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Synat Keam
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Tracy Seymour Hoang
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Martin Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Alistair M. Cook
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Gummer JP, Olasz B, Nambiar S, Hope DE, Casey TH, Lee YCG, Leslie C, Nealon G, Shackleford DM, Powell AK, Grimaldi M, Balaguer P, Zemek RM, Bosco A, Piggott MJ, Vrielink A, Lake RA, Lesterhuis WJ. PPARα and PPARγ activation is associated with pleural mesothelioma invasion but therapeutic inhibition is ineffective. iScience 2022; 25:103571. [PMID: 34984327 PMCID: PMC8692993 DOI: 10.1016/j.isci.2021.103571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.
Collapse
Affiliation(s)
- M. Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Catherine A. Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, WA 6009, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | | | - Joel P.A. Gummer
- School of Science, Department of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bence Olasz
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Shabarinath Nambiar
- School of Veterinary and Life Science, Murdoch University, Murdoch, WA 6150, Australia
| | - Danika E. Hope
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Y. C. Gary Lee
- Institute for Respiratory Health, Nedlands, WA 6009, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Matthew J. Piggott
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - W. Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| |
Collapse
|
5
|
Shamseddin M, Obacz J, Garnett MJ, Rintoul RC, Francies HE, Marciniak SJ. Use of preclinical models for malignant pleural mesothelioma. Thorax 2021; 76:1154-1162. [PMID: 33692175 PMCID: PMC8526879 DOI: 10.1136/thoraxjnl-2020-216602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer most commonly caused by prior exposure to asbestos. Median survival is 12-18 months, since surgery is ineffective and chemotherapy offers minimal benefit. Preclinical models that faithfully recapitulate the genomic and histopathological features of cancer are critical for the development of new treatments. The most commonly used models of MPM are two-dimensional cell lines established from primary tumours or pleural fluid. While these have provided some important insights into MPM biology, these cell models have significant limitations. In order to address some of these limitations, spheroids and microfluidic chips have more recently been used to investigate the role of the three-dimensional environment in MPM. Efforts have also been made to develop animal models of MPM, including asbestos-induced murine tumour models, MPM-prone genetically modified mice and patient-derived xenografts. Here, we discuss the available in vitro and in vivo models of MPM and highlight their strengths and limitations. We discuss how newer technologies, such as the tumour-derived organoids, might allow us to address the limitations of existing models and aid in the identification of effective treatments for this challenging-to-treat disease.
Collapse
Affiliation(s)
- Marie Shamseddin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Joanna Obacz
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Robert Campbell Rintoul
- Department of Oncology, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Thoracic Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | | | - Stefan John Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| |
Collapse
|
6
|
Kanellakis NI, Asciak R, Hamid MA, Yao X, McCole M, McGowan S, Seraia E, Hatch S, Hallifax RJ, Mercer RM, Bedawi EO, Jones S, Verrill C, Dobson M, George V, Stathopoulos GT, Peng Y, Ebner D, Dong T, Rahman NM, Psallidas I. Patient-derived malignant pleural mesothelioma cell cultures: a tool to advance biomarker-driven treatments. Thorax 2020; 75:1004-1008. [PMID: 32943495 PMCID: PMC7569377 DOI: 10.1136/thoraxjnl-2020-215027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer, associated with poor prognosis. We assessed the feasibility of patient-derived cell cultures to serve as an ex vivo model of MPM. Patient-derived MPM cell cultures (n=16) exhibited stemness features and reflected intratumour and interpatient heterogeneity. A subset of the cells were subjected to high-throughput drug screening and coculture assays with cancer-specific cytotoxic T cells and showed diverse responses. Some of the biphasic MPM cells were capable of processing and presenting the neoantigen SSX-2 endogenously. In conclusion, patient-derived MPM cell cultures are a promising and faithful ex vivo model of MPM.
Collapse
Affiliation(s)
- Nikolaos I Kanellakis
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom .,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachelle Asciak
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Megat Abd Hamid
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mark McCole
- Cellular Pathology Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Simon McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Elena Seraia
- Cellular High Throughput Screening Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Stephanie Hatch
- Cellular High Throughput Screening Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Rob J Hallifax
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel M Mercer
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eihab O Bedawi
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Melissa Dobson
- Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vineeth George
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Georgios T Stathopoulos
- Molecular Lung Carcinogenesis Group, Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Ludwig-Maximilians University and Helmholtz Center, Munich, Germany.,Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Cellular High Throughput Screening Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Oey H, Daniels M, Relan V, Chee TM, Davidson MR, Yang IA, Ellis JJ, Fong KM, Krause L, Bowman RV. Whole-genome sequencing of human malignant mesothelioma tumours and cell lines. Carcinogenesis 2020; 40:724-734. [PMID: 31038674 DOI: 10.1093/carcin/bgz066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Pleural mesothelioma is a cancer of serosal surfaces caused by environmental exposure to asbestos. Clinical outcome remains poor and while trials of new treatments are ongoing it remains an understudied cancer. Mesothelioma cell lines can readily be grown from primary tumour and from tumour cells shed into pleural effusion with the latter representing a particularly valuable source of DNA in clinical settings, procurable without the need for additional invasive procedures. However, it is not well understood how accurately patient-derived cultured tumour cells represent the molecular characteristics of their primary tumour. We used whole-genome sequencing of primary tumour and matched cultured cells to comprehensively characterize mutations and structural alterations. Most cases had complex rearranged genomes with evidence of chromoanagenesis and rearrangements reminiscent of chromoplexy. Many of the identified driver mutations were structural, indicating that mesothelioma is often caused by structural alterations and catastrophic genomic events, rather than point mutations. Because the majority of genomic changes detected in tumours were also displayed by the genomes of cultured tumour cells, we conclude that low-passage cultured tumour cells are generally suitable for molecular characterization of mesothelioma and may be particularly useful where tissue samples with high tumour cell content are not available. However, the subclonal compositions of the cell lines did not fully recapitulate the subclonal diversity of the primary tumours. Furthermore, longitudinal acquisition of major alterations in subclonal cell populations was observed after long-term passaging. These two factors define limitations of tumour-derived cell lines as genomic substrate for clinical purposes.
Collapse
Affiliation(s)
- Harald Oey
- Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Marissa Daniels
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Vandana Relan
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Tian Mun Chee
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Morgan R Davidson
- Department of Anatomical Pathology, The Prince Charles Hospital, Queensland, Australia
| | - Ian A Yang
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Queensland, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| | - Jonathan J Ellis
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | - Kwun M Fong
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Queensland, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| | - Lutz Krause
- Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Rayleen V Bowman
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Queensland, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| |
Collapse
|
8
|
Sneddon S, Rive CM, Ma S, Dick IM, Allcock RJN, Brown SD, Holt RA, Watson M, Leary S, Lee YCG, Robinson BWS, Creaney J. Identification of a CD8+ T-cell response to a predicted neoantigen in malignant mesothelioma. Oncoimmunology 2019; 9:1684713. [PMID: 32002298 PMCID: PMC6959430 DOI: 10.1080/2162402x.2019.1684713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
Neoantigens present unique and specific targets for personalized cancer immunotherapy strategies. Given the low mutational burden yet immunotherapy responsiveness of malignant mesothelioma (MM) when compared to other carcinogen-induced malignancies, identifying candidate neoantigens and T cells that recognize them has been a challenge. We used pleural effusions to gain access to MM tumor cells as well as immune cells in order to characterize the tumor-immune interface in MM. We characterized the landscape of potential neoantigens from SNVs identified in 27 MM patients and performed whole transcriptome sequencing of cell populations from 18 patient-matched pleural effusions. IFNγ ELISpot was performed to detect a CD8+ T cell responses to predicted neoantigens in one patient. We detected a median of 68 (range 7–258) predicted neoantigens across the samples. Wild-type non-binding to mutant binding predicted neoantigens increased risk of death in a model adjusting for age, sex, smoking status, histology and treatment (HR: 33.22, CI: 2.55–433.02, p = .007). Gene expression analysis indicated a dynamic immune environment within the pleural effusions. TCR clonotypes increased with predicted neoantigen burden. A strong activated CD8+ T-cell response was identified for a predicted neoantigen produced by a spontaneous mutation in the ROBO3 gene. Despite the challenges associated with the identification of bonafide neoantigens, there is growing evidence that these molecular changes can provide an actionable target for personalized therapeutics in difficult to treat cancers. Our findings support the existence of candidate neoantigens in MM despite the low mutation burden of the tumor, and may present improved treatment opportunities for patients.
Collapse
Affiliation(s)
- Sophie Sneddon
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Craig M Rive
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Shaokang Ma
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Ian M Dick
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Richard J N Allcock
- Pathwest Laboratory Medicine, Western Australia, QEII Medical Centre, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Scott D Brown
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Robert A Holt
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Y C Gary Lee
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Bruce W S Robinson
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| |
Collapse
|
9
|
Akabar N, Chaturvedi V, Shillito GE, Schwehr BJ, Gordon KC, Huff GS, Sutton JJ, Skelton BW, Sobolev AN, Stagni S, Nelson DJ, Massi M. Photophysical and biological investigation of phenol substituted rhenium tetrazolato complexes. Dalton Trans 2019; 48:15613-15624. [PMID: 31408065 DOI: 10.1039/c9dt02198a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, structural and photophysical characterisation of four tricarbonyl rhenium(i) complexes bound to 1,10-phenanthroline and a tetrazolato ancillary ligand are reported. The complexes are differentiated by the nature (hydroxy or methoxy) and position (meta or para) of the substituent attached to the phenyl ring in conjugation to the tetrazole ring. The complexes exhibit phosphorescence emission from triplet charge transfer excited states, with the maxima around 600 nm, excited state lifetime decays in the 200-300 ns range, and quantum yield values of 4-6% in degassed acetonitrile solutions. The nature and position of the substituent does not significantly affect the photophysical properties, which remain unchanged even after deprotonation of the hydroxide group on the phenol ring. The interpretation of the photophysical data was further validated by resonance Raman spectroscopy and time-dependent density functional theory calculations. All the complexes are internalised within cells, albeit to variable degrees. As highlighted by a combination of flow cytometry and confocal microscopy, the species display diffuse cytoplasmic localisation except for the complex with the hydroxy functional group at the para position, which reveals lower accumulation in cells and more pronounced punctate staining. Overall, the complexes displayed low levels of cytotoxicity.
Collapse
Affiliation(s)
- Nurshadrina Akabar
- School of Molecular and Life Sciences, Curtin Institute for Functional Materials and Interfaces, Curtin University, Bentley WA, Australia.
| | - Vishal Chaturvedi
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley WA, Australia
| | - Georgina E Shillito
- Department of Chemistry Te Tari HuaRuanuk, University of Otago, Dunedin, New Zealand
| | - Bradley J Schwehr
- School of Molecular and Life Sciences, Curtin Institute for Functional Materials and Interfaces, Curtin University, Bentley WA, Australia.
| | - Keith C Gordon
- Department of Chemistry Te Tari HuaRuanuk, University of Otago, Dunedin, New Zealand
| | - Gregory S Huff
- Department of Chemistry Te Tari HuaRuanuk, University of Otago, Dunedin, New Zealand
| | - Joshua J Sutton
- Department of Chemistry Te Tari HuaRuanuk, University of Otago, Dunedin, New Zealand
| | - Brian W Skelton
- School of Molecular Sciences and CMCA, The University of Western Australia, Perth WA, Australia
| | - Alexandre N Sobolev
- School of Molecular Sciences and CMCA, The University of Western Australia, Perth WA, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Delia J Nelson
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley WA, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin Institute for Functional Materials and Interfaces, Curtin University, Bentley WA, Australia.
| |
Collapse
|
10
|
Abayasiriwardana KS, Wood MK, Prêle CM, Birnie KA, Robinson BW, Laurent GJ, McAnulty RJ, Mutsaers SE. Inhibition of collagen production delays malignant mesothelioma tumor growth in a murine model. Biochem Biophys Res Commun 2019; 510:198-204. [PMID: 30685089 DOI: 10.1016/j.bbrc.2019.01.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Malignant mesothelioma is an aggressive fibrous tumor, predominantly of the pleura, with a very poor prognosis. Cell-matrix interactions are recognized important determinants of tumor growth and invasiveness but the role of the extracellular matrix in mesothelioma is unknown. Mesothelioma cells synthesize collagen as well as transforming growth factor-beta (TGF-β), a key regulator of collagen production. This study examined the effect of inhibiting collagen production on mesothelioma cell proliferation in vitro and tumor growth in vivo. Collagen production by mesothelioma cells was inhibited by incubating cells in vitro with the proline analogue thiaproline (thiazolidine-4-carboxylic acid) or by oral administration of thiaproline in a murine tumor model. Cell cytotoxicity was measured using neutral red uptake and lactate dehydrogenase assays. Proliferation was measured by tritiated thymidine incorporation, and inflammatory cell influx, proliferation, apoptosis and angiogenesis in tumors examined by immunohistochemical labelling. Tumor size was determined by tumor weight and collagen production was measured by HPLC. Thiaproline at non-toxic doses significantly reduced basal and TGF-β-induced collagen production by over 50% and cell proliferation by over 65%. In vivo thiaproline administration inhibited tumor growth at 10 days, decreasing the median tumor weight by 80%. The mean concentration of collagen was 50% lower in the thiaproline-treated tumors compared with the controls. There were no significant differences in vasculature or inflammatory cell infiltration but apoptosis was increased in thiaproline treated tumors at day 10. In conclusion, these observations strongly support a role for collagen in mesothelioma growth and establish the potential for inhibitors of collagen synthesis in mesothelioma treatment.
Collapse
Affiliation(s)
- Keith S Abayasiriwardana
- Centre for Inflammation and Tissue Repair, Rayne Institute, Department of Medicine, University College London, London, UK
| | - Michael K Wood
- Centre for Inflammation and Tissue Repair, Rayne Institute, Department of Medicine, University College London, London, UK
| | - Cecilia M Prêle
- Institute for Respiratory Health, Centre for Respiratory Health, University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Australia
| | - Kimberly A Birnie
- Institute for Respiratory Health, Centre for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| | - Bruce W Robinson
- National Centre for Asbestos Related Diseases, Department of Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Geoffrey J Laurent
- Institute for Respiratory Health, Centre for Respiratory Health, University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Australia
| | - Robin J McAnulty
- Centre for Inflammation and Tissue Repair, Rayne Institute, Department of Medicine, University College London, London, UK
| | - Steven E Mutsaers
- Centre for Inflammation and Tissue Repair, Rayne Institute, Department of Medicine, University College London, London, UK; Institute for Respiratory Health, Centre for Respiratory Health, University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Australia.
| |
Collapse
|
11
|
The Future of Mesothelioma Research: Basic Science Research. CARING FOR PATIENTS WITH MESOTHELIOMA: PRINCIPLES AND GUIDELINES 2019. [PMCID: PMC7119960 DOI: 10.1007/978-3-319-96244-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Our current understanding of mesothelioma in terms of disease induction, development, and treatment is underpinned by decades of basic laboratory science. In this chapter, we discuss the tools that have been developed to aid our understanding of mesothelioma such as cell lines and animal models. We then go on to detail the current use and understanding of conventional therapies for mesothelioma, e.g. chemotherapy, surgery, and radiotherapy, plus their mechanisms of action, and why they may be ineffective. Finally, we discuss a range of newer treatments that are either undergoing clinical trials or are still in the earlier stages of preclinical investigation. These include a growing number of immunotherapies (e.g. checkpoint inhibitors), plus targeted therapies, the search for clinical biomarkers to predict whether patients with mesothelioma might respond to particular treatments, and combined therapies where conventional treatments may be added to newer drugs. The strategy of repositioning existing drugs, approved for other diseases, to treat mesothelioma is also discussed.
Collapse
|
12
|
Malignant cells from pleural fluids in malignant mesothelioma patients reveal novel mutations. Lung Cancer 2018; 119:64-70. [PMID: 29656754 DOI: 10.1016/j.lungcan.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Malignant mesothelioma (MM) is an asbestos related tumour affecting cells of serosal cavities. More than 70% of MM patients develop pleural effusions which contain tumour cells, representing a readily accessible source of malignant cells for genetic analysis. Although common somatic mutations and losses have been identified in solid MM tumours, the characterization of tumour cells within pleural effusions could provide novel insights but is little studied. MATERIALS AND METHODS DNA and RNA were extracted from cells from short term cultures of 27 human MM pleural effusion samples. Whole exome and transcriptome sequencing was performed using the Ion Torrent platform. Somatic mutations were identified using VarScan2 and SomaticSniper. Copy number alterations were identified using ExomeCNV in R. Significant copy number alterations were identified across all samples using GISTIC2.0. The association between tumour intrinsic properties and survival was analyzed using the Cox proportional hazards regression model. RESULTS We identified BAP1, CDKN2A and NF2 alterations in the cells from MM pleural effusions at a higher frequency than what is typically seen in MM tumours from surgical series. The median mutation rate was 1.09 mutations/Mb. TRAF7 and LATS2 alterations were also identified at a high frequency (66% and 59% respectively). Novel regions of interest were identified, including alterations in FGFR3, and the regions 19p13.3, 8p23.1 and 1p36.32. CONCLUSION Short term cultures of tumour cells from MM pleural effusions offer an accessible alternative to surgical tumour biopsies in the study of MM genomics and reveal novel mutations of interest. Pleural effusion tumour cells provide an opportunity for the monitoring of tumour dynamics, treatment response and the clonal evolution of MM tumours.
Collapse
|
13
|
Kresoja-Rakic J, Kapaklikaya E, Ziltener G, Dalcher D, Santoro R, Christensen BC, Johnson KC, Schwaller B, Weder W, Stahel RA, Felley-Bosco E. Identification of cis- and trans-acting elements regulating calretinin expression in mesothelioma cells. Oncotarget 2018; 7:21272-86. [PMID: 26848772 PMCID: PMC5008284 DOI: 10.18632/oncotarget.7114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
Calretinin (CALB2) is a diagnostic marker for epithelioid mesothelioma. It is also a prognostic marker since patients with tumors expressing high calretinin levels have better overall survival. Silencing of calretinin decreases viability of epithelioid mesothelioma cells. Our aim was to elucidate mechanisms regulating calretinin expression in mesothelioma. Analysis of calretinin transcript and protein suggested a control at the mRNA level. Treatment with 5-aza-2′-deoxycytidine and analysis of TCGA data indicated that promoter methylation is not likely to be involved. Therefore, we investigated CALB2 promoter by analyzing ~1kb of genomic sequence surrounding the transcription start site (TSS) + 1 using promoter reporter assay. Deletion analysis of CALB2 proximal promoter showed that sequence spanning the −161/+80bp region sustained transcriptional activity. Site-directed analysis identified important cis-regulatory elements within this −161/+80bp CALB2 promoter. EMSA and ChIP assays confirmed binding of NRF-1 and E2F2 to the CALB2 promoter and siRNA knockdown of NRF-1 led to decreased expression of calretinin. Cell synchronization experiment showed that calretinin expression was cell cycle regulated with a peak of expression at G1/S phase. This study provides the first insight in the regulation of CALB2 expression in mesothelioma cells.
Collapse
Affiliation(s)
- Jelena Kresoja-Rakic
- Laboratory of Molecular Oncology, Clinic of Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Esra Kapaklikaya
- Laboratory of Molecular Oncology, Clinic of Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Gabriela Ziltener
- Laboratory of Molecular Oncology, Clinic of Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Damian Dalcher
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland
| | - Raffaella Santoro
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland
| | - Brock C Christensen
- Departments of Epidemiology, Pharmacology and Toxicology and Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kevin C Johnson
- Departments of Epidemiology, Pharmacology and Toxicology and Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Walter Weder
- Division of Thoracic Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Rolf A Stahel
- Laboratory of Molecular Oncology, Clinic of Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Clinic of Oncology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Delivery of expression constructs of secreted frizzled-related protein 4 and its domains by chitosan-dextran sulfate nanoparticles enhances their expression and anti-cancer effects. Mol Cell Biochem 2017; 443:205-213. [PMID: 29185158 DOI: 10.1007/s11010-017-3225-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
In malignant mesothelioma (MM) cells, secreted frizzled-related protein 4 (SFRP4) expression is downregulated by promoter methylation. In this study, we evaluated the effect of encapsulated chitosan-dextran (CS-DS) nanoparticle formulations of SFRP4 and its cysteine-rich domain (CRD) and netrin-like domain (NLD) as means of SFRP4-GFP protein delivery and their effects in JU77 and ONE58 MM cell lines. CS-DS formulations of SFRP4, CRD, and NLD nanoparticles were prepared by a complex coacervation technique, and particle size ranged from 300 nm for empty particles to 337 nm for particles containing the proteins. Measurement of the zeta potential showed that all preparations were around 25 mV or above, suggesting stable formulation and good affinity for the DNA molecules. The CS-DS nanoparticle formulation maintained high integrity and entrapment efficiency. Gene delivery of SFRP4 and its domains showed enhanced biological effects in both JU77 and ONE58 cell lines when compared to the non-liposomal FUGENE® HD transfection reagent. In comparison to the CRD nanoparticles, both the SFRP4 and NLD nanoparticles significantly reduced the viability of MM cells, with the NLD showing the greatest effect. The CS-DS nanoparticle effects were observed at an earlier time point and with lower DNA concentrations. Morphological changes in MM cells were characterized by the formation of membrane-associated vesicles and green fluorescent protein expression specific to SFRP4 and the NLD. The findings from our proof-of-concept study provide a stepping stone for further investigations using in vivo models.
Collapse
|
15
|
Kresoja-Rakic J, Sulemani M, Kirschner MB, Ronner M, Reid G, Kao S, Schwaller B, Weder W, Stahel RA, Felley-Bosco E. Posttranscriptional Regulation Controls Calretinin Expression in Malignant Pleural Mesothelioma. Front Genet 2017; 8:70. [PMID: 28611824 PMCID: PMC5447031 DOI: 10.3389/fgene.2017.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
Calretinin (CALB2) is a diagnostic and prognostic marker in malignant pleural mesothelioma (MPM). We previously reported that calretinin expression is regulated at the mRNA level. The presence of a medium-sized (573 nucleotide) 3' untranslated region (3'UTR) predicted to contain binding sites for miR-30a/b/c/d/e and miR-9 as well as an adenine/uridine-rich element (ARE) in all three transcripts arising from the CALB2 gene, suggests that calretinin expression is regulated via posttranscriptional mechanisms. Our aim was to investigate the role of the CALB2-3'UTR in the posttranscriptional regulation of calretinin expression in MPM. CALB2-3'UTR was inserted downstream of the luciferase reporter gene using pmiRGLO vector and reporter expression was determined after transfection into MPM cells. Targeted mutagenesis was used to generate variants harboring mutated miR-30 family and ARE binding sites. Electrophoretic mobility shift assay was used to test for the presence of ARE binding proteins. CALB2-3'UTR significantly decreased luciferase activity in MPM cells. Analysis of mutation in the ARE site revealed a further destabilization of the reporter and human antigen R (HuR) binding to the ARE sequence was detected. The mutation of two miR-30 binding sites abolished CALB2-3'UTR destabilization effect; a transient delivery of miR-30e-5p mimics or anti-miR into MPM cells resulted in a significant decrease/increase of the luciferase reporter expression and calretinin protein, respectively. Moreover, overexpression of CALB2-3'UTR quenched the effect of miR-30e-5p mimics on calretinin protein levels, possibly by sequestering the mimics, thereby suggesting a competitive endogenous RNA network. Finally, by data mining we observed that expression of miR-30e-5p was negatively correlated with the calretinin expression in a cohort of MPM patient samples. Our data show the role of (1) adenine-uridine (AU)-binding proteins in calretinin stabilization and (2) miR-30e-5p in the posttranscriptional negative regulation of calretinin expression via interaction with its 3'UTR. Furthermore, our study demonstrates a possible physiological role of calretinin's alternatively spliced transcripts.
Collapse
Affiliation(s)
- Jelena Kresoja-Rakic
- Laboratory of Molecular Oncology, Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| | - Merve Sulemani
- Laboratory of Molecular Oncology, Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| | | | - Manuel Ronner
- Laboratory of Molecular Oncology, Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| | - Glen Reid
- Asbestos Diseases Research Institute, SydneyNSW, Australia.,School of Medicine, The University of Sydney, SydneyNSW, Australia
| | - Steven Kao
- Asbestos Diseases Research Institute, SydneyNSW, Australia.,School of Medicine, The University of Sydney, SydneyNSW, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, SydneyNSW, Australia
| | - Beat Schwaller
- Department of Medicine, Anatomy, University of FribourgFribourg, Switzerland
| | - Walter Weder
- Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| | - Rolf A Stahel
- Clinic for OncologyUniversity Hospital Zurich, Zurich
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Division of Thoracic SurgeryUniversity Hospital Zurich, Switzerland
| |
Collapse
|
16
|
Perumal V, Dharmarajan AM, Fox SA. The Wnt regulator SFRP4 inhibits mesothelioma cell proliferation, migration, and antagonizes Wnt3a via its netrin-like domain. Int J Oncol 2017; 51:362-368. [PMID: 28534940 DOI: 10.3892/ijo.2017.4011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/26/2017] [Indexed: 11/06/2022] Open
Abstract
Secreted frizzled related proteins (SFRPs) are a family of Wnt regulators which are frequently downregulated in cancers. In malignant mesothelioma (MM), downregulation of SFRP4 has been reported as a mechanism which contributes to aberrant activation of oncogenic Wnt signaling. Here we investigated the biological consequences of SFRP4 in two mesothelioma cell models where this protein is downregulated. We used recombinant SFRP4 and transient overexpression to study changes in proliferation, migration and downstream signaling. We found that recombinant SFRP4 inhibited both proliferation and migration of MM cells as well as abrogating the stimulatory effect of recombinant Wnt3a. Morphologically SFRP4 induced a cytotoxic effect distinct from apoptosis and consistent with mitotic catastrophe. Overexpression of SFRP4 in these cell lines displayed similar effects as endogenous protein on cell viability, migration and nuclear morphology. We also used expression constructs to examine the role of the SFRP4 cysteine rich domain (CRD) and a netrin-like domain (NLD) in these effects. Interestingly, we found it was the NLD which mediated the biological effects of SFRP4 in these cells. Our results indicate that SFRP4 inhibits mesothelioma proliferation, migration and activates alternative cell death pathways. The finding that the NLD is responsible for these has broader implications for this protein family. Overall this study suggests that the Wnt pathway may prove a promising target for therapy in mesothelioma.
Collapse
Affiliation(s)
- Vanathi Perumal
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Arun M Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Simon A Fox
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
17
|
Creaney J, Dick IM, Leon JS, Robinson BWS. A Proteomic Analysis of the Malignant Mesothelioma Secretome Using iTRAQ. Cancer Genomics Proteomics 2017; 14:103-117. [PMID: 28387650 DOI: 10.21873/cgp.20023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/30/2022] Open
Abstract
Backgound/Aim: Malignant mesothelioma (MM) is an aggressive and fatal pleural cancer. The cell secretome offers information allowing insight into the pathogenesis of MM while offering the possibility to identify potential therapeutic targets and biomarkers. In the present study the secretome protein profile of MM cell lines was compared to normal mesothelial cells. MATERIALS AND METHODS Six MM cell lines were compared against three primary mesothelial cell culture preparations using iTRAQ® mass spectrometry. RESULTS MM cell lines more abundantly secreted exosome-associated proteins than mesothelial cells. MM cell secretomes were enriched in proteins that are involved in response to stress, carbon metabolism, biosynthesis of amino acids, antigen processing and presentation and protein processing in the endoplasmic reticulum. CONCLUSION The MM cell secretome is enriched in proteins that are likely to enhance its growth and response to stress and help it inhibit an adaptive immune response. These are potential targets for therapeutic and biomarker discovery.
Collapse
Affiliation(s)
- Jenette Creaney
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia and Australian Mesothelioma Tissue Bank, Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Ian M Dick
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Justine S Leon
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Bruce W S Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia
| |
Collapse
|
18
|
A Subset of Malignant Mesothelioma Tumors Retain Osteogenic Potential. Sci Rep 2016; 6:36349. [PMID: 27886205 PMCID: PMC5122867 DOI: 10.1038/srep36349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 10/13/2016] [Indexed: 01/16/2023] Open
Abstract
Malignant mesothelioma (MM) is an aggressive serosal tumor associated with asbestos exposure. We previously demonstrated that mesothelial cells differentiate into cells of different mesenchymal lineages and hypothesize that osseous tissue observed in a subset of MM patients is due to local differentiation of MM cells. In this study, the capacity of human and mouse MM cells to differentiate into osteoblast-like cells was determined in vitro using a functional model of bone nodule formation and in vivo using an established model of MM. Human and murine MM cell lines cultured in osteogenic medium expressed alkaline phosphatase and formed mineralized bone-like nodules. Several human and mouse MM cell lines also expressed a number of osteoblast phenotype markers, including runt-related transcription factor 2 (RUNX2), osteopontin, osteonectin and bone sialoprotein mRNA and protein. Histological analysis of murine MM tumors identified areas of ossification within the tumor, similar to those observed in human MM biopsies. These data demonstrate the ability of MM to differentiate into another mesenchymal cell type and suggest that MM cells may contribute to the formation of the heterologous elements observed in MM tumors.
Collapse
|
19
|
Greening DW, Ji H, Chen M, Robinson BWS, Dick IM, Creaney J, Simpson RJ. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo. Sci Rep 2016; 6:32643. [PMID: 27605433 PMCID: PMC5015102 DOI: 10.1038/srep32643] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets.
Collapse
Affiliation(s)
- David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Bruce W. S. Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Ian M. Dick
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
- Australian Mesothelioma Tissue Bank, Sir Charles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Richard J. Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
20
|
Cheah HM, Lansley SM, Varano Della Vergiliana JF, Tan AL, Thomas R, Leong SL, Creaney J, Lee YCG. Malignant pleural fluid from mesothelioma has potent biological activities. Respirology 2016; 22:192-199. [PMID: 27560254 DOI: 10.1111/resp.12874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Malignant pleural effusion (MPE) affects >90% of mesothelioma patients. Research on MPE has focused on its physical impact on breathlessness; MPE is rich in growth mediators but its contribution to tumour biology has not been investigated. We aimed to examine the potential effects of MPE in promoting growth, migration and chemo-resistance of mesothelioma. METHODS Pleural fluid samples from 151 patients (56 mesothelioma, 60 metastatic pleural cancer and 35 benign) were used. Seven validated human mesothelioma cell lines and three primary cultured mesothelioma lines were employed. RESULTS Pleural fluid from mesothelioma patients (diluted to 30%) consistently stimulated cell proliferation (trypan-blue cell viability assay) in five mesothelioma cell lines tested by (median) 2.23-fold over controls (all P < 0.0001). The fluid also induced cell migration by (median) 2.13-fold in six mesothelioma cell lines using scratch-wound assay. In a murine flank model of mesothelioma, tumour infused with daily instillations of pleural fluid grew significantly faster over saline controls (median 52.5 cm2 vs 28.0 cm2 at day 13, P = 0.028). Addition of MPE (diluted to 30%) to culture media significantly protected mesothelioma from cisplatin/pemetrexed-induced cell death in all three cell lines tested (median fold reduction of 1.29, 1.98 and 3.90, all P < 0.001 vs control). The growth effects of matched pleural fluid and cultured mesothelioma cells from the same patients did not differ significantly from unmatched pairs. CONCLUSION This 'proof-of-concept' study reveals potent biological capabilities of malignant pleural fluid in mesothelioma pathobiology.
Collapse
Affiliation(s)
- Hui Min Cheah
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Sally M Lansley
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia
| | | | - Ai Ling Tan
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Rajesh Thomas
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Su Lyn Leong
- School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Jenette Creaney
- School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Yun Chor Gary Lee
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
21
|
Perumal V, Pohl S, Keane KN, Arfuso F, Newsholme P, Fox S, Dharmarajan A. Therapeutic approach to target mesothelioma cancer cells using the Wnt antagonist, secreted frizzled-related protein 4: Metabolic state of cancer cells. Exp Cell Res 2016; 341:218-24. [PMID: 26868304 DOI: 10.1016/j.yexcr.2016.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive cancer, characterized by rapid progression, along with late metastasis and poor patient prognosis. It is resistant to many forms of standard anti-cancer treatment. In this study, we determined the effect of secreted frizzled-related protein 4 (sFRP4), a Wnt pathway inhibitor, on cancer cell proliferation and metabolism using the JU77 mesothelioma cell line. Treatment with sFRP4 (250 pg/ml) resulted in a significant reduction of cell proliferation. The addition of the Wnt activator Wnt3a (250 pg/ml) or sFRP4 had no significant effect on ATP production and glucose utilisation in JU77 cells at both the 24 and 48 h time points examined. We also examined their effect on Akt and Glycogen synthase kinase-3 beta (GSK3β) phosphorylation, which are both important components of Wnt signalling and glucose metabolism. We found that protein phosphorylation of Akt and GSK3β varied over the 24h and 48 h time points, with constitutive phosphorylation of Akt at serine 473 (pAkt) decreasing to its most significant level when treated with Wnt3a+sFRP4 at the 24h time point. A significant reduction in the level of Cytochrome c oxidase was observed at the 48 h time point, when sFRP4 and Wnt3a were added in combination. We conclude that sFRP4 may function, in part, to reduce/alter cancer cell metabolism, which may lead to sensitisation of cancer cells to chemotherapeutics, or even cell death.
Collapse
Affiliation(s)
- Vanathi Perumal
- Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Kevin N Keane
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Simon Fox
- Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
22
|
Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis. Oncotarget 2015; 6:1519-30. [PMID: 25544756 PMCID: PMC4359311 DOI: 10.18632/oncotarget.2729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/08/2014] [Indexed: 11/25/2022] Open
Abstract
Gli transcription factors of the Hedgehog (Hh) pathway have been reported to be drivers of malignant mesothelioma (MMe) cell survival. The Gli inhibitor GANT61 induces apoptosis in various cancer cell models, and has been associated directly with Gli inhibition. However various chemotherapeutics can induce cell death through generation of reactive oxygen species (ROS) but whether ROS mediates GANT61-induced apoptosis is unknown. In this study human MMe cells were treated with GANT61 and the mechanisms regulating cell death investigated. Exposure of MMe cells to GANT61 led to G1 phase arrest and apoptosis, which involved ROS but not its purported targets, GLI1 or GLI2. GANT61 triggered ROS generation and quenching of ROS protected MMe cells from GANT61-induced apoptosis. Furthermore, we demonstrated that mitochondria are important in mediating GANT61 effects: (1) ROS production and apoptosis were blocked by mitochondrial inhibitor rotenone; (2) GANT61 promoted superoxide formation in mitochondria; and (3) mitochondrial DNA-deficient LO68 cells failed to induce superoxide, and were more resistant to apoptosis induced by GANT61 than wild-type cells. Our data demonstrate for the first time that GANT61 induces apoptosis by promoting mitochondrial superoxide generation independent of Gli inhibition, and highlights the therapeutic potential of mitochondrial ROS-mediated anticancer drugs in MMe.
Collapse
|
23
|
Inhibition of autophagy sensitizes malignant pleural mesothelioma cells to dual PI3K/mTOR inhibitors. Cell Death Dis 2015; 6:e1757. [PMID: 25950487 PMCID: PMC4669703 DOI: 10.1038/cddis.2015.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023]
Abstract
Malignant pleural mesothelioma (MPM) originates in most of the cases from chronic inflammation of the mesothelium due to exposure to asbestos fibers. Given the limited effect of chemotherapy, a big effort is being made to find new treatment options. The PI3K/mTOR pathway was reported to be upregulated in MPM. We tested the cell growth inhibition properties of two dual PI3K/mTOR inhibitors NVP-BEZ235 and GDC-0980 on 19 MPM cell lines. We could identify resistant and sensitive lines; however, there was no correlation to the downregulation of PI3K/mTOR activity markers. As a result of mTOR inhibition, both drugs efficiently induced long-term autophagy but not cell death. Autophagy blockade by chloroquine in combination with the dual PI3K/mTOR inhibitors significantly induced caspase-independent cell death involving RIP1 in the sensitive cell line SPC212. Cell death in the resistant cell line Mero-82 was less pronounced, and it was not induced via RIP1-dependent mechanism, suggesting the involvement of RIP1 downstream effectors. Cell death induction was confirmed in 3D systems. Based on these results, we identify autophagy as one of the main mechanisms of cell death resistance against dual PI3K/mTOR inhibitors in MPM. As PI3K/mTOR inhibitors are under investigation in clinical trials, these results may help interpreting their outcome and suggest ways for intervention.
Collapse
|
24
|
Gardner JK, Mamotte CDS, Patel P, Yeoh TL, Jackaman C, Nelson DJ. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS One 2015; 10:e0123563. [PMID: 25886502 PMCID: PMC4401725 DOI: 10.1371/journal.pone.0123563] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs) were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay), upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.
Collapse
Affiliation(s)
- Joanne K. Gardner
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Cyril D. S. Mamotte
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Priya Patel
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Teong Ling Yeoh
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Connie Jackaman
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Delia J. Nelson
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Perumal V, Krishnan K, Gratton E, Dharmarajan AM, Fox SA. Number and brightness analysis of sFRP4 domains in live cells demonstrates vesicle association signal of the NLD domain and dynamic intracellular responses to Wnt3a. Int J Biochem Cell Biol 2015; 64:91-6. [PMID: 25805505 DOI: 10.1016/j.biocel.2015.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 11/25/2022]
Abstract
The Wnts are secreted, lipidated glycoproteins that play a role in cellular processes of differentiation, proliferation, migration, survival, polarity and stem cell self-renewal. The majority of Wnts biological effects are through binding to specific frizzled (Fzd) receptor complexes leading to activation of downstream pathways. Secreted frizzled-related proteins (sFRPs) were first identified as antagonists of Wnt signalling by binding directly to Wnts. They comprise two domains, a Fzd-like cysteine rich domain (CRD) and a netrin-like domain (NLD). Subsequently sFRPs have been shown to also interact with Fzd receptors and more diverse functions have been identified, including potentiation of Wnt signalling. Many aspects of the biology of this family remain to be elucidated. We used the number and brightness (N&B) method, a technique based on fluorescence fluctuation analysis, to characterise the intracellular aggregation and trafficking of sFRP4 domains. We expressed sFRP4 and its' domains as EGFP fusions and then characterised the effect of endogenous Wnt3a by fluorescence confocal imaging. We observed vesicular trafficking of sFRP4 and that the NLD domain has a vesicular association signal. We found that sFRP4 and the CRD formed oligomeric aggregates in the perinuclear region while the NLD was distributed evenly throughout the cell with a larger proportion of aggregates. Most significantly we observed intracellular redistribution of sFRP4 in response to Wnt3a suggesting that Wnt3a can modulate intracellular localisation and secretion of sFRP4. Our results reveal a number of novel findings regarding sFRP4 which are likely to have relevance to this wider family.
Collapse
Affiliation(s)
- Vanathi Perumal
- Molecular Pharmacology Laboratory, School of Pharmacy, CHIRI Biosciences Research Precinct, Curtin University, Western Australia, Australia
| | - Kannan Krishnan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, South Australia, Australia
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, USA
| | - Arun M Dharmarajan
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia, Australia
| | - Simon A Fox
- Molecular Pharmacology Laboratory, School of Pharmacy, CHIRI Biosciences Research Precinct, Curtin University, Western Australia, Australia.
| |
Collapse
|
26
|
Robinson C, Solin JN, Lee YCG, Lake RA, Lesterhuis WJ. Mouse models of mesothelioma: strengths, limitations and clinical translation. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Mouse models of cancer are invaluable for obtaining detailed knowledge about tumor development and for screening therapeutic and preventive approaches. Mesothelioma is an unusual cancer because the same carcinogen, asbestos, causes a similar disease in both humans and animals. Unlike most other cancers, murine mesothelioma can therefore be regarded as a disease homolog, rather than a model as such. However, because asbestos-induced cancer has low penetrance and a long lag time, most translational studies have utilized more efficient models such as tumor transplantation. In consequence, many promising results have not translated into positive findings in patients. Here, we describe the widely used murine mesothelioma models and critically discuss their relative advantages and disadvantages. We emphasize the use of the appropriate model for the specific research question and the need to use multiple models in order to obtain robust and translatable data.
Collapse
Affiliation(s)
- Cleo Robinson
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Jessica N Solin
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - YC Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
27
|
Lansley SM, Varano Della Vergiliana JF, Cleaver AL, Ren SH, Segal A, Xu MY, Lee YCG. A commercially available preparation of Staphylococcus aureus bio-products potently inhibits tumour growth in a murine model of mesothelioma. Respirology 2014; 19:1025-33. [PMID: 25123375 DOI: 10.1111/resp.12351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/03/2014] [Accepted: 05/01/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Mesothelioma is an incurable cancer with a rising global incidence. Intrapleural delivery of a commercially available compound made up of proteins produced by Staphylococcus aureus has been used clinically to induce pleurodesis. We investigate if this bacterial compound has anti-tumoural activities against pleural malignancies, in addition to its pleurodesing effect. METHODS The effects of the treatment on mesothelioma cells were evaluated in vitro and further tested in two validated murine models. RESULTS This S. aureus bio-product mixture effectively kills mesothelioma cells and induces the release of interleukin (IL)-8, monocyte chemotactic protein (MCP)-1 and vascular endothelial growth factor from primary human mesothelial cells but not malignant pleural mesothelioma cells in vitro. Intratumoural delivery of the treatment in BALB/c mice induced tumour necrosis and local activation of T cells. Tumour growth was significantly inhibited in the treatment group during and after the treatment period (size of tumour 58.8 ± 10.3 mm(2) vs 118.3 ± 6.7 mm(2) from saline controls at day 23, n = 9-12 per group), P < 0.001. Tumour growth resumed on cessation of treatment, confirming the inhibition was treatment related. Treatment benefits were further validated in an orthotopic peritoneal model of mesothelioma and the compound significantly reduced the mesothelioma load (P < 0.05 vs saline controls). Mice in the treatment group had a significant increase in the percentage of activated CD4(+) and CD8(+) T cells in tumour-draining lymph nodes. No histological side-effects were observed with the treatment. CONCLUSIONS This proof-of-principle study demonstrates promising antitumoural activity of a commercially available compound of S. aureus bio-products against mesothelioma.
Collapse
Affiliation(s)
- Sally M Lansley
- Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Fox SA, Richards AK, Kusumah I, Perumal V, Bolitho EM, Mutsaers SE, Dharmarajan AM. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells. Biochem Biophys Res Commun 2013; 440:82-7. [PMID: 24041698 DOI: 10.1016/j.bbrc.2013.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/05/2013] [Indexed: 11/24/2022]
Abstract
Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.
Collapse
Affiliation(s)
- Simon A Fox
- Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lim CB, Prêle CM, Cheah HM, Cheng YY, Klebe S, Reid G, Watkins DN, Baltic S, Thompson PJ, Mutsaers SE. Mutational analysis of hedgehog signaling pathway genes in human malignant mesothelioma. PLoS One 2013; 8:e66685. [PMID: 23826113 PMCID: PMC3691204 DOI: 10.1371/journal.pone.0066685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Hedgehog (HH) signaling pathway is critical for embryonic development and adult homeostasis. Recent studies have identified regulatory roles for this pathway in certain cancers with mutations in the HH pathway genes. The extent to which mutations of the HH pathway genes are involved in the pathogenesis of malignant mesothelioma (MMe) is unknown. METHODOLOGY/PRINCIPAL FINDINGS Real-time PCR analysis of HH pathway genes PTCH1, GLI1 and GLI2 were performed on 7 human MMe cell lines. Exon sequencing of 13 HH pathway genes was also performed in cell lines and human MMe tumors. In silico programs were used to predict the likelihood that an amino-acid substitution would have a functional effect. GLI1, GLI2 and PTCH1 were highly expressed in MMe cells, indicative of active HH signaling. PTCH1, SMO and SUFU mutations were found in 2 of 11 MMe cell lines examined. A non-synonymous missense SUFU mutation (p.T411M) was identified in LO68 cells. In silico characterization of the SUFU mutant suggested that the p.T411M mutation might alter protein function. However, we were unable to demonstrate any functional effect of this mutation on Gli activity. Deletion of exons of the PTCH1 gene was found in JU77 cells, resulting in loss of one of two extracellular loops implicated in HH ligand binding and the intracellular C-terminal domain. A 3-bp insertion (69_70insCTG) in SMO, predicting an additional leucine residue in the signal peptide segment of SMO protein was also identified in LO68 cells and a MMe tumour. CONCLUSIONS/SIGNIFICANCE We identified the first novel mutations in PTCH1, SUFU and SMO associated with MMe. Although HH pathway mutations are relatively rare in MMe, these data suggest a possible role for dysfunctional HH pathway in the pathogenesis of a subgroup of MMe and help rationalize the exploration of HH pathway inhibitors for MMe therapy.
Collapse
Affiliation(s)
- Chuan Bian Lim
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Cecilia M. Prêle
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology and Western Australian Institute for Medical Research, University of Western Australia, Crawley, WA, Australia
| | - Hui Min Cheah
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute (ADRI), University of Sydney, Sydney, NSW, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, SA Pathology and Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute (ADRI), University of Sydney, Sydney, NSW, Australia
| | - D. Neil Watkins
- Centre for Cancer Research, Monash Institute for Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Svetlana Baltic
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Philip J. Thompson
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Steven E. Mutsaers
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology and Western Australian Institute for Medical Research, University of Western Australia, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|
30
|
Busacca S, Chacko AD, Klabatsa A, Arthur K, Sheaff M, Gunasekharan VK, Gorski JJ, El-Tanani M, Broaddus VC, Gaudino G, Fennell DA. BAK and NOXA are critical determinants of mitochondrial apoptosis induced by bortezomib in mesothelioma. PLoS One 2013; 8:e65489. [PMID: 23762382 PMCID: PMC3676324 DOI: 10.1371/journal.pone.0065489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/25/2013] [Indexed: 12/29/2022] Open
Abstract
Based on promising preclinical efficacy associated with the 20S proteasome inhibitor bortezomib in malignant pleural mesothelioma (MPM), two phase II clinical trials have been initiated (EORTC 08052 and ICORG 05-10). However, the potential mechanisms underlying resistance to this targeted drug in MPM are still unknown. Functional genetic analyses were conducted to determine the key mitochondrial apoptotic regulators required for bortezomib sensitivity and to establish how their dysregulation may confer resistance. The multidomain proapoptotic protein BAK, but not its orthologue BAX, was found to be essential for bortezomib-induced apoptosis in MPM cell lines. Immunohistochemistry was performed on tissues from the ICORG-05 phase II trial and a TMA of archived mesotheliomas. Loss of BAK was found in 39% of specimens and loss of both BAX/BAK in 37% of samples. However, MPM tissues from patients who failed to respond to bortezomib and MPM cell lines selected for resistance to bortezomib conserved BAK expression. In contrast, c-Myc dependent transactivation of NOXA was abrogated in the resistant cell lines. In summary, the block of mitochondrial apoptosis is a limiting factor for achieving efficacy of bortezomib in MPM, and the observed loss of BAK expression or NOXA transactivation may be relevant mechanisms of resistance in the clinic.
Collapse
Affiliation(s)
- Sara Busacca
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Alex D. Chacko
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, Northern Ireland
| | - Astero Klabatsa
- Division of Cancer Studies, Department of Research Oncology, King’s College London, London, United Kingdom
| | - Kenneth Arthur
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, Northern Ireland
| | - Michael Sheaff
- Department of Cellular Pathology, Barts and the London NHS Trust, London, United Kingdom
| | - Vignesh K. Gunasekharan
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Julia J. Gorski
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, Northern Ireland
| | - Mohamed El-Tanani
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, Northern Ireland
| | - V. Courtney Broaddus
- Lung Biology Centre, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Giovanni Gaudino
- University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Dean A. Fennell
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
31
|
Relan V, Morrison L, Parsonson K, Clarke BE, Duhig EE, Windsor MN, Matar KS, Naidoo R, Passmore L, McCaul E, Courtney D, Yang IA, Fong KM, Bowman RV. Phenotypes and karyotypes of human malignant mesothelioma cell lines. PLoS One 2013; 8:e58132. [PMID: 23516439 PMCID: PMC3597627 DOI: 10.1371/journal.pone.0058132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/30/2013] [Indexed: 01/19/2023] Open
Abstract
Background Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. Methods Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM) and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. Results Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30–72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5–17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. Conclusion These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of mesothelioma during maintenance in artificial culture systems. These characteristics support their potential as in vitro model systems for studying cellular, molecular and genetic aspects of mesothelioma.
Collapse
Affiliation(s)
- Vandana Relan
- UQ Thoracic Research Centre, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cregan IL, Dharmarajan AM, Fox SA. Mechanisms of cisplatin-induced cell death in malignant mesothelioma cells: role of inhibitor of apoptosis proteins (IAPs) and caspases. Int J Oncol 2012; 42:444-52. [PMID: 23229133 PMCID: PMC3583754 DOI: 10.3892/ijo.2012.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/25/2012] [Indexed: 12/13/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive and highly chemoresistant tumour. Although cisplatin is used in frontline therapy of this disease treatment remains palliative at best. The biochemical pathways activated by cisplatin and the mechanisms of resistance in mesothelioma cells are poorly understood. Overexpression of inhibitor of apoptosis proteins (IAPs) has been described in clinical mesothelioma tumours and proposed as therapeutic targets. In this study, we examined cisplatin-induced cell death pathways and IAPs in three mesothelioma-derived cell lines. Cisplatin induced cell death in mesothelioma cell lines was characterised by biochemical mechanisms classically associated with apoptosis including: mitochondrial depolarisation, phosphatidylserine translocation and caspase activation. Surprisingly mRNA expression of IAPs in mesothelioma was not upregulated relative to primary mesothelial cells except for survivin which was higher in the most resistant cell line. In contrast, protein expression of both XIAP and survivin was upregulated in all mesothelioma cells, consistent with post-translational regulation. Knockdown of either XIAP or survivin by RNAi did not affect the sensitivity to cisplatin in any of the cell lines. Survivin RNAi did, however, inhibit proliferation in the highest expressing cell line, ONE58. The pan-caspase inhibitor z-VAD and the more selective caspase 3/7 inhibitor z-DEVD had no effect upon the sensitivity of any of the cell lines to cisplatin indicating that caspase-independent pathways predominate. The findings of the present study provide insights into cisplatin-induced mechanisms in mesothelioma cells and show that alternative pathways are operating which may provide new options for targeting this extremely resistant tumour.
Collapse
Affiliation(s)
- Inez L Cregan
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | | | | |
Collapse
|
33
|
Creaney J, Dick IM, Yeoman D, Wong S, Robinson BWS. Auto-antibodies to β-F1-ATPase and vimentin in malignant mesothelioma. PLoS One 2011; 6:e26515. [PMID: 22022619 PMCID: PMC3195718 DOI: 10.1371/journal.pone.0026515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
Patients with Malignant Mesothelioma (MM) develop unidentified auto-antibodies to MM tumour antigens. This study was conducted to identify the targets of MM patient auto-antibodies in order to try to understand more of the anti-tumour response and to determine if these antibodies might be helpful for diagnosis or prognostication. Using MM patient sera in a Western immunoblott screening strategy, no common immunoreactive proteins were identified. The sera from one long-term survivor recognised a protein band of 50-60 kDa present in cell lysates from four of five MM cell lines tested. The immunoreactive proteins in this band were identified by 2D electrophoretic separation of a MM cell line protein lysate, followed by analysis of excised immunoreactive proteins on a MALDI TOF mass spectrometer and peptide mass fingerprinting. The immunoreactive proteins identified were vimentin (accession gi55977767) and the ATP synthase (F1-ATPase) beta chain (accession gi114549 and gi47606749). ELISA assays were developed for antibodies to these proteins. Neither vimentin (median and 95% CI 0.346; 0.32-0.468 for MM patients, 0.327; 0.308-0.428 for controls) nor ß-F1-ATPase (0.257; 0.221-0.453 for MM patients, 0.263; 0.22-0.35 for controls) showed significant differences in autoantibody levels between a group of MM patients and controls. Using a dichotomized antibody level (high, low) for these targets we demonstrated that vimentin antibody levels were not associated with survival. In contrast, high ß-F1-ATPase antibody levels were significantly associated with increased median survival (18 months) compared to low ß F1 ATPase antibody levels (9 months; p = 0.049). Immunohistochemical analysis on a MM tissue microarray showed cytoplasmic staining in 28 of 33 samples for vimentin and strong cytoplasmic staining in14 and weak in 16 samples for ß-F1-ATPase. Therefore antibodies to neither vimentin nor ß-F1-ATPase are useful for differential diagnosis of MM, however high antibody levels to ß-F1-ATPase may be associated with increased survival and this warrants further investigation.
Collapse
Affiliation(s)
- Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, School of Medicine and Pharmacology, Nedlands, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
34
|
Kanamori-Katayama M, Kaiho A, Ishizu Y, Okamura-Oho Y, Hino O, Abe M, Kishimoto T, Sekihara H, Nakamura Y, Suzuki H, Forrest ARR, Hayashizaki Y. LRRN4 and UPK3B are markers of primary mesothelial cells. PLoS One 2011; 6:e25391. [PMID: 21984916 PMCID: PMC3184985 DOI: 10.1371/journal.pone.0025391] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mesothelioma is a highly malignant tumor that is primarily caused by occupational or environmental exposure to asbestos fibers. Despite worldwide restrictions on asbestos usage, further cases are expected as diagnosis is typically 20-40 years after exposure. Once diagnosed there is a very poor prognosis with a median survival rate of 9 months. Considering this the development of early pre clinical diagnostic markers may help improve clinical outcomes. METHODOLOGY Microarray expression arrays on mesothelium and other tissues dissected from mice were used to identify candidate mesothelial lineage markers. Candidates were further tested by qRTPCR and in-situ hybridization across a mouse tissue panel. Two candidate biomarkers with the potential for secretion, uroplakin 3B (UPK3B), and leucine rich repeat neuronal 4 (LRRN4) and one commercialized mesothelioma marker, mesothelin (MSLN) were then chosen for validation across a panel of normal human primary cells, 16 established mesothelioma cell lines, 10 lung cancer lines, and a further set of 8 unrelated cancer cell lines. CONCLUSIONS Within the primary cell panel, LRRN4 was only detected in primary mesothelial cells, but MSLN and UPK3B were also detected in other cell types. MSLN was detected in bronchial epithelial cells and alveolar epithelial cells and UPK3B was detected in retinal pigment epithelial cells and urothelial cells. Testing the cell line panel, MSLN was detected in 15 of the 16 mesothelioma cells lines, whereas LRRN4 was only detected in 8 and UPK3B in 6. Interestingly MSLN levels appear to be upregulated in the mesothelioma lines compared to the primary mesothelial cells, while LRRN4 and UPK3B, are either lost or down-regulated. Despite the higher fraction of mesothelioma lines positive for MSLN, it was also detected at high levels in 2 lung cancer lines and 3 other unrelated cancer lines derived from papillotubular adenocarcinoma, signet ring carcinoma and transitional cell carcinoma.
Collapse
Affiliation(s)
| | - Ai Kaiho
- OMICs Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yuri Ishizu
- OMICs Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yuko Okamura-Oho
- Advanced Computational Sciences Department, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaaki Abe
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takumi Kishimoto
- Department of Respiratory Medicine, Japan Labor Health and Welfare Organization Okayama Rosai Hospital, Okayama, Japan
| | | | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Harukazu Suzuki
- OMICs Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Alistair R. R. Forrest
- OMICs Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- * E-mail: (ARRF); (YH)
| | - Yoshihide Hayashizaki
- OMICs Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- * E-mail: (ARRF); (YH)
| |
Collapse
|
35
|
|
36
|
Melotti A, Daga A, Marubbi D, Zunino A, Mutti L, Corte G. In vitro and in vivo characterization of highly purified human mesothelioma derived cells. BMC Cancer 2010; 10:54. [PMID: 20175889 PMCID: PMC2850899 DOI: 10.1186/1471-2407-10-54] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 02/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma is a rare disease known to be resistant to conventional therapies. A better understanding of mesothelioma biology may provide the rationale for new therapeutic strategies. In this regard, tumor cell lines development has been an important tool to study the biological properties of many tumors. However all the cell lines established so far were grown in medium containing at least 10% serum, and it has been shown that primary cell lines cultured under these conditions lose their ability to differentiate, acquire gene expression profiles that differ from that of tissue specific stem cells or the primary tumor they derive from, and in some cases are neither clonogenic nor tumorigenic. Our work was aimed to establish from fresh human pleural mesothelioma samples cell cultures maintaining tumorigenic properties. METHODS The primary cell cultures, obtained from four human pleural mesotheliomas, were expanded in vitro in a low serum proliferation-permissive medium and the expression of different markers as well as the tumorigenicity in immunodeficient mice was evaluated. RESULTS The established mesothelioma cell cultures are able to engraft, after pseudo orthotopic intraperitoneal transplantation, in immunodeficient mouse and maintain this ability to after serial transplantation. Our cell cultures were strongly positive for CD46, CD47, CD56 and CD63 and were also strongly positive for some markers never described before in mesothelioma cell lines, including CD55, CD90 and CD99. By real time PCR we found that our cell lines expressed high mRNA levels of typical mesothelioma markers as mesothelin (MSLN) and calretinin (CALB2), and of BMI-1, a stemness marker, and DKK1, a potent Wingless [WNT] inhibitor. CONCLUSIONS These cell cultures may provide a valuable in vitro and in vivo model to investigate mesothelioma biology. The identification of new mesothelioma markers may be useful for diagnosis and/or prognosis of this neoplasia as well as for isolation of mesothelioma tumor initiating cells.
Collapse
Affiliation(s)
- Alice Melotti
- Department of Oncology, Biology and Genetics, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Currie AJ, Prosser A, McDonnell A, Cleaver AL, Robinson BWS, Freeman GJ, van der Most RG. Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. THE JOURNAL OF IMMUNOLOGY 2010; 183:7898-908. [PMID: 20007574 DOI: 10.4049/jimmunol.0901060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumors have evolved multiple mechanisms to evade immune destruction. One of these is expression of T cell inhibitory ligands such as programmed death-ligand 1 (PD-L1; B7-H1). In this study, we show that PD-L1 is highly expressed on mesothelioma tumor cells and within the tumor stroma. However, PD-L1 blockade only marginally affected tumor growth and was associated with the emergence of activated programmed death-1(+) ICOS(+) CD4 T cells in tumor-draining lymph nodes, whereas few activated CD8 T cells were present. Full activation of antitumor CD8 T cells, characterized as programmed death-1(+) ICOS(+) Ki-67(+) and displaying CTL activity, was only observed when CD4 T cells were depleted, suggesting that a population of suppressive CD4 T cells exists. ICOS(+) foxp3(+) regulatory T cells were found to be regulated through PD-L1, identifying one potentially suppressive CD4 T cell population. Thus, PD-L1 blockade activates antitumor CD8 T cell most potently in the absence of CD4 T cells. These findings have implications for the development of PD-L1-based therapies.
Collapse
Affiliation(s)
- Andrew J Currie
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
van der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK, Mahendran S, Larma I, Prosser A, Robinson BWS, Smyth MJ, Scalzo AA, Degli-Esposti MA, Lake RA. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One 2009; 4:e6982. [PMID: 19746156 PMCID: PMC2734989 DOI: 10.1371/journal.pone.0006982] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 08/19/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. METHODS AND FINDINGS We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-alpha/beta response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-gamma and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies. CONCLUSION The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion.
Collapse
Affiliation(s)
- Robbert G. van der Most
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- * E-mail: (RGvdM); (RAL)
| | - Andrew J. Currie
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Amanda L. Cleaver
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Joanne Salmons
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Anna K. Nowak
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Sathish Mahendran
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Irma Larma
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Amy Prosser
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Bruce W. S. Robinson
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Mark J. Smyth
- Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Anthony A. Scalzo
- Centre for Experimental Immunology, Lions Eye Institute, and Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia
| | - Mariapia A. Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, and Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia
| | - Richard A. Lake
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- * E-mail: (RGvdM); (RAL)
| |
Collapse
|
39
|
van der Most RG, Currie AJ, Mahendran S, Prosser A, Darabi A, Robinson BWS, Nowak AK, Lake RA. Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 2009; 58:1219-28. [PMID: 19052741 PMCID: PMC11030690 DOI: 10.1007/s00262-008-0628-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/11/2008] [Indexed: 12/17/2022]
Abstract
Tumor cell death potentially engages with the immune system. However, the efficacy of anti-tumor chemotherapy may be limited by tumor-driven immunosuppression, e.g., through CD25+ regulatory T cells. We addressed this question in a mouse model of mesothelioma by depleting or reconstituting CD25+ regulatory T cells in combination with two different chemotherapeutic drugs. We found that the efficacy of cyclophosphamide to eradicate established tumors, which has been linked to regulatory T cell depletion, was negated by adoptive transfer of CD25+ regulatory T cells. Analysis of post-chemotherapy regulatory T cell populations revealed that cyclophosphamide depleted cycling (Ki-67(hi)) T cells, including foxp3+ regulatory CD4+ T cells. Ki-67(hi) CD4+ T cells expressed increased levels of two markers, TNFR2 and ICOS, that have been associated with a maximally suppressive phenotype according to recently published studies. This suggest that cyclophosphamide depletes a population of maximally suppressive regulatory T cells, which may explain its superior anti-tumor efficacy in our model. Our data suggest that regulatory T cell depletion could be used to improve the efficacy of anti-cancer chemotherapy regimens. Indeed, we observed that the drug gemcitabine, which does not deplete cycling regulatory T cells, eradicates established tumors in mice only when CD25+ CD4+ T cells are concurrently depleted. Cyclophosphamide could be used to achieve regulatory T cell depletion in combination with chemotherapy.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cyclophosphamide/therapeutic use
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/therapeutic use
- Immunosuppressive Agents/therapeutic use
- Inducible T-Cell Co-Stimulator Protein
- Kaplan-Meier Estimate
- Ki-67 Antigen/immunology
- Ki-67 Antigen/metabolism
- L-Selectin/immunology
- L-Selectin/metabolism
- Lymphocyte Depletion
- Mesothelioma/drug therapy
- Mesothelioma/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Gemcitabine
Collapse
Affiliation(s)
- Robbert G van der Most
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zanellato I, Heldt JM, Vessières A, Jaouen G, Osella D. Antiproliferative effect of ferrocifen drug candidates on malignant pleural mesothelioma cell lines. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.05.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
ISHIWATA I, ISHIWATA E, HIRANO T. Establishment of a human malignant fibrous mesothelioma cell line and the biological characteristics compared with malignant epithelial mesothelioma cell line. Hum Cell 2008; 21:79-87. [DOI: 10.1111/j.1749-0774.2008.00053.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Nakaishi M, Kajino K, Ikesue M, Hagiwara Y, Kuwahara M, Mitani H, Horikoshi-Sakuraba Y, Segawa T, Kon S, Maeda M, Wang T, Abe M, Yokoyama M, Hino O. Establishment of the enzyme-linked immunosorbent assay system to detect the amino terminal secretory form of rat Erc/Mesothelin. Cancer Sci 2007; 98:659-64. [PMID: 17425688 PMCID: PMC11160080 DOI: 10.1111/j.1349-7006.2007.00438.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
By representational difference analysis, we previously identified the rat Erc (Expressed in renal carcinoma) gene that was more abundantly expressed in the renal carcinoma tissues of Eker rats than in the rat normal kidney. In this study, we raised antibodies against the amino-terminal portion of the rat Erc, and demonstrated the existence of a approximately 30-kDa secretory form in the supernatant of cultured cells derived from rat renal carcinoma. The enzyme-linked immunosorbent assay (ELISA) system using these antibodies detected high concentrations of this form in the sera of Eker rats bearing renal carcinomas, and in the sera of rats transplanted with mesothelioma cells. Mesothelin, a human homolog of the rat Erc, was recently reported to be a serum marker of malignant mesothelioma. The prognosis of mesothelioma is poor and there is no effective treatment at present. There are several rat model systems of mesothelioma that may be promising tools in the development of an antimesothelioma treatment. We hope our ELISA to detect the soluble form of rat Erc/Mesothelin is useful in the rat model system to exploit the antimesothelioma therapy to be used in human cases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/blood
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Animals
- Blotting, Western
- CHO Cells
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cricetinae
- Cricetulus
- Enzyme-Linked Immunosorbent Assay/methods
- Female
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mesothelin
- Mesothelioma/blood
- Mesothelioma/pathology
- Molecular Sequence Data
- Molecular Weight
- Neoplasms, Experimental/blood
- Neoplasms, Experimental/pathology
- Rats
- Rats, Wistar
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Masayuki Nakaishi
- Department of Urology, Ehime University School of Medicine, Shizukawa, Toh-on, Ehime, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhong J, Gencay MMC, Bubendorf L, Burgess JK, Parson H, Robinson BWS, Tamm M, Black JL, Roth M. ERK1/2 and p38 MAP kinase control MMP-2, MT1-MMP, and TIMP action and affect cell migration: a comparison between mesothelioma and mesothelial cells. J Cell Physiol 2006; 207:540-52. [PMID: 16447244 DOI: 10.1002/jcp.20605] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pleural malignant mesothelioma is a locally aggressive tumor of mesothelial cell origin. In other tumor types high expression of matrix metalloproteinase (MMP)-2, together with membrane-type1-MMP (MT1-MMP), and low levels of the tissue inhibitor of MMP (TIMP)-2 have been correlated with aggressive tumor progression and low survival rates. Therefore, we compared the expression and activation of these three factors and their regulation by two mesothelioma associated growth factors, platelet-derived growth factor (PDGF)-BB, and transforming growth factor (TGF)-beta1 in six human mesothelioma and one mesothelial cell line. Polymerase chain reaction (PCR), immunoblotting, zymography, and small inhibitory RNAs (siRNA) were used to study gene expression, protein activation, and signal transduction. To proof the relevance of our in vitro data immunohistochemistry was performed in tissue sections. PDGF-BB induced, while TGF-beta1 inhibited cell proliferation. PDGF-BB was a chemoattractant for mesothelial cells, and its effect was increased in the presence of TGF-beta1. TGF-beta1 stimulated the de novo synthesis of pro-MMP-2 in both cell types. Pro-MMP-2 synthesis involved p38 MAP kinase. In cell culture and tissue sections only mesothelial cells expressed MT1-MMP. Migration of mesothelioma cells was dependent on the presence of MT1-MMP. Migration, but not proliferation of mesothelioma cells was inhibited by oleoyl-N-hydroxylamide, TIMP-2, and siRNA for MT1-MMP. Our data suggest that in mesothelioma cells the phosphorylation of p38 MAP kinase is deregulated and is involved in pro-MMP-2 expression. Mesothelioma progression depends on an interaction with mesothelial cells that provide MT1-MMP necessary to activate pro-MMP-2 to facilitate migration through an extracellular matrix (ECM) layer.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Pharmacology, The Woolcock Institute of Medical Research, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Usami N, Fukui T, Kondo M, Taniguchi T, Yokoyama T, Mori S, Yokoi K, Horio Y, Shimokata K, Sekido Y, Hida T. Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients. Cancer Sci 2006; 97:387-94. [PMID: 16630136 PMCID: PMC11158456 DOI: 10.1111/j.1349-7006.2006.00184.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related malignancy that is highly resistant to current therapeutic modalities. We established four MPM cell lines (ACC-MESO-1, ACC-MESO-4, Y-MESO-8A and Y-MESO-8D) from Japanese patients, with the latter two from the same patient with biphasic-like characteristics of MPM, showing epithelial and sarcomatous phenotypes, respectively, in cell culture. These cells grew well in RPMI-1640 medium supplemented with 10% fetal bovine serum under 5% CO2. Mutation and expression analyses demonstrated that the tumor suppressor gene NF2, which is known to be one of the most frequently mutated in MPM, is mutated in ACC-MESO-1. We detected homozygous deletion of p16INK4A/p14ARF in all four MPM cell lines. However, mutations of other tumor suppressor genes, including TP53, and protooncogenes, including KRAS, NRAS, BRAF, EGFR and HER2, were not found in these cell lines. Polymerase chain reaction amplification of the simian virus 40 sequence did not detect any products. We also analyzed genetic alterations of six other MPM cell lines and confirmed frequent mutations of NF2 and p16INK4A/p14ARF. To characterize the biological differences between Y-MESO-8A and Y-MESO-8D, we carried out cDNA microarray analysis and detected genes that were differentially expressed in these two cell lines. Thus, our new MPM cell lines seem to be useful as new models for studying various aspects of the biology of human MPM as well as materials for the development of future therapies.
Collapse
Affiliation(s)
- Noriyasu Usami
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-0021, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fox SA, Loh SSW, Dharmarajan AM, Garlepp MJ. Cisplatin and TNF-alpha downregulate transcription of Bcl-xL in murine malignant mesothelioma cells. Biochem Biophys Res Commun 2005; 337:983-91. [PMID: 16225850 DOI: 10.1016/j.bbrc.2005.09.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 09/24/2005] [Indexed: 10/25/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive and highly chemo-resistant tumour. In this study, we examined cisplatin-induced apoptosis in mouse models of this disease and investigated the role of constitutive and inducible expression of apoptosis related genes in this process. All of the four mouse MM cell lines examined expressed Bax, Bcl-xL, c-Myc, and caspase-3 but not Bcl-2. Cisplatin-induced apoptosis characterised by DNA fragmentation and cell death while caspase-3/7 was activated in 3 of 4 cell lines. Quantitation of basal gene expression showed significant differences but there was no correlation between single genes and cisplatin sensitivity. In the AC29 and AB1 models, both cisplatin and TNF-alpha downregulated Bcl-xL gene expression, indicating that this gene was a common transcriptional target in these cells. The findings of the present study provide insights into apoptotic mechanisms in mesothelioma cells and show similar patterns of gene expression to that reported in the human disease.
Collapse
Affiliation(s)
- Simon A Fox
- Pharmacogenetics Laboratory, School of Pharmacy, Curtin University of Technology and West Australian Biomedical Research Institute, Bentley, WA, Australia.
| | | | | | | |
Collapse
|
46
|
Philippeaux MM, Pache JC, Dahoun S, Barnet M, Robert JH, Mauël J, Spiliopoulos A. Establishment of permanent cell lines purified from human mesothelioma: morphological aspects, new marker expression and karyotypic analysis. Histochem Cell Biol 2004; 122:249-60. [PMID: 15372243 DOI: 10.1007/s00418-004-0701-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2004] [Indexed: 12/13/2022]
Abstract
This study reports the establishment of three major subtypes of human mesothelioma cells in tissue culture, i.e. the epithelioid, sarcomatoid and biphasic forms, and compares their phenotypic and biological characteristics. Primary cells isolated from biopsies or pleural exudates were subcultured for over 50 passages. We evaluated immunoreactivity using various mesothelial markers related to histological patterns of these cell lines. For epithelioid cells, calretinin and cytokeratin were found to be useful and easily interpretable markers as for control mesothelial cells. The biphasic form was only partially positive and the sarcomatoid type negative. Vimentin was expressed by all cell lines. BerEP4, a specific marker for adenocarcinoma, was negative. Interestingly, while the macrophage marker CD14 was negative, immunoreactivity for a mature macrophage marker (CD68) was expressed by all cell types, suggesting that this marker might constitute an additional tool useful in the differential diagnosis of mesothelioma. At the ultrastructural level, a cell surface rich in microvilli confirmed their mesothelial origin. PCR analysis revealed that none of the cell lines contained SV40 DNA. Karyotypic analyses showed more complex abnormalities in the epithelioid subtype than in the sarcomatoid form. These cell lines may be useful in the study of cellular, molecular and genetic aspects of the disease.
Collapse
Affiliation(s)
- Marie-Marthe Philippeaux
- Department of Thoracic Surgery, Cantonal Hospital of Geneva University, 1, rue Micheli-du-Crest, 1211, 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Nowak AK, Lake RA, Kindler HL, Robinson BWS. New approaches for mesothelioma: biologics, vaccines, gene therapy, and other novel agents. Semin Oncol 2002; 29:82-96. [PMID: 11836673 DOI: 10.1053/sonc.2002.30234] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although malignant mesothelioma is not a classically immunogenic cancer, there is abundant evidence for immune recognition. The relative ease of obtaining tumor tissue makes mesothelioma ideal for studying surrogate biomarkers such as lymphocytic infiltration or expression of transduced genes. There is evidence that malignant mesothelioma patients as well as asbestos-exposed persons without mesothelioma have impaired immune responsiveness. Substantial progress has been made in animal models using several biological and immunological techniques, but clinical application has been problematic. Systems studied have included lysis by interleukin-2 (IL-2)-activated lymphokine-activated killer (LAK) cells, tumor necrosis factor-alpha (TNF-alpha), a p16-expressing adenovirus vector, suicide gene therapy using the herpes simplex virus-tyrosine kinase (HSV-tk) followed by ganciclovir, and immunomodulatory gene therapy with IL-2, IL-4, interferon-gamma (IFN-gamma), IFN-alpha, TNF-alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, and IL-1beta transfected into tumors. Vaccinia virus has been studied as a vector for cytokine gene transfer. Suicide gene therapy has been combined with a tumor vaccine. The University of Western Australia is initiating a pilot study of autologous vaccination in malignant mesothelioma. Novel agents under study include the angiogenesis inhibitors SU5416, bevacizumab, and thalidomide. ZD1839, an orally administered, highly selective inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase, is being tested in a phase II trial. Since platelet-derived growth factor (PDGF) is thought to be an autocrine growth factor for mesothelioma STI-571 (Gleevec; Novartis, Basel, Switzerland), a highly selective inhibitor of the PDGF receptor tyrosine kinase, is being tested in a phase II trial. The development of more active cytotoxic combinations in this disease should facilitate further studies of chemoimmunotherapy. It seems likely that no single treatment modality will be effective by itself.
Collapse
Affiliation(s)
- Anna K Nowak
- University Department of Medicine, University of Western Australia, Verdun St Nedlands, Australia
| | | | | | | |
Collapse
|
48
|
Robinson BW, Robinson C, Lake RA. Localised spontaneous regression in mesothelioma -- possible immunological mechanism. Lung Cancer 2001; 32:197-201. [PMID: 11325491 DOI: 10.1016/s0169-5002(00)00217-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive tumor usually associated with asbestos exposure. Although it can remain stable for prolonged periods, it has not been described to spontaneously regress. MM tumors are thought to be immunogenic based both on animal studies and on the good responses in some humans treated with immunotherapy. Here we present a case of pleural MM in which a transient spontaneous regression was associated with tumor tissue infiltration with mononuclear cells and serological evidence of anti-MM reactivity. The patient's tumor eventually progressed and with this progression there was evidence of loss of serological reactivity to some, but not all, of her MM antigens. The patient survived for 20 months and, in contrast to her initial biopsy, no significant lymphoid infiltrate was detected in her MM tissue at post mortem examination.
Collapse
Affiliation(s)
- B W Robinson
- University Department of Medicine, University of Western Australia, Sir Charles Gairdner Hospital, G Block, 4th Floor, Monash Avenue, 6009, Nedlands, Australia.
| | | | | |
Collapse
|
49
|
Creaney J, McLaren BM, Stevenson S, Musk AW, de Klerk N, Robinson BW, Lake RA. p53 autoantibodies in patients with malignant mesothelioma: stability through disease progression. Br J Cancer 2001; 84:52-6. [PMID: 11139313 PMCID: PMC2363614 DOI: 10.1054/bjoc.2000.1529] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malignant mesothelioma (MM) generally occurs as a pleural tumour, related to the inhalation of asbestos fibres. It is highly aggressive and largely unresponsive to treatment. The incidence of MM is particularly high in Western Australia because of the extensive blue asbestos mining operations that occurred in the north of the state until 1966. MM is unusual in that mutations in the tumour suppressor gene p53 are rarely observed, whilst over-expression of p53 protein is common. As the level of antibodies directed against p53 is thought to be of prognostic value in some cancers and as MM is known to be immunogenic, we studied a cohort of Western Australian patients to determine the prevalence of anti-p53 antibodies and their value as diagnostic markers or prognostic indicators. 6/88 (7%) of patients had high titres (>2 SD above the mean of controls) of anti-p53 antibodies. There was no correlation between antibody titre and survival. Although 3/38 (8%) of sera obtained from patients exposed to asbestos but prior to a diagnosis of MM contained antibodies, the same proportion of sera obtained from patients exposed to asbestos but who remained disease free also contained antibodies (2/40; 8%). Sera collected sequentially demonstrated a profound temporal stability in the titre of anti-p53 antibodies in patients with MM throughout the course of their illness. These results show that anti-p53 antibodies are observed only at a low frequency in the sera of MM patients and where they do occur, their elicitation is an early event that may be unrelated to antigen load. The occurrence of anti-p53 antibodies does not serve as either a useful prognostic or diagnostic indicator in MM.
Collapse
Affiliation(s)
- J Creaney
- Western Australian Institute for Medical Research and University Department of Medicine, University of Western Australia, Queen Elizabeth II Medical Centre, 4th Floor, G Block, Nedlands, Perth, 6009, Western Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
McLaren BR, Haenel T, Stevenson S, Mukherjee S, Robinson BW, Lake RA. Simian virus (SV) 40 like sequences in cell lines and tumour biopsies from Australian malignant mesotheliomas. AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE 2000; 30:450-6. [PMID: 10985509 DOI: 10.1111/j.1445-5994.2000.tb02050.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Simian virus (SV) 40 sequences have been found in some, but not all studies of mesotheliomas. This virus is known to cause tumours in rodents but its role in human oncogenesis remains controversial. AIMS The aim of this study therefore was to determine whether SV40 is associated with the development of mesotheliomas in Australia. The absence of the virus or its gene products in tissue derived from mesotheliomas would detract from this possibility. METHODS We used polymerase chain reaction from three pairs of primers to amplify different regions of the large T antigen from DNA from cell lines and cDNA from both cell lines and an independent set of tumour biopsies from patients with mesothelioma. RESULTS We examined five human mesothelioma cell lines that were established in our laboratories. In addition, we examined several tumour biopsies from seven different patients. SV40 like sequences were present in all the cell lines and in at least one sample from each of the patients examined. CONCLUSIONS The large T antigen of SV40 or an SV40 like virus is expressed in Australian mesotheliomas and therefore could be aetiologically-associated with tumourigenesis. Alternatively, these sequences could be expressed subsequent to the development of the disease.
Collapse
|