1
|
Yuan J, Liu C, Jiang C, Liu N, Yang Z, Xing H. RSL3 induces ferroptosis by activating the NF-κB signalling pathway to enhance the chemosensitivity of triple-negative breast cancer cells to paclitaxel. Sci Rep 2025; 15:1654. [PMID: 39794456 PMCID: PMC11724089 DOI: 10.1038/s41598-025-85774-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
Chemotherapy resistance in triple-negative breast cancer (TNBC) leads to poor therapeutic effects and a poor prognosis. Given that paclitaxel-based chemotherapy is the main treatment method for TNBC, enhancing its chemosensitivity has been a research focus. Induced ferroptosis of tumour cells has been proven to increase chemosensitivity, but its ability to sensitize TNBC cells to paclitaxel (PTX) is unknown. In our experiments, measurements of viability and proliferation validated the synergistic effect of PTX combined with RSL3 on TNBC cells. The accumulation of intracellular Fe2+ and lipid reactive oxygen species, as well as the expression of malondialdehyde, illustrated that RSL3 enhanced the chemosensitivity of TNBC to PTX by inducing ferroptosis. Through transcriptome sequencing, a series of differentially expressed genes were identified, in which the expression of cytokines, such as CXCLs, was significantly increased in the treatment group, and the effect of combination therapy on TNBC was enriched mainly in the NFκB signalling pathway. In subsequent validation experiments, the use of the NF-κB inhibitor BAY11-7082 reversed the inhibitory effects of PTX and RSL3 on TNBC cell activity. In a xenograft immunodeficient mouse model, the inhibitory effects of PTX and RSL3 on TNBC in vivo were further verified. Our research validated the synergistic effects of PTX and RSL3 both in vivo and in vitro, with RSL3 inducing ferroptosis by activating the NF-κB signalling pathway, thereby increasing the chemosensitivity of TNBC to PTX. This study provides new insights for improving the therapeutic efficacy of treatment strategies.
Collapse
Affiliation(s)
- Jialin Yuan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ning Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Liu N, Wang S, Li M, Zhao N, Wang D, Zhang R, Yu M, Zhao L, Zhang S, Han F, Zhao Y, Liu Q. BET degrader exhibits lower antiproliferative activity than its inhibitor via EGR1 recruiting septins to promote E2F1-3 transcription in triple-negative breast cancer. Pharmacol Res 2024; 208:107377. [PMID: 39209080 DOI: 10.1016/j.phrs.2024.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The bromodomain and extraterminal domain (BET) family proteins serve as primary readers of acetylated lysine residues and play crucial roles in cell proliferation and differentiation. Dysregulation of BET proteins has been implicated in tumorigenesis, making them important therapeutic targets. BET-bromodomain (BD) inhibitors and BET-targeting degraders have been developed to inhibit BET proteins. In this study, we found that the BET inhibitor MS645 exhibited superior antiproliferative activity than BET degraders including ARV771, AT1, MZ1 and dBET1 in triple-negative breast cancer (TNBC) cells. Treatment with MS645 led to the dissociation of BETs, MED1 and RNA polymerase II from the E2F1-3 promoter, resulting in the suppression of E2F1-3 transcription and subsequent inhibition of cell growth in TNBC. In contrast, while ARV771 displaced BET proteins from chromatin, it did not significantly alter E2F1-3 expression. Mechanistically, ARV771 induced BRD4 depletion at protein level, which markedly increased EGR1 expression. This elevation of EGR1 subsequently recruited septin 2 and septin 9 to E2F1-3 promoters, enhancing E2F1-3 transcription and promoting cell proliferation rate in vitro and in vivo. Our findings provide valuable insights into differential mechanisms of BET inhibition and highlight potential of developing BET-targeting molecules as therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Munan Li
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Rui Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Mingxin Yu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Luoyi Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Fangbin Han
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Ying Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| |
Collapse
|
3
|
Schelch K, Eder S, Zitta B, Phimmachanh M, Johnson TG, Emminger D, Wenninger‐Weinzierl A, Sturtzel C, Poplimont H, Ries A, Hoetzenecker K, Hoda MA, Berger W, Distel M, Dome B, Reid G, Grusch M. YB-1 regulates mesothelioma cell migration via snail but not EGFR, MMP1, EPHA5 or PARK2. Mol Oncol 2024; 18:815-831. [PMID: 36550787 PMCID: PMC10994239 DOI: 10.1002/1878-0261.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Pleural mesothelioma (PM) is characterized by rapid growth, local invasion, and limited therapeutic options. The multifunctional oncoprotein Y-box-binding protein-1 (YB-1) is frequently overexpressed in cancer and its inhibition reduces aggressive behavior in multiple tumor types. Here, we investigated the effects of YB-1 on target gene regulation and PM cell behavior. Whereas siRNA-mediated YB-1 knockdown reduced cell motility, YB-1 overexpression resulted in scattering, increased migration, and intravasation in vitro. Furthermore, YB-1 stimulated PM cell spreading in zebrafish. Combined knockdown and inducible overexpression of YB-1 allowed bidirectional control and rescue of cell migration, the pattern of which was closely followed by the mRNA and protein levels of EGFR and the protein level of snail, whereas the mRNA levels of MMP1, EPHA5, and PARK2 showed partial regulation by YB-1. Finally, we identified snail as a critical regulator of YB-1-mediated cell motility in PM. This study provides insights into the mechanism underlying the aggressive nature of PM and highlights the important role of YB-1 in this cancer. In this context, we found that YB-1 closely regulates EGFR and snail, and, moreover, that YB-1-induced cell migration depends on snail.
Collapse
Affiliation(s)
- Karin Schelch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- Department of Thoracic SurgeryMedical University of ViennaAustria
| | - Sebastian Eder
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Benjamin Zitta
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Monica Phimmachanh
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- University of Technology SydneyNSWAustralia
| | - Thomas G. Johnson
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- The University of SydneyNSWAustralia
| | - Dominik Emminger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | | | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Hugo Poplimont
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Alexander Ries
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | | | - Mir A. Hoda
- Department of Thoracic SurgeryMedical University of ViennaAustria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Balazs Dome
- Department of Thoracic SurgeryMedical University of ViennaAustria
- National Koranyi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
| | - Glen Reid
- Department of PathologyDunedin School of MedicineNew Zealand
- The Maurice Wilkins CentreUniversity of OtagoDunedinNew Zealand
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| |
Collapse
|
4
|
Wang S, Ma J, Li X, Xian X, Tan G, Cai H, Yang B, Zhang A, Guo J, Gu G, Meng Z, Fu B. EGR-1 Contributes to Pulmonary Edema by Regulating the Epithelial Sodium Channel in Lipopolysaccharide-Induced Acute Lung Injury. Immunol Invest 2023; 52:925-939. [PMID: 37732637 DOI: 10.1080/08820139.2023.2256778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Acute lung injury (ALI) is a common lung disease with increasing morbidity and mortality rates due to the lack of specific drugs. Impaired alveolar fluid clearance (AFC) is a primary pathological feature of ALI. Epithelial sodium channel (ENaC) is a primary determinant in regulating the transport of Na+ and the clearance of alveolar edema fluid. Therefore, ENaC is an important target for the development of drugs for ALI therapy. However, the role of ENaC in the progression of ALI remains unclear. Inhibition of early growth response factor (EGR-1) expression has been reported to induce a protective effect on ALI; therefore, we evaluated whether EGR-1 participates in the progression of ALI by regulating ENaC-α in alveolar epithelium. We investigated the potential mechanism of EGR-1-mediated regulation of ENaC in ALI. We investigated whether EGR-1 aggravates the pulmonary edema response in ALI by regulating ENaC. ALI mouse models were established by intrabronchial injection of lipopolysaccharides (LPS). Lentiviruses with EGR-1 knockdown were transfected into LPS-stimulated A549 cells. We found that EGR-1 expression was upregulated in the lung tissues of ALI mice and in LPS-induced A549 cells, and was negatively correlated with ENaC-α expression. Knockdown of EGR-1 increased ENaC-α expression and relieved cellular edema in ALI. Moreover, EGR-1 regulated ENaC-α expression at the transcriptional level, and correspondingly promoted pulmonary edema and aggravated ALI symptoms. In conclusion, our study demonstrated that EGR-1 could promote pulmonary edema by downregulating ENaC-α at the transcriptional level in ALI. Our study provides a new potential therapeutic strategy for treatment of ALI.
Collapse
Affiliation(s)
- Song Wang
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Jing Ma
- Office of Academic Research, Liaocheng People's Hospital, Liaocheng, China
| | - Xin Li
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Xinmiao Xian
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Guikun Tan
- Pharmacy Department, Liaocheng Woman and Child Health Care Hospital, Liaocheng, China
| | - Hongwei Cai
- Department of Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Bingwu Yang
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Anqi Zhang
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Jianran Guo
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Guohao Gu
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Zhen Meng
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, China
| | - Bo Fu
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
5
|
Drug Resistance in Medulloblastoma Is Driven by YB-1, ABCB1 and a Seven-Gene Drug Signature. Cancers (Basel) 2023; 15:cancers15041086. [PMID: 36831428 PMCID: PMC9954169 DOI: 10.3390/cancers15041086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Therapy resistance represents an unmet challenge in the treatment of medulloblastoma. Accordingly, the identification of targets that mark drug-resistant cell populations, or drive the proliferation of resistant cells, may improve treatment strategies. To address this, we undertook a targeted approach focused on the multi-functional transcription factor YB-1. Genetic knockdown of YB-1 in Group 3 medulloblastoma cell lines diminished cell invasion in 3D in vitro assays and increased sensitivity to standard-of-care chemotherapeutic vincristine and anti-cancer agents panobinostat and JQ1. For vincristine, this occurred in part by YB-1-mediated transcriptional regulation of multi-drug resistance gene ABCB1, as determined by chromatin immunoprecipitation. Whole transcriptome sequencing of YB-1 knockdown cells identified a role for YB-1 in the regulation of tumourigenic processes, including lipid metabolism, cell death and survival and MYC and mTOR pathways. Stable cisplatin- and vincristine-tolerant Group 3 and SHH cell lines were generated to identify additional mechanisms driving resistance to standard-of-care medulloblastoma therapy. Next-generation sequencing revealed a vastly different transcriptomic landscape following chronic drug exposure, including a drug-tolerant seven-gene expression signature, common to all sequenced drug-tolerant cell lines, representing therapeutically targetable genes implicated in the acquisition of drug tolerance. Our findings provide significant insight into mechanisms and genes underlying therapy resistance in medulloblastoma.
Collapse
|
6
|
Tseng YC, Shu CW, Chang HM, Lin YH, Tseng YH, Hsu HS, Goan YG, Tseng CJ. Assessment of Early Growth Response 1 in Tumor Suppression of Esophageal Squamous Cell Carcinoma. J Clin Med 2022; 11:jcm11195792. [PMID: 36233659 PMCID: PMC9572560 DOI: 10.3390/jcm11195792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is associated with poor survival despite surgical resection, and its pathogenesis has been broadly investigated in the past decade. Early growth response 1 (EGR-1) could involve regulating tumor development in ESCC cells. Methods: An attempt was made to examine the molecular and cellular influence of EGR-1 in esophageal cancer cells by RNA extraction, real-time PCR (qRT-PCR), cell culture, small interfering RNA (siRNA) knockdown, western blot, migration assay, and cell viability assay. One hundred and forty-four samples of ESCC were collected from our hospital and analyzed. Significantly higher EGR-1 expression was noted in tumor-adjacent normal tissue compared with tumor lesions. Results: The univariate analysis showed no significant impacts of EGR-1 expression on patients’ survival. However, after adjusting for the pathological stage, patients with EGR-1 expression > 68th percentile had lower risks of cancer-related death. Moreover, knockdown of EGR-1 significantly enhanced cell migration, invasion, and resistance to chemotherapeutic agents in two ESCC cell lines. Conclusions: EGR-1 plays a key role in tumor suppression involving tumor viability suppression and reflects the treatment effect of current chemotherapy for ESCC.
Collapse
Affiliation(s)
- Yen-Chiang Tseng
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chih-Wen Shu
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.S.); (C.-J.T.); Tel.: +886-7-3422121 (ext. 1505) (C.-J.T.); Fax: +886-7-3422288 (C.-J.T.)
| | - Hui-Min Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Yi-Hsuan Lin
- Department of Family Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yih-Gang Goan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ching-Jiunn Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Correspondence: (C.-W.S.); (C.-J.T.); Tel.: +886-7-3422121 (ext. 1505) (C.-J.T.); Fax: +886-7-3422288 (C.-J.T.)
| |
Collapse
|
7
|
Abstract
Signaling via extracellular regulated kinase 1/2 (ERK1/2) and p90 ribosomal S6 kinase (RSK), a downstream effector, mediates numerous processes. For example, ERK1/2-RSK signaling is essential for estrogen homeostasis in the mammary gland and uterus to maintain physiological responsiveness. This review will focus on the coordination of ERK1/2-RSK2 and estrogen signaling through estrogen receptor alpha (ERα). The interrelationship and the feedback mechanisms between these pathways occurs at the level of transcription, translation, and posttranslational modification. Identifying how ERK1/2-RSK2 and estrogen signaling cooperate in homeostasis and disease may lead to novel therapeutic approaches in estrogen-dependent disorders.
Collapse
Affiliation(s)
- Deborah A Lannigan
- Correspondence: Deborah A. Lannigan, PhD, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Barron L, Khadka S, Schenken R, He L, Blenis J, Blagg J, Chen SF, Tsai KL, Boyer TG. Identification and characterization of the mediator kinase-dependent myometrial stem cell phosphoproteome. F&S SCIENCE 2021; 2:383-395. [PMID: 35559861 PMCID: PMC10906282 DOI: 10.1016/j.xfss.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify, in myometrial stem/progenitor cells, the presumptive cell of origin for uterine fibroids, substrates of Mediator-associated cyclin dependent kinase 8/19 (CDK8/19), which is known to be disrupted by uterine fibroid driver mutations in Mediator complex subunit 12 (MED12). DESIGN Experimental study. SETTING Academic research laboratory. PATIENT(S) Women undergoing hysterectomy for uterine fibroids. INTERVENTION(S) Stable isotopic labeling of amino acids in cell culture (SILAC) coupled with chemical inhibition of CDK8/19 and downstream quantitative phosphoproteomics and transcriptomic analyses in myometrial stem/progenitor cells. MAIN OUTCOME MEASURE(S) High-confidence Mediator kinase substrates identified by SILAC-based quantitative phosphoproteomics were determined using an empirical Bayes analysis and validated orthogonally by in vitro kinase assay featuring reconstituted Mediator kinase modules comprising wild-type or G44D mutant MED12 corresponding to the most frequent uterine fibroid driver mutation in MED12. Mediator kinase-regulated transcripts identified by RNA sequencing were linked to Mediator kinase substrates by computational analyses. RESULT(S) A total of 296 unique phosphosites in 166 proteins were significantly decreased (≥ twofold) upon CDK8/19 inhibition, including 118 phosphosites in 71 nuclear proteins representing high-confidence Mediator kinase substrates linked to RNA polymerase II transcription, RNA processing and transport, chromatin modification, cytoskeletal architecture, and DNA replication and repair. Orthogonal validation confirmed a subset of these proteins, including Cut Like Homeobox 1 (CUX1) and Forkhead Box K1 (FOXK1), to be direct targets of MED12-dependent CDK8 phosphorylation in a manner abrogated by the most common uterine fibroid driver mutation (G44D) in MED12, implicating these substrates in disease pathogenesis. Transcriptome-wide profiling of Mediator kinase-inhibited myometrial stem/progenitor cells revealed alterations in cell cycle and myogenic gene expression programs to which Mediator kinase substrates could be linked directly. Among these, CUX1 is an established transcriptional regulator of the cell cycle whose corresponding gene on chromosome 7q is the locus for a recurrent breakpoint in uterine fibroids, linking MED12 and Mediator kinase with CUX1 for the first time in uterine fibroid pathogenesis. FOXK1, a transcriptional regulator of myogenic stem cell fate, was found to be coordinately enriched along with kinase, but not core, Mediator subunits in myometrial stem/progenitor cells compared with differentiated uterine smooth muscle cells. CONCLUSION(S) These studies identify a new catalog of pathologically and biologically relevant Mediator kinase substrates implicated in the pathogenesis of MED12 mutation-positive uterine fibroids, and further uncover a biochemical basis to link Mediator kinase activity with CUX1 and FOXK1 in the regulation of myometrial stem/progenitor cell fate.
Collapse
Affiliation(s)
- Lindsey Barron
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Subash Khadka
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Robert Schenken
- Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Long He
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - John Blenis
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Julian Blagg
- NeoPhore Ltd. and Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas.
| |
Collapse
|
9
|
Substance P Antagonism as a Novel Therapeutic Option to Enhance Efficacy of Cisplatin in Triple Negative Breast Cancer and Protect PC12 Cells against Cisplatin-Induced Oxidative Stress and Apoptosis. Cancers (Basel) 2021; 13:cancers13153871. [PMID: 34359773 PMCID: PMC8345440 DOI: 10.3390/cancers13153871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022] Open
Abstract
Although cisplatin is very effective as a treatment strategy in triple-negative breast cancer (TNBC), it has unwarranted outcomes owing to recurrence, chemoresistance and neurotoxicity. There is critically important to find new, effective and safe therapeutics for TNBC. We determined if SP-receptor antagonism in combination with cisplatin may serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC. We used a neuronal cell line (PC12) and two TNBC cell lines (Sum 185 and Sum 159) for these studies. We determined that the levels of cells expressing the high-affinity SP-receptor (neurokinin 1 receptor (NK1R)), as determined by flow-cytometry was significantly elevated in response to cisplatin in all three cells. We determined that treatment with aprepitant, an SP-receptor antagonist decreased cisplatin-induced, loss of viability (studied by MTT assay), production of reactive oxygen species (by DCFDA assay) and apoptosis (by flow-cytometry) in PC12 cells while it was increased in the two TNBC cells. Furthermore, we demonstrated that important genes associated with metastases, inflammation, chemoresistance and cell cycle progression are attenuated by SP-receptor antagonism in the TNBC cell line, Sum 185. These studies implicate that SP-receptor antagonism in combination with cisplatin may possibly serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC.
Collapse
|
10
|
Prognostic Value of a Glycolytic Signature and Its Regulation by Y-Box-Binding Protein 1 in Triple-Negative Breast Cancer. Cells 2021; 10:cells10081890. [PMID: 34440660 PMCID: PMC8392807 DOI: 10.3390/cells10081890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer as it shows a high capacity for metastasis and poor prognoses. Metabolic reprogramming is one of the hallmarks of cancer, and aberrant glycolysis was reported to be upregulated in TNBC. Thus, identifying metabolic biomarkers for diagnoses and investigating cross-talk between glycolysis and invasiveness could potentially enable the development of therapeutics for patients with TNBC. In order to determine novel and reliable metabolic biomarkers for predicting clinical outcomes of TNBC, we analyzed transcriptome levels of glycolysis-related genes in various subtypes of breast cancer from public databases and identified a distinct glycolysis gene signature, which included ENO1, SLC2A6, LDHA, PFKP, PGAM1, and GPI, that was elevated and associated with poorer prognoses of TNBC patients. Notably, we found a transcription factor named Y-box-binding protein 1 (YBX1) to be strongly associated with this glycolysis gene signature, and it was overexpressed in TNBC. A mechanistic study further validated that YBX1 was upregulated in TNBC cell lines, and knockdown of YBX1 suppressed expression of those glycolytic genes. Moreover, YBX1 expression was positively associated with epithelial-to-mesenchymal transition (EMT) genes in breast cancer patients, and suppression of YBX1 downregulated expressions of EMT-related genes and tumor migration and invasion in MDA-MB-231 and BT549 TNBC cells. Our data revealed an YBX1-glycolysis-EMT network as an attractive diagnostic marker and metabolic target in TNBC patients.
Collapse
|
11
|
Y-Box Binding Protein-1: A Neglected Target in Pediatric Brain Tumors? Mol Cancer Res 2020; 19:375-387. [PMID: 33239357 DOI: 10.1158/1541-7786.mcr-20-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
|
12
|
Mehta S, Algie M, Al-Jabry T, McKinney C, Kannan S, Verma CS, Ma W, Zhang J, Bartolec TK, Masamsetti VP, Parker K, Henderson L, Gould ML, Bhatia P, Harfoot R, Chircop M, Kleffmann T, Cohen SB, Woolley AG, Cesare AJ, Braithwaite A. Critical Role for Cold Shock Protein YB-1 in Cytokinesis. Cancers (Basel) 2020; 12:cancers12092473. [PMID: 32882852 PMCID: PMC7565962 DOI: 10.3390/cancers12092473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Y-box-binding protein-1, YB-1, plays an important role in regulating the cell cycle, although precisely how it does the is unknown. Using live cell imaging, we show that YB-1 is essential for initiating the last step of cell division (cytokinesis), required for creation of two daughter cells. Using confocal microscopy we showed that YB-1 regulates the spatial distribution of key proteins essential for cytokinesis to occur and that this required YB-1 to be phosphorylated on several residues. In-silico modeling demonstrated that modifications at these residues resulted in conformational changes in YB-1 protein allowing it to interact with proteins essential for cytokinesis. As many cancers have high levels YB-1 and these are associated with poor prognosis, our data suggest developing small molecule inhibitors to block YB-1 phosphorylation could be a novel approach to cancer therapy. Abstract High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, β-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
- Correspondence: ; Tel.: +64-3-4797169
| | - Michael Algie
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Centre for Protein Research, Department of Biochemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Tariq Al-Jabry
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Cushla McKinney
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Srinivasaraghavan Kannan
- Department of Biomolecular Modelling and Design, Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore; (S.K.); (C.S.V.)
| | - Chandra S Verma
- Department of Biomolecular Modelling and Design, Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore; (S.K.); (C.S.V.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117543, Singapore
| | - Weini Ma
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Jessie Zhang
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Tara K. Bartolec
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - V. Pragathi Masamsetti
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Kim Parker
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Luke Henderson
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
| | - Maree L Gould
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Puja Bhatia
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Rhodri Harfoot
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Megan Chircop
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Torsten Kleffmann
- Centre for Protein Research, Department of Biochemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Scott B Cohen
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Adele G Woolley
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
| | - Anthony J Cesare
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Antony Braithwaite
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
- Malaghan Institute of Medical Research, 6242 Wellington, New Zealand
| |
Collapse
|
13
|
Chen J, Zhu M, Zou L, Xia J, Huang J, Deng Q, Xu R. Long non-coding RNA LINC-PINT attenuates paclitaxel resistance in triple-negative breast cancer cells via targeting the RNA-binding protein NONO. Acta Biochim Biophys Sin (Shanghai) 2020; 52:801-809. [PMID: 32632453 DOI: 10.1093/abbs/gmaa072] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
The treatment of triple-negative breast cancer (TNBC) relies largely on chemotherapies. However, it is frequent that TNBC patients develop resistance to the chemotherapy drugs. Generation of drug-resistant cell lines facilitates the identification of drug resistance. Here, we established two paclitaxel (PTX)-resistant TNBC cancer cell lines using an intermittent and stepwise method and found that long non-coding RNA long intergenic non-protein-coding RNA p53-induced transcript (LINC-PINT) was significantly decreased in PTX-resistant cancer cells. Ectopic expression of LINC-PINT sensitized both PTX-resistant TNBC and wild-type TNBC to PTX. Moreover, RNA immunoprecipitation showed that LINC-PINT bound to RNA-binding protein NONO. Overexpression of LINC-PINT resulted in the degradation of NONO in a proteasome-dependent manner and vice versa. Knockdown of NONO with siRNA sensitized TNBC to PTX. We further analyzed the expression level of LINC-PINT and NONO in patient samples via online database and found that LINC-PINT and NONO may function antagonistically in all types of breast cancers. Taken together, our data illustrated a tumor suppressor role of LINC-PINT in sensitizing TNBC to chemotherapies via destabilizing NONO.
Collapse
Affiliation(s)
- Jinghua Chen
- Department of Medical Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Meiqin Zhu
- Department of Medical Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Liqiu Zou
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen 518052, China
| | - Junxian Xia
- Department of Medical Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jiacheng Huang
- Department of Medical Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Quantong Deng
- Department of Medical Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Ruilian Xu
- Department of Medical Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|
14
|
Tian S, Jing R, Zhang W. Network-Based Approach to Identify the Antiproliferative Mechanisms of Bruceine D in Breast Cancer From the Cancer Genome Atlas. Front Oncol 2020; 10:1001. [PMID: 32714860 PMCID: PMC7343963 DOI: 10.3389/fonc.2020.01001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Bruceine D (BD) is a natural compound extracted from a Chinese herb Brucea javanica that has been used for anti-inflammatory and anti-cancer treatment. However, little is reported about BD's effects in breast cancer tumorigenesis. In this paper, we aimed to investigate the effect of BD in breast cancer and elucidate the potential mechanism of BD by integrated multiple databases. Our data suggested BD inhibited MCF-7 and MDA-MB-231 cells proliferation and promoted cells apoptosis. We integrated multiple bioinformatics analysis strategies to identify genes, hub modules and pathways associated with BD treatment. Three key pathways, including AMIT_SERUM_RESPONSE_40_MCF10A, BILD_HRAS_ONCOGENIC_SIGNATURE, and NAGASHIMA_NRG1_SIGNALING_UP were identified to be associated with therapeutic effects of BD in breast cancer. Additionally, we validated the key genes by using quantitative real-time PCR and western blot. In conclusion, these findings revealed potential molecular mechanisms of BD to treat breast cancer by affecting AMIT_SERUM_RESPONSE_40_MCF10A, BILD_HRAS_ONCOGENIC_SIGNATURE, and NAGASHIMA_NRG1_SIGNALING_UP pathways and regulating expression of ZFP36, EGR1, and FOS.
Collapse
Affiliation(s)
- Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Rui Jing
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P, Wei M, Brandhorst S, Zucal C, Driehuis E, Ferrando L, Piacente F, Tagliafico A, Cilli M, Mastracci L, Vellone VG, Piazza S, Cremonini AL, Gradaschi R, Mantero C, Passalacqua M, Ballestrero A, Zoppoli G, Cea M, Arrighi A, Odetti P, Monacelli F, Salvadori G, Cortellino S, Clevers H, De Braud F, Sukkar SG, Provenzani A, Longo VD, Nencioni A. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020; 583:620-624. [PMID: 32669709 PMCID: PMC7881940 DOI: 10.1038/s41586-020-2502-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.
Collapse
Affiliation(s)
- Irene Caffa
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vanessa Spagnolo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Claudio Vernieri
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Valdemarin
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Pamela Becherini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Min Wei
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Brandhorst
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Chiara Zucal
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Else Driehuis
- Oncode Institute and Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lorenzo Ferrando
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Francesco Piacente
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Michele Cilli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Valerio G Vellone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Silvano Piazza
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Anna Laura Cremonini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Gabriele Zoppoli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Michele Cea
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Annalisa Arrighi
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Patrizio Odetti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Fiammetta Monacelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Giulia Salvadori
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Hans Clevers
- Oncode Institute and Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Filippo De Braud
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Alessandro Provenzani
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.
| |
Collapse
|
16
|
Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci Rep 2020; 10:8537. [PMID: 32444778 PMCID: PMC7244517 DOI: 10.1038/s41598-020-65250-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer characterized by metastasis, drug resistance and high rates of recurrence. With a lack or targeted therapies, TNBC is challenging to treat and carries a poor prognosis. Patients with TNBC tumors expressing high levels of ERK2 have a poorer prognosis than those with low ERK2-expressing tumors. The MAPK pathway is often found to be highly activated in TNBC, however the precise functions of the ERK isoforms (ERK1 and ERK2) in cancer progression have not been well defined. We hypothesized that ERK2, but not ERK1, promotes the cancer stem cell (CSC) phenotype and metastasis in TNBC. Stable knockdown clones of the ERK1 and ERK2 isoforms were generated in SUM149 and BT549 TNBC cells using shRNA lentiviral vectors. ERK2 knockdown significantly inhibited anchorage-independent colony formation and mammosphere formation, indicating compromised self-renewal capacity. This effect correlated with a reduction in migration and invasion. SCID-beige mice injected via the tail vein with ERK clones were employed to determine metastatic potential. SUM149 shERK2 cells had a significantly lower lung metastatic burden than control mice or mice injected with SUM149 shERK1 cells. The Affymetrix HGU133plus2 microarray platform was employed to identify gene expression changes in ERK isoform knockdown clones. Comparison of gene expression levels between SUM149 cells with ERK2 or ERK1 knockdown revealed differential and in some cases opposite effects on mRNA expression levels. Those changes associated with ERK2 knockdown predominantly altered regulation of CSCs and metastasis. Our findings indicate that ERK2 promotes metastasis and the CSC phenotype in TNBC.
Collapse
|
17
|
Lasham A, Tsai P, Fitzgerald SJ, Mehta SY, Knowlton NS, Braithwaite AW, Print CG. Accessing a New Dimension in TP53 Biology: Multiplex Long Amplicon Digital PCR to Specifically Detect and Quantitate Individual TP53 Transcripts. Cancers (Basel) 2020; 12:cancers12030769. [PMID: 32213968 PMCID: PMC7140069 DOI: 10.3390/cancers12030769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
TP53, the most commonly-mutated gene in cancer, undergoes complex alternative splicing. Different TP53 transcripts play different biological roles, both in normal function and in the progression of diseases such as cancer. The study of TP53’s alternative RNA splice forms and their use as clinical biomarkers has been hampered by limited specificity and quantitative accuracy of current methods. TP53 RNA splice variants differ at both 5’ and 3’ ends, but because they have a common central region of 618 bp, the individual TP53 transcripts are impossible to specifically detect and precisely quantitate using standard PCR-based methods or short-read RNA sequencing. Therefore, we devised multiplex probe-based long amplicon droplet digital PCR (ddPCR) assays, which for the first time allow precise end-to-end quantitation of the seven major TP53 transcripts, with amplicons ranging from 0.85 to 1.85 kb. Multiple modifications to standard ddPCR assay procedures were required to enable specific co-amplification of these long transcripts and to overcome issues with secondary structure. Using these assays, we show that several TP53 transcripts are co-expressed in breast cancers, and illustrate the potential for this method to identify novel TP53 transcripts in tumour cells. This capability will facilitate a new level of biological and clinical understanding of the alternatively-spliced TP53 isoforms.
Collapse
Affiliation(s)
- Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Correspondence:
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Sandra J. Fitzgerald
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Sunali Y. Mehta
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Nicholas S. Knowlton
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Antony W. Braithwaite
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| |
Collapse
|
18
|
Shibata T, Watari K, Kawahara A, Sudo T, Hattori S, Murakami Y, Izumi H, Itou J, Toi M, Akiba J, Akagi Y, Tanaka M, Kuwano M, Ono M. Targeting Phosphorylation of Y-Box-Binding Protein YBX1 by TAS0612 and Everolimus in Overcoming Antiestrogen Resistance. Mol Cancer Ther 2019; 19:882-894. [PMID: 31879363 DOI: 10.1158/1535-7163.mct-19-0690] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
Nuclear expression of Y-box-binding protein (YBX1) is closely correlated with clinical poor outcomes and drug resistance in breast cancer. Nuclear translocation of YBX1 is facilitated by YBX1 phosphorylation at serine 102 by AKT, p70S6K, and p90RSK, and the phosphorylated YBX1 (pYBX1) promotes expression of genes related to drug resistance and cell growth. A forthcoming problem to be addressed is whether targeting the phosphorylation of YBX1 overcomes antiestrogen resistance by progressive breast cancer. Here, we found that increased expression of pYBX1 was accompanied by acquired resistance to antiestrogens, fulvestrant and tamoxifen. Forced expression of YBX1/S102E, a constitutive phosphorylated form, resulted in acquired resistance to fulvestrant. Inversely, YBX1 silencing specifically overcame antiestrogen resistance. Furthermore, treatment with everolimus, an mTORC1 inhibitor, or TAS0612, a novel multikinase inhibitor of AKT, p70S6K, and p90RSK, suppressed YBX1 phosphorylation and overcame antiestrogen resistance in vitro and in vivo IHC analysis revealed that expression of pYBX1 and YBX1 was augmented in patients who experienced recurrence during treatment with adjuvant endocrine therapies. Furthermore, pYBX1 was highly expressed in patients with triple-negative breast cancer compared with other subtypes. TAS0612 also demonstrated antitumor effect against triple-negative breast cancer in vivo Taken together, our findings suggest that pYBX1 represents a potential therapeutic target for treatment of antiestrogen-resistant and progressive breast cancer.
Collapse
Affiliation(s)
- Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Tomoya Sudo
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Satoshi Hattori
- Department of Integrated Medicine, Biomedical Statistics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junji Itou
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Yoshito Akagi
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Maki Tanaka
- Kurume General Hospital, Japan Community Health Care Organization (JCHO), Kurume, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
19
|
Du F, Yu L, Wu Y, Wang S, Yao J, Zheng X, Xie S, Zhang S, Lu X, Liu Y, Chen W. miR-137 alleviates doxorubicin resistance in breast cancer through inhibition of epithelial-mesenchymal transition by targeting DUSP4. Cell Death Dis 2019; 10:922. [PMID: 31801953 PMCID: PMC6892819 DOI: 10.1038/s41419-019-2164-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022]
Abstract
Acquired resistance to chemotherapy is a major obstacle in breast cancer (BC) treatment. Accumulated evidence has uncovered that microRNAs (miRNAs) are vital regulators of chemoresistance in cancer. Growing studies reveal that miR-137 acts as a suppressor in tumor progression. However, it remains obscure the role of miR-137 in modulating the sensitivity of BC cells to doxorubicin (DOX). In this study, we demonstrate that miR-137 exerts a significant effect on repressing the development of chemoresistance of BC cells in response to DOX via attenuating epithelial-mesenchymal transition (EMT) of tumor cells in vitro and in vivo. MiR-137 overexpression dramatically elevated the sensitivity of BC cells to DOX as well as impaired the DOX-promoted EMT of tumor cells. Mechanistically, miR-137 directly targeted dual-specificity phosphatase 4 (DUSP4) to impact on the EMT and chemoresistance of BC cells upon DOX treatment. Consistently, decreased DUSP4 efficiently enhanced the sensitivity of BC cells to DOX while overexpressed DUSP4 significantly diminished the beneficial effect of miR-137 on BC cells chemoresistance. Moreover, the increased miR-137 heightened the sensitivity of BC cells-derived tumors to DOX through targeting DUSP4 in vivo. Together, our results provide a novel insight into the DOX resistance of BC cells and miR-137 may serve as a new promising therapeutic target for overcoming chemoresistance in BC.
Collapse
Affiliation(s)
- Feiya Du
- Department of Orthopaedics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ling Yu
- Department of Nephrology, the Children' s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine,Tongde Hospital of Zhejiang province, Hangzhou, Zhejiang, 310012, China
| | - Shuqian Wang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jia Yao
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine,Tongde Hospital of Zhejiang province, Hangzhou, Zhejiang, 310012, China
| | - Shangzhi Xie
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine,Tongde Hospital of Zhejiang province, Hangzhou, Zhejiang, 310012, China
| | - Shufeng Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine,Tongde Hospital of Zhejiang province, Hangzhou, Zhejiang, 310012, China
| | - Xuemei Lu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine,Tongde Hospital of Zhejiang province, Hangzhou, Zhejiang, 310012, China
| | - Yu Liu
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine,Tongde Hospital of Zhejiang province, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
20
|
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's Mechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019; 9:biom9120789. [PMID: 31783552 PMCID: PMC6995578 DOI: 10.3390/biom9120789] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX), the most widely used anticancer drug, is applied for the treatment of various types of malignant diseases. Mechanisms of PTX action represent several ways in which PTX affects cellular processes resulting in programmed cell death. PTX is frequently used as the first-line treatment drug in breast cancer (BC). Unfortunately, the resistance of BC to PTX treatment is a great obstacle in clinical applications and one of the major causes of death associated with treatment failure. Factors contributing to PTX resistance, such as ABC transporters, microRNAs (miRNAs), or mutations in certain genes, along with side effects of PTX including peripheral neuropathy or hypersensitivity associated with the vehicle used to overcome its poor solubility, are responsible for intensive research concerning the use of PTX in preclinical and clinical studies. Novelties such as albumin-bound PTX (nab-PTX) demonstrate a progressive approach leading to higher efficiency and decreased risk of side effects after drug administration. Moreover, PTX nanoparticles for targeted treatment of BC promise a stable and efficient therapeutic intervention. Here, we summarize current research focused on PTX, its evaluations in preclinical research and application clinical practice as well as the perspective of the drug for future implication in BC therapy.
Collapse
Affiliation(s)
- Tala M. Abu Samaan
- Department of Pre-Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| |
Collapse
|
21
|
Orthogonal assays for the identification of inhibitors of the single-stranded nucleic acid binding protein YB-1. Acta Pharm Sin B 2019; 9:997-1007. [PMID: 31649849 PMCID: PMC6804448 DOI: 10.1016/j.apsb.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 02/01/2023] Open
Abstract
We have previously shown that high expression of the nucleic acid binding factor YB-1 is strongly associated with poor prognosis in a variety of cancer types. The 3-dimensional protein structure of YB-1 has yet to be determined and its role in transcriptional regulation remains elusive. Drug targeting of transcription factors is often thought to be difficult and there are very few published high-throughput screening approaches. YB-1 predominantly binds to single-stranded nucleic acids, adding further difficulty to drug discovery. Therefore, we have developed two novel screening assays to detect compounds that interfere with the transcriptional activation properties of YB-1, both of which may be generalizable to screen for inhibitors of other nucleic acid binding molecules. The first approach is a cell-based luciferase reporter gene assay that measures the level of activation of a fragment of the E2F1 promoter by YB-1. The second approach is a novel application of the AlphaScreen system, to detect interference of YB-1 interaction with a single-stranded DNA binding site. These complementary assays examine YB-1 binding to two discrete nucleic acid sequences using two different luminescent signal outputs and were employed sequentially to screen 7360 small molecule compounds leading to the identification of three putative YB-1 inhibitors.
Collapse
Key Words
- AlphaScreen
- CSD, cold shock domain
- CTD, C-terminal domain
- Cancer
- DMSO, dimethylsulfoxide
- E2F1, E2F transcription factor 1
- EGR1, early growth response 1
- HTS, high-throughput screening
- Luciferase
- NTD, N-terminal domain
- Single-stranded DNA
- Transcription factor
- YB-1
- YB-1, Y-box binding protein-1
- YBX1, Y-box binding protein gene 1
- cDNA, complementary DNA
- dsDNA, double-stranded DNA
- shRNA, short-hairpin RNA
- siRNA, small-interfering RNA
- ssDNA, single-stranded DNA
Collapse
|
22
|
Li P, Zhong D, Gong PY. Synergistic effect of paclitaxel and verapamil to overcome multi-drug resistance in breast cancer cells. Biochem Biophys Res Commun 2019; 516:183-188. [PMID: 31204050 DOI: 10.1016/j.bbrc.2019.05.189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The aim of this study was to investigate the synergistic effect of paclitaxel (PTX) and verapamil (VERA) on adriamycin (ADR)-resistant breast cancer (MCF-7/ADR) cells. METHODS ATP-PCA was applied to determine the inhibitory effects of PTX combined with VERA on MCF-7/ADR cells. Edu, CCK-8 and Flow cytometry (FCM), Annexin V-FITC binding and Western blot were used to analyze the effects of combination therapy with PTX and VERA on cell proliferation, progression of cell cycle and cell apoptosis. RESULTS PTX-based treatments with VERA enhanced killing effect on MCF-7/ADR cells. IC50 value of cell was significantly decreased in combination treatment compared with PTX administrated. VERA enhanced the efficacy and sensitivity of PTX to MCF-7/ADR cells. Combination of PTX and VERA could inhibit cell proliferation via arresting progression of cell cycle and promote cell apoptosis. CONCLUSION PTX, along with VERA, had a synergistic action in anti-tumor response and may be proposed as a novel treatment strategy for chemo-resistant breast cancer.
Collapse
Affiliation(s)
- Peng Li
- Department of Pathology, Xuzhou Health Hospital of Women and Children, Xuzhou, 221009, PR China
| | - Di Zhong
- Department of Pathology, Xuzhou Health Hospital of Women and Children, Xuzhou, 221009, PR China
| | - Pei-Yao Gong
- Department of Pathology, Xuzhou Health Hospital of Women and Children, Xuzhou, 221009, PR China.
| |
Collapse
|
23
|
Chen WX, Xu LY, Cheng L, Qian Q, He X, Peng WT, Zhu YL. Bioinformatics analysis of dysregulated microRNAs in exosomes from docetaxel-resistant and parental human breast cancer cells. Cancer Manag Res 2019; 11:5425-5435. [PMID: 31354350 PMCID: PMC6579872 DOI: 10.2147/cmar.s201335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Resistance to docetaxel is a major obstacle to effective treatment of breast cancer. Exosomal microRNAs (miRNAs) have recently been introduced in cell-to-cell transmission of chemoresistance between heterogeneous populations of tumor cells with diverse drug sensitivity. However, a systematic evaluation of the exosomal miRNA signature remains largely unclear. Method: miRNA expression profiles in exosomes from docetaxel-resistant (D/exo) and parental sensitive breast cancer cells (S/exo) were assessed using microarray. Bioinformatics analysis was performed to predict target genes of the dysregulated miRNAs and to uncover their potential roles in chemoresistance formation. Signaling pathways, gene ontology terms, transcription factors, protein-protein interactions, and hub genes were also constructed. Results: The selected exosomal miRNAs could modulate target genes responsible for MAPK, TGF-beta, Wnt, mTOR, and PI3K/Akt signaling pathways. Function enrichment analysis revealed the involvement of target genes in transcription regulation, protein phosphorylation, kinase activity, and protein binding. Enriched transcription factors including SP1, SP4, and EGR1 were obtained and a protein-protein interaction network was established. The hub genes for up-expressed and down-expressed exosomal miRNAs such as CCND1 and PTEN were identified. Conclusion: This bioinformatics study provides a comprehensive view of the function of dysregulated exosomal miRNAs, and may help us to understand exosome-mediated resistance transmission and overcome docetaxel resistance in future breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China.,Department of Post-doctoral Working Station, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Ling-Yun Xu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Lin Cheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Qi Qian
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xiao He
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Wen-Ting Peng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Yu-Lan Zhu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| |
Collapse
|
24
|
Lim JP, Nair S, Shyamasundar S, Chua PJ, Muniasamy U, Matsumoto K, Gunaratne J, Bay BH. Silencing Y-box binding protein-1 inhibits triple-negative breast cancer cell invasiveness via regulation of MMP1 and beta-catenin expression. Cancer Lett 2019; 452:119-131. [DOI: 10.1016/j.canlet.2019.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
|
25
|
Kuwano M, Shibata T, Watari K, Ono M. Oncogenic Y-box binding protein-1 as an effective therapeutic target in drug-resistant cancer. Cancer Sci 2019; 110:1536-1543. [PMID: 30903644 PMCID: PMC6500994 DOI: 10.1111/cas.14006] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Y-box binding protein-1 (YBX1), a multifunctional oncoprotein containing an evolutionarily conserved cold shock domain, dysregulates a wide range of genes involved in cell proliferation and survival, drug resistance, and chromatin destabilization by cancer. Expression of a multidrug resistance-associated ATP binding cassette transporter gene, ABCB1, as well as growth factor receptor genes, EGFR and HER2/ErbB2, was initially discovered to be transcriptionally activated by YBX1 in cancer cells. Expression of other drug resistance-related genes, MVP/LRP, TOP2A, CD44, CD49f, BCL2, MYC, and androgen receptor (AR), is also transcriptionally activated by YBX1, consistently indicating that YBX1 is involved in tumor drug resistance. Furthermore, there is strong evidence to support that nuclear localization and/or overexpression of YBX1 can predict poor outcomes in patients with more than 20 different tumor types. YBX1 is phosphorylated by kinases, including AKT, p70S6K, and p90RSK, and translocated into the nucleus to promote the transcription of resistance- and malignancy-related genes. Phosphorylated YBX1, therefore, plays a crucial role as a potent transcription factor in cancer. Herein, a novel anticancer therapeutic strategy is presented by targeting activated YBX1 to overcome drug resistance and malignant progression.
Collapse
Affiliation(s)
- Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Mohamad T, Kazim N, Adhikari A, Davie JK. EGR1 interacts with TBX2 and functions as a tumor suppressor in rhabdomyosarcoma. Oncotarget 2018; 9:18084-18098. [PMID: 29719592 PMCID: PMC5915059 DOI: 10.18632/oncotarget.24726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022] Open
Abstract
EGR1, one of the immediate-early response genes, can function as a tumor suppressor gene or as an oncogene in cancer. The function of EGR1 has not been fully characterized in rhabdomyosarcoma (RMS), a pediatric cancer derived from the muscle linage. We found that EGR1 is downregulated in the alveolar RMS (ARMS) subtype but expressed at levels comparable to normal skeletal muscle in embryonal RMS (ERMS). We found that overexpression of EGR1 in ARMS significantly decreased cell proliferation, mobility, and anchorage-independent growth while also promoting differentiation. We found that EGR1 interacts with TBX2, which we have shown functions as an oncogene in RMS. The interaction inhibits EGR1 dependent gene expression, which includes the cell cycle regulators p21 and PTEN as well as other important cell growth drivers such as NDRG1 and CST6. We also found that EGR1 induced apoptosis by triggering the intrinsic apoptosis pathway. EGR1 also activated two pro-apoptotic factors, BAX and dephosphorylated BAD, which are both located upstream of the caspase cascades in the intrinsic pathway. EGR1 also sensitized RMS cells to chemotherapeutic agents, suggesting that activating EGR1 may improve therapeutic targeting by inducing apoptosis. Our results establish the important role of EGR1 in understanding RMS pathology.
Collapse
Affiliation(s)
- Trefa Mohamad
- Department of Biochemistry and Molecular Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Noor Kazim
- Department of Biochemistry and Molecular Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Abhinav Adhikari
- Department of Biochemistry and Molecular Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Judith K Davie
- Department of Biochemistry and Molecular Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
27
|
Alotaibi MR, Hassan ZK, Al-Rejaie SS, Alshammari MA, Almutairi MM, Alhoshani AR, Alanazi WA, Hafez MM, Al-Shabanah OA. Characterization of Apoptosis in a Breast Cancer Cell Line after IL-10 Silencing. Asian Pac J Cancer Prev 2018; 19:777-783. [PMID: 29582634 PMCID: PMC5980855 DOI: 10.22034/apjcp.2018.19.3.777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Breast cancer is affected by the immune system in that different cytokines play roles in its initiation
and progression. Interleukin-10 (IL-10), an anti-inflammatory cytokine, is an immunosuppressive factor involved in
tumorigenesis. The present study was conducted to investigate the gene silencing effect of a small interference RNA
(siRNA) targeting IL-10 on the apoptotic pathway in breast cancer cell line. Methods: The siRNA targeting IL-10 and
a glyceraldehyde 3-phosphate dehydrogenase (GAPDH) clone were introduced into MDA-MB-231 cells. Real-time
PCR assays were used to determine IL-10 and GAPDH gene expression levels, in addition to those for protein kinase
B (AKT), phosphoinositide 3-kinase (PI3K), B-cell lymphoma 2 (Bcl2), caspase-3 and caspase-9 genes related to
apoptosis. Results: Inhibition of IL-10 by the siRNA accelerated apoptosis and was accompanied by significant
increase in caspase-3 and caspase-9 and a significant decrease in PI3K, AKT and Bcl2 expression levels compared to
the non-transfected case. Conclusions: In conclusion, the production of IL-10 may represent a new escape mechanism
by breast cancer cells to evade destruction by the immune system. IL-10 gene silencing causes down regulation of both
PI3K/AKT and Bcl2 gene expression and also increases the Bbc3, BAX caspase3, and caspase 3 cleavage expression
levels. IL–10 might represent a promising new target for therapeutic strategies.
Collapse
Affiliation(s)
- Moureq R Alotaibi
- College of Pharmacy, Pharmacology and Toxicology Department, Kind Saud University, Riyadh, kingdom of Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li WX, He K, Tang L, Dai SX, Li GH, Lv WW, Guo YC, An SQ, Wu GY, Liu D, Huang JF. Comprehensive tissue-specific gene set enrichment analysis and transcription factor analysis of breast cancer by integrating 14 gene expression datasets. Oncotarget 2018; 8:6775-6786. [PMID: 28036274 PMCID: PMC5351668 DOI: 10.18632/oncotarget.14286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in women. Several key genes and pathways have been proven to correlate with breast cancer pathology. This study sought to explore the differences in key transcription factors (TFs), transcriptional regulation networks and dysregulated pathways in different tissues in breast cancer. We employed 14 breast cancer datasets from NCBI-GEO and performed an integrated analysis in three different tissues including breast, blood and saliva. The results showed that there were eight genes (CEBPD, EGR1, EGR2, EGR3, FOS, FOSB, ID1 and NFIL3) down-regulated in breast tissue but up-regulated in blood tissue. Furthermore, we identified several unreported tissue-specific TFs that may contribute to breast cancer, including ATOH8, DMRT2, TBX15 and ZNF367. The dysregulation of these TFs damaged lipid metabolism, development, cell adhesion, proliferation, differentiation and metastasis processes. Among these pathways, the breast tissue showed the most serious impairment and the blood tissue showed a relatively moderate damage, whereas the saliva tissue was almost unaffected. This study could be helpful for future biomarker discovery, drug design, and therapeutic and predictive applications in breast cancers.
Collapse
Affiliation(s)
- Wen-Xing Li
- Institute of Health Sciences, Anhui University, Hefei 230601, Anhui, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Ling Tang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Wen-Wen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Cheng Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - San-Qi An
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Guo-Ying Wu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming 650223, Yunnan, China.,Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming 650223, Yunnan, China.,Chinese University of Hong Kong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming 650223, Yunnan, China
| |
Collapse
|
29
|
Kang X, Li M, Zhu H, Lu X, Miao J, Du S, Xia X, Guan W. DUSP4 promotes doxorubicin resistance in gastric cancer through epithelial-mesenchymal transition. Oncotarget 2017; 8:94028-94039. [PMID: 29212207 PMCID: PMC5706853 DOI: 10.18632/oncotarget.21522] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance limits treatment efficacy in gastric cancer and doxorubicin resistance is common in gastric cancer cells. Dual specificity phosphatase 4 (DUSP4) has been associated with tumor progression. This study aimed to investigate the mechanism of DUSP4 regulating doxorubicin resistance in gastric cancer cells. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay were used to measure cell viability and proliferation in gastric cancer cells treated with doxorubicin. The expression of DUSP4, E-cadherin and Vimentin protein was detected by Western blotting. Overexpression of DUSP4 was more resistant to doxorubicin in gastric cancer cells. Knockdown of DUSP4 increased the sensitivity of gastric cancer cells to doxorubicin. Moreover, up-regulation of DUSP4 promoted the Epithelial-Mesenchymal Transition (EMT) in gastric cancer cells, but blocking the EMT using a Twist siRNA increased the sensitivity of gastric cancer cells to doxorubicin and confirmed the EMT was involved in DUSP4-mediated doxorubicin resistance. These findings demonstrated that DUSP4 could enhance doxorubicin resistance by promoting EMT in gastric cancer cells.
Collapse
Affiliation(s)
- Xing Kang
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Minhuan Li
- Department of Laboratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Hao Zhu
- Department of Gastroenterology, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xiaofeng Lu
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Ji Miao
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Shangce Du
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xuefeng Xia
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Wenxian Guan
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
30
|
High YBX1 expression indicates poor prognosis and promotes cell migration and invasion in nasopharyngeal carcinoma. Exp Cell Res 2017; 361:126-134. [PMID: 29024700 DOI: 10.1016/j.yexcr.2017.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Y-box binding protein-1 (YBX1) is a multifunctional protein and often acts as an indicator of poor prognosis in cancers. Increasing evidence has shown that the levels of YBX1 protein were closely associated with multidrug resistance, relapse, metastasis and poor prognosis in cancers. However, its role in nasopharyngeal carcinoma (NPC) metastasis remains unknown. In our study, we discovered that the expression of YBX1 was increased in nasopharyngeal carcinoma tissues. YBX1 protein levels positively correlated with T stage and metastasis of NPC patients. Moreover, expression of YBX1 was negatively correlated with membrane E-cadherin levels and positively correlated with Vimentin expression. In vitro, the expression of YBX1 was closely related to the invasive and migratory ability of nasopharyngeal carcinoma cells. Knockdown of YBX1 inhibited migration and invasion in 5-8F cells, and over-expression of YBX1 promoted CNE1 cells migration and invasion. Transforming growth factor-β1 (TGF-β1) treatment led to epithelial-to-mesenchymal transition (EMT) in CNE1 cells accompanied by elevated YBX1 expression. On the contrary, knockdown of YBX1 partially inhibited the TGF-β1-induced CNE1 cell migration, together with changes of EMT-associated markers. Our study revealed that TGF-β1/YBX1 signaling might be one of novel mechanisms mediating EMT in NPC, providing a new target for the treatment of nasopharyngeal carcinoma.
Collapse
|
31
|
Egr-1 regulates irradiation-induced autophagy through Atg4B to promote radioresistance in hepatocellular carcinoma cells. Oncogenesis 2017; 6:e292. [PMID: 28134935 PMCID: PMC5294254 DOI: 10.1038/oncsis.2016.91] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
Although hepatocellular carcinoma (HCC) is usually response to radiation therapy, radioresistance is still the major obstacle that limits the efficacy of radiotherapy for HCC patients. Therefore, further investigation of underlying mechanisms in radioresistant HCC cells is warranted. In this study, we determined the effect of early growth response factor (Egr-1) on irradiation-induced autophagy and radioresistance in HCC cell lines SMMC-7721 and HepG2. We showed that autophagy-related gene 4B (Atg4B) is induced by Egr-1 upon ionizing radiation (IR) in HCC cells. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) revealed that Egr-1 binds to the Atg4B promoter to upregulate its expression in HCC cells. Suppression of Egr-1 function by dominant-negative Egr-1 dampens IR-induced autophagy, cell migration, and increases cell sensitivity to radiotherapy. Together, these results suggest that Egr-1 contributes to HCC radioresistance through directly upregulating target gene Atg4B, which may serve as a protective mechanism by preferential activation of the autophagy.
Collapse
|