1
|
Sabogal-Guaqueta AM, Mitchell-Garcia T, Hunneman J, Voshart D, Thiruvalluvan A, Foijer F, Kruyt F, Trombetta-Lima M, Eggen BJL, Boddeke E, Barazzuol L, Dolga AM. Brain organoid models for studying the function of iPSC-derived microglia in neurodegeneration and brain tumours. Neurobiol Dis 2024; 203:106742. [PMID: 39581553 DOI: 10.1016/j.nbd.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Microglia represent the main resident immune cells of the brain. The interplay between microglia and other cells in the central nervous system, such as neurons or other glial cells, influences the function and ability of microglia to respond to various stimuli. These cellular communications, when disrupted, can affect the structure and function of the brain, and the initiation and progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as the progression of other brain diseases like glioblastoma. Due to the difficult access to patient brain tissue and the differences reported in the murine models, the available models to study the role of microglia in disease progression are limited. Pluripotent stem cell technology has facilitated the generation of highly complex models, allowing the study of control and patient-derived microglia in vitro. Moreover, the ability to generate brain organoids that can mimic the 3D tissue environment and intercellular interactions in the brain provide powerful tools to study cellular pathways under homeostatic conditions and various disease pathologies. In this review, we summarise the most recent developments in modelling degenerative diseases and glioblastoma, with a focus on brain organoids with integrated microglia. We provide an overview of the most relevant research on intercellular interactions of microglia to evaluate their potential to study brain pathologies.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guaqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Teresa Mitchell-Garcia
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jasmijn Hunneman
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Daniëlle Voshart
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Department Pathology and Medical biology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
D'Uonnolo G, Isci D, Nosirov B, Kuppens A, Wantz M, Nazarov PV, Golebiewska A, Rogister B, Chevigné A, Neirinckx V, Szpakowska M. Patient-based multilevel transcriptome exploration highlights relevant chemokines and chemokine receptor axes in glioblastoma. Comput Biol Med 2024; 182:109197. [PMID: 39353298 DOI: 10.1016/j.compbiomed.2024.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Chemokines and their receptors form a complex interaction network, crucial for precise leukocyte positioning and trafficking. In cancer, they promote malignant cell proliferation and survival but are also critical for immune cell infiltration in the tumor microenvironment. Glioblastoma (GBM) is the most common and lethal brain tumor, characterized by an immunosuppressive TME, with restricted immune cell infiltration. A better understanding of chemokine-receptor interactions is therefore essential for improving tumor immunogenicity. In this study, we assessed the expression of all human chemokines in adult-type diffuse gliomas, with particular focus on GBM, based on patient-derived samples. Publicly available bulk RNA sequencing datasets allowed us to identify the chemokines most abundantly expressed in GBM, with regard to disease severity and across different tumor subregions. To gain insight into the chemokines-receptor network at the single cell resolution, we explored GBmap, a curated resource integrating multiple scRNAseq datasets from different published studies. Our study constitutes the first patient-based handbook highlighting the relevant chemokine-receptor crosstalks, which are of significant interest in the perspective of a therapeutic modulation of the TME in GBM.
Collapse
Affiliation(s)
- Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg; Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Amandine Kuppens
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium
| | - May Wantz
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Petr V Nazarov
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium; University Hospital, Neurology Department, University of Liège, Belgium
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| |
Collapse
|
3
|
Wu S, Li X, Hong F, Chen Q, Yu Y, Guo S, Xie Y, Xiao N, Kong X, Mo W, Wang Z, Chen S, Zeng F. Integrative analysis of single-cell transcriptomics reveals age-associated immune landscape of glioblastoma. Front Immunol 2023; 14:1028775. [PMID: 36761752 PMCID: PMC9903136 DOI: 10.3389/fimmu.2023.1028775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor in center nervous system. Clinical statistics revealed that senior GBM patients had a worse overall survival (OS) comparing with that of patients in other ages, which is mainly related with tumor microenvironment including tumor-associated immune cells in particular. However, the immune heterogeneity and age-related prognosis in GBM are under studied. Here we developed a machine learning-based method to integrate public large-scale single-cell RNA sequencing (scRNA-seq) datasets to establish a comprehensive atlas of immune cells infiltrating in cross-age GBM. We found that the compositions of the immune cells are remarkably different across ages. Brain-resident microglia constitute the majority of glioblastoma-associated macrophages (GAMs) in patients, whereas dramatic elevation of extracranial monocyte-derived macrophages (MDMs) is observed in GAMs of senior patients, which contributes to the worse prognosis of aged patients. Further analysis suggests that the increased MDMs arisen from excessive recruitment and proliferation of peripheral monocytes not only lead to the T cell function inhibition in GBM, but also stimulate tumor cells proliferation via VEGFA secretion. In summary, our work provides new cues for the correlational relationship between the immune microenvironment of GBM and aging, which might be insightful for precise and effective therapeutic interventions for senior GBM patients.
Collapse
Affiliation(s)
- Songang Wu
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China
| | - Xuewen Li
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Fan Hong
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Qiang Chen
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Yingying Yu
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Shuanghui Guo
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Yuanyuan Xie
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China
| | - Naian Xiao
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China
| | - Xuwen Kong
- Department of Automation, School of Aerospace Engineering, Xiamen University, Fujian, China
| | - Wei Mo
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| | - Shaoxuan Chen
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| | - Feng Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,Department of Automation, School of Aerospace Engineering, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| |
Collapse
|
4
|
Pachocki CJ, Hol EM. Current perspectives on diffuse midline glioma and a different role for the immune microenvironment compared to glioblastoma. J Neuroinflammation 2022; 19:276. [PMCID: PMC9675250 DOI: 10.1186/s12974-022-02630-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Diffuse midline glioma (DMG), formerly called diffuse intrinsic pontine glioma (DIPG), is a high-grade malignant pediatric brain tumor with a near-zero survival rate. To date, only radiation therapy provides marginal survival benefit; however, the median survival time remains less than a year. Historically, the infiltrative nature and sensitive location of the tumor rendered surgical removal and biopsies difficult and subsequently resulted in limited knowledge of the disease, as only post-mortem tissue was available. Therefore, clinical decision-making was based upon experience with the more frequent and histologically similar adult glioblastoma (GBM). Recent advances in tissue acquisition and molecular profiling revealed that DMG and GBM are distinct disease entities, with separate tissue characteristics and genetic profiles. DMG is characterized by heterogeneous tumor tissue often paired with an intact blood–brain barrier, possibly explaining its resistance to chemotherapy. Additional profiling shed a light on the origin of the disease and the influence of several mutations such as a highly recurring K27M mutation in histone H3 on its tumorigenesis. Furthermore, early evidence suggests that DMG has a unique immune microenvironment, characterized by low levels of immune cell infiltration, inflammation, and immunosuppression that may impact disease development and outcome. Within the tumor microenvironment of GBM, tumor-associated microglia/macrophages (TAMs) play a large role in tumor development. Interestingly, TAMs in DMG display distinct features and have low immune activation in comparison to other pediatric gliomas. Although TAMs have been investigated substantially in GBM over the last years, this has not been the case for DMG due to the lack of tissue for research. Bit by bit, studies are exploring the TAM–glioma crosstalk to identify what factors within the DMG microenvironment play a role in the recruitment and polarization of TAMs. Although more research into the immune microenvironment is warranted, there is evidence that targeting or stimulating TAMs and their factors provide a potential treatment option for DMG. In this review, we provide insight into the current status of DMG research, assess the knowledge of the immune microenvironment in DMG and GBM, and present recent findings and therapeutic opportunities surrounding the TAM–glioma crosstalk.
Collapse
Affiliation(s)
- Casper J. Pachocki
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M. Hol
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Okada M, Nakagawa-Saito Y, Mitobe Y, Sugai A, Togashi K, Suzuki S, Kitanaka C. Inhibition of the Phospholipase Cε-c-Jun N-Terminal Kinase Axis Suppresses Glioma Stem Cell Properties. Int J Mol Sci 2022; 23:ijms23158785. [PMID: 35955917 PMCID: PMC9369372 DOI: 10.3390/ijms23158785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma stem cells (GSCs), the cancer stem cells of glioblastoma multiforme (GBM), contribute to the malignancy of GBM due to their resistance to therapy and tumorigenic potential; therefore, the development of GSC-targeted therapies is urgently needed to improve the poor prognosis of GBM patients. The molecular mechanisms maintaining GSCs need to be elucidated in more detail for the development of GSC-targeted therapy. In comparison with patient-derived GSCs and their differentiated counterparts, we herein demonstrated for the first time that phospholipase C (PLC)ε was highly expressed in GSCs, in contrast to other PLC isoforms. A broad-spectrum PLC inhibitor suppressed the viability of GSCs, but not their stemness. Nevertheless, the knockdown of PLCε suppressed the survival of GSCs and induced cell death. The stem cell capacity of residual viable cells was also suppressed. Moreover, the survival of mice that were transplanted with PLCε knockdown-GSCs was longer than the control group. PLCε maintained the stemness of GSCs via the activation of JNK. The present study demonstrated for the first time that PLCε plays a critical role in maintaining the survival, stemness, and tumor initiation capacity of GSCs. Our study suggested that PLCε is a promising anti-GSC therapeutic target.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Correspondence: ; Tel.: +81-23-628-5214
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
6
|
Otani Y, Yoo JY, Lewis CT, Chao S, Swanner J, Shimizu T, Kang JM, Murphy SA, Rivera-Caraballo K, Hong B, Glorioso JC, Nakashima H, Lawler SE, Banasavadi-Siddegowda Y, Heiss JD, Yan Y, Pei G, Caligiuri MA, Zhao Z, Chiocca EA, Yu J, Kaur B. NOTCH-Induced MDSC Recruitment after oHSV Virotherapy in CNS Cancer Models Modulates Antitumor Immunotherapy. Clin Cancer Res 2022; 28:1460-1473. [PMID: 35022322 PMCID: PMC8976724 DOI: 10.1158/1078-0432.ccr-21-2347] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/02/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncolytic herpes simplex virus-1 (oHSV) infection of brain tumors activates NOTCH, however the consequences of NOTCH on oHSV-induced immunotherapy is largely unknown. Here we evaluated the impact of NOTCH blockade on virus-induced immunotherapy. EXPERIMENTAL DESIGN RNA sequencing (RNA-seq), TCGA data analysis, flow cytometry, Luminex- and ELISA-based assays, brain tumor animal models, and serum analysis of patients with recurrent glioblastoma (GBM) treated with oHSV was used to evaluate the effect of NOTCH signaling on virus-induced immunotherapy. RESULTS TCGA data analysis of patients with grade IV glioma and oHSV treatment of experimental brain tumors in mice showed that NOTCH signaling significantly correlated with a higher myeloid cell infiltration. Immunofluorescence staining and RNA-seq uncovered a significant induction of Jag1 (NOTCH ligand) expression in infiltrating myeloid cells upon oHSV infection. Jag1-expressing macrophages further spread NOTCH activation in the tumor microenvironment (TME). NOTCH-activated macrophages increased the secretion of CCL2, which further amplified myeloid-derived suppressor cells. CCL2 and IL10 induction was also observed in serum of patients with recurrent GBM treated with oHSV (rQnestin34.5; NCT03152318). Pharmacologic blockade of NOTCH signaling rescued the oHSV-induced immunosuppressive TME and activated a CD8-dependent antitumor memory response, resulting in a therapeutic benefit. CONCLUSIONS NOTCH-induced immunosuppressive myeloid cell recruitment limited antitumor immunity. Translationally, these findings support the use of NOTCH inhibition in conjunction with oHSV therapy.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Cole T. Lewis
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Samantha Chao
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jessica Swanner
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Toshihiko Shimizu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Sara A. Murphy
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Kimberly Rivera-Caraballo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Bangxing Hong
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hiroshi Nakashima
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Sean E. Lawler
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | | | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Yuanqing Yan
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | | | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - E. Antonio Chiocca
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Jianhua Yu
- City of Hope Medical Center, Duarte, CA, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
7
|
Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds? Front Immunol 2021; 12:771210. [PMID: 34804061 PMCID: PMC8596464 DOI: 10.3389/fimmu.2021.771210] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
CCR2 is predominantly expressed by monocytes/macrophages with strong proinflammatory functions, prompting the development of CCR2 antagonists to dampen unwanted immune responses in inflammatory and autoimmune diseases. Paradoxically, CCR2-expressing monocytes/macrophages, particularly in tumor microenvironments, can be strongly immunosuppressive. Thus, targeting the recruitment of immunosuppressive monocytes/macrophages to tumors by CCR2 antagonism has recently been investigated as a strategy to modify the tumor microenvironment and enhance anti-tumor immunity. We present here that beneficial effects of CCR2 antagonism in the tumor setting extend beyond blocking chemotaxis of suppressive myeloid cells. Signaling within the CCL2/CCR2 axis shows underappreciated effects on myeloid cell survival and function polarization. Apart from myeloid cells, T cells are also known to express CCR2. Nevertheless, tissue homing of Treg cells among T cell populations is preferentially affected by CCR2 deficiency. Further, CCR2 signaling also directly enhances Treg functional potency. Thus, although Tregs are not the sole type of T cells expressing CCR2, the net outcome of CCR2 antagonism in T cells favors the anti-tumor arm of immune responses. Finally, the CCL2/CCR2 axis directly contributes to survival/growth and invasion/metastasis of many types of tumors bearing CCR2. Together, CCR2 links to two main types of suppressive immune cells by multiple mechanisms. Such a CCR2-assoicated immunosuppressive network is further entangled with paracrine and autocrine CCR2 signaling of tumor cells. Strategies to target CCL2/CCR2 axis as cancer therapy in the view of three types of CCR2-expessing cells in tumor microenvironment are discussed.
Collapse
Affiliation(s)
- Liyang Fei
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Xiaochen Ren
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Haijia Yu
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Yifan Zhan
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| |
Collapse
|
8
|
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front Immunol 2021; 12:770390. [PMID: 34795675 PMCID: PMC8592940 DOI: 10.3389/fimmu.2021.770390] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
9
|
Déry L, Charest G, Guérin B, Akbari M, Fortin D. Chemoattraction of Neoplastic Glial Cells with CXCL10, CCL2 and CCL11 as a Paradigm for a Promising Therapeutic Approach for Primary Brain Tumors. Int J Mol Sci 2021; 22:ijms222212150. [PMID: 34830041 PMCID: PMC8626037 DOI: 10.3390/ijms222212150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chemoattraction is a normal and essential process, but it can also be involved in tumorigenesis. This phenomenon plays a key role in glioblastoma (GBM). The GBM tumor cells are extremely difficult to eradicate, due to their strong capacity to migrate into the brain parenchyma. Consequently, a complete resection of the tumor is rarely a possibility, and recurrence is inevitable. To overcome this problem, we proposed to exploit this behavior by using three chemoattractants: CXCL10, CCL2 and CCL11, released by a biodegradable hydrogel (GlioGel) to produce a migration of tumor cells toward a therapeutic trap. To investigate this hypothesis, the agarose drop assay was used to test the chemoattraction capacity of these three chemokines on murine F98 and human U87MG cell lines. We then studied the potency of this approach in vivo in the well-established syngeneic F98-Fischer glioma-bearing rat model using GlioGel containing different mixtures of the chemoattractants. In vitro assays resulted in an invasive cell rate 2-fold higher when chemokines were present in the environment. In vivo experiments demonstrated the capacity of these specific chemoattractants to strongly attract neoplastic glioblastoma cells. The use of this strong locomotion ability to our end is a promising avenue in the establishment of a new therapeutic approach in the treatment of primary brain tumors.
Collapse
Affiliation(s)
- Laurence Déry
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Correspondence:
| | - Gabriel Charest
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (G.C.); (D.F.)
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (G.C.); (D.F.)
| |
Collapse
|
10
|
Enhanced Microglia Activation and Glioma Tumor Progression by Inflammagen Priming in Mice with Tumor Necrosis Factor Receptor Type 2 Deficiency. Life (Basel) 2021; 11:life11090961. [PMID: 34575110 PMCID: PMC8465392 DOI: 10.3390/life11090961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the fact that accumulation of microglia, the resident macrophages of the central nervous system (CNS) are the main feature of glioblastoma, the role of microglia in the progression of glioma is still arguable. Based on the correlation of inflammation with tumor progression, in this study, we attempt to determine if peripheral inflammation aggravates glioma expansion and the activation of microglia associated with the tumor. Experimental animals were administered intraperitoneally by inflammagen lipopolysaccharide (LPS) for 7 days (LPS priming) before intracerebral implantation of glioma cells. Moreover, a reduced level of tumor necrosis factor receptor type 2 (TNFR2) that is restricted to immune cells, neurons, and microglia has been found in patients with glioblastoma through the clinic analysis of monocyte receptor expression. Thus, in addition to wildtype (WT) mice, heterogeneous TNFR2 gene deficiency (TNFR2+/−) mice and homogeneous TNFR2 gene knockout (TNFR2−/−) mice were used in this study. The results show that peripheral challenge by LPS, Iba1+- or CD11b+-microglia increase in numbers in the cortex and hippocampus of TNFR2−/− mice, when compared to WT or TNFR2+/− mice. We further conducted the intracerebral implantation of rodent glioma cells into the animals and found that the volumes of tumors formed by rat C6 glioma cells or mouse GL261 glioma cells were significantly larger in the cortex of TNFR2−/− mice when compared to that measured in LPS-primed WT or LPS-primed TNFR2+/− mice. Ki67+-cells were exclusively clustered in the tumor of LPS-primed TNFR2−/− mice. Microglia were also extensively accumulated in the tumor formed in LPS-primed TNFR2−/− mice. Accordingly, our findings demonstrate that aggravation of microglia activation by peripheral inflammatory challenge and a loss of TNFR2 function might lead to the promotion of glioma growth.
Collapse
|
11
|
Keane L, Cheray M, Blomgren K, Joseph B. Multifaceted microglia - key players in primary brain tumour heterogeneity. Nat Rev Neurol 2021; 17:243-259. [PMID: 33692572 DOI: 10.1038/s41582-021-00463-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
Microglia are the resident innate immune cells of the immune-privileged CNS and, as such, represent the first line of defence against tissue injury and infection. Given their location, microglia are undoubtedly the first immune cells to encounter a developing primary brain tumour. Our knowledge of these cells is therefore important to consider in the context of such neoplasms. As the heterogeneous nature of the most aggressive primary brain tumours is thought to underlie their poor prognosis, this Review places a special emphasis on the heterogeneity of the tumour-associated microglia and macrophage populations present in primary brain tumours. Where available, specific information on microglial heterogeneity in various types and subtypes of brain tumour is included. Emerging evidence that highlights the importance of considering the heterogeneity of both the tumour and of microglial populations in providing improved treatment outcomes for patients is also discussed.
Collapse
Affiliation(s)
- Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
13
|
Yang Q, Zhang J, Zhang X, Miao L, Zhang W, Jiang Z, Zhou W. C-C motif chemokine ligand 2/C-C receptor 2 is associated with glioma recurrence and poor survival. Exp Ther Med 2021; 21:564. [PMID: 33850536 PMCID: PMC8027722 DOI: 10.3892/etm.2021.9996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Several studies have explored the mechanisms of C-C motif chemokine ligand (CCL)2/CC receptor (R)2 function in tumorigenesis and inflammation. However, little is known about the role of CCL2/CCR2 in tumor recurrence, especially after radiotherapy. The present study aimed to determine the association between CCL2/CCR2 and glioma relapse. Moreover, the difference in the expression of CCL2/CCR2 between post-radiation and non-radiation recurrent glioma tissues was compared. A retrospective analysis of 80 patients with glioma who underwent tumor resection twice was performed. Primary group refers to glioma patients who received glioma resection surgery for the first time. Recurrent group refers to glioma patients who received glioma resection surgery after first relapse. In total, 10 patients with brain trauma who underwent partial resection of the normal brain as decompression treatment were used as controls. Protein expression levels of CCL2 and CCR2 were evaluated using immunohistochemistry. Prognostic analyses of patient survival using Kaplan-Meier curves and Cox regression models were performed. The expression levels of CCL2 and CCR2 were higher in recurrent glioma compared with the primary group. There was a positive correlation between tumor grade and protein expression of CCL2/CCR2. Furthermore, irradiation had a significant effect on CCR2 protein expression (P=0.014), but not on CCL2 protein expression (P=0.626). However, the expression of CCL2 and CCR2 showed no significant difference between primary and secondary glioblastoma. After adjusting for sex, radiotherapy and location of tumors in these gliomas, CCL2 was a prognostic factor for disease-free and overall survival (OS) times, as well as age and tumor grade. In the multivariate Cox modeling for glioma, CCR2 was significantly associated with OS rather than DFI. The significant correlations between CCL2/CCR2 expression and glioma tumor grade suggested that CCL2/CCR2 has a role in glioma progression. Combined with previous in vitro experiments, it was proposed that irradiation (radiotherapy)-induced expression of CCL2 is transient, while irradiation-induced expression of CCR2 is lasting. Therefore, CCL2/CCR2 is a potential therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Qiuan Yang
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Junpeng Zhang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong 250200, P.R. China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lifeng Miao
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253020, P.R. China
| | - Wei Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
14
|
O'Connor T, Heikenwalder M. CCL2 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:1-14. [PMID: 34286437 DOI: 10.1007/978-3-030-62658-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The C-C motif chemokine ligand 2 (CCL2) is a crucial mediator of immune cell recruitment during microbial infections and tissue damage. CCL2 is also frequently overexpressed in cancer cells and other cells in the tumor microenvironment, and a large body of evidence indicates that high CCL2 levels are associated with more aggressive malignancies, a higher probability of metastasis, and poorer outcomes in a wide range of cancers. CCL2 plays a role in recruiting tumor-associated macrophages (TAMs), which adopt a pro-tumorigenic phenotype and support cancer cell survival, facilitate tumor cell invasion, and promote angiogenesis. CCL2 also has direct, TAM-independent effects on tumor cells and the tumor microenvironment, including recruitment of other myeloid subsets and non-myeloid cells, maintaining an immunosuppressive environment, stimulating tumor cell growth and motility, and promoting angiogenesis. CCL2 also plays important roles in the metastatic cascade, such as creating a pre-metastatic niche in distant organs and promoting tumor cell extravasation across endothelia. Due to its many roles in tumorigenesis and metastatic processes, the CCL2-CCR2 signaling axis is currently being pursued as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Tracy O'Connor
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
15
|
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol 2020; 11:1402. [PMID: 32765498 PMCID: PMC7379131 DOI: 10.3389/fimmu.2020.01402] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a poor prognosis, despite surgical resection combined with radio- and chemotherapy. The major clinical obstacles contributing to poor GBM prognosis are late diagnosis, diffuse infiltration, pseudo-palisading necrosis, microvascular proliferation, and resistance to conventional therapy. These challenges are further compounded by extensive inter- and intra-tumor heterogeneity and the dynamic plasticity of GBM cells. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. An immunosuppressive tumor microenvironment of GBM provides multiple pathways for tumor immune evasion. Infiltrating immune cells, mostly tumor-associated macrophages, comprise much of the non-neoplastic population in GBM. Further understanding of the immune microenvironment of GBM is essential to make advances in the development of immunotherapeutics. Recently, whole-genome sequencing, epigenomics and transcriptional profiling have significantly helped improve the prognostic and therapeutic outcomes of GBM patients. Here, we discuss recent genomic advances, the role of innate and adaptive immune mechanisms, and the presence of an established immunosuppressive GBM microenvironment that suppresses and/or prevents the anti-tumor host response.
Collapse
Affiliation(s)
- Syreeta DeCordova
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, India
| | - Lukas Klein
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
16
|
Felsenstein M, Blank A, Bungert AD, Mueller A, Ghori A, Kremenetskaia I, Rung O, Broggini T, Turkowski K, Scherschinski L, Raggatz J, Vajkoczy P, Brandenburg S. CCR2 of Tumor Microenvironmental Cells Is a Relevant Modulator of Glioma Biology. Cancers (Basel) 2020; 12:cancers12071882. [PMID: 32668709 PMCID: PMC7408933 DOI: 10.3390/cancers12071882] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) shows a high influx of tumor-associated macrophages (TAMs). The CCR2/CCL2 pathway is considered a relevant signal for the recruitment of TAMs and has been suggested as a therapeutic target in malignant gliomas. We found that TAMs of human GBM specimens and of a syngeneic glioma model express CCR2 to varying extents. Using a Ccr2-deficient strain for glioma inoculation revealed a 30% reduction of TAMs intratumorally. This diminished immune cell infiltration occurred with augmented tumor volumes likely based on increased cell proliferation. Remaining TAMs in Ccr2-/- mice showed comparable surface marker expression patterns in comparison to wildtype mice, but expression levels of inflammatory transcription factors (Stat3, Irf7, Cox2) and cytokines (Ifnβ, Il1β, Il12α) were considerably affected. Furthermore, we demonstrated an impact on blood vessel integrity, while vascularization of tumors appeared similar between mouse strains. The higher stability and attenuated leakiness of the tumor vasculature imply improved sustenance of glioma tissue in Ccr2-/- mice. Additionally, despite TAMs residing in the perivascular niche in Ccr2-/- mice, their pro-angiogenic activity was reduced by the downregulation of Vegf. In conclusion, lacking CCR2 solely on tumor microenvironmental cells leads to enhanced tumor progression, whereby high numbers of TAMs infiltrate gliomas independently of the CCR2/CCL2 signal.
Collapse
Affiliation(s)
- Matthäus Felsenstein
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Anne Blank
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Alexander D. Bungert
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Annett Mueller
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Adnan Ghori
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Olga Rung
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Thomas Broggini
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Kati Turkowski
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Lea Scherschinski
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Jonas Raggatz
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
- Department of Neurosurgery Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-560-002
| | - Susan Brandenburg
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| |
Collapse
|
17
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
18
|
Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1. Oncogene 2020; 39:4421-4435. [PMID: 32346064 PMCID: PMC7253351 DOI: 10.1038/s41388-020-1302-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a malignant brain tumor that evades therapy regimens. Since cellular dormancy is one strategy for surviving, and since chemokines determine the environmental conditions in which dormancy occurs, we investigated how chemokines affect temozolomide (TMZ)-promoted cellular dormancy entry and exit in GBM cells. TMZ administration over ten days promoted cellular dormancy entry, whereas discontinuing TMZ for a further 15 days resulted in resumption of proliferation. Co-administration of a chemokine cocktail containing CXCL12, CXCL16, and CX3CL1 resulted in both delayed entry and exit from cellular dormancy. A microarray-based transcriptome analysis in LN229 GBM cells revealed that cellular dormancy entry was characterized by an increased expression of CCL2 and SAA2, while THSD4, FSTL3, and VEGFC were upregulated during dormancy exit. Co-stimulation with the chemokine cocktail reduced upregulation of identified genes. After verifying the appearance of identified genes in human GBM primary cultures and ex vivo samples, we clarified whether each chemokine alone impacts cellular dormancy mechanisms using specific antagonists and selective CRISPR/Cas9 clones. While expression of CCL2 and SAA2 in LN229 cells was altered by the CXCL12-CXCR4-CXCR7 axis, CXCL16 and CX3CL1 contributed to reduced upregulation of THSD4 and, to a weaker extent, of VEGFC. The influence on FSTL3 expression depended on the entire chemokine cocktail. Effects of chemokines on dormancy entry and exit-associated genes were detectable in human GBM primary cells, too, even if in a more complex, cell-specific manner. Thus, chemokines play a significant role in the regulation of TMZ-promoted cellular dormancy in GBMs.
Collapse
|
19
|
Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Immunobiology 2020; 225:151853. [PMID: 31703822 DOI: 10.1016/j.imbio.2019.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
|
20
|
Karachi A, Dastmalchi F, Mitchell DA, Rahman M. Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol 2019; 20:1566-1572. [PMID: 29733389 DOI: 10.1093/neuonc/noy072] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Temozolomide is the most widely used chemotherapy for patients with glioblastoma (GBM) despite the fact that approximately half of treated patients have temozolomide resistance and all patients eventually fail therapy. Due to the limited efficacy of existing therapies, immunotherapy is being widely investigated for patients with GBM. However, initial immunotherapy trials in GBM patients have had disappointing results as monotherapy. Therefore, combinatorial treatment strategies are being investigated. Temozolomide has several effects on the immune system that are dependent on mode of delivery and the dosing strategy, which may have unpredicted effects on immunotherapy. Here we summarize the immune modulating role of temozolomide alone and in combination with immunotherapies such as dendritic cell vaccines, T-cell therapy, and immune checkpoint inhibitors for patients with GBM.
Collapse
Affiliation(s)
- Aida Karachi
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Florida
| | - Farhad Dastmalchi
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Florida
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Florida
| | - Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
KIAA1549-BRAF Expression Establishes a Permissive Tumor Microenvironment Through NFκB-Mediated CCL2 Production. Neoplasia 2018; 21:52-60. [PMID: 30504064 PMCID: PMC6277251 DOI: 10.1016/j.neo.2018.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
KIAA1549-BRAF is the most frequently identified genetic mutation in sporadic pilocytic astrocytoma (PA), creating a fusion BRAF (f-BRAF) protein with increased BRAF activity. Fusion-BRAF-expressing neural stem cells (NSCs) exhibit increased cell growth and can generate glioma-like lesions following injection into the cerebella of naïve mice. Increased Iba1+ monocyte (microglia) infiltration is associated with murine f-BRAF-expressing NSC-induced glioma-like lesion formation, suggesting that f-BRAF-expressing NSCs attract microglia to establish a microenvironment supportive of tumorigenesis. Herein, we identify Ccl2 as the chemokine produced by f-BRAF-expressing NSCs, which is critical for creating a permissive stroma for gliomagenesis. In addition, f-BRAF regulation of Ccl2 production operates in an ERK- and NFκB-dependent manner in cerebellar NSCs. Finally, Ccr2-mediated microglia recruitment is required for glioma-like lesion formation in vivo, as tumor do not form in Ccr2-deficient mice following f-BRAF-expressing NSC injection. Collectively, these results demonstrate that f-BRAF expression creates a supportive tumor microenvironment through NFκB-mediated Ccl2 production and microglia recruitment.
Collapse
|
22
|
Gao H, Zhang IY, Zhang L, Song Y, Liu S, Ren H, Liu H, Zhou H, Su Y, Yang Y, Badie B. S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Lett 2018; 439:91-100. [PMID: 30076898 PMCID: PMC7048242 DOI: 10.1016/j.canlet.2018.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023]
Abstract
S100B, a member of the multigene family of Ca2+-binding proteins, is overexpressed by most malignant gliomas but its biological role in gliomagenesis is unclear. Recently, we demonstrated that low concentrations of S100B attenuated microglia activation through the induction of STAT3. Furthermore, S100B downregulation in a murine glioma model inhibited macrophage trafficking and tumor growth. Based on these observations, we hypothesized that S100B inhibitors may have antiglioma properties through modulation of tumor microenvironment. To discover novel S100B inhibitors, we developed a high-throughput screening cell-based S100B promoter-driven luciferase reporter assay. Initial screening of 768 compounds in the NIH library identified 36 hits with >85% S100B inhibitory activity. Duloxetine (Dul, an SNRI) was selected for the initial proof-of-concept studies. At low concentrations (1–5 μM) Dul inhibited S100B and CCL2 production in mouse GL261 glioma cells, but had minimal cytotoxic activity in vitro. In vivo, however, Dul (30 mg/kg/14 days) inhibited S100B production, altered the polarization and trafficking of tumor-associated myeloid-derived cells, and inhibited the growth of intracranial GL261 gliomas. Dul therapeutic efficacy, however, was not observed in the K-Luc glioma model that expresses low levels of S100B. These findings affirm the role of S100B in gliomagenesis and justify the development of more potent S100B inhibitors for glioma therapy.
Collapse
Affiliation(s)
- Hang Gao
- Department of Bone and Joint Surgery, No.1 Hospital of Jilin University, Changchun, Jilin Province, PR China.
| | - Ian Y Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, USA.
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, USA.
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin Province, PR China.
| | - Shunan Liu
- Department of Pharmacology, The Pharmacy School of Jilin University, Changchun, Jilin Province, PR China.
| | - Hui Ren
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, PR China.
| | - Huili Liu
- Division of Neurosurgery, City of Hope Beckman Research Institute, USA.
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, PR China.
| | - Yanping Su
- College of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, PR China.
| | - Yihang Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China.
| | - Behnam Badie
- Department of Cancer Immunotherapeutics & Tumor Immunology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW More effective therapies for glioblastoma are urgently needed. Immunotherapeutic strategies appear particularly promising and are therefore intensively studied. This article reviews the current understanding of the immunosuppressive glioblastoma microenvironment, discusses the rationale behind various immunotherapies, and outlines the findings of several recently published clinical studies. RECENT FINDINGS The results of CheckMate-143 indicated that nivolumab is not superior to bevacizumab in patients with recurrent glioblastoma. A first-in man exploratory study evaluating EGFRvIII-specific CAR T cells for patients with newly diagnosed glioblastoma demonstrated overall safety of CAR T cell therapy and effective target recognition. A pilot study evaluating treatment with adoptively transferred CMV-specific T cells combined with a CMV-specific DC vaccine was found to be safe and resulted in increased polyclonality of CMV-specific T cells in vivo. Despite the success of immunotherapies in many cancers, clinical evidence supporting their efficacy for patients with glioblastoma is still lacking. Nevertheless, the recently published studies provide important proof-of-concept in several areas of immunotherapy research. The careful and critical interpretation of these results will enhance our understanding of the opportunities and challenges of immunotherapies for high-grade gliomas and improve the immunotherapeutic strategies investigated in future clinical trials.
Collapse
Affiliation(s)
- Sylvia C Kurz
- Perlmutter Cancer Institute, Brain Tumor Program, NYU Langone Medical Center, 240 E. 38th Street, 19th floor, New York, NY, 10016, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
24
|
Roesch S, Rapp C, Dettling S, Herold-Mende C. When Immune Cells Turn Bad-Tumor-Associated Microglia/Macrophages in Glioma. Int J Mol Sci 2018; 19:ijms19020436. [PMID: 29389898 PMCID: PMC5855658 DOI: 10.3390/ijms19020436] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/29/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
As a substantial part of the brain tumor microenvironment (TME), glioma-associated microglia/macrophages (GAMs) have an emerging role in tumor progression and in controlling anti-tumor immune responses. We review challenges and improvements of cell models and highlight the contribution of this highly plastic cell population to an immunosuppressive TME, besides their well-known functional role regarding glioma cell invasion and angiogenesis. Finally, we summarize first therapeutic interventions to target GAMs and their effect on the immunobiology of gliomas, focusing on their interaction with T cells.
Collapse
Affiliation(s)
- Saskia Roesch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany.
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany.
| | - Steffen Dettling
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany.
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Immune microenvironment of gliomas. J Transl Med 2017; 97:498-518. [PMID: 28287634 DOI: 10.1038/labinvest.2017.19] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas are rapidly progressing tumors of the central nervous system (CNS) with a very poor prognosis despite extensive resection combined with radiation and/or chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed heterogeneity of a tumor and its niche, composed of reactive astrocytes, endothelial cells, and numerous immune cells. Infiltrating immune cells consist of CNS resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells (MDSCs), and T lymphocytes. Intratumoral density of glioma-associated microglia/macrophages (GAMs) and MDSCs is the highest in malignant gliomas and inversely correlates with patient survival. Although GAMs have a few innate immune functions intact, their ability to be stimulated via TLRs, secrete cytokines, and upregulate co-stimulatory molecules is not sufficient to initiate antitumor immune responses. Moreover, tumor-reprogrammed GAMs release immunosuppressive cytokines and chemokines shaping antitumor responses. Both GAMs and MDSCs have ability to attract T regulatory lymphocytes to the tumor, but MDSCs inhibit cytotoxic responses mediated by natural killer cells, and block the activation of tumor-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. The presence of regulatory T cells may further contribute to the lack of effective immune activation against malignant gliomas. We review the immunological aspects of glioma microenvironment, in particular composition and various roles of the immune cells infiltrating malignant human gliomas and experimental rodent gliomas. We describe tumor-derived signals and mechanisms driving myeloid cell accumulation and reprogramming. Although, understanding the complexity of cell-cell interactions in glioma microenvironment is far from being achieved, recent studies demonstrated several glioma-derived factors that trigger migration, accumulation, and reprogramming of immune cells. Identification of these factors may facilitate development of immunotherapy for gliomas as immunomodulatory and immune evasion mechanisms employed by malignant gliomas pose an appalling challenge to brain tumor immunotherapy.
Collapse
|
26
|
Thomas JG, Parker Kerrigan BC, Hossain A, Gumin J, Shinojima N, Nwajei F, Ezhilarasan R, Love P, Sulman EP, Lang FF. Ionizing radiation augments glioma tropism of mesenchymal stem cells. J Neurosurg 2017; 128:287-295. [PMID: 28362237 DOI: 10.3171/2016.9.jns16278] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) have been shown to localize to gliomas after intravascular delivery. Because these cells home to areas of tissue injury, the authors hypothesized that the administration of ionizing radiation (IR) to tumor would enhance the tropism of MSCs to gliomas. Additionally, they sought to identify which radiation-induced factors might attract MSCs. METHODS To assess the effect of IR on MSC migration in vitro, transwell assays using conditioned medium (CM) from an irradiated commercially available glioma cell line (U87) and from irradiated patient-derived glioma stem-like cells (GSCs; GSC7-2 and GSC11) were employed. For in vivo testing, green fluorescent protein (GFP)-labeled MSCs were injected into the carotid artery of nude mice harboring orthotopic U87, GSC7-2, or GSC17 xenografts that were treated with either 0 or 10 Gy of IR, and brain sections were quantitatively analyzed by immunofluorescence for GFP-positive cells. These GSCs were used because GSC7-2 is a weak attractor of MSCs at baseline, whereas GSC17 is a strong attractor. To determine the factors implicated in IR-induced tropism, CM from irradiated GSC7-2 and from GSC11 was assayed with a cytokine array and quantitative ELISA. RESULTS Transwell migration assays revealed statistically significant enhanced MSC migration to CM from irradiated U87, GSC7-2, and GSC11 compared with nonirradiated controls and in a dose-dependent manner. After their intravascular delivery into nude mice harboring orthotopic gliomas, MSCs engrafted more successfully in irradiated U87 (p = 0.036), compared with nonirradiated controls. IR also significantly increased the tropism of MSCs to GSC7-2 xenografts (p = 0.043), which are known to attract MSCs only poorly at baseline (weak-attractor GSCs). Ionizing radiation also increased the engraftment of MSCs in strong-attractor GSC17 xenografts, but these increases did not reach statistical significance. The chemokine CCL2 was released by GSC7-2 and GSC11 after irradiation in a dose-dependent manner and mediated in vitro transwell migration of MSCs. Immunohistochemistry revealed increased CCL2 in irradiated GSC7-2 gliomas near the site of MSC engraftment. CONCLUSIONS Administering IR to gliomas enhances MSC localization, particularly in GSCs that attract MSCs poorly at baseline. The chemokine CCL2 appears to play a crucial role in the IR-induced tropism of MSCs to gliomas.
Collapse
Affiliation(s)
- Jonathan G Thomas
- Departments of1Neurosurgery and.,3Department of Neurosurgery, Baylor College of Medicine; and
| | | | | | | | | | | | | | - Patrice Love
- 2Radiation Oncology, The University of Texas MD Anderson Cancer Center
| | - Erik P Sulman
- 2Radiation Oncology, The University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
27
|
Vakilian A, Khorramdelazad H, Heidari P, Sheikh Rezaei Z, Hassanshahi G. CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem Int 2016; 103:1-7. [PMID: 28025034 DOI: 10.1016/j.neuint.2016.12.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 02/04/2023]
Abstract
Glioblastoma multiform (GBM) is described as one of the most frequent primary brain tumors. These types of malignancies constitute only 15% of all primary brain tumors. Despite, extensive developments on effective therapeutic methods during the 20th century as well as the first decade of the present century (21st), the median survival rate for patients suffering from GBM is only approximately 15 months, even in response to multi-modal therapy. numerous types of reticuloendothelial system cells such as macrophages and microglial cells occupied within both GBM and also normal surrounding tissues. These immune cells acquire an otherwise activated phenotype with potent tumor-tropic functions that contribute to the glioma growth and invasion. The CC chemokine, CCL2 (previously named MCP-1) is of the most important CC chemokines family member involving in regulation of oriented migration and penetrative infiltration of mainly reticuloendothelial system cells specifically monocyte/macrophage phenotypes. Fundamental parts are played by CCL2 and its related receptor (the CCR2) in brain tumors and obviously in migration of monocytes from the bloodstream through the vascular endothelium. Therefore, CCL2/CCR2 axis is required for the routine immunological surveillance of tissues, in accordance with response to inflammation. Briefly, in this review, we have tried our best to collect the latest, straightened and summarize literature reports exist within data base regarding the interaction between microglia/macrophages and CCL2/CCR2 axis in GBM. We aimed to discuss potential application of this chemokine/receptor interaction axis for the expansion of future anti-glioma therapies as well.
Collapse
Affiliation(s)
- Alireza Vakilian
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parisa Heidari
- Department of Hematology and Medical Laboratory Sciences, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Sheikh Rezaei
- Department of Hematology and Medical Laboratory Sciences, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Medical Laboratory Sciences, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
28
|
Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, Khotimchenko Y. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett 2016; 12:1721-1728. [PMID: 27602106 PMCID: PMC4998210 DOI: 10.3892/ol.2016.4886] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 06/16/2016] [Indexed: 01/11/2023] Open
Abstract
The development of antitumor medication based on autologous stem cells is one of the most advanced methods in glioblastoma multiforme (GBM) treatment. However, there are no objective criteria for evaluating the effectiveness of this medication on cancer stem cells (CSCs). One possible criterion could be a change in the number of microglial cells and their specific location in the tumor. The present study aimed to understand the interaction between microglial cells and CSCs in an experimental glioblastoma model. C6 glioma cells were used to create a glioblastoma model, as they have the immunophenotypic characteristics of CSCs. The glioma cells (0.2×106) were stereotactically implanted into the brains of 60 rats. On the 10th, 20th and 30th days after implantation, the animals were 15 of the animals were sacrificed, and the obtained materials were analyzed by morphological and immunohistochemical analysis. Implantation of glioma cells into the rat brains caused rapid development of tumors characterized by invasive growth, angiogenesis and a high rate of proliferation. The maximum concentration of microglia was observed in the tumor nodule between days 10 and 20; a high proliferation rate of cancer cells was also observed in this area. By day 30, necrosis advancement was observed and the maximum number of microglial cells was concentrated in the invasive area; the invasive area also exhibited positive staining for CSC marker antibodies. Microglial cells have a key role in the invasive growth processes of glioblastoma, as demonstrated by the location of CSCs in the areas of microglia maximum concentration. Therefore, the present study indicates that changes in microglia position and corresponding suppression of tumor growth may be objective criteria for evaluating the effectiveness of biomedical treatment against CSCs.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Igor Manzhulo
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Polina Mischenko
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Elena Milkina
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Inessa Dyuizen
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Andrey Bryukhovetskiy
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; NeuroVita Clinic of Restorative and Interventional Neurology and Therapy, Moscow 115478, Russia
| | - Yuri Khotimchenko
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| |
Collapse
|
29
|
Lieberman NAP, Moyes KW, Crane CA. Developing immunotherapeutic strategies to target brain tumors. Expert Rev Anticancer Ther 2016; 16:775-88. [PMID: 27253692 DOI: 10.1080/14737140.2016.1192470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Recent years have seen rapid growth in cancer treatments that enhance the anti-tumor activities of the immune system. Collectively known as immunotherapy, modulation of the immune system has shown success treating some hematological malignancies, but has yet to be successfully applied to the treatment of patients with brain tumors. AREAS COVERED This review highlights mechanistic insights from murine studies and compiled recent clinical trial data, focusing on the most aggressive brain tumor, glioblastoma (GBM). The field has recently accumulated a critical mass of data, and we discuss past treatment failures in the context of newly developed approaches now entering clinical trials. This article provides an overview of the immunotherapeutic armamentarium currently in development for the treatment of patients with GBM, who are in dire need of safe and effective therapies. Expert commentary: Themes that emerge include the importance of mitigating the effects of an immunosuppressive tumor microenvironment and the potential for innate immune cell activation to enhance cytotoxic anti-tumor activity. Consideration of these studies as a collective may inform the design of new immunotherapies, as well as the immune monitoring protocols for patients participating in clinical trials.
Collapse
Affiliation(s)
- Nicole A P Lieberman
- a Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA
| | - Kara White Moyes
- a Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA
| | - Courtney A Crane
- a Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA.,b Department of Neurological Surgery , University of Washington School of Medicine , Seattle , WA , USA
| |
Collapse
|
30
|
Salacz ME, Kast RE, Saki N, Brüning A, Karpel-Massler G, Halatsch ME. Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ Regimen. Onco Targets Ther 2016; 9:2535-45. [PMID: 27175087 PMCID: PMC4854261 DOI: 10.2147/ott.s100407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To improve the prognosis of glioblastoma, we developed an adjuvant treatment directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant monocyte lineage cells (MLCs) (monocyte, macrophage, microglia, dendritic cells) that infiltrated a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor homeostasis. MLCs comprise of approximately 10%-30% of glioblastoma by volume. After integration into the tumor mass, these become polarized toward an M2 immunosuppressive, pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic - minocycline, an antihypertensive drug - telmisartan, and a bisphosphonate - zoledronic acid, have ancillary attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing aspects. Minocycline, telmisartan, and zoledronic acid - the MTZ Regimen - have low-toxicity profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older drugs has advantages of established safety and low drug cost. Four core observations support this approach: 1) malignant glioblastoma cells require a reciprocal trophic relationship with nonmalignant macrophages or microglia to thrive; 2) glioblastoma cells secrete MCP-1 to start the cycle, attracting MLCs, which subsequently also secrete MCP-1 perpetuating the recruitment cycle; 3) increasing cytokine levels in the tumor environment generate further immunosuppression and tumor growth; and 4) MTZ regimen may impede MCP-1-driven processes, thereby interfering with glioblastoma growth.
Collapse
Affiliation(s)
- Michael E Salacz
- Department of Internal Medicine, University of Kansas, Kansas City, KS, USA; Department of Neurosurgery, University of Kansas, Kansas City, KS, USA
| | | | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ansgar Brüning
- Molecular Biology Laboratory, University Hospital Munich, Munich, Germany
| | | | | |
Collapse
|
31
|
Lindemann C, Marschall V, Weigert A, Klingebiel T, Fulda S. Smac Mimetic-Induced Upregulation of CCL2/MCP-1 Triggers Migration and Invasion of Glioblastoma Cells and Influences the Tumor Microenvironment in a Paracrine Manner. Neoplasia 2016; 17:481-9. [PMID: 26152356 PMCID: PMC4719005 DOI: 10.1016/j.neo.2015.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/10/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Second mitochondria-derived activator of caspase (Smac) mimetics are considered as promising anticancer therapeutics that are currently under investigation in early clinical trials. They induce apoptosis by antagonizing inhibitor of apoptosis proteins, which are frequently overexpressed in cancer. We previously reported that Smac mimetics, such as BV6, additionally exert non-apoptotic functions in glioblastoma (GBM) cells by stimulating migration and invasion in a nuclear factor kappa B (NF-κB)-dependent manner. Because NF-κB target genes mediating these effects are largely unknown, we performed whole-genome expression analyses. Here, we identify chemokine (C-C motif) ligand 2 (CCL2) as the top-listed NF-κB-regulated gene being upregulated upon BV6 treatment in GBM cells. BV6-induced upregulation and secretion of CCL2 are required for migration and invasion of GBM cells because knockdown of CCL2 in GBM cells abolishes these effects. Co-culture experiments of GBM cells with non-malignant astroglial cells reveal that BV6-stimulated secretion of CCL2 by GBM cells into the supernatant triggers migration of astroglial cells toward GBM cells because CCL2 knockdown in BV6-treated GBM cells impedes BV6-stimulated migration of astroglial cells. In conclusion, we identify CCL2 as a BV6-induced NF-κB target gene that triggers migration and invasion of GBM cells and exerts paracrine effects on the GBM's microenvironment by stimulating migration of astroglial cells. These findings provide novel insights into the biological functions of Smac mimetics with important implications for the development of Smac mimetics as cancer therapeutics.
Collapse
Affiliation(s)
- Carina Lindemann
- Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Viola Marschall
- Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University, Frankfurt, Germany
| | - Thomas Klingebiel
- Pediatric Hematology and Oncology, University Children's Hospital, Goethe-University, Frankfurt, Germany
| | - Simone Fulda
- Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany; German Cancer Consortium (DKTK) Heidelberg, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
32
|
Ferguson SD, Srinivasan VM, Ghali MG, Heimberger AB. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope? Immunotherapy 2016; 8:413-23. [PMID: 26973123 DOI: 10.2217/imt.16.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.
Collapse
Affiliation(s)
- Sherise D Ferguson
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| | - Michael Gz Ghali
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, 2900 Queen Lane, PA, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| |
Collapse
|
33
|
Razavi SM, Lee KE, Jin BE, Aujla PS, Gholamin S, Li G. Immune Evasion Strategies of Glioblastoma. Front Surg 2016; 3:11. [PMID: 26973839 PMCID: PMC4773586 DOI: 10.3389/fsurg.2016.00011] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/10/2016] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is the most devastating brain tumor, with associated poor prognosis. Despite advances in surgery and chemoradiation, the survival of afflicted patients has not improved significantly in the past three decades. Immunotherapy has been heralded as a promising approach in treatment of various cancers; however, the immune privileged environment of the brain usually curbs the optimal expected response in central nervous system malignancies. In addition, GBM cells create an immunosuppressive microenvironment and employ various methods to escape immune surveillance. The purpose of this review is to highlight the strategies by which GBM cells evade the host immune system. Further understanding of these strategies and the biology of this tumor will pave the way for developing novel immunotherapeutic approaches for treatment of GBM.
Collapse
Affiliation(s)
- Seyed-Mostafa Razavi
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Karen E Lee
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Benjamin E Jin
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Parvir S Aujla
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Sharareh Gholamin
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
34
|
Abstract
The dogma of the central nervous system (CNS) as an immune-privileged site has been substantially revised in recent years. CNS is an immunocompetent organ and actively interacts with the immune system. Microglia plays a leading role in a CNS immune response. However, in malignant gliomas, there is M2-polarization of microglia acquiring immunosuppressive and tumor-supportive properties. It occurs under the influence of tumor cytokines, such as transforming growth factor-β, interleukin-10, and prostaglandin E2. M2-polarized microglia exhibits reduced phagocytic activity, changes in the expression of many cellular determinants, or inverse of their functions, STAT3 activation, and production of immunosuppressive cytokines that suppress the function of cytotoxic CD8+ T cells or CD4+ T-helper cells type I. Myeloid-derived suppressor cells and regulatory T-lymphocytes, which have been recruited from peripheral blood into tumor tissue, also have immunosuppressive properties. The development of new treatment options for malignant gliomas must consider the role of the microenvironment in maintaining tumor vitality and progression.
Collapse
Affiliation(s)
- K E Borisov
- Republican Clinical Oncology Dispensary, Ministry of Health of the Republic of Bashkortostan, Ufa, Russia
| | - D D Sakaeva
- Republican Clinical Oncology Dispensary, Ministry of Health of the Republic of Bashkortostan, Ufa, Russia
| |
Collapse
|
35
|
Ingramon, a Peptide Inhibitor of MCP-1 Chemokine, Reduces Migration of Blood Monocytes Stimulated by Glioma-Conditioned Medium. Bull Exp Biol Med 2016; 160:480-2. [DOI: 10.1007/s10517-016-3201-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 01/08/2023]
|
36
|
Abstract
Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.
Collapse
Affiliation(s)
- Katalin Eder
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary.
| | - Bernadette Kalman
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary
- University of Pecs, Pecs, Hungary
| |
Collapse
|
37
|
Abstract
The central nervous system (CNS) possesses powerful local and global immunosuppressive capabilities that modulate unwanted inflammatory reactions in nervous tissue. These same immune-modulatory mechanisms are also co-opted by malignant brain tumors and pose a formidable challenge to brain tumor immunotherapy. Routes by which malignant gliomas coordinate immunosuppression include the mechanical and functional barriers of the CNS; immunosuppressive cytokines and catabolites; immune checkpoint molecules; tumor-infiltrating immune cells; and suppressor immune cells. The challenges to overcoming tumor-induced immunosuppression, however, are not unique to the brain, and several analogous immunosuppressive mechanisms also exist for primary tumors outside of the CNS. Ultimately, the immune responses in the CNS are linked and complementary to immune processes in the periphery, and advances in tumor immunotherapy in peripheral sites may therefore illuminate novel approaches to brain tumor immunotherapy, and vice versa.
Collapse
Affiliation(s)
- Powell Perng
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| | - Michael Lim
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
38
|
Afrasiabi K, Zhou YH, Fleischman A. Chronic inflammation: is it the driver or is it paving the road for malignant transformation? Genes Cancer 2015; 6:214-9. [PMID: 26124920 PMCID: PMC4482242 DOI: 10.18632/genesandcancer.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation in well-defined mouse models such as Giα2 knock out mouse has been shown to trigger formation and expansion of hypoxic niches and also leads to up regulation of NFĸB, offering cells which have adapted their genetic machinery to hypoxia a unique survival advantage. These adapted cells have been shown to acquire stem cell-like capabilities as shown by up regulation of stem cell markers. Such long lived cells become permanent residents in sub mucosa and acquire a malignant phenotype from long-term exposure to noxious environmental agents due to a barrier defect secondary to down regulation of barrier proteins such as Zo1 and Occludin. Indeed mitotic spindle disorientation in such mice has been proposed as another contributory factor to malignant transformation. Sterilization of bowel lumen of these mice through different techniques has prevented malignant transformation in the presence of chronic inflammation. These facts stand strongly against chronic inflammation as a true driver of carcinogenesis but clearly support its role in facilitating the emergence of the neoplastic clone.
Collapse
Affiliation(s)
- Kambiz Afrasiabi
- Department of Medicine, University of California, Irvine, CA, USA
| | - Yi-Hong Zhou
- Department of Surgery, University of California, Irvine, CA, USA
| | | |
Collapse
|
39
|
Jacobsen K, Russell L, Kaur B, Friedman A. Effects of CCN1 and Macrophage Content on Glioma Virotherapy: A Mathematical Model. Bull Math Biol 2015; 77:984-1012. [DOI: 10.1007/s11538-015-0074-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
|
40
|
Shen SC, Wu MS, Lin HY, Yang LY, Chen YH, Chen YC. Reactive oxygen species-dependent nitric oxide production in reciprocal interactions of glioma and microglial cells. J Cell Physiol 2014; 229:2015-26. [PMID: 24777714 DOI: 10.1002/jcp.24659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/25/2014] [Indexed: 01/30/2023]
Abstract
Conditioned mediums (CMs) from glioma cells U87, GBM-8401, and C6 significantly induced iNOS protein and NO production by microglial cells BV-2 but without altering the cell viability or cell-cycle progression of BV2 microglia. Significant increases in intracellular peroxide by U87-CM and C6-CM were detected by a DCHF-DA assay, and vitamin (Vit) C and N-acetyl cysteine (NAC)-reduced intracellular peroxide levels elicited by CMs lead to inhibition of iNOS/NO production The extracellular signal-regulated kinase (ERK) inhibitor, U0126, and c-Jun N-terminal kinase (JNK) inhibitor, SP600125, suppressed U87-CM- and C6-CM-induced iNOS/NO production by respectively blocking phosphorylated ERK (pERK) and JNK (pJNK) protein expressions stimulated by U87-CM and C6-CM. Increased migration of U87 and C6 glioma cells by a co-culture with BV-2 microglial cells or adding the nitric oxide (NO) donor, sodium nitroprusside (SNP) was observed, and that was blocked by adding an NO synthase (NOS) inhibitor, N-nitro L-arginine methyl ester (NAME). Contributions of ROS, pERK, and pJNK to the migration of glioma cells was further demonstrated in a transwell coculture system of U87 and C6 gliomas with BV-2 microglial cells. Furthermore, expressions of tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 messenger (m)RNA in U87 and C6 cells were detected by an RT-PCR, and TNF-α and MCP-1 induced iNOS protein expression in time- and concentration-dependent manners. Neutralization of TNF-α or MCP-1 in U87-CM and C6-CM using a TNF-α or MCP-1 antibody inhibited iNOS protein expression, and increased intracellular peroxide by TNF-α or MCP-1 was identified in BV-2 cells. The reciprocal activation of glioma cells and microglia via ROS-dependent iNOS/NO elevation at least partially mediated by TNF-α and MCP-1 is elucidated.
Collapse
Affiliation(s)
- Shing-Chuan Shen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Zhou W, Bao S. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages. Cancers (Basel) 2014; 6:723-40. [PMID: 24675569 PMCID: PMC4074800 DOI: 10.3390/cancers6020723] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described.
Collapse
Affiliation(s)
- Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
42
|
Vischer HF, Siderius M, Leurs R, Smit MJ. Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases? Nat Rev Drug Discov 2014; 13:123-39. [DOI: 10.1038/nrd4189] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Ahn BJ, Pollack IF, Okada H. Immune-checkpoint blockade and active immunotherapy for glioma. Cancers (Basel) 2013; 5:1379-412. [PMID: 24202450 PMCID: PMC3875944 DOI: 10.3390/cancers5041379] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 02/01/2023] Open
Abstract
Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.
Collapse
Affiliation(s)
- Brian J. Ahn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; E-Mail:
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; E-Mail:
| | - Ian F. Pollack
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; E-Mail:
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hideho Okada
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; E-Mail:
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; E-Mail:
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-412-623-3111; Fax: +1-412-623-1415
| |
Collapse
|
44
|
Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013; 2013:264124. [PMID: 23864876 PMCID: PMC3707269 DOI: 10.1155/2013/264124] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/03/2013] [Indexed: 01/05/2023]
Abstract
Malignant gliomas are the most common primary brain tumors. Their deadliest manifestation, glioblastoma multiforme (GBM), accounts for 15% of all primary brain tumors and is associated with a median survival of only 15 months even after multimodal therapy. There is substantial presence of microglia and macrophages within and surrounding brain tumors. These immune cells acquire an alternatively activated phenotype with potent tumor-tropic functions that contribute to glioma growth and invasion. In this review, we briefly summarize recent data that has been reported on the interaction of microglia/macrophages with brain tumors and discuss potential application of these findings to the development of future antiglioma therapies.
Collapse
|
45
|
Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, Ren H, Badie S, Sadeghi S, Ouyang M, Warden CD, Badie B. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res 2013; 19:3764-75. [PMID: 23719262 DOI: 10.1158/1078-0432.ccr-12-3725] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE S100B is member of a multigenic family of Ca(2+)-binding proteins, which is overexpressed by gliomas. Recently, we showed that low concentrations of S100B attenuated microglia activation through the induction of Stat3. We hypothesized that overexpression of S100B in gliomas could promote tumor growth by modulating the activity of tumor-associated macrophages (TAM). EXPERIMENTAL DESIGN We stably transfected GL261 glioma cell lines with constructs that overexpressed (S100B(high)) or underexpressed (S100B(low)) S100B and compared their growth characteristics to intracranial wild-type (S100B(wt)) tumors. RESULTS Downregulation of S100B in gliomas had no impact on cell division in vitro but abrogated tumor growth in vivo. Interestingly, compared to S100B(low) tumors, S100B(wt) and S100B(high) intracranial gliomas exhibited higher infiltration of TAMs, stronger inflammatory cytokine expression, and increased vascularity. To identify the potential mechanisms involved, the expression of the S100B receptor, receptor for advanced glycation end products (RAGE), was evaluated in gliomas. Although S100B expression induced RAGE in vivo, RAGE ablation in mice did not significantly inhibit TAM infiltration into gliomas, suggesting that other pathways were involved in this process. To evaluate other mechanisms responsible for TAM chemoattraction, we then examined chemokine pathways and found that C-C motif ligand 2 (CCL2) was upregulated in S100B(high) tumors. Furthermore, analysis of The Cancer Genome Atlas's glioma data bank showed a positive correlation between S100B and CCL2 expression in human proneural and neural glioma subtypes, supporting our finding. CONCLUSIONS These observations suggest that S100B promotes glioma growth by TAM chemoattraction through upregulation of CCL2 and introduces the potential utility of S100B inhibitors for glioma therapy.
Collapse
Affiliation(s)
- Huaqing Wang
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Billingham C, Powell MR, Jenner KA, Johnston DA, Gatherer M, Nicoll JAR, Boche D. Rat astrocytic tumour cells are associated with an anti-inflammatory microglial phenotype in an organotypic model. Neuropathol Appl Neurobiol 2013; 39:243-55. [DOI: 10.1111/j.1365-2990.2012.01283.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Impact of temozolomide on immune response during malignant glioma chemotherapy. Clin Dev Immunol 2012; 2012:831090. [PMID: 23133490 PMCID: PMC3486128 DOI: 10.1155/2012/831090] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/10/2012] [Accepted: 09/20/2012] [Indexed: 12/19/2022]
Abstract
Malignant glioma, or glioblastoma, is the most common and lethal form of brain tumor with a median survival time of 15 months. The established therapeutic regimen includes a tripartite therapy of surgical resection followed by radiation and temozolomide (TMZ) chemotherapy, concurrently with radiation and then as an adjuvant. TMZ, a DNA alkylating agent, is the most successful antiglioma drug and has added several months to the life expectancy of malignant glioma patients. However, TMZ is also responsible for inducing lymphopenia and myelosuppression in malignant glioma patients undergoing chemotherapy. Although TMZ-induced lymphopenia has been attributed to facilitate antitumor vaccination studies by inducing passive immune response, in general lymphopenic conditions have been associated with poor immune surveillance leading to opportunistic infections in glioma patients, as well as disrupting active antiglioma immune response by depleting both T and NK cells. Deletion of O6-methylguanine-DNA-methyltransferase (MGMT) activity, a DNA repair enzyme, by temozolomide has been determined to be the cause of lymphopenia. Drug-resistant mutation of the MGMT protein has been shown to render chemoprotection against TMZ. The immune modulating role of TMZ during glioma chemotherapy and possible mechanisms to establish a strong TMZ-resistant immune response have been discussed.
Collapse
|
48
|
Tada M, de Tribolet N. Immunobiology of malignant gliomas. J Clin Neurosci 2012; 3:102-13. [PMID: 18638850 DOI: 10.1016/s0967-5868(96)90001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/1995] [Accepted: 05/25/1995] [Indexed: 12/19/2022]
Abstract
The immune system of patients with malignant gliomas is profoundly suppressed. The suppression involves both the cellular and humoral immunity and it is mainly attributable to selective depletion and malfunction of helper T cells. Malignant glioma cells express potent immunosuppressive factors such as transforming growth factor-beta(2), inteleukin-10 and prostaglandin E(2). Malignant glioma cells also produce chemoattractants and immunostimulatory cytokines which may activate the immune cells. However, the production of these stimulatory cytokines is not self-destructive to glioma cells because of the immunosuppression. Rather, the tumour cells use them to gain a growth advantage. Indeed the cytokines may act as a growth stimulator of the tumour cells themselves (autocrine mechanism), they may act as angiogenic factors to endothelial cells (paracrine mechanism) or induce the attracted immune cells to secrete angiogenic factors. Some cytokines produced by malignant glioma cells are known to be growth inhibitory to normal astrocytes. Recent studies on tumour suppressor genes suggest a close link between the aberrant genes and the immunobiologic features of malignant glioma cells.
Collapse
Affiliation(s)
- M Tada
- Department of Neurosurgery, University Hospital, Lausanne, Switzerland
| | | |
Collapse
|
49
|
Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:640-65. [PMID: 22154620 DOI: 10.1016/j.addr.2011.11.010] [Citation(s) in RCA: 662] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a highly regulated and efficient barrier that provides a sanctuary to the brain. It is designed to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. Unfortunately, drug transport to the brain is hampered by this almost impermeable, highly selective and well coordinated barrier. With progress in molecular biology, the BBB is better understood, particularly under different pathological conditions. This review will discuss the barrier issue from a biological and pathological perspective to provide a better insight to the challenges and opportunities associated with the BBB. Modern methods which can take advantage of these opportunities will be reviewed. Applications of nanotechnology in drug transport, receptor-mediated targeting and transport, and finally cell-mediated drug transport will also be covered in the review. The challenge of delivering an effective therapy to the brain is formidable; solutions will likely involve concerted multidisciplinary approaches that take into account BBB biology as well as the unique features associated with the pathological condition to be treated.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, CHIRI, WABRI, Curtin University, Perth, Western Australia, Australia.
| | | |
Collapse
|
50
|
Carrillo-de Sauvage MA, Gómez A, Ros CM, Ros-Bernal F, Martín ED, Perez-Vallés A, Gallego-Sanchez JM, Fernández-Villalba E, Barcia C, Barcia C, Herrero MT. CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo. PLoS One 2012; 7:e30762. [PMID: 22319587 PMCID: PMC3271104 DOI: 10.1371/journal.pone.0030762] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 12/27/2011] [Indexed: 11/19/2022] Open
Abstract
CCL2 is a chemokine involved in brain inflammation, but the way in which it contributes to the entrance of lymphocytes in the parenchyma is unclear. Imaging of the cell type responsible for this task and details on how the process takes place in vivo remain elusive. Herein, we analyze the cell type that overexpresses CCL2 in multiple scenarios of T-cell infiltration in the brain and in three different species. We observe that CCL2+ astrocytes play a part in the infiltration of T-cells in the brain and our analysis shows that the contact of T-cells with perivascular astrocytes occurs, suggesting that may be an important event for lymphocyte extravasation.
Collapse
Affiliation(s)
- Maria Angeles Carrillo-de Sauvage
- Clinical and Experimental Neuroscience, University of Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Murcia, Spain
| | - Aurora Gómez
- Clinical and Experimental Neuroscience, University of Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Murcia, Spain
| | - Carmen María Ros
- Clinical and Experimental Neuroscience, University of Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Murcia, Spain
| | - Francisco Ros-Bernal
- Clinical and Experimental Neuroscience, University of Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Murcia, Spain
| | - Eduardo D. Martín
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Ana Perez-Vallés
- Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Emiliano Fernández-Villalba
- Clinical and Experimental Neuroscience, University of Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Murcia, Spain
| | - Carlos Barcia
- Department of Neurosurgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Carlos Barcia
- Clinical and Experimental Neuroscience, University of Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Murcia, Spain
| | - Maria-Trinidad Herrero
- Clinical and Experimental Neuroscience, University of Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|